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Abstract

In this paper, we introduce and study a class of disagreement measures for probability distribu-

tion forecasts based on the Wasserstein metric. We describe a few advantageous properties of

this measure of disagreement between forecasters. After describing alternatives to our proposal,

we use examples to compare these measures to one another in closed form. We provide two

empirical illustrations. The first application uses our measure to gauge disagreement among

professional forecasters about output growth and inflation rate in the Euro zone. The sec-

ond application employs our measure to gauge disagreement among multivariate predictive

distributions generated by different forecasting methods.

1 Introduction

Measures of disagreement between forecasters play a few important roles in economics and

business. First, they can serve as estimates of economic uncertainty (Zarnowitz and Lam-

bros, 1987; Lahiri et al., 1988; Bomberger, 1996; Giordani and Söderlind, 2003; Rich and

Tracy, 2004; Liu and Lahiri, 2004; Boero et al., 2008; Lahiri and Sheng, 2010b; Bruine de

∗Disclaimer: The views expressed in these papers are solely those of the authors and do not necessarily
reflect the views of the Federal Reserve Bank of Philadelphia, the Federal Reserve System, or the Census
Bureau. Any errors or omissions are the responsibility of the authors. There are no sensitive data in this
paper.

†The US Census Bureau, 4600 Silver Hill Rd, Suitland-Silver Hill, MD 20746. e-mail: ryan.r.cumings@
gmail.com.

‡Federal Reserve Bank of Philadelphia, Ten Independence Mall, Philadelphia, PA 19106. e-mail:
visiblehand@gmail.com.

§Federal Reserve Bank of Philadelphia, Ten Independence Mall, Philadelphia, PA 19106. e-mail: keith.
sill@phil.frb.org



Bruin et al., 2011; Boero et al., 2014; Abel et al., 2016; Glas, 2020). Second, they are also

used to understand the behavior of forecasters (Mankiw et al., 2003; Lahiri and Sheng, 2008;

Patton and Timmermann, 2010; Lahiri and Sheng, 2010a; Coibion and Gorodnichenko, 2012;

Clements, 2014; Andrade et al., 2016). While there has been a great deal of work in eco-

nomics on measures of discrepancy between the point predictions of forecasters, there has

been less work on measuring the discrepancy between probability and density predictions,

with the exception of papers that consider the cross-sectional variation of higher moments

(variance, range, skewness) of predictive distributions produced by the professional fore-

casters (D’Amico and Orphanides, 2008; Bruine de Bruin et al., 2011; Boero et al., 2008;

Clements, 2014; Li and Tay, 2017) and of papers that measure disagreement among predic-

tive distributions based on entropy or statistical divergence (Shoja and Soofi, 2017; Lahiri

and Wang, 2019; Bajgiran et al., 2020; Rich and Tracy, 2020).

In this note, we use the Wasserstein metric, a distance metric between probability dis-

tributions, to motivate a class of measures for the dispersion between either probability

densities or distributions.1 Our proposed measure of disagreement is based on the Fréchet

variance in the q–Wasserstein metric space. This can be viewed as a natural extension of

cross-sectional variance of point forecasts, which is the Fréchet variance in Euclidean space,

to probability/density forecasts.

After introducing our notation, the next section introduces additional notation, includ-

ing the Wasserstein metric and our proposed measure of dispersion. Then, we study its

properties in the context of measuring disagreement in probability and density predictions.

Section 3 describes other possible robust measures of disagreement based on the Wasserstein

metric that are potentially robust to the outlying predictive distribution. Section 4 explores

alternative measures of dispersion that are also based on Fréchet variance, but use either

distance metrics or divergence measures other than the q–Wasserstein metric, and compare

our proposed measure to other measures of disagreement used in the economic forecasting

literature. Two empirical applications are provided in Section 5.

2 Dispersion based on optimal transport

We will denote the set of probability distributions with support in Rd as P . We will assume

that in time period t ∈ N+ each agent i ∈ {1, . . . , N} provides the probability distribution

1It is worth to note that Rich and Tracy (2020) also consider a disagreement measure based on the
Wasserstein metric. Our proposed measure is different from theirs, and we discuss their measure in Section
3.
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function forecast Pit ∈ P of the random variable yt+h, where h ∈ N+. When this distribution

is assumed to have a well defined density function, we will denote this function by pit : Rd →

R+. Also, when our discussion is limited to a particular time, we will omit the time subscript,

t, on these functions.

Using this notation, the q−Wasserstein metric is defined as

Wq(Pi, Pj) =

(

inf
ϕ∈Ω(Pi,Pj)

∫
‖zi − zj‖

q
qdϕ(zi, zj)

)1/q

, (1)

where Ω(Pi, Pj) is the set of all couplings between the distributions Pi and Pj , which can

also be defined more formally as

Ω(Pi, Pj) =
{
ϕ : Rd × Rd → R+ | ∀A ⊂ Rd, ϕ(A,Rd) = Pi(A) and ϕ(Rd, A) = Pj(A)

}
.

(2)

The minimizer of (1) is known as the optimal transport plan because, for any A,B ⊂ Rd,

ϕ(A,B) can be interpreted as the probability mass that is mapped, or transported, from A

to B in order to minimize E
(
‖zi − zj‖q

q

)
where zi ∼ Pi and zj ∼ Pj. This distance metric has

the advantage of always being well defined for distributions with support in Rd, including

in cases in which these distributions are not absolutely continuous. For more detail on the

field of optimal transport, see (Villani, 2003; Galichon, 2018; Panaretos and Zemel, 2019).

Since Wq(∙) is a distance metric, it is straightforward to define its corresponding Fréchet

mean, which is also known as the q−Wasserstein barycenter. Specifically, the barycenter is

defined as the minimizer of the following optimization problem,

Vq({Pi}
N
i=1) := min

P∈P

1

N

N∑

i=1

Wq(Pi, P )q, (3)

which we will denote by P . The Wasserstein barycenter with q ∈ 1, 2 has previously been

considered in the forecasting literature; Examples with d = 1 include Irpino and Verde (2006),

Verde and Irpino (2007), Arroyo and Maté (2009), Arroyo et al. (2011), González-Rivera and

Arroyo (2012), Lichtendahl et al. (2013), and Busetti (2017) while Cumings-Menon and Shin

(2020) consider the case with d ≥ 1. Our proposed measure of dispersion is Vq({Pi}N
i=1), the

value of the objective function at P , which is also known as the Fréchet variance.

Note that Vq(∙) can be defined in a particularly simple manner in the one dimensional
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case. Specifically, in this case we have,

Vq({Pi}
N
i=1) = min

P∈P

1

N

N∑

i=1

∫ 1

0

‖P−1
i (τ) − P−1(τ)‖q

qdτ, (4)

where P−1
i (∙) and P−1(∙) are the quantile function of agent i and of the combination method,

respectively. Section 2.2 also describes another case in which Vq(∙) can be found in closed

form, which is distributions with a location-scale parameterization. Outside of these two

cases, Vq(∙) can also be estimated by solving the convex problem (3) after discretizing.

2.1 Properties of Vq({Pi}N
i=1)

In this section we will outline four advantageous properties of Vq(∙). The first two properties

are trivial to prove, as they follow from the fact that Wq(∙) is always well defined in the

present setting, and is also a distance metric.

Property 1: Existence The measure of dispersion Vq(∙) can be used to measure dispersion

of a set of probability density functions, a set of probability mass functions, or a set containing

both probability density functions and probability mass functions.

Property 2: Non-negativity For any set of input distributions {Pi}N
i=1, we have Vq({Pi}N

i=1) ≥

0 and Vq({Pi}N
i=1) = 0 if and only if Pi = Pj for all i, j ∈ {1, . . . N}.

Property 3: Monotonicity Let P 1 and P 2 denote the Wasserstein barycenters when the

input densities are {Pi}N
i=1 or {Pi}

N−1
i=1 ∪ PN+1 respectively. If Wq(P 2, PN+1) > Wq(P 1, PN),

then Vq({Pi}
N−1
i=1 ∪ PN+1) > Vq({Pi}N

i=1).

Proof: Since Wq(P 2, PN+1) > Wq(P 1, PN), we have

Vq({Pi}
N−1
i=1 ∪ PN+1) =

1

N

(

Wq(PN+1, P 2)
q +

N−1∑

i=1

Wq(Pi, P 2)
q

)

>

1

N

(

Wq(PN , P 1)
q +

N−1∑

i=1

Wq(Pi, P 2)
q

)

≥
1

N

N∑

i=1

Wq(Pi, P 1)
q =Vq({Pi}

N
i=1).

In some sense Property 2 and Property 3 can be viewed as generalizations of properties

that are shared by many common measures of dispersion for random variables. For example,
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the sample variance of {xi}N
i is a positive measure of dispersion that would increase if any

observation xi ∈ {xi}N
i were to be replaced by x̃ such that ‖xi − x̄‖2 ≤ ‖x̃ − x̄‖2, where x̄

denotes the sample mean.

Before moving onto the fourth property, it is also worth noting a more rigorous link be-

tween the 2–Wasserstein metric and cross-sectional variance of point forecasts. For example,

given the sample of point forecasts {xi}N
i=1, we can define a corresponding set of distributions

{Pi}N
i , such that Pi is the distribution defined as a point mass at xi. In this case, V2({Pi}N

i=1)

is equal to the cross-sectional variance of {xi}N
i=1. In a similar way, but when q = 1, our

proposed measure corresponds to the to average absolute error from median.

Property 4: Lower bound For any univariate input distributions {Pi}N
i=1, the following

inequality holds,

V2({Pi}i) ≥
1

N

N∑

i=1

(μi − μ)2 +
1

N

N∑

i=1

(σi − σ)2.

Proof: See Alvarez-Esteban et al. (2018).

This inequality provides a useful lower bound based on the cross-sectional variance of first

two moments of the input densities. Moreover, it is evident from this inequality that the

proposed measure naturally extends a disagreement measure of point forecasts to probability

and density forecasts by adding terms related to the cross-sectional variation of predictive

distributions beyond the mean. The bound holds with equality when all input densities are

Gaussian, as we shall see from the next section.

2.2 Example: Normal distributions

Agueh and Carlier (2011) provide a closed form solution for V2({PN ,i}N
i=1), where each PN ,i ∈

{PN ,i}i is a Gaussian distribution with mean μi ∈ Rd and variance matrix Si ∈ Rd×d. More

generally, this solution for the 2–Wasserstein metric also holds for other distributions with

a location-scale parameterization; see also (Knott and Smith, 1994; Panaretos and Zemel,

2019). Specifically, in these cases V2({PN ,i}i) is given by

V2({PN ,i}i) =
1

N

N∑

i=1

‖μi − μ‖2
2 + Trace

(

Si + S − 2
(
S

1/2
i SS

1/2
i

)1/2
)

, (5)

where S is defined by the fixed point of
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S =
1

N

N∑

i=1

(
S1/2SiS

1/2
)1/2

. (6)

When input densities are univariate Gaussian, this expression can be simplified further.

For example, in this case we have W2(Pi,N , PN )2 = (μi −μ)2 + (σi − σ)2 , so the Wasserstein

barycenter can be defined as PN =d N(μ, σ2), where μ = 1
N

∑
i μi and σ = 1

N

∑
i σi. Thus,

in this case, our proposed disagreement measure is equal to,

V2({Pi}i) =
1

N

N∑

i=1

(μi − μ)2 +
1

N

N∑

i=1

(σi − σ)2,

or the sum of the cross-sectional variances of means and the cross-sectional variances of

standard deviations.

As discussed previously, the literature on disagreement measures of forecasts focuses

primarily on dispersion of point forecasts. In settings in which forecasters’ distribution

predictions are in the form of both a mean and a standard deviation of a normal distribution,

this equality provides a link between the dispersion measure V2({Pi}i) and this prior work.

Specifically, it is given by the cross-sectional variance of mean forecasts plus the cross-

sectional variance of standard deviation forecasts.

3 Alternative dispersion measures I: Robust dispersion

measure

One advantageous feature of Vq(∙) that was not discussed in Section 2.1 is that this mea-

sure also encompasses robust dispersion measures, which, relative to our previous example,

correspond to q ∈ [1, 2). In this subsection we will describe alternative dispersion measures

that also share this property. Although, these measures of dispersion are not monotonic and

they may be zero even when some of the input distributions are not equal to one another.

MAD-type dispersion measure One can also generalize Vq(∙) by considering nonlinear

aggregations of the values in {Wq(Pi, P )q}N
i=1. For example, one possibility would be the

following alternative measure of dispersion for q = 1.

D1({Pi}
N
i=1) = mediani {W1(Pi, P )}N

i=1
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which, in terms of samples of random variables, is analogous to the median absolute deviation

(MAD).

Dispersion without location measure Rousseeuw and Croux (1993) propose two re-

lated cross-sectional measures of dispersion for data points that do not depend on a notion

of center. These can be viewed as analogous to the interquartile range, which, like MAD,

is robust to outliers, as these two measures have identical expectations for symmetrically

distributed data, but, unlike MAD, the interquartile range is also robust to cases in which

the variates are skewed.

The natural generalizations of the measures proposed by Rousseeuw and Croux (1993)

to our setting are,

Qq({Pi}
N
i=1) = kth order statistic of {Wq(Pi, Pj)}i<j , (7)

where k = (N choose 2)/4, and,

Sq({Pi}
N
i=1) = mediani∈{1,2,...,N} medianj∈{1,2,...,N}{Wq(Pi, Pj)}

N
i,j=1. (8)

These dispersion measures have the advantage of being applicable for distributions of random

variables that are discrete as well as continuous (Property 1). However, it is easy to construct

cases in which Properties 2 and 3 do not hold. For example, for either of these two measures of

dispersion, there exists a sufficiently large value of N such that Sq({Pi}N
i=1) = Qq({Pi}N

i=1) =

0 when all elements of {Pi}
N−1
i=1 are identical, regardless of the value of PN .

Recently, Rich and Tracy (2020) propose a measure of the individual disagreement (av-

erage absolute density disagreement) defined as

iAADDt =
1

N − 1

∑

j 6=i

W1(Pj, Pi),

to measure how the individual probability distribution Pi is different from others. In their

descriptive analysis, they present and discuss time-series plot of mediani∈{1,2,...,N}(iAADDt),

which is closely related to S1({Pi}N
i=1) introduced in Eqn (8): They coincide if we replace

the second median operator in Eqn (8) with the sample average operator.
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4 Alternative dispersion measures II: Dispersion mea-

sures using other metrics

Clearly one could use a similar approach as the one taken here using an alternative metric to

the Wasserstein distance, such as total variation, Hellinger, L2, Kullback-Leibler divergence,

etc. For example, the Hellinger distance is one particularly popular fidelity criterion in

statistical theory; see for example, (Beran, 1977; Kitamura et al., 2013). This distance

metric is defined as,

H(p1, p2)
2 =

1

2

∫ (√
p1(x) −

√
p2(x)

)2

dx,

and its corresponding Fréchet variance can be used to measure disagreement among proba-

bility/density forecasts,

VH({Pi}
N
i=1) = min

P∈P

1

N

N∑

i=1

H(pi, p)2.

A similar disagreement measure is possible for statistical divergences such as Kullback-Leibler

divergence even though it is not a metric. For example, Shoja and Soofi (2017) and Lahiri

and Wang (2019) employ the following averaged divergence to measure disagreement among

probability distributions of professional forecasters

VKL({Pi}
N
i ) =

1

N

N∑

i=1

KL(Pi, P∗),

where KL(Pi, P∗) is the Kullback-Leibler divergence between P∗ to Pi and P∗ is a consensus

forecast.

Next we will provide two simple examples that illustrate the difference between our pro-

posal and other measures of disagreement between distribution and density forecasts. While

any choice of metric is inherently subjective, our reasoning behind choosing the Wasserstein

metric is that it continues to provide meaningful information when the support of the input

distributions do not overlap, in the sense that it is not simply equal to a constant in all such

cases, which is demonstrated in the next example.

Example 1. Consider two uniform distributions, P1 = U(0, 1) and P2 = U(x, x + 1). In

the case of the q−Wasserstein metric, the barycenter between these distributions is given

by U(x/2, x/2 + 1), and thus, Vq({U(0, 1), U(x, x + 1)}) = Wq(U(x/2, x/2 + 1), U(0, 1)) =
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Wq(U(x/2, x/2+1), U(x, x+1)) = (x/2)q. In contrast, these alternative measures would not

depend on x whenever x > 1. For example, VKL({Pi}N
i ) = log 2.

We will call the corresponding property of the measure of dispersion non-invariance to

bijective transformations of the domain. Admittedly, the desirability of this property is

subjective; for example, Zanardo (2017) includes invariance to bijective transformations of

the domain in a list of desiderata for a measure of dispersion of probability mass functions.

However, this property has the advantage of not precluding the measure of dispersion being

informative when the input distributions have supports that do not overlap. Next we provide

an additional example of the effect of certain mappings of the input distributions’ domains

on the Wasserstein metric.

Example 2. Suppose P1,N =d N(μ1, σ
2
1) and P2,N =d N(μ2, σ

2
2), and let P ′

1,N and P ′
2,N be

defined as P1,N and P2,N after rescaling the domain. Specifically, let P ′
1,N =d N(2μ1, 4σ

2
1) and

P ′
2,N =d N(2μ2, 4σ

2
2). In this case we have H(p1,N , p2,N ) = H(p′1,N , p′2,N ) and KL(p1,N , p2,N ) =

KL(p′1,N , p′2,N ) while the 2−Wasserstein metric satisfies W2(P1,N , P2,N ) = 1
2
W2(P

′
1,N , P ′

2,N ).

This example can also be generalized in a straightforward manner. For example, suppose

that P1(x), P2(y), P ′
1(x), P ′

2(y) ∈ P are defined so that P ′
1(x) = P1(x/2) and P ′

2(x) = P2(x/2).

After rescaling the zi, zj in Eqn (1), we have W2(P1, P2) = 1
2
W2(P

′
1, P

′
2).

Thus, the impact on disagreement measures based on the 2–Wasserstein metric from

rescaling the domain is analogous to the impact on the cross-sectional variance from rescal-

ing the datapoints, while other disagreement measures based on Hellinger distance or KL

divergence would be scale invariant.

5 Empirical Applications

This section will provide two applications. The first application illustrates how our proposed

measure of dispersion enhances analyses of SPF data that use traditional disagreement mea-

sures. The second application illustrates how our proposed measure can be used to gauge

disagreement among multivariate input densities.

5.1 Application 1: Term structure of disagreement among profes-

sional forecasters

Researchers have reported that there is a large degree of disagreement among professional

forecasters about various economic outcomes (See, for example, Sill, 2014). The disagreement
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among professional forecasters exhibit systematic patterns over time as well as over the

forecasting horizon. The latter is sometimes referred to as the term structure of disagreement,

and it has been a useful source of understanding the professional forecasters’ behavior (see,

for example, Lahiri and Sheng, 2008, 2010a; Patton and Timmermann, 2010; Clements,

2014; Andrade et al., 2016).

Data and methodology. In this section, we use our proposed measure of disagreement

to quantify disagreement among forecasters across forecasting horizon using the Survey of

Professional Forecasters conducted by the European Central Bank (ECB). This survey asks

professionals about their point and probability forecasts about various economic outcomes.

There are several questions in each survey in terms of forecasting target and forecasting

horizons. In this application, we focus on two target variables: inflation rate and real GDP

growth rate for Euro area. For each economic outcome, we consider three survey questions

regarding forecasting horizons: (1) year-over-year growth rate at the end of the current

calendar year; (2) year-over-year growth rate at the end of the next calendar year; (3)

year-over-year growth rate at the end of five years ahead. We consider surveys conducted

during 2001Q1–2019Q4 (76 quarters) and the average number of survey respondents was

approximately 46–51 in each year.

It is important to note that depending on the timing of the survey, survey answers to

the same question could imply a forecast with a different forecasting horizon. For example,

the inflation rate estimate for the current calendar year is approximately a 3-quarter-ahead

prediction if the survey was conducted in 2001Q1, while it is about 0-quarter-ahead prediction

(nowcasting) if the survey was conducted in 2001Q4. Therefore, the forecasting horizon for

the current calendar year estimate varies from h = 0 to h = 3. A similar logic applies to

answers for the next calendar year and five years ahead, and the corresponding forecasting

horizons range from h = 4 to h = 7 and from h = 18 to h = 21, respectively.

Professional forecasters indeed disagree with one another on mean, variance, and shape

of the predictive distribution. In Figure 1 (left two panels), we present actual probability

forecasts submitted by two forecasters from the survey conducted in the first quarter of 2001.

The third panel of the same figure presents probability forecasts made by all 60 forecasters

in the same survey. A thick line represents the average of those 60 forecasts.

In what follows, we compute and present forecaster disagreement based on our proposed

measure, V2({Pi}N
i=1), over the forecasting horizon. Although computation of Wasserstein

metric and its related quantities such as barycenter and our disagreement measure can
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Figure 1: Probability forecasts for inflation rates in 2001Q1 (one-year-ahead prediction)

become complicated for general input densities, it is relatively simple to compute them

when all input densities are in the form of a histogram (e.g., Arroyo and Maté, 2009). End

bins of those histogram forecasts in the survey are open, and therefore they are unbounded.

To facilitate computation, we assume that end bins are bounded and their length is the same

as the other bins.

Results In the first row of Figure 2, we present our proposed disagreement measure,

V2({Pi}N
i=1), over the forecasting horizons from h = 0 to h = 21 for inflation rate (left)

and real GDP growth rate (right). Each asterisk represents the time-series average of the

disagreements among forecasters’ predictive distributions for the same target variable and

the same forecasting horizon. The overall shape of the disagreement curves is quite similar

for both target variables. Professional forecasters disagree more about the distant future.

Interestingly, both disagreement curves become flatter as the forecasting horizon becomes

longer.

Recall that Property 4 in Section 2 shows that our disagreement measure can be decom-

posed into three non-negative terms. The first two terms are the cross-sectional variance of

means and standard deviations of input densities. The third term then can be viewed as the

disagreement about all remaining moments. In the middle row of Figure 2, we present cross-

sectional variance of means (left) and standard deviations (right) of individual histogram

forecasts for inflation rate. This decomposition reveals several important features. First,

these two cross-sectional variances almost add up to V2({Pi}N
i=1). This implies that most of

the variation in our proposed disagreement measure can be explained by the cross-sectional

variance of the first two moments, and higher moments beyond mean and variance do not

contribute much. Second, disagreement on means for inflation rate has an inverted U-shape

relationship with forecasting horizon while disagreement on standard deviations is roughly
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Figure 2: The term structure of disagreement among ECB-SPF forecasters

(a) Wasserstein metric based disagreement measure, V2({Pi}N
i=1)

(b) Decomposition of V2({Pi}N
i=1) for inflation rate

(c) Decomposition of V2({Pi}N
i=1) for real GDP growth
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an increasing function of forecast horizon from h = 1. Interestingly, professional forecasters

agree about the long-run inflation forecast more than that for 5 or 6-quarter-ahead. This

may be explained by the fact that the ECB governing Council goal of keeping the annual

inflation rate below, but close to, 2% over the medium-term acts as a focal point for the

longer-run inflation forecast. Unlike disagreement on means, forecasters exhibit a greater

disagreement on standard deviations (i.e., uncertainty about their forecast) in the long run.

This means that forecasters have a different view about how likely ECB governing Council’s

aim will be achieved.

In the last row of Figure 2, we present a similar decomposition for the real GDP growth

rate. Again, our measure of disagreement can be mostly explained by the cross-sectional

variance of first two moments. However, unlike the term structure of inflation rate forecast,

both cross-sectional variance of means and standard deviations are an increasing function

of forecasting horizon. This makes sense as the ECB governing Council explicitly aims to

stabilize prices but not the real GDP growth rate. The disagreement among professional

forecasters about how these price stabilization policies affect the real GDP growth rate may

be the cause of the relatively high disagreement about the real GDP growth rate.

5.2 Empirical illustration 2: Multivariate density prediction

In this empirical illustration we show how one can use our dispersion measure for the mul-

tivariate predictive distribution. To this end, we consider the following 3-variable vector

autoregression (VAR) that includes GDP growth rate, inflation rate, and federal funds rate

for the US data.

We consider 21 hypothetical forecasters who produce their own 1-step-ahead joint pre-

dictive distributions for GDP growth rate and inflation rate at each point in time over the

forecast evaluation sample. Their time t predictive distributions are then 2 dimensional mul-

tivariate normal distribution with mean μi,t and variance-covariance matrix Σi,t. We assume

that forecasters estimate μi,t and Σi,t using their own information set.

We further assume that information set differs only by the number of most recent obser-

vations when they construct a predictive distribution. For example, forecaster i estimates

μi,t and Σi,t using

Ωi,t−1 = {Ys : s = t − Ri, t − Ri + 1, ..., t − 1}

where Ωi,t is the information set of forecaster i at time t to produce a joint predictive density
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Figure 3: Evolution of dispersion in joint predictive distributions over time

of Yt+1. Ri is the number of most recent observations in the information set, and we consider

21 different choices Ri = {50, 55, ..., 150} (hence, 21 different forecasters). Differential choice

of Ri can be explained by either the theory of rational inattention or differential beliefs about

the stability of the system.

Data and model We consider the variables: the GDP growth rate, inflation rate, and the

federal funds rate. They are all annualized (in %). Our dataset begins in 1959Q1 and ends

in 2019Q3. Forecasters generate predictions from 1998Q2 until 2019Q3. All forecasters use

the same empirical model, a VAR with four lags.

Y ′
t = Φ0 +

4∑

p=1

Y ′
t−pΦp + u′

t

and their predictive distribution is Yt+1|t ∼ N (μi,t, Σi,t) where

μi,t = Φ̂i,t,0 +
4∑

p=1

Y ′
t−p+1Φ̂i,t,p, and Σi,t = Σ̂i,t,

and (Φ̂i,t,0, Φ̂i,t,1, Φ̂i,t,2, Φ̂i,t,3, Φ̂i,t,4, Σ̂i,t) is the posterior mean of p(Φ0, Φ1, Φ2, Φ3, Φ4, Σ|Yt−Ri:t−1)

with a flat prior.

Results We generated individual predictive distributions for output growth rate and in-

flation rate and compute our disagreement measures starting from 1998Q2 through 2019Q3

(81 observations). We measured disagreement of these 21 forecasters using three measures

14



Figure 4: Decomposition of V2: Mean (upper panel) and Variance (lower panel) component

D2, S2, and Q2.

Figure 3 shows evolution of disagreement in joint predictive distributions over time. All

three measures move quite closely to one another. Pairwise correlations of (V2, Q2), (V2, S2),

and (Q2, S2) are 0.99, 0.86, and 0.80, respectively. Figure 4 presents decomposition of V2.

Specifically, since all predictive distributions are Gaussian, we decompose V2 into a mean

component and a variance component, as described in Section 2 in the case of the univariate

Gaussian distribution. The upper figure presents the evolution of the mean component. The

lower panel shows the evolution of the variance component.

Mean component can be viewed as a dispersion of mean of forecasters predictive distri-

butions (i.e., point forecasts). It is serially correlated over time with the first autocorrelation

value of approximately 0.5. There are three distinct peaks around 2004, 2009, and 2015.

The observed time-variation in mean-disagreement can be explained by the fact that there

is a difference in how the new information (shock) is weighted across different models with

15



heterogenous memory capacity.

Interestingly, the mean component of our disagreement measure for GDP growth and

inflation rate is positively correlated with Philadelphia Fed’s forecast dispersion index (in-

terquartile range of individual point forecasts) of GDP growth rate and inflation rate. Their

correlation is about 0.45 and 0.49, respectively. This implies that the dispersion of profes-

sional forecasters can be partly explained by their memory capacity or concern about the

structural break.

The variance component of our disagreement measure is downward trending over our

sample. This is because of the Great Moderation effect. At the beginning of our estimation

sample (1998Q2), there are forecasters using data observations from a time period with high

volatility (i.e., pre-1985). However, the proportion of forecasters doing so decreases over

time. In turn, the variance covariance matrix of forecasters’ predictive distribution becomes

similar to each other.
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