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Summary. Using techniques employing smooth sensitivity, we develop a method for k-
nearest neighbor missing data imputation with differential privacy. This requires bounding
the number of data incomplete tuples that can have their data complete “donor” changed
by making a single addition or deletion to the dataset. The multiplicity of a single in-
dividual’s impact on an imputed dataset necessarily means our mechanisms require the
addition of more noise than mechanisms that ignore missing data, but we show empirically
that this is significantly outweighed by the bias reduction from imputing missing data.

1. Introduction

Missing data poses substantial challenges for data analysis and machine learning. If data
were missing uniformly at random, this would not be a big issue, but in practice (as with
survey data), missing data tends to be biased (Nicoletti and Peracchi, 2006; Kalton and
Kasprzyk, 1982). As a result, analysis based on only collected data gives poor results.

A common solution to this problem is missing data imputation. The usual first step
is to use known data about an individual to impute any missing values (for example,
if an individual leaves their employment status unanswered but reports income from a
job, their employment status can be deduced). When this fails, it is common to instead
use known values from similar individuals (an approach also referred to as allocation
(Kalton and Kasprzyk, 1982; United States Census Bureau, 2014)). This poses a privacy
challenge, as a single individual’s value is reflected in multiple records, making it more
difficult to keep that value private.

This privacy risk can be mitigated with differential privacy (Dwork et al., 2006).
Differential privacy adds noise to a query result sufficient to hide the impact of any
individual on the result. If an individual is a “donor” for several individuals with a
missing value, then their impact on the result for many queries (how much the result
would change if that individual were removed) increases with the number of individuals
who take their value, requiring substantially more noise to cover their impact.

A basic approach to differential privacy requires a worst-case view: the amount of
noise added is based on the worst possible scenario that can be constructed. In the case of
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Fig. 1. Sample dataset with high global sensitivity. Each individual has attributes SHAPE and
COLOR. The squares are missing COLOR, so the color of every square is initially imputed as
black. After deleting the black circle, the color of every square is imputed as gray.

missing data imputation, we can imagine a scenario like Figure 1: If we assume the value
of the attribute color is imputed from the nearest neighbor (in two-dimensions) with a
known value, deleting the black circle will change the imputed color of every square. In
particular, the count of gray individuals goes from 1 to the size of the dataset. This
essentially requires sufficient noise to hide the entire range of possible answers.

Such pathological cases seem unlikely to occur in practice. Smooth sensitivity (Nissim
et al., 2007) allows us to base our noise not on a global worst case, but on worst cases
bearing resemblance to the actual dataset. As more changes to the data are needed to
get to a worst case, the impact of the worst case on the noise added goes down. We will
review this in Section 3.1, but for now note the key challenge: We need to account for the
worst case after any number of changes to the actual data, a computationally intractable
problem unless we can analytically bound the impact on a query result of a given number
of changes. This is difficult, and there have been few examples of problems that can be
addressed by smooth sensitivity beyond those worked out in the original paper, most
quite recent: see for example synthetic graph generation (Wang and Wu, 2013), outlier
detection (Okada et al., 2015), random forests (Fletcher and Islam, 2017), and PCA
(Gonem and Gilad-Bachrach, 2018).

1.1. Problem Statement and Summary of Results
In this paper, we establish a smooth upper bound (in the sense of Nissim et al. (2007)) for
k-nearest-neighbor imputation, regardless of how the data of the neighbors translates into
the imputed value (e.g., averaging, majority vote, etc.). Our examples and mechanisms
focus on counts, proportions, means, and variances, and the results easily extend to any
queries where the impact of an individual is at most multiplicative in the number of
times they are a “donor” (sums and correlations are examples).

Our use of smooth sensitivity to achieve differentially private k-nearest neighbor
data imputation gives a dramatic reduction in variance compared to using the global
sensitivity. While missing data imputation does give substantially higher variance than
simply throwing out individuals with missing data, we do get the reduction in bias that
is the primary benefit of doing missing data imputation. While this bias/variance trade-
off is difficult to quantify analytically (it is heavily dependent on the specifics of the
dataset), we do give a synthetic, but realistic, example in Section 6 that is reflective of
an actual large-scale, high-dimensional survey.

The technical contributions of this work are: we show that any global sensitivity-
based approach is untenable in Example 1; we establish computationally efficient smooth
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upper bounds in Theorems 5.1-5.6 and Corollaries 5.2-5.7 that allow us to utilize smooth
sensitivity; and in Section 6 we show that for numerous queries of practical interest, our
mechanism gives substantially better results than simply ignoring missing data.

2. Related Work

Imputation of missing values for a data incomplete tuple is generally done by computing
a value based on known values for that individual (edit rules), modeling the value based
on known values for other individuals (e.g., using the mean), or inserting a known value
from a donor data complete tuple (allocation) (Kalton and Kasprzyk, 1982). We first
discuss allocation approaches and why they pose challenges for differential privacy. We
also overview existing methods for private data imputation.

2.1. Allocation for Missing Data Imputation
Using a value from a donor is more likely to give a legal value (e.g., avoiding the family
with 2.4 children). Methods such as hot deck imputation have a long history. In basic
form, hot deck uses the last seen value for a missing data item (Bailar III and Bailar,
1978). This works if data is missing at random, but often missing data is biased towards
certain classes of individuals. To address this concern, donors are chosen to be similar to
the incomplete data item with regards to certain known attributes, under the assumption
that individuals similar on those attributes have similar values for the missing data.
Unfortunately, this can also lead to biased results, if an individual with an unusual value
ends up being the donor to many missing individuals. This has given rise to complicated
procedures, such as sorting hot deck data to try to get donors who are similar to the
individuals with missing data (Bailar III and Bailar, 1978), or the mechanism used in
the U.S. Census Bureau’s American Community Survey (United States Census Bureau,
2014). The latter identifies a similar individual as a donor, but then discards that
individual for a period of time before allowing it to be reused as a donor.

Methods that use such a donor have obvious implications for differential privacy. The
sensitivity of a query must account for the fact that queries covering imputed missing
data may actually be multiply dependent on the value from the donor. As shown in the
example in the introduction (Figure 1), this can give arbitrarily high sensitivity.

Methods such as hot deck imputation (or that use some of its concepts, such as United
States Census Bureau (2014)) would intuitively seem to be well-suited for differential
privacy, since an individual donor’s contributions are limited. Unfortunately, such tech-
niques are sensitive to the order in which tuples are processed (Bailar III and Bailar,
1978). The following example shows that this makes global sensitivity arbitrarily large.

In Figure 2 we again consider individuals with attributes shape and color and impute
values of color based on distance in two dimensions. With hot deck, a potential donor
cannot impute on two consecutive individuals. Thus if we delete (from the left dataset)
the leftmost black circle, the imputed value of color of each of the data incomplete
individuals is swapped (as shown in the right dataset). The (imputed) number of gray
squares is changed from 0 to the total number of squares with this single deletion. As a
result, it is impractical to satisfy the differential privacy guarantee with such approaches.
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delete

Fig. 2. High sensitivity of hot deck imputation. Each individual has attributes shape and color.
The arrows represent values being imputed. Deleting the left black circle from the dataset on
the left changes the imputed value of color for every data incomplete tuple (shown on the right).

2.2. Private Data Cleaning Methods
There have been some methods that propose privatized (including differentially private)
mechanisms for data cleaning. However, to our knowledge these all address a different
cleaning problem: correcting values that are presumed to be erroneous.

InfoClean (Chiang and Gairola, 2018) is an automated cleaning mechanism that
satisfies a form of information theoretic privacy, but is not shown to satisfy differential
privacy. It also addresses a somewhat different problem. The assumption is that a
given tuple is known to be erroneous, and is fixed by comparing with a similar tuple
retrieved from a master database; the only privacy considered is that of data in the
Master database. PACAS (Huang et al., 2018) addresses a similar problem, using a
k-anonymity based privacy metric.

The differentially private data cleaning methods PrivateClean (Krishnan et al., 2016)
and PrivClean (Ge et al., 2018) support human-in-the-loop cleaning. Both enable an
expert to specify rules for data cleaning, and ensure that the result of a query is differ-
entially private, which may include the impact of the expert looking at data to generate
the rules. As such, this is really not comparable with our approach.

2.3. Low Rank Estimation
Another common solution to missing data imputation in the differentially private setting
is to view the dataset as a matrix with missing entries, and produce a differentially private
matrix which is similar in to the original with respect to some norm. Examples of such
approaches include McSherry and Mironov (2009); Kapralov and Talwar (2013); Jain
et al. (2018). This is a powerful method, and unlike the present paper, releases a synthetic
dataset on which an arbitrary number of queries can then be run. However these recent
efforts have predominantly focused on recommender systems, which are homogeneous
in their variables and do not exhibit the structure and relationships between variables
which we exploit here. This stands in stark contrast with many surveys, for instance
the U.S. Census Bureau’s American Community Survey (ACS) which we will focus on
below. Some of these attempts have also used a weaker privacy guarantee than that of
(pure) differential privacy, which we satisfy in this paper.

3. Background

Throughout this paper, we use the notation D to refer to a dataset from some universe
D. For now, we put no assumptions on D, but we will add restrictions in Section 4 that
will allow us to discuss differentially private data imputation. For two arbitrary sets U
and V , let U∆V denote the symmetric difference; that is, U∆V := (U ∪ V ) \ (U ∩ V ).
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For two datasets D,D′, we denote by d(D,D′) the Hamming distance between D and D′

given by d(D,D′) = |D∆D′|. By a query q, we mean a map q : D → Rd for some positive

integer d. Given a ∈ Rd, we denote by ||a||1 the `1 norm of a; that is, ||a||1 :=
∑d

i=1 |ai|.
A randomized algorithm A : D → Rd is said to satisfy ε-differential privacy (Chawla

et al., 2005) if for all D,D′ ∈ D such that d(D,D′) = 1 and for all measurable S ⊂ Rd,

Pr[A(D) ∈ S] ≤ eε · Pr[A(D′) ∈ S].

Note that we are working in what is referred to as the unbounded differential privacy
setting, where a difference between D and D′ is from adding or removing an individual.

3.1. Smooth Sensitivity
The goal of this section is to provide an overview of Nissim, Raskhodnikova, and Smith’s
results on smooth sensitivity (Nissim et al., 2007). For convenience, we have included
proofs of the statements we will use. All of the proofs in this section have been adapted
from those in the original paper. Some of the constants in the statements below are
tighter bounds than the original, and are better suited to our needs. We begin with an
overview of the problem they solved.

Definition 3.1. Let q be an arbitrary query. Then the global sensitivity of q is:

GSq := max
D,D′:d(D,D′)=1

||q(D)− q(D′)||1,

where the maximum is over all datasets D,D′ which are neighbors in the Hamming
distance.

The global sensitivity of a query is often used to achieve differential privacy via the
Laplace mechanism.

Theorem 3.2. (Chawla et al., 2005) Let ε > 0 and let q be a query taking values in Rd.
Then the mechanism Aq(D) = q(D) + (X1, . . . , Xd), where the Xi are i.i.d. from

f(x) =
ε

2GSq
exp(−|x|ε/GSq),

satisfies ε-differential privacy.

For queries with low global sensitivity (e.g., counts, proportions), the Laplace mech-
anism provides a strong privacy guarantee without losing data utility. Unfortunately,
many important classes of queries (e.g., medians) have high or unbounded global sen-
sitivity. This is often due to the existence of pathological datasets that are likely very
different from real-world data. To avoid the necessity of adding noise to cover these
unrealistic scenarios, it is natural to consider instead using local sensitivity.

Definition 3.3. Let q be an arbitrary query and let D be a dataset. The local sensitivity
of q at D is:

LSq(D) := max
D′:d(D,D′)=1

||q(D)− q(D′)||1.
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The local sensitivity of a query is obviously bounded above by the global sensitivity,
and can be considerably lower. However, one should generally be wary of mechanisms
based solely on local sensitivity, as there are queries for which adding noise proportional
to the local sensitivity cannot satisfy differential privacy (such as median, see Nissim
et al. (2007)). As we shall see, the mechanisms proposed in this paper are based solely
on (an upper bound of) the local sensitivity, a computationally convenient fact.

We prove our proposed mechanisms are differentially private using Nissem, Rash-
hodnikova, and Smith’s compromise between local and global sensitivity, formed by
computing a smooth upper bound.

Definition 3.4. (Nissim et al., 2007, Definition 2.1) Let β > 0 and let q be an arbitrary
query. A β-smooth upper bound is a function S : D → R+ such that

∀D ∈ D : S(D) ≥ LSq(D)

∀D,D′ ∈ D, d(D,D′) = 1 : S(D) ≤ eβ · S(D′).

The following gives a general construction for turning a bound on local sensitivity
into a β-smooth upper bound. The values Uk(D) below can be thought of as an upper
bound on the maximum local sensitivity of any dataset (Hamming) distance k from D.

Theorem 3.5. (Nissim et al., 2007, Claim 3.2) Let q be a query. For k ∈ N, let
Uk : D → R so that

∀D ∈ D : LSq(D) ≤ U0(D),

∀k ∈ N, ∀D,D′ ∈ D, d(D,D′) = 1 : Uk(D) ≤ Uk+1(D
′).

Then there is a β-smooth upper bound on the local sensitivity of q given by:

SSβ,q(D) = max
k

e−βkUk(D).

This proof is taken from the preliminary version of Nissim et al. (2007).

Proof. By definition, we have

LSq(D) ≤ U0(D) ≤ SSβ,q(D),

so let d(D,D′) = 1. Then

SSβ,q(D) = max
k

e−βkUk(D) ≤ eβ max
k

e−β(k+1)Uk+1(D
′)

≤ eβ max
k

e−βkUk(D
′) = SSβ,q(D

′).

In order to construct differentially private mechanisms based on this definition and
the theorem, we need the following result.

Theorem 3.6. (Nissim et al., 2007, Lemma 2.6) Let f(x) be a pdf on Rd and let ε > 0.
Let q be a query taking values in Rd. Suppose there exist parameters α, β > 0 such that
for all measurable subsets B ⊂ Rd,

∀∆ ∈ Rd, ||∆||1 ≤ α : Pr
X∼f

[x ∈ B] ≤ eε/2 · Pr
X∼f

[x ∈ B + ∆]

∀λ ∈ R, |λ| ≤ β : Pr
X∼f

[x ∈ B] ≤ eε/2 · Pr
X∼f

[
x ∈ eλ ·B

]
.
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Then for any β-smooth upper bound, S(D), of LSq, the algorithm

A(D) = q(D) +
S(D)

α
·X

is ε-differentially private, where X is a random variable with pdf f(x). In this case, the
distribution corresponding to f is called an (α, β)-admissible noise down distribution.

Proof. Let B ⊂ Rd be measurable and let D,D′ ∈ D be neighboring datasets. Then

Pr [A(D) ∈ B] = Pr
X∼f

[
x ∈ α(B − q(D))

S(D)

]
≤ Pr

X∼f

[
x ∈ α(B − q(D′))

S(D)

]
· eε/2

≤ Pr
X∼f

[
x ∈ α(B − q(D′))

S(D′)

]
· eε = Pr

[
A(D′) ∈ B

]
· eε.

The first inequality holds because

α||q(D′)− q(D)||1
S(D)

≤ α||q(D′)− q(D)||1
LSq(D)

≤ α

by the definition of local sensitivity. The second inequality holds because∣∣∣∣ S(D)

S(D′)

∣∣∣∣ ≤ eβ
by the definition of a β-smooth upper bound.

We now give our primary example of an admissible noise down distribution, which
we refer to as the generalized Cauchy distribution.

Definition 3.7. Let γ > 1. The generalized Cauchy distribution with parameter γ has
a density given by

f(x) ∝ 1

1 + |x|γ
.

Theorem 3.8. (Nissim et al., 2007, Lemma 2.7) Let ε > 0 and γ > 1. Then the

generalized Cauchy distribution with parameter γ is
(

ε
2(γ−1) ,

ε
2(γ−1)

)
-admissible (note

that in this case, α = β). In particular, if q is an real-valued query and S is a
(

ε
2(γ−1)

)
-

smooth upper bound of the local sensitivity of q, then the mechanism

A(D) = q(D) +
2(γ − 1) · S(D)

ε
·X,

where X is sampled from a generalized Cauchy distribution with parameter γ, satisfies
ε-differential privacy.

Proof. Let µ ∈ R with |µ| ≤ ε
2(γ−1) . Let f0(x) = 1

1+|x|γ . We must show that
f(x)

f(x+µ) = f0(x)
f0(x+µ)

≤ eε/2, or equivalently ln(f0(x))− ln(f0(x+ µ)) ≤ ε/2. First observe

f0(x) =

{
1

1+xγ x ≥ 0
1

1+(−x)γ x < 0
f ′0(x) =

{−γxγ−1

(1+xγ)2 x ≥ 0
γ(−x)γ−1

(1+(−x)γ)2 x < 0
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Now, by the mean value theorem, there exists z ∈ (x, x+ µ) such that

| ln(f0(x))− ln(f0(x+ µ))| =
∣∣µ · (ln ◦f0)′(z)∣∣ .

If z > 0, we have ∣∣(ln ◦f0)′(z)∣∣ =

∣∣∣∣f ′0(z)f0(z)

∣∣∣∣ =
γzγ−1

1 + zγ
=

γ

z1−γ + z
.

Now consider that the function g(z) = z1−γ+z is minimized at z0 = (γ−1)1/γ . Moreover,

g(z0) = (γ − 1)1/γ · γ

γ − 1
=

γ

(γ − 1)1−1/γ
≥ γ

γ − 1
.

Therefore, ∣∣(ln ◦f0)′(z)∣∣ =
γ

g(z)
≤ γ

g(z0)
≤ γ − 1.

Likewise, if z ≤ 0, we have∣∣(ln ◦f0)′(z)∣∣ =

∣∣∣∣f ′0(z)f0(z)

∣∣∣∣ =
γ

(−z)1−γ + (−z)
≤ γ − 1.

Thus in any case, we have

ln(f0(x))− ln(f0(x+ µ)) ≤ (γ − 1)µ ≤ ε/2.

Now let λ ∈ R with |λ| ≤ ε
2(γ−1) . We must show that f(x)

eλf(eλx) ≤ e
ε/2. If λ ≥ 0, then

f(x)

eλf(eλx)
=

1 + |eλx|γ

eλ(1 + |x|γ)
≤ (eλ)γ−1 ≤ eε(γ−1)/2(γ−1) < eε/2.

Likewise, if λ < 0, then

f(x)

eλf(eλx)
=

1 + |eλx|γ

eλ(1 + |x|γ)
≤ e−λ ≤ eε/2(γ−1) < eε/2.

The following is a reformulation of this theorem, which will feature in Section 5.

Corollary 3.9. Let ε, β > 0, let q be a real-valued query, and choose γ so that γ ≤ 1+ ε
2β .

Then for S(D) a β-smooth upper bound of the local sensitivity of q, the mechanism

A(D) = q(D) +
S(D)

β
·X,

where X is sampled from the generalized Cauchy distribution with parameter γ, satisfies
ε-differential privacy.

Remark 3.10. We make two remarks about interpreting the theorem in this way.

(a) While this mechanism works for any values of ε and β, it is inadvisable to use small
values of γ. In particular, the generalized Cauchy distribution only has well-defined
variance when γ > 3. Above this value, the variance is a decreasing function in γ.
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(b) Technically, the corollary holds for any γ such that 1 < γ ≤ 1 + ε
2β . However,

γ should be taken to have the maximal value possible since the variance of the
generalized Cauchy mechanism (when it is defined) is decreasing in γ.

While beautiful theoretical results, it is often computationally intractable to obtain
differential privacy using Theorems 3.6 and 3.8. Without a bound on the change in local
sensitivity between two datasets arbitrarily far apart, an exhaustive search of all nearby
neighbors needs to be done until the smooth upper bound is found.

In Section 5, we compute a smooth upper bound for the local sensitivity of several
queries under k-nearest neighbor allocation. We then examine more closely the effect of
the parameters γ and β on the variance of the noise added.

4. Deterministic Data Imputation

The goal of this section is to establish the necessary theoretical framework to apply
differential privacy to a dataset with (k-nearest neighbor) imputation. We do so by
examining the relationship between the local sensitivity of a query and the ability to
change the donor(s) of a data incomplete tuple.

4.1. Theoretical Framework
We start with a few (heavily theoretical) definitions, but the well-known motivating
examples are listed in Example 4.2. Let T denote the set of all possible tuples, in which
missing values are allowed. Throughout this section, we fix a set of attributes A. We let
Tc denote the subset of T consisting of tuples with no missing values and Ti the subset
of T consisting of tuples missing responses to A. We refer to Tc as the set of complete
tuples and Ti as the set of incomplete tuples. We assume that these are the only two
possibilities (although the results still hold under the existence of other types of tuples).

From now on, we assume that a dataset cannot contain two identical tuples†. This
allows us to define Dc := D∩Tc and Di = D∩Ti so that D = Dc ∪Di and Dc ∩Di = ∅.

For any positive integer k, we define
(
Tc
k

)
:= {S ⊂ Tc : |S| = k} and denote by ord(Tc)

the set of (total) orders on Tc. For A a set of attributes, we refer to the set of possible
responses to A as resp(A) and the responses given by y ∈ Tc as respy(A).

Definition 4.1. (a) A deterministic k-nearest neighbor imputation scheme for the set

of attributes A is a pair (f, g) where f : Ti → ord(Tc) and g :
(
Tc
k

)
→ resp(A).

(b) Fix a pair (f, g) as above and let D = Dc ∪Di be a dataset. Then for x ∈ Di, we
denote by donD(x) the set of k elements of Dc which are smallest with respect to
the ordering f(x). We call donD(x) the donor set (or just donor if k = 1) of x.
The value imputed to x for the attributes in A is then g(donD(x)).

The definition of a deterministic k-nearest neighbor imputation scheme is intention-
ally very abstract. This allows us to state the results of this section with some generality.
The following are some common examples that fit into this framework.

†This assumption, which is necessary for the proofs that follow, is not difficult to achieve in
reality. For example, multiple individuals can be identical up to some unique record label.
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Example 4.2.

(a) Nearest Neighbor: Let k = 1. For x ∈ Ti, define f(x) to be the order (with tie-
breakers if necessary) on Tc given by some distance metric (e.g., Hamming distance
on a certain set of attributes). For y ∈ Tc, define g(y) = respy(A). Then (f, g)
is the imputation scheme which copies the responses to A from the nearest data
complete tuple in the dataset.

(b) Mean: For x ∈ Ti, define f(x) to be the order (with tie-breakers if necessary)
on Tc given by some distance metric (e.g., Hamming distance on a certain set of

attributes). For Y ∈
(
Tc
k

)
, define

g(Y ) =
1

k

∑
y∈Y

respy(A).

Then (f, g) is the imputation scheme which imputes the average of the responses
to A from the k nearest data complete tuples in the dataset.

(c) Majority: For x ∈ Ti, define f(x) to be the order (with tie-breakers if necessary)
on Tc given by some distance metric (e.g., Hamming distance on a certain set of

attributes). For Y ∈
(
Tc
k

)
, define i(Y ) to be the most common value of respy(A)

over y ∈ Y . Then (f, g) is the imputation scheme which imputes the most common
response to A from the k nearest data complete tuples in the dataset.

Remark 4.3.

(a) Given a dataset D = Dc ∪Di and a data incomplete tuple x ∈ Di, it is necessary
for the order f(x) to be on Tc (the set of all possible data complete tuples) rather
than Dc (the set of data complete tuples actually in D). Otherwise, if we make a
change to the dataset by adding a new data complete tuple y ∈ Tc \Dc, we would
have no way to determine whether y should replace (one of) the donor(s) of x.

(b) As in the above examples, it is often not necessary to specify or compute the entire
function f : Ti → ord(Tc). Indeed, specifying a metric to determine the nearest
neighbor (for example Hamming distance on a certain set of attributes with the
difference in record labels as a tiebreaker) is enough that one could construct the
function f if desired. This will be the approach used in our empirical analysis.

(c) Definition 4.1 is made so that a single change to the dataset can only change at
most one donor of a data incomplete tuple. That is, if d(D,D′) = 1 and x ∈ Di∩D′i,
then |donD(x) ∩ donD′(x)| ≥ k − 1.

From now on, we fix an imputation scheme (f, g).

Definition 4.4.

(a) Let D be a dataset. Given y ∈ Dc, its set of donees is

don−1D (y) := {x ∈ Di|y ∈ donD(x)}.

That is, don−1D (y) consists of those incomplete tuples in D whose values are imputed

based on y. For convenience, we will define don−1D (y) = ∅ for y ∈ Tc \Dc.
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(b) Let D,D′ be datasets. The donee change between D and D′ is

c(D,D′) :=
[
Di∆(D′)i

]
∪
[
don−1D (D ∪D′)∆don−1D′ (D ∪D

′)
]
.

The first term represents the data incomplete tuples added or deleted as we trans-
form D into D′. The second term represents those incomplete tuples that have their
donor set change as we transform D into D′. We note that c(D,D′) = c(D′, D).

4.2. Bounding Donee Changes
We now turn our attention to studying how the function c(D,D′) behaves as d(D,D′)
increases. More precisely, we study the function

L`(D) := max
{D′: d(D,D′)=`}

|c(D,D′)|.

Remark 4.5.

(a) Our motivation for studying this function is to construct a smooth upper bound
for the local sensitivity of several queries based upon these values. Our definition
of L`(D) enables us to use Theorem 4.6 later in Section 5 to create mechanisms
requiring only the computation of L1(D) for a given dataset.

(b) The quantity L1(D) will play a particularly important role in our analysis. Recall
that from the unbounded definition of differential privacy, the only changes we
allow to the dataset are the addition or deletion of a tuple. L1(D) can therefore be
seen as a maximum over the impacts of such a change.

The following result describes how the function L`(D) changes as the distance ` and
dataset D change, and forms the basis of our mechanisms.

Theorem 4.6. Let D be any dataset. Then:

(a) For all ` ∈ N, L`(D) < L`+1(D).
(b) For all ` ∈ N, L`(D) ≤ `L1(D).
(c) For any dataset D′, L1(D

′) ≤ Ld(D,D′)+1(D).

Proof. (a) Let D′ be a dataset realizing |c(D,D′)| = L`(D), and let x ∈ Ti such
that x /∈ D ∪D′. Then D′ ∪ {x} is a dataset satisfying d(D,D′ ∪ {x}) = `+ 1 and

L`+1(D) ≥ c(D,D′ ∪ {x}) = c(D,D′) + 1 > c(D,D′) = L`(D).

(b) Let D′ be a dataset realizing L`(D) = |c(D,D′)|, and let D∆D′ = {t1, ..., t`}.
We will prove this statement by induction on `. For ` = 1, there is nothing to show, so
assume the statement holds for `− 1. We then have

c(D,D′) = c(D,D`−1) ∪
(
c(D′, D`−1) \ c(D,D`−1)

)
,

where D`−1 is the dataset obtained from D by adding/removing the tuples t1, . . . , t`−1.
Hence by the induction hypothesis

L`(D) = |c(D,D′)|
= |c(D,D`−1)|+ |c(D′, D`−1) \ c(D,D`−1)|
≤ (`− 1)L1(D) + |c(D′, D`−1) \ c(D,D`−1)|.
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Therefore it suffices to show that

|c(D′, D`−1) \ c(D,D`−1)| ≤ L1(D).

First observe that if t` ∈ Ti, then |c(D`−1, D
′)| = 1, and we are done. Thus we can

assume that t` ∈ Tc.
As a set, c(D′, D`−1) represents those incomplete tuples whose donor set changes in

the move from D`−1 to D′ and had not changed previously. To simplify notation, denote

D ± {t`} =

{
D ∪ {t`}, t` /∈ D
D \ {t`}, t` ∈ D

.

We claim

c(D′, D`−1) \ c(D,D`−1) ⊆
{
x ∈ Di : t` ∈ (donD(x))∆(donD±{t`}(x))

}
.

To see this, let x ∈ c(D′, D`−1) \ c(D,D`−1). We first note that since t` is data
complete, we have (D`−1)i = (D′)i. Next, observe that x ∈ Di. Indeed, if x /∈ Di, then
x must be equal to some tj and therefore x ∈ c(D,D`−1), a contradiction. Since x ∈ Di

and it does not change donors in the first `− 1 steps, we have donD(x) = donD`−1
(x).

Now if t` ∈ D, then t` ∈ donD`−1
(x) = donD(x) and we are done. Thus assume

t` ∈ donD′(x). If donD′(x) \ {t`} 6⊆ D then x changes donors between D and D`−1, a
contradiction. Therefore t` ∈ donD±{t`}(x). This proves the claim.

We conclude that |c(D′, D`−1) \ c(D,D`−1)| ≤ |c(D,D ± {t`})| ≤ L1(D), as needed.
(c) This proof is similar to that of part (2), with one change to be explained later.

Let D′ be another dataset, and set ` := d(D,D′). Let D′′ be the neighboring dataset of
D′ which realizes |c(D′, D′′)| = L1(D

′). As before, set

D∆D′ = {t1, ..., t`}, D′∆D′′ = {t}.

We now break the proof into cases, some of which are trivial. If t ∈ Ti, then L1(D
′) =

|c(D′, D′′)| = 1, and there is nothing to show. Thus assume that t ∈ Tc. We now have
two cases to consider.

(c1) If t 6= tj for all j, then as in case (2), we have

c(D′, D′′) ⊆ c(D,D′′),

and hence

L1(D
′) = |c(D′, D′′)| ≤ |c(D,D′′)| ≤ Ld(D,D′′)(D)

(a)

≤ L`+1(D),

where the last inequality holds because d(D,D′′) ≤ d(D,D′)+1 by the triangle inequality
and the function s 7→ Ls(D) is strictly increasing.

(c2) If s = tj , since the order of those moves does not matter, we can assume without
loss of generality that t = t`. In other words, the biggest change one can make to the
dataset D′ is to add (resp. remove) the data complete item we just removed (resp.
added) in the previous step. Therefore, c(D′, D′′) = c(D`−1, D

′), and so

L1(D
′) = |c(D′, D′′)| = |c(Dk−1, D

′)| ≤ |c(D,D′)| ≤ L`(D)
(a)

≤ L`+1(D).
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Fig. 3. A greedy algorithm cannot be used to compute L`(D). See Example 4.7 below.

We now provide an example that shows we can not use a “greedy algorithm” to
compute L`(D). More precisely, consider a pair of datasets D,D′ with d(D,D′) = 1 and
L1(D) = |c(D,D′)|. We would like to be able to say that

L`(D) ≤ L1(D) + L`−1(D
′ \ c(D,D′)).

That is, we would like to be able to delete all individuals whose donor has changed in
transitioning from D to D′, compute L`−1 on this new dataset, and recover L`(D) from
this value. The following example shows that this is not the case.

Example 4.7. We consider the dataset shown in Figure 3. As in previous examples,
individuals have attributes shape and color. Values of color are imputed based on
distance in two dimensions and arrows represent donor/donee relationships.

We observe that L1(D) = 4, obtained by adding a black tuple between the four white
tuples. Likewise, L1(D

′ \ c(D,D′)) = 1, obtained by deleting either gray circle.
On the other hand, we have that L2(D) = 6. This can be realized by deleting both

the light gray and dark gray circles, resulting in all imputing from the right black circle.

In light of this example, it is not computationally feasible to compute L`(D) for all
` ∈ N. We instead use Theorem 4.6 to design differentially private mechanisms based
only on the value of L1(D). We discuss computing this value in Section 6.2.

5. Differentially Private Imputation-based Mechanisms

In this section we describe mechanisms satisfying differential privacy release query results
on imputed datasets. Explicitly, we will use Theorems 3.5 and 4.6 to bound the smooth
sensitivity of several queries in terms of the quantity L1(D). We then use the mechanism
in Corollary 3.9 to achieve differential privacy.

We will assume from now on that all queries are answered on the imputed dataset.
We also remark that these mechanisms only provide benefit when used for queries which
are impacted by imputation. In other words, as we have fixed a set of attributes A in
our definition of data-complete and data-incomplete tuples, any query which does not
involve the attributes in A can and should be answered using standard techniques.

5.1. Counts and Proportions
We first consider counting queries and proportion queries.

Theorem 5.1. Let q be a counting query. Then for β ≥ ln 2,

SSβ,q(D) = 1 + L1(D)

is a β-smooth upper bound on LSq(D).
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Proof. Let D be a dataset. Let D ± {t} be a neighboring dataset where we have
either added or deleted the tuple t. Then t is a donor for at most L1(D) tuples (in
whichever of D and D ± {t} contains t). This means the largest change between q(D)
and q(D ± {t}) is 1 + L1(D). That is, LSq(D) ≤ 1 + L1(D).

Now let
Uk(D) = 1 + 2kL1(D).

Then for any dataset D′ with d(D,D′) = 1 and any k ∈ N, we have

Uk(D) = 1 + 2kL1(D) ≤ 1 + 2k+1L1(D
′) = Uk+1(D

′)

by Theorem 4.6. Thus by Theorem 3.5,

max
k

e−βk
[
1 + 2kL1(D)

]
is a β-smooth upper bound on LSq(D). This converges if and only if β ≥ ln 2, in which
case it converges to 1 + L1(D).

We emphasize that as a consequence of this theorem, 1 + L1(D) is a (ln 2)-smooth
upper bound on LSq(D), not just an upper bound. Corollary 3.9 then implies the
following (taking β = ln 2 and γ = 1 + ε

2β ).

Corollary 5.2. Let q be a counting query and ε > 0. Then the mechanism which returns

q(D) +
1 + L1(D)

ln 2
·X,

where X is sampled from the generalized Cauchy distribution with parameter γ = 1+ ε
2 ln 2 ,

satisfies ε-differential privacy.

Remark 5.3.

(a) The noise added in Corollary 5.2 above depends only on ε and L1(D). Moreover,
it is quite possible that GSq 6= LSq(D) = L1(D) + 1, in which case the local
sensitivity and the smooth sensitivity coincide. In such a case, the noise added
is proportional to the local sensitivity of q. Such a phenomenon is also possible
for the median query discussed in Nissim et al. (2007) for certain values of β and
certain non-pathological datasets, even if no differentially private mechanism can
be based solely on the local sensitivity. We also emphasize that the reason β does
not appear in our formula is that increasing β beyond ln 2 has no impact on the
computation of our smooth sensitivity.

(b) There is a well-known relaxation of differential privacy called (ε, δ)-differential pri-
vacy. It is shown in Nissim et al. (2007) that if the Gaussian is used above instead
of the generalized Cauchy, the resulting mechanism satisfies this weaker guarantee.
Thus our methods can be straightforwardly adapted to this setting.

We can extend this result to proportion queries since they are quotients of counting
queries. Thus a data-user interested in a proportion could query the numerator and
denominator separately and compute the answer as post-processing. We emphasize that
in the case that inclusion in the subpopulation of interest is separate from the attributes
in A (for example, if the proportion is computed over the whole dataset), then the global
sensitivity of the denominator is 1 and the standard Laplace mechanism can be used.
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5.2. Means

We now address the computation of the mean of an attribute computed over a sub-
population of the dataset. As we are using unbounded differential privacy, releasing a
privatized version of the mean is non-trivial, even if computed over the whole dataset.
Our solution is to compute the size of the subpopulation (a counting query) first and to
use this as a parameter in the second mechanism (leveraging sequential composition).

We consider an attribute Y taking values in some range [a, b]. We assume a ≥ 0, but
all arguments generalize to allow a < 0 in a straightforward way. The values a and b can
be thought of as bottom- and top-coded values; without these, the local sensitivity of
the mean is unbounded (regardless of whether there is data imputation). For any tuple
x, we denote by YD(x) the (possibly imputed) value of the attribute Y for the tuple x.

For a dataset D, we denote S ∩D the subpopulation over which we wish to compute
the mean. We remark that if d(D,D′) = 1, it is possible that |(S ∩D)∆(S ∩D′)| > 1 if
inclusion in the subpopulation is partially determined by attributes in A. We will give
two different versions of each result depending on whether or not this is the case.

By abuse of notation, given two datasets D,D′ with D∆D′ = {t}, we denote by

Y (t) =

{
YD(t) t ∈ D
YD′(t) t /∈ D

don−1(t) =

{
don−1D (t) t ∈ D
don−1D′ (t) t /∈ D

.

If t ∈ Ti (i.e., it is data-incomplete), then don−1(t) = ∅. Also observe don−1(t) ≤ L1(D).

Theorem 5.4. Let s be an estimate of |S ∩D| and let q(D) = 1
s

∑
x∈S∩D YD(x).

(a) If the subpopulation S ∩D does not depend on the (possibly imputed) values of the
attributes in A, then for β ≥ ln 2, a β-smooth upper bound on LSq(D) is given by

SSβ,q(D) =
b+ L1(D)(b− a)

s
.

(b) If the subpopulation S ∩D is determined by the attributes in A, then for β ≥ ln 2,
there is a β-smooth upper bound on LSq(D) given by

SSβ,q(D) =
b [1 + L1(D)]

s
.

Proof. (a) Let D,D′ be neighboring datasets with D∆D′ = {t}. If t is not in the
subpopulation of interest, then there is nothing to show. If t is in the subpopulation of
interest, then S ∩D and S ∩D′ differ by precisely 1 element. We then have
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∣∣q(D)− q(D′)
∣∣ =

1

s
·

∣∣∣∣∣ ∑
x∈S∩D

YD(x)−
∑
x∈D′

YD′(x)

∣∣∣∣∣
=

1

s
·

∣∣∣∣∣∣±Y (t) +
∑

x∈S∩don−1(t)

(YD(x)− YD′(x))

∣∣∣∣∣∣
≤ 1

s
·

Y (t) +
∑

x∈S∩don−1(t)

|YD(x)− YD′(x)|


≤ b+ L1(D) · (b− a)

s
.

Now let

Uk(D) =
b+ 2kL1(D) · (b− a)

s
.

Then for any k ∈ N, we have

Uk(D) =
b+ 2kL1(D) · (b− a)

s
≤ b+ 2k+1L1(D

′) · (b− a)

s
= Uk+1

by Theorem 4.6. Thus by Theorem 3.5,

max
k

e−βk
[
b+ 2kL1(D) · (b− a)

s

]
is a β-smooth upper bound on LSq(D). This converges if and only if β ≥ ln 2, in which

case it converges to b+L1(D)·(b−a)
s .

The proof of (b) is similar. The key difference is that now any tuple in don−1(t) can
move into or out of the subpopulation of interest with the addition or deletion of t. Thus
their contributions to the sum can each change by b, rather than b− a as before.

We observe that if Y is a binary attribute, then b = 1 and a = 0, so we recover the
counting query result from the previous section.

By Corollary 3.8, we then have the following (taking β = ln 2 and γ = 1 + ε
2β )

Corollary 5.5. Let s be an estimate of |S ∩D|, q(D) = 1
s

∑
x∈S∩D YD(x) and ε > 0.

(a) If the subpopulation S ∩D does not depend on the attributes of A, then the mech-
anism that returns

q(D) +
b+ L1(D) · (b− a)

s ln 2
·X,

where X is sampled from the generalized Cauchy distribution with parameter γ =
1 + ε

2 ln 2 , satisfies ε-differential privacy.
(b) If the subpopulation S∩D depends on the attributes of A, then the mechanism that

returns

q(D) +
[1 + L1(D)] · b

s ln 2
·X,
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where X is sampled from the generalized Cauchy distribution with parameter γ =
1 + ε

2 ln 2 , satisfies ε-differential privacy.

As in the previous section, we observe that for some datasets, the noise may be
proportional to the local sensitivity.

5.3. Variances
Recall the sample variance of the attribute Y computed over the subpopulation S ∩D is

SY (D) =
1

|S ∩D| − 1

∑
x∈S∩D

(YD(x)− Y (S ∩D))2.

We suppose that the mean Y (S ∩D) has already been computed using the mechanism
in Section 5.2. We denote the returned value by Y , which we will take as a parameter
in our next mechanism. Moreover, this means the quantity |S ∩ D| has already been
computed as well. As before, we denote the returned value s. As in the previous section,
we assume the attribute Y takes values in [a, b]. Moreover, we assume that our estimate
of Y is also in the interval [a, b].

Theorem 5.6. Let s be an estimate of |S ∩ D| and Y an estimate of Y (S ∩ D) with
a ≤ Y ≤ b. Let

q(D) =
1

s− 1

∑
x∈S∩D

(YD(x)− Y )2 m = max
{

(a− Y )2, (b− Y )2
}
.

Then for any β ≥ ln 2, there is a β-smooth upper bound on LSq(D) given by

SSβ,q(D) =
m

s− 1
[1 + L1(D)].

We note that the upper bound is the same regardless of whether inclusion in S ∩D
is independent of the attributes in A.

Proof. Let D,D′ be neighboring datasets with D∆D′ = {t}. As before, there is
nothing to show if t is not in the subpopulation of interest. Thus assume it is and choose
x ∈ don−1(t). Suppose that with the addition or deletion of t, the tuple x moves into
(resp. out of) the population of interest. Then x contributes (YD(x)− Y )2) to the sum
in q(D) (resp. q(D′)) and 0 to the sum in q(D′) (resp. q(D)). Thus the change in its
contribution is bounded above by m. If, on the other hand, t does not move into (resp.
out of) the population of interest (as is the case when inclusion in S ∩D is independent
of the attributes in A), then its contribution to the sum changes from (YD(x)− Y )2 to
(YD′(x)− Y )2. This change is readily bounded above by m.

Thus be analogous reasoning to in the previous section, we have that

|q(D)− q(D′)| ≤ m

s− 1
[1 + L1(D)] .

Now let
Uk(D) =

m

s− 1
· [1 + 2kL1(D)].
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Then for any k ∈ N, we have

Uk(D) =
m

s− 1
· [1 + 2kL1(D)] ≤ m

s− 1
· [1 + 2k+1L1(D

′)] = Uk+1

by Theorem 4.6. Thus by Theorem 3.5,

max
k

e−βk
[
m

s− 1

[
1 + 2kL1(D)

]]
is a β-smooth upper bound on LSq(D). If and only if β ≥ ln 2 this converges to

m

s− 1
[1 + L1(D)] .

By Corollary 3.8, we then have the following (taking β = ln 2 and γ = 1 + ε
2β ).

Corollary 5.7. Let s be an estimate of |S ∩ D| and Y an estimate of Y (S ∩ D) with
a ≤ Y ≤ b and let ε > 0. The the mechanism which returns

q(D) +
m · [1 + L1(D)]

(s− 1) ln 2
·X,

where X is sampled from the generalized Cauchy distribution with parameter γ = 1+ ε
2 ln 2 ,

satisfies ε-differential privacy.

As in the previous section, we observe that for some datasets, the noise may be
proportional to the local sensitivity. This type of construction can be extended to
correlation coefficients, taking means and variance as inputs to the query.

6. Empirical Demonstration

We show concrete examples of these results using the 1940 U.S. Census dataset released
for testing disclosure avoidance methodologies (Ruggles et al., 2018). We test the impact
of imputation on proportion and mean queries, showing the bias/variance trade-off that
imputation is designed to improve. We used the 1940 Census data as a ground truth.
For simplicity and efficiency we show results for the state of Minnesota; as U.S. Census
Bureau imputation is done at a state level or finer, this reflects real-world use.

Our experiments impute wage income of individuals, as this and the variables used
for imputation in modern counterparts were present in 1940 Census data. This data is of
practical importance and therefore it is valuable to elucidate the impact that imputation
and this form of differential privacy would have on the resulting data.

6.1. Data Creation
While the 1940 Census data does contain missing data, we want to compare against a
known ground truth. We instead ignore actual missing data and instead model missing
values from data complete tuples to give a ground truth. We leverage the similarity of
the variables between the 1940 Census and current American Community Survey (ACS)
Public-Use Microdata Samples to simulate missing values.
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We first mapped schemas of the 2016 and 1940 data due to differences in specificity
between the two surveys. For example, the relationship to householder differs signifi-
cantly between the 2016 data and the 1940 data, with the ACS providing 18 different
responses for “RELP” while the 1940s data “RESPOND” provides only 8 options. This
mapping was a joint refinement of the possible responses to various attributes, and
was done strictly on the domain of the variables without reference to the data. For
example, in homogenizing the relationship to householder attribute, we mapped the
responses “boarder”, “roomate”, “other non-related adult” to the single value of “non-
related adult” in the 1940 data. In some cases the 1940 data provided more granularity.
E.g., the “EMPSTATD” attribute for employment status responses for “not in labor
force” in 1940 provide reasons - “housework”, “unable to work”, “schooling”, “other”.
Homogenization on both sides merged similar groups to the greatest extent possible.

We trained a model to learn the probability that the income value was missing in
the 2016 data based on the homogenized attributes, validating the model on the 2017
1-year PUMS data. We applied the trained model to each data complete record in the
1940 dataset, predicting the likelihood that the data would be missing. Each run of
the experiment generated both a new random sample of the data (simulating a sample-
based survey), and flagged a new set of tuples as missing income based on the modeled
likelihoods. Thus our experiments capture variance based on sampling, randomness in
missing data, and the noise required to satisfy differential privacy.

6.2. Imputation
The imputation uses the same variables that ACS currently uses to impute wage per
Minnesota Population Center (2018). We use (1-)Nearest Neighbor, which requires a
definition of distance in order to determine the “closest” neighbor. As our data has
a mix of categorical and ordinal attributes, we had to modify the attributes again to
allow for a more meaningful idea of distance. We categorized all of the attributes as
either ordinal or categorical, and the ordinal attributes were untouched. The categorical
variables were split into a number of binary variables equal to the number of options,
e.g., relationship to householder was split into 7 binary values. We then used Euclidean
distance for calculating distances between records. This has the effect of allowing the
ordinal variables to preserve their distance while treating categorical attributes as edit
distance, albeit with a penalty that the resulting distance is 2 instead of 1. This means
that the imputation has a small preference for small changes to AGE or SCHOOL over
changes to the categorical values. The only modification to an ordinal variable was group
ages by decade. This limits the scope of the attribute and facilitates efficient calculation
of L1(D), the crucial value required to determine the impact of the imputation on privacy.

Our imputation first creates groups of donors and non-donors and then uses a tie-
breaker to create an ordering for all records in the group. In our case the tie-breaker
used was the row number in the original database and records were assigned to the
lowest donor with a value higher than the record. To facilitate discussion of the possible
options, we will first discuss our use of equivalence classes in the experiments. Given
the known attributes that are used in the imputation, it is possible to create equivalence
classes of all donors and non-donors that match on those attributes, and our discussion of
“groups” in this section will rely on that definition. Once we have divided the non-donors
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into groups, we can identify whether any group has at least one donor or not.
We identify 4 cases of which L1(D) is the maximum. Note that in Remark 4.5 we

interpreted L1(D) as a maximum over two possibilities; it will be convenient here to
further expand on the impact of an addition. The 4 possible options are outlined below:

(a) Remove an existing donor
(b) Add a new donor to a group with an existing donor
(c) Add a new donor to a group without an existing donor (but containing non-donors)
(d) Add a new donor in a unique location

The impact of case (a) is maximized by removing the maximal donor of the existing
dataset. Adding a record to a group with an existing donor cannot change more records
than deleting the maximal donor in that group. The tie-breaker described above is easily
calculated and ensures that the impact of case (b) never exceeds the impact of case (a).

Option (c) requires a more nuanced calculation. By placing a new donor in an existing
group that lacks a donor, that donor now donates to the entire group. The rest of the
calculation comes from the impact this new donor can have on other groups that don’t
have an existing donor. For each other group without an existing donor, we calculate
the distance to this new donor and then determine what, if any, records would have been
imputed on by a maximal donor in this new world.

The calculation for a move of type (d) requires exploring every possible equivalence
class not currently represented in the data and determining the impact of a new donor
placed there. Even for the relatively limited scope of our attributes, the brute-force
calculation required for determining this value exactly was too expensive. As such, we
bound this number from above in a way that for our experiments was smaller than the
contributions from moves (a)-(c). We first find pairs of groups without an existing donor
that are pairwise close to each other, The sizes of the unions of such groups provides an
upper-bound for the maximum impact of option (d). As discussed previously, a large
part of the motivation in grouping age by decade was to guarantee that this upper bound
for case (d) was small. This ensures the value of L1(D) we computed is exact.

6.3. Experiment
Given the lack of viable differentially private approaches to dealing with missing data,
we compare against ignoring missing data and a Nearest Neighbor imputation using
global sensitivity with the Laplace mechanism. We provide two example queries: what
proportion of the records had an income that was below the “poverty line,” and the
mean income. As there is no “official” poverty line for the 1940 data we used $658 as
determined by Barrington (1997) as the necessary income to support a family of four
above the poverty level in 1940.

It is known that ignoring missing data for income leads to biased results (Nicoletti
and Peracchi, 2006); this example is useful since it shows that the increased variance
of our mechanism is more than made up for by the reduced bias. Our comparison to a
naive global sensitivity differential privacy scheme requires some explanation about the
optimistic assumptions made. It is easy to see that global sensitivity for an imputation
scheme will provide unusable amount of noise (see Figure 1). Our version of global
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Fig. 4. Mean individual income, ages 20-59, with (6 ln 2)-differential privacy. Box reflects in-
ter quartile range, whisker is 5-th and 95-th percentiles. Full width line is the true value.
“Ignore Missing Data” means missing data was discarded and the Laplace mechanism was
used, “Smooth Sensitivity” (resp. “Global Sensitivity”) means missing data was imputed and our
smooth sensitivity-based mechanism (resp. the Laplace mechanism) was used.

sensitivity assumes that the maximum number of records a donor can donate to is the
number of missing records; i.e., we limit the impact from a single person donating to
the entire state to a single individual donating to every value that was missing from the
state. This is an optimistic form of global sensitivity for the problem, but we included
it to highlight that imputation creates significant challenges for differential privacy.

As we see in Figure 4, the global sensitivity of imputation requires unreasonable
noise; better results are obtained by ignoring missing values. Our global sensitivity
scheme has a Mean Squared Error of 389899.14 compared to simply ignoring the missing
data having a MSE with 397.25 and our nearest neighbor scheme has an MSE of 1.3.
Ignoring missing data results in a value substantially lower than the true result. Our
smooth sensitivity imputation method gives results close to the true mean, with only
slightly higher variance than that induced by the random variation in which individuals
have missing values. Global sensitivity results were similar on other queries, and are
omitted to highlight comparison of our method with ignoring missing data.

Figure 5 shows the same query, but just for individuals in their 20s or 40s. For the 20
year old query, ignoring the data provides a MSE of 116.9 compared to our imputation
strategy providing a MSE of 7.3. For the 40-year olds ignoring provides a MSE of 1180.3
and our mechanism provides a MSE of 11.1. We see that missing data has a larger impact
on queries of those in their 40s, but imputation still largely removes this impact. Figure
6 shows a different query on the same data; the proportion of individuals who make
enough to support a family of four above the poverty line. We again see significantly
better results for smooth sensitivity imputation. Ignoring the missing data for 20-year
olds provides a MSE of 33×10−6 while our imputation strategy has a MSE of 1.4×10−6.
For the 40 year olds, ignoring the missing data provides a MSE of 4.6 × 10−4 and our
imputation strategy provides a MSE of 7.5× 10−7.



22 Clifton, Hanson, Merrill, Merrill

Fig. 5. Mean individual incomes for persons 20-29 years old (left) and 40-49 years old (right),
with (6 ln 2)-differential privacy.

Fig. 6. Proportions of adults age 20-29 (left) and 40-49 (right) who make enough to support a
family of 4 above the poverty level, with (6 ln 2)-differential privacy.

7. Conclusions and Future Work

The problem of missing survey data presents an interesting privacy challenge for data
curators: ignoring the missing values tends to yield biased results, but imputation meth-
ods can dramatically increase an individual’s impact on the dataset, thus increasing the
likelihood of reidentification. Global sensitivity-based mechanisms require an untenable
amount of noise, even under unreasonable assumptions. We have advocated for an ap-
proach based on smooth sensitivity to mitigate these issues. To do this, we developed
a smooth upper bound which is far more computationally tractable in many cases than
computing the local sensitivity an arbitrary number of steps away; a technical contribu-
tion to the differential privacy literature in its own right.

The extent to which this approach can be pushed requires analysis of other queries
where changes give a bounded L1(D). One could also look for similar quantities depen-
dent only on the present dataset D from which similar bounds could be derived.
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Each of our mechanisms answers a single query privately on a dataset with missing
data. For circumstances in which a data curator seeks to answer a large quantity of
queries on such data, it would be interesting to investigate the compatibility of our
mechanism with approaches like the high dimensional matrix mechanism, PriView, or
differentially private synthetic data releases.
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