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A Brief History of Differential Privacy at the 
U.S. Census Bureau
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https://ieeexplore.ieee.org/document/4497436/
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This slide is from the August 3, 2018 Program Management 
Review (PMR) for the 2020 Census. 2020 PMRs are quarterly 
public presentations of the state of readiness of the decennial 
census.

https://www.census.gov/programs-surveys/decennial-census/2020-census/planning-management/program-briefings/2018-08-03-pmr.html


Database Reconstruction
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Internal Experiments Using the 2010 Census

• Confirm that the micro-data from the confidential 2010 Hundred-percent 
Detail File (HDF) can be accurately reconstructed from PL94 + balance of 
SF1

• While there is a reconstruction vulnerability, the risk of re-identification 
using only person-level is apparently still relatively small

• But, experiments were not done at the household-level, so there is no re-
identification risk quantification possible there

• Experiments have led to the declaration that reconstruction of Title 13-
sensitive data is an issue, no longer a risk

• Strong motivation for the adoption of differential privacy for the 2018 End-
to-End Census Test and 2020 Census
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Presenter
Presentation Notes
A reconstruction attack recreates record-level images of all variables used in published tabulations, not all variables in the confidential database. If “name” is never tabulated, then “name” cannot be reconstructed.A reconstruction-abetted re-identification attack links external data to the reconstructed micro-data. These external data contain identifying information like names and addresses. Such an attack leads to “putative re-identifications”: records that the attacker believes are the data for identifiable information. In a successful re-identification attack, putative re-identifications are confirmed at a high rate. The putative re-identifications from the 2010 Census experiments are not confirmed at a high rate. We are still researching this issue.An issue is a risk that has occurred (probability = 1), and an active mitigation plan is required.



Differential Privacy
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The Disclosure Avoidance System Relies on 
Injecting Noise with Formal Privacy Rules

• Advantages of noise injection using differential privacy:
• Privacy guarantees are closed under composition
• Privacy guarantees are robust to post-processing
• Privacy guarantees are future-proof
• Privacy guarantees are provable and tunable
• Privacy guarantees are public and explainable
• Protects against database reconstruction attacks (tunable)

• Disadvantages:
• Entire country must be processed at once for best accuracy
• Every use of the private data must be tallied in the privacy-loss budget

Global Confidentiality 
Protection Process

Disclosure Avoidance 
System

ε
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Presenter
Presentation Notes
Closure under composition means that if two differentially private publishing mechanisms are applied sequentially to the same confidential data, then the cumulative privacy loss from those mechanisms is no greater than the sum of the privacy losses from each applied individually. This property is what makes possible the calculation of global disclosure risk when using differential privacy.Robust to post processing means that the guarantees are preserved if subsequent algorithms are applied to the outputs of a DP algorithm without being given fresh access to any of the confidential inputs.Future proof means that the privacy guarantees do not deteriorate over time regardless of future data releases from other sources or improved computational algorithms.Provable privacy guarantees mean that the conformance of the differential privacy algorithm to the mathematical properties the mechanism is required to possess can be proven.The public property of DP algorithms is Kerckhoffs’s Principle: the privacy guarantee remains fully effective even if the algorithm, exact code, and all parameters are public. The only thing that must be confidential is the exact sequence of random numbers used in the implementation.



Technical Challenges

• Hierarchical and table consistency 
• Invariants (main algorithmic challenge in combination with hierarchy)
• Asymptotic consistency as ε (privacy loss) gets large
• Existence proofs for solutions
• Workload optimization, especially for join tables (persons x 

households)
• Many implementation issues, not discussed here
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Hierarchical and Table Consistency

• Tables are consistent at all levels of geography and for all coarsening of detail
• The DP noise is infused into measurements (contingency tables) at each level of 

geography (uses closure under composition)
• Global privacy-loss budget is shared across all measurements with correct accounting
• Geometric mechanism noise (discrete version of Laplace noise)

• Resulting tables are post-processed (uses robustness to post-processing)
• To satisfy all invariants
• To contain only non-negative value
• To add up properly along all dimensions
• The large-scale optimization problem is solved partially analytically and partially using Gurobi

• One set of consistent micro-data is produced that tabulates exactly to the post-
processed tables

• These micro-data are sent to the production tabulation system
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Invariants

• An invariant is an output of the disclosure avoidance system that 
exactly matches the query answer in the confidential data

• Shorthand: no disclosure avoidance was applied
• Public documents confirm that total population, voting-age 

population, number of housing units, number of occupied housing 
units, and number and type of group quarters were all invariants at 
the block level in 2000 and 2010 Census publications. (These, plus 
race and ethnicity, were also invariant in the 1990 Census.)

• We now understand that invariants seriously compromise the 
confidentiality protect (differential privacy or traditional disclosure 
avoidance)
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How Invariants Compromise Confidentiality

• For traditional methods: database reconstruction is much easier
• For differential privacy:

• Secrets like (Alice lives in block A and Alice is a citizen) do not get the 
differential privacy protection if either block population or citizen population 
is an invariant

• Unrelated secrets (those not involving invariants at all) can also be 
compromised

• When the differential privacy protection does not apply, the meaningful 
bounds on the accuracy of inferences about Alice’s residence or citizenship 
are much more complex than when there are no invariants

• Eliminating invariants eliminates this problem, allows for more 
efficient use of the privacy-loss budget
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Presenter
Presentation Notes
Traditional methods: by giving known, correct record counts for all the invariant categories—exact number of records in each block, exact number of voting-age person records in each block, exact number of households in each block. The reconstruction starts with a very accurate image of the database.DP methods: when the only invariant is the total population of the Unites States, the top-down algorithm satisfies all the conditions of bounded e-differential privacy. The semantic privacy guarantee is, therefore, [-2e, 2e] on inferences about any variable and any person potentially in the census population. The secret pair (Alice lives in block A, Alice is a citizen) v. (Alice is not in the data) cannot be protected with any quantifiable semantic guarantee, like [-2e, 2e], if either block or citizen is on the invariant list at the block level. By contrast (Bob is a citizen) v. (Bob did not answer the citizenship question) can be protected with semantic guarantee at [-2e, 2e], if citizen is not an invariant at any level of geography.In general, it may be misleading to focus on a specific secret pair.  Invariants mean that for ANY secret pair, there is at least some attacker's prior such that the release of the invariants implies unquantifiable privacy loss (i.e., certainty).  For example, say that the citizenship population per block was an invariant.  Say there are two households on a block and the attacker knows they are of size two and five and that one has all citizens and one has no citizens. Then a published citizenship of five reveals that the household of size two are all non-citizens to the attacker, meaning that the invariants perfectly reveal the citizenship secrets for the two households.Given the above, if the attacker’s posterior inference given the invariants does not achieve certainty, then we CAN bound the relevant posterior-posterior ratio measuring the privacy loss from the release of additional data from the mechanism.  However, the relevant "counterfactual" is restricted based on the invariants published. For modification strategies that alter only a single record, we don't get meaningful privacy protection for variables involved in the invariants (because we can't alter the invariant variables in those modification strategies), but in many cases group modification strategies provide a weaker (and more difficult to interpret) form of privacy protection even for variables involved in the invariants.The statements below are better technical summaries of the examples in the slide.1. The variables that can be considered as freely alterable (and the ways in which they can be freely altered) in the counterfactual scenario becomes more restricted as invariants are added, and the force of our privacy guarantees is mostly rooted in whether people think the counterfactual scenario is convincingly private for them, so our counterfactual worlds become less convincing 'gold standard privacy worlds' as more invariants are added.2. There aren't privileged secret pairs that suffer unquantifiable privacy loss from invariants. Rather, every secret pair suffers some unquantifiable privacy loss because there are always some priors out there that, when combined with whatever the invariants are, would yield certainty for that attacker when making an inference over whatever the secret pair under consideration is, although the necessary prior(s) might be more/less plausible depending on the targeted secret pair and the invariants.



Hierarchical Consistency + Invariants

• The combination makes the post-processing algorithms extremely 
complicated

• There are integer, equality and inequality constraints in the equation 
system

• Proofs of existence are not available for every invariant and/or 
consistency configuration

• When existence fails empirically, the system reverts to an 
approximate solution for a configuration that has the smallest feasible 
subset of the problem
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Asymptotic Consistency

• The system should have the property that when the global privacy-
loss budget goes to infinity, the solution goes to the exact answer to 
the query workload (perfect accuracy)

• That is not automatic for the top-down algorithm
• To achieve asymptotic consistency, the most general histogram must 

be estimated at every level of geography with a proportional 
allocation of the privacy-loss budget

• As ε grows, the accuracy of the most general histogram also improves 
at every level of the geographic hierarchy
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Presentation Notes
The top-down algorithm was described in the September, 2017 CSAC presentation by Simson Garfinkel https://www2.census.gov/cac/sac/meetings/2017-09/garfinkel-modernizing-disclosure-avoidance.pdf?# 



Existence Proofs

• Differential privacy can always be applied to every measurement 
needed by the top-down algorithm

• However, the equation system used for the post-processing need not 
always have a solution consisting entirely of non-negative integers

• We have existence proofs for some configurations
• In general, when there are inequality constraints, existence is not 

guaranteed
• Approximate solutions are computed over a minimal subset
• Rate of approximation will be in the error metrics
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Presentation Notes
We know that there us at least one nonnegative integer solution that satisfies the invariants because the true data is such a solution, but because we solve the post-processing problem from the top-down (national, state, county, tract, block), at intermediate sub-problems guaranteeing nonnegative integer solutions that satisfy the invariants is more difficult. If the solution at more aggregated geographical levels is not compatible with finding a nonnegative integer solution at less aggregated levels, because it may not have incorporated all available information about the space of feasible solutions from the lowest level geographical units. Solving top-down works well for tractability and sparcity, but when combined with the invariant and micro-data requirements, it creates technical issues that can prevent finding a nonnegative integer solution.



Workload Optimization

• Most of the work for the 2018 End-to-End Census Test was done at 
the person-level, and for the PL94-171 (redistricting) workload

• There are many more person-level tables in the proposed Summary 
File 1

• There are also household-level tables (based on householder/person 
1), and joins of household and person tables (counts of persons by 
characteristics of the householder)

• The household tables will require workload optimization (probably using the 
high-dimensional matrix method https://arxiv.org/abs/1808.03537)

• The joins will require other algorithmic extensions (probably using 
hierarchical counts-of-counts technique https://arxiv.org/abs/1804.00370) 
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Summary of Important Technical Details

• Central differential privacy implementation with a controlled total privacy-
loss budget

• Relevant algorithmic definition is bounded ε-differential privacy (total 
population of the largest geographic area is public)

• Semantic privacy guarantee is [-2ε, 2ε] by properties of bounded 
differential privacy 

• Complicated by occupied household invariant that was not removed
• All algorithms, code, and parameter values will be released with the test 

files for the 2018 End-to-End Census Test
• All parameter and invariant settings to be reviewed based on feedback 

from the E2E test files and released algorithms
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Algorithm Comparison Using 
Public 1940 Census Data
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Two Candidate Algorithms

• Block-by-block (also called bottom-up)
• DP applied to all tables at the most detailed geographic level (blocks)
• All aggregations built from those tables

• Top-down
• DP measurements taken at all levels of the geographic hierarchy
• Large-scale optimization problem solved to allocate microdata records to 

solution tables respecting invariants, table consistency, non-negativity, and 
integer constraints

• In these tests, all invariants were imposed at the enumeration-district 
level (similar to the modern definition of block groups)
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Presentation Notes
InvariantsC1 = total populationC2 = voting age populationC3 = number of housing unitsC4 = number of occupied housing unitsC5 = number of group quarters facilities (including type, single-sex status, age restrictions)
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Presentation Notes
Accuracy (in all slides) is (1 – AveTVD/N), where AveTVD = Average Total Variation Distance = Sum( 0.5L_1) over all query sets in the PL94 workload over all geographies in the workload divided by the number of query sets (14), L_1 is the absolute error in all the table, and N is the population count in the complete person table (1940 population). AveTVD is averaged over all the tables in the workload for the relevant geography.In the 1940 Census data, the geography is nation, state, county, enumeration district (approximately, a modern block group, in 1940 a voting precinct in most areas).Left panel is the performance of the top-down algorithm at each level of geography for privacy-loss budgets from 0.25 to 6.00. Right panel is the performance of the district-by-district algorithm for the same geographies and workload.Workload in the experiments is the detailed histogram GQ/HH type (9) x voting age (2) x Hispanic (5) x Race (6) x Citizenship (5) measured sharing the global privacy loss budget across all levels of geography.



23

Presenter
Presentation Notes
Left panel is enumeration-district level data showing both algorithms.Right panel is national data showing both algorithms. Notice how the national data are still noisy with district-by-district DP.



Analyses Supporting the 
2018 End-to-End Census Test
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Implementation Decisions for 2018 End-to-
End Census Test
• Population invariant at the county level (Providence, RI is the only county in the test)
• No voting-age invariant at any level
• Number of housing units invariant down to the block (design constraint due to 

operation of LUCA and address canvassing)
• Number of occupied housing units invariant (could not be relaxed in time to meet E2E 

production deadlines)
• Number and type of group quarters invariant down to the block (same design 

constraint as number of housing units)
• Global privacy-loss budget (ε) 0.25
• Allocation to PL94-171 100% (no other tables being released)
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Presentation Notes
The PL94-171 workload is GQ/HH (8) x voting age (2) x Hispanic (2) x Race (63)The P12 workload is GQ/HH (8) x age (23) x sex (2) x Hispanic (2) x Race (63) (incorporates the PL94-171 workload)The P1 workload is derived from the tables above. 



26

Accuracy v. 
Privacy Loss for 
Rhode Island 
(2010 Census) 
using the 2018 
E2E Test 
Disclosure 
Avoidance System

PL94-171 
redistricting data 
at the block level

Presenter
Presentation Notes
The use-case for block-level data does not require accuracy at the block level. Block-level data are used to assemble arbitrary sub-state geographies (legislative districts, school districts, etc.) The accuracy of statistics for those arbitrary geographies must increase as the population in that geography increases. Top-down has that property.  Block-by-block DP does not.These panels illustrate the consequence of relaxing the C1 invariant (total population). Data are from the 2010 Census for Rhode Island, only (DRB release CBDRB-FY19-054)Top left: C1state means that invariant C1 is applied only at the state level. Top right: C1county means that invariant C1 is applied at the county levelBottom left: C1tract means that invariant C1 is applied at the tract levelBottom right: C1block means that invariant C1 is applied at the block levelUnsurprisingly, applying C1 at the block level improves the block-level accuracy, but not by very much, on average. In addition, that accuracy is not needed to assemble collections of blocks, as the next slide demonstrate.The accuracy measure is one minus the average total variation distance for the workload divided by the total population (1 - AveTVD/N). The workload, in the case of the PL94-171 redistricting data, is 14 query sets required to produce, in the 2010 PL94-171 nomenclature, P1-P4 (total population: voting age (2) x Hispanic ethnicity (2) x multi-coded race (63)), P42 (group quarters population: type (7)), and H1 (housing units: occupancy status (2)) and their published margins accurately. Total variation distance is defined by summing one-half the L_1 error for each of the 14 query sets separately across all blocks (tracts, counties, states, resp.). Average TVD divides the total TVD by the number of query sets (14). The population used in the denominator is the total for the entire input person data set (in this case, the state of Rhode Island in the 2010 Census). Defined this way, AveTVD/N has an interpretation similar to the swap rate that we have used historically: what percentage of the persons represented in the table need to be re-arranged to get back the original confidential table. Understand that this is an average across all 14 query sets and over all of the blocks in Rhode Island (25,181). Many of those blocks have populations of 0, 1 or 2. In those cases, if you change one person, that's a big percentage change in all 14 of its tables, and the reported accuracy statistic is not weighted by the population of the block. 
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Accuracy v. 
Privacy Loss for 
Rhode Island 
(2010 Census) 
using the 2018 
E2E Test 
Disclosure 
Avoidance System

PL94-171 
redistricting data 
at the tract level

Presenter
Presentation Notes
There is virtually no difference at the tract level, even if the population invariant is only applied at the state level.
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Accuracy v. 
Privacy Loss for 
Rhode Island 
(2010 Census) 
using the 2018 
E2E Test 
Disclosure 
Avoidance System

PL94-171 
redistricting data 
at the county 
level

Presenter
Presentation Notes
Ditto at the county level.
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Accuracy v. 
Privacy Loss for 
Rhode Island 
(2010 Census) 
using the 2018 
E2E Test 
Disclosure 
Avoidance System

PL94-171 
redistricting data 
at the state level

Presenter
Presentation Notes
And the state level.
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Accuracy v. 
Privacy Loss for 
Rhode Island 
(2010 Census) 
using the 2018 
E2E Test 
Disclosure 
Avoidance System

PL94-171: 
redistricting data, 
SF1: P12 age x sex 
data and P1 
population data

Presenter
Presentation Notes
Summary of experiments Population invariant at the state level (only the state population count is unprotected).Alpha (a) moves the allocation of the global privacy-loss budget between PL94 (a = 0) and SF1-P12 (a=1), P1 is also shown.



Managing the Tradeoff
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Basic Principles

• Based on recent economics (2019, American Economic Review)
https://digitalcommons.ilr.cornell.edu/ldi/48/ or https://arxiv.org/abs/1808.06303

• The marginal social benefit is the sum of all persons’ willingness-to-
pay for data accuracy with increased privacy loss

• The marginal rate of transformation is the slope of the privacy-loss v. 
accuracy graphs we have been examining

• This is exactly the same problem being addressed by Google in 
RAPPOR or PROCHLO, Apple in iOS 11, and Microsoft in Windows 10 
telemetry
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Marginal Social 
Benefit Curve

Social Optimum: 
MSB = MSC
(0.25, 0.64)

Production 
Technology

Presenter
Presentation Notes
The marginal social benefit is the slope of the illustrated iso-social welfare line (gray). These lines must slope upwards because data accuracy is a “good” and privacy-loss is a “bad.” Iso-social welfare lines above the one illustrated are infeasible because no point on the PPF reaches them. Iso-social welfare lines below the one illustrated are feasible but suboptimal because social welfare can be increase by either increasing accuracy at no privacy-loss cost or decreasing privacy-loss without loss of accuracy.Slope of the Iso-social welfare curve is 1.5, this means surrendering one unit of privacy loss (say, epsilon goes from 0.25 to 0.26) is worth 1.5 units of accuracy (then accuracy goes from 0.64 to 0.655)The social optimum is the point of tangency between an iso-social welfare line (gray) and the PPF (red). At this point, the only social welfare improving combinations of data accuracy and privacy-loss are infeasible.The illustrated iso-social welfare line is the best one attainable, and social welfare is maximized at the indicated point. This point gives the optimal privacy-loss budget and the optimal data accuracy as determined by the preferences of the data users constrained by the SDL technology.At the indicated level of e = 0.25, accuracy for tract-level tables averages 96%, and for county and state-level tables averages 100%.It is impossible to assess the block-level error in a vacuum. You have to consider the use case. The other slides in that presentation show that as the blocks are assembled into geographic areas with larger populations--tracts (244), counties (5), and state (1)--the accuracy improves rapidly. Accuracy is about 96% at the tract level, and essentially 100% at the state and county level. The vast majority of legislative districts in the country have populations far in excess of the average census tract population (about 4,300 for RI in 2010). We have decided to release a large batch of statistical tables, in 2010 PL94-171 redistricting format, from the experiments summarized in my CSAC presentation in advance of releasing the production code for the 2018 End-to-End Census Test disclosure avoidance system. Users of all stripes will be able to use those simulation results to assess average error for their own use cases at all levels of geography.



But the Choice Problem for Redistricting  
Tabulations Is More Challenging
• In the redistricting application, the fitness-for-use is based on 

• Supreme Court one-person one-vote decision (All legislative districts must 
have approximately equal populations; there is judicially approved variation)

• Is statistical disclosure limitation a “statistical method” (permitted by Utah v. 
Evans) or “sampling” (prohibited by the Census Act, confirmed in Commerce v. 
House of Representatives)?

• Voting Rights Act, Section 2: requires majority-minority districts at all levels, 
when certain criteria are met

• The privacy interest is based on 
• Title 13 requirement not to publish exact identifying information
• The public policy implications of uses of detailed race, ethnicity and 

citizenship

34

Presenter
Presentation Notes
All statistical disclosure limitation methods used by the Census Bureau, including differential privacy as implemented for the 2020 Census, conform to both the Census Act--there is no sampling at any level, all the records in the official, confidential decennial census data are used, and no others--and to our understanding of Utah v. Evans--statistical disclosure limitation is an accepted statistical method and has been used since at least 1970 by the Census Bureau.



More Background on the 2020 Disclosure 
Avoidance System
• September 14, 2017 CSAC (overall design)

https://www2.census.gov/cac/sac/meetings/2017-09/garfinkel-
modernizing-disclosure-avoidance.pdf?#

• August, 2018 KDD’18 (top-down v. block-by-block)
https://digitalcommons.ilr.cornell.edu/ldi/49/

• October, 2018 WPES (implementation issues)
https://arxiv.org/abs/1809.02201

• October, 2018 ACMQueue (understanding database reconstruction) 
https://digitalcommons.ilr.cornell.edu/ldi/50/ or
https://queue.acm.org/detail.cfm?id=3295691
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