Consistency with External Knowledge: The TopDown Algorithm

Daniel Kifer

Simons Privacy Workshop

(revised slides)

TopDown algorithm developers: Robert Ashmead, Simson Garfinkel, Philip Leclerc, Brett Moran, William Sexton, Pavel Zhuravlev

Academic collaborators: Michael Hay, Ashwin Machanavajjhala, Gerome Miklau
All opinions, statements, conclusions, etc., in this talk are my own (as a researcher on differential privacy), and are not the official position of the U.S. Census Bureau.
Introduction

Outline

1. Introduction
2. Schema Extension: TopDown without invariants
3. Invariants
4. The TopDown Algorithm with invariants
5. zCDP/RDP vs. Pure DP
Goal

- DAS: disclosure avoidance system
- Publish a histogram with billions of cells using formal privacy.
 - Location (hierarchical) - National, State, County, Tract, Block Group, Block. ≈ 6 million blocks
 - Ethnicity: 2 values
 - Race: 63 values
 - Voting age: 2 values
 - Residence type (“household” or group quarters code) - 8 values

Hierarchical workload

- Counting queries about demographics in each geographic region
- E.g., 2010 PL94-171 Redistricting and Advanced Group Quarters Summary Files

The data are sparse

- ≈ 12 billion cells
- ≈ 309 million people
- Workload: 641 non-identity queries per geo-unit ≈ 3.6 billion queries
- $+12$ billion identity queries
Formal Privacy

- Differential Privacy

Definition (Differential Privacy (DMNS06))

Let $\epsilon > 0$. An algorithm M satisfies ϵ-differential privacy if for all $\omega \in \text{range}(M)$ and all pairs of databases D_1, D_2 that differ on the value of one page of Census questionnaire (information about 1 person),

$$P(M(D_1) = \omega) \leq e^{\epsilon} P(M(D_2) = \omega)$$

- Note: multiple tables
- Person demographics: 1 person affects 1 row.
- Households/Housing units: 1 person can modify 1 row in a bounded way (different from Uber’s model)
- Group Quarters: similar to households
- Geographic boundaries: no protection
Create microdata

- Ensures that published “universe person” tabulations are mutually consistent.
- Also system requirement: output of DAS goes into tabulation system.
- Equivalent to histogram with nonnegative integer entries.

Run within X days

- Implemented in Spark
- Uses GovCloud
- Use commercial-grade optimizers (e.g., Gurobi, CPLEX)

Run before all data are available

1. PL94-171 first
2. Summary File 1
3. Urban/Rural update
4. etc.

Consistent with external pieces of knowledge
Consistent with prior releases
Some datasets are treated as effectively public.

- Local Update of Census Addresses Operation (LUCA) dataset contains
 number of housing units and GQ units of each type in each block.
- Number of occupied GQ facilities of each type in each block assumed to be known.

Some information might be declared public as policy decision.

- In 2010: population of each block.
- In 2010: number of occupied housing units in each block
 \# occupied housing units = \# of householders

Invariants:

- Queries in true data that must have same answers in “privatized” data.
- Differentially private algorithms are still differentially private.
- Privacy semantics, however, are awkward.
- Easily make simple problems NP hard.

Structural zeros:

- Data-independent restrictions
- 0 householders aged 14 and under
- \# householders ≥ \# spouses + \# unmarried partners of householders.
Invariants and Utility

- Invariants may be forced by policy decisions.
- Invariants based on external knowledge can increase trust in the microdata.
- Utility:
 - Making published data consistent with the invariants could increase accuracy of microdata.
 - In experiments, feasible datasets (satisfying invariants) can be very different from unrestricted datasets (given the same noisy measurements).
Incremental Schema Extension - Incrementally add columns to DP microdata

e.g., start with Race (R), Ethnicity (E), Voting Age status (VA)

\[
\begin{array}{ccc}
R & E & VA \\
\rightarrow & R & E & VA & State \\
\rightarrow & R & E & VA & State & County \\
\end{array}
\]

- Necessary because not all data are available at once.
- Also useful for scalability.
 - Microdata generation: measure then postprocess
 - Cannot fit postprocessing optimization problem in memory

Consistency with External Knowledge

- Linear constraints on histogram constructed from full schema.
- Ensure there exists an extension of \[R \ E \ VA\] that will satisfy those constraints.
- Decision problem (microdata are consistent?) is NP complete.
1 Introduction

2 Schema Extension: TopDown without invariants

3 Invariants

4 The TopDown Algorithm with invariants

5 zCDP/RDP vs. Pure DP
Schema Extension: TopDown without invariants

TopDown Framework (without invariants)

- Histogram is too big to fit in memory, must be created in pieces.
- First generate nonnegative integer histogram H at the national level.
- Create child histograms H_i for each state S_i, with $\sum_i H_i = H$.
- Recursively create county, tract, block group, block level histograms.
- Number of optimization problems increases down the hierarchy
- Size of optimization problems decreases
 - Algorithm estimates which counts are nonzero
 - Splits these counts among children
 - Variables that are 0 at the parent are dropped from future optimizations.
- Total U.S. population is not protected.
- Given linear query workload W, use High-dimensional matrix mechanism to obtain [MMHM2018] linear queries Q to ask.
- Obtain noisy measurements $M = Q(H) + \text{Noise}$
- Solve $H^* = \arg \min_{H^*} \|Q(H^*) - M\|_2^2$ s.t. $\text{sum}(H^*) = n$ and $H^* \succeq 0$
 - Now we have a nonegative fractional histogram of population demographics.
National Histogram Linear solve

- Nonnegative fractional histogram H^*.
- Round using LP

$$\arg \min_{\tilde{H}} ||\tilde{H} - H^*||_1$$

s.t.

- $\tilde{H} \succeq 0$ (nonnegativity)
- $|\tilde{H}[x] - H^*[x]| \leq 1$ for all cells x
- $\sum_x \tilde{H}[x] = \sum_x H^*[x]$ (total sum constraint)

- Constraint matrix is Totally Unimodular (TUM).
- Many LP algorithms (barrier+crossover, simplex) give integer solutions.
- To be safe, implementation asks Gurobi to solve IP instead of LP (fast because of TUM)
Now we have a nonnegative integer histogram \tilde{H}
- National level demographics
- Equivalent to microdata with no geography

Next we add States + DC.
- H_i: demographics histogram for state i
 - Ignore cells that are 0 at national level DP histogram \tilde{H}
 - Reduces size of the optimization problem.
- Given workload at each state + DC, use HDMM to obtain linear queries Q to ask.
- Noisy measurement for state i: $M_i = Q(H_i) + \text{Noise}$
- Then we solve an L_2 followed by L_1 optimization problem.
\(\tilde{H} \) is national level DP histogram

Noisy state level measurements \(M_1, \ldots, M_{51} \)

Obtain DP state-level nonnegative fractional histograms that add up to \(\tilde{H} \)

\[
\arg\min_{H_1^*, \ldots, H_m^*} \sum_{j=1}^{m} \left\| Q(H_j^*) - M_j \right\|_2^2
\]

s.t. \(H_j^* \geq 0 \) for all \(j \)

\[
\sum_{j=1}^{m} H_j^* = \tilde{H}
\]
Now round using IP that is equivalent to LP when using e.g., barrier+crossover or simplex algorithms.

\(H_j^\ast \) are nonnegative fractional state level histograms

\[
\text{arg} \min_{\tilde{H}_1, \ldots, \tilde{H}_m} \sum_{j=1}^m ||\tilde{H}_j - H_j^\ast||_1 \\
\text{s.t.} \quad \tilde{H}_j \succeq 0 \text{ for all } j \\
|\tilde{H}_j[x] - H_j^\ast[x]| \leq 1 \text{ for all } j \text{ and cells } x \\
\sum_j \tilde{H}_j = \tilde{H}
\]
(In parallel) For each state, we generate its county level histograms.
For each county, generate its tract histograms.
For each tract, generate its block level histograms.
Convert back to microdata.

≈ 20k lines of code
≈ 60k more lines of supporting code
TopDown Algorithm

BUT WAIT, THERE'S MORE!
Outline

1. Introduction
2. Schema Extension: TopDown without invariants
3. Invariants
4. The TopDown Algorithm with invariants
5. zCDP/RDP vs. Pure DP
Final data (with all fields) must satisfy (mostly) linear constraints.

Consumed most time & effort.

Semantics:
- What is impact on privacy if some exact statistics about data are published?
- How do privacy semantics change?
- Needed for policy decisions.
- Short answer: it’s complicated.

Algorithm:
- How do we enforce them in DP microdata?
- Short answer: it’s complicated.
Invariants

An Example (1)

- Small college town, 2 regions
- Every student lives in dorms
 - Male-only (M)
 - Female-only (F)
 - Co-ed (C)
- Knowledge:
 - 100 students in each region:
 \[F_1 + C_1 + M_1 = F_2 + C_2 + M_2 = 100 \]
 - All dorms are occupied.
 - \(R_1 \): 0 Male, 1 Female, 1 Co-ed dorms:
 \[M_1 = 0; F_1 \geq 1; C_1 \geq 1. \]
 - \(R_2 \): 1 Male, 0 Female, 1 Co-ed dorms:
 \[M_2 \geq 1; F_2 = 0; C_2 \geq 1. \]
- We already generated town-wide DP statistics: \(\tilde{F}, \tilde{C}, \tilde{M} \).
- Consistent with background knowledge?
Knowledge:

- 100 students in each region:
 \[F_1 + C_1 + M_1 = F_2 + C_2 + M_2 = 100 \]
- All dorms are occupied.
- \(R_1 \): 0 Male, 1 Female, 1 Co-ed dorms:
 \[M_1 = 0; F_1 \geq 1; C_1 \geq 1. \]
- \(R_2 \): 1 Male, 0 Female, 1 Co-ed dorms:
 \[M_2 \geq 1; F_2 = 0; C_2 \geq 1 \]

Consistency: implications for \(\tilde{F}, \tilde{C}, \tilde{M} \)?
Knowledge:

- 100 students in each region:
 \[F_1 + C_1 + M_1 = F_2 + C_2 + M_2 = 100 \]
- All dorms are occupied.
- \(R_1 \): 0 Male, 1 Female, 1 Co-ed dorms:
 \[M_1 = 0; \ F_1 \geq 1; \ C_1 \geq 1. \]
- \(R_2 \): 1 Male, 0 Female, 1 Co-ed dorms:
 \[M_2 \geq 1; \ F_2 = 0; \ C_2 \geq 1. \]

Consistency: implications for \(\tilde{F}, \tilde{C}, \tilde{M} \)?

- \(\tilde{M} \geq 1 \)
- \(\tilde{F} \geq 1 \)
- \(\tilde{C} \geq 2 \)
- \(\tilde{F} + \tilde{C} + \tilde{M} = 200 \)
- Are we done?
Knowledge:

100 students in each region:
\[F_1 + C_1 + M_1 = F_2 + C_2 + M_2 = 100 \]

All dorms are occupied.

\[R_1 : 0 \text{ Male}, 1 \text{ Female}, 1 \text{ Co-ed dorms}: \]
\[M_1 = 0; F_1 \geq 1; C_1 \geq 1. \]

\[R_2 : 1 \text{ Male}, 0 \text{ Female}, 1 \text{ Co-ed dorms}: \]
\[M_2 \geq 1; F_2 = 0; C_2 \geq 1 \]

Consistency: implications for \(\tilde{F}, \tilde{C}, \tilde{M} \)?

\[\tilde{M} \geq 1, \tilde{F} \geq 1, \tilde{C} \geq 2, \]
\[\tilde{F} + \tilde{C} + \tilde{M} = 200, ?? \]

Suppose \(\tilde{F} = 49, \tilde{C} = 50, \tilde{M} = 101 \)

Satisfies these constraints

But, only 1 male-only dorm.

It is in region with 100 students.

\[\therefore \tilde{M} = 101 \text{ is not valid} \]
Knowledge:
- 100 students in each region:
 \[F_1 + C_1 + M_1 = F_2 + C_2 + M_2 = 100 \]
- All dorms are occupied.
- \(R_1 \): 0 Male, 1 Female, 1 Co-ed dorms:
 \[M_1 = 0; F_1 \geq 1; C_1 \geq 1. \]
- \(R_2 \): 1 Male, 0 Female, 1 Co-ed dorms:
 \[M_2 \geq 1; F_2 = 0; C_2 \geq 1 \]

Consistency: implications for \(\tilde{F}, \tilde{C}, \tilde{M} \)?
The necessary and sufficient constraints (auto-proved via FME):

\[
\begin{align*}
\tilde{F} & \geq 1 \\
\tilde{C} & \geq 2 \\
\tilde{M} & \geq 1 \\
\tilde{F} & \leq 99 \\
\tilde{C} + \tilde{F} & \geq 101 \\
\tilde{C} + \tilde{F} + \tilde{M} & = 200
\end{align*}
\]
Invariants via Network Flows

- Reduction to Network Flow (change $\geq c$ constraints to ≥ 0)
- Use max-flow/min-cut theorem
Starting schema: S_0 (set of table columns)
- e.g., \{ Dorm Type \}

Extended schema $S \supset S_0$
- e.g., \{Dorm Type, Region\}

T_0: microdata table with schema S_0

T: microdata table with schema S

C: set of constraints on T
- Total population in each region
- Presence/absence of occupied dorms

C_0: set of constraints on T_0
- What we want
- Constraints on population in each dorm in T_0
Invariants

Implied constraints

Definition (Necessary Constraints)

C_0 is necessary if $C(T) = \text{true} \Rightarrow C_0(T_0) = \text{true}$, where T_0 is projection of T onto the attributes in schema S_0

Definition (Sufficient Constraints)

C_0 is sufficient if $C_0(T_0) = \text{true} \Rightarrow$ there exists an extension T of T_0 with $C(T) = \text{true}$

We want C_0 to be necessary and sufficient:

- \tilde{T}_0: DP microdata
- Sufficient: If $C_0(\tilde{T}_0) = \text{true}$, we can always add columns to get a DP version \tilde{T} that satisfies C
- Necessary: Constraints are not too restrictive (do not add unnecessary bias)
How do we find them?

NP-complete in universe size when $|S_0| = 2$ and $|S| = 3$. Easily encodes 3-SAT.

NP-complete if each region only has equality constraints for 2 one-way marginals.

- NP-complete in # of regions and size of one of the marginals (if 2nd marginal has size 3)

Region A

<table>
<thead>
<tr>
<th>RH = 0</th>
<th>RV = 0</th>
<th>RV = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>?</td>
<td>6</td>
</tr>
<tr>
<td>?</td>
<td>?</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Region B

<table>
<thead>
<tr>
<th>RH = 0</th>
<th>RV = 0</th>
<th>RV = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>?</td>
<td>15</td>
</tr>
<tr>
<td>?</td>
<td>?</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

But exists an inefficient algorithm if constraints are linear:

- Fourier-Motzkin elimination (FME).
- Double-exponential complexity (Can be accelerated but not for our scale)
- Works for fractional histograms (often provable for integer histograms).
1. Introduction
2. Schema Extension: TopDown without invariants
3. Invariants
4. The TopDown Algorithm with invariants
5. zCDP/RDP vs. Pure DP
The TopDown Algorithm with invariants

State Level Histograms: L_2 solve with invariants

- \tilde{H} is national level DP histogram
- Compute implied constraints C_i for each state i
- Noisy state level measurements M_1, \ldots, M_{51}
- Obtain DP state-level nonnegative fractional histograms that add up to \tilde{H}

$$\arg\min_{H_1^*, \ldots, H_m^*} \sum_{j=1}^{m} \| Q(H_j^*) - M_j \|^2_2$$

s.t. $H_j^* \succeq 0$ for all j

$C_i(H_j^*) = \text{true} \quad \text{for all } j$

$$\sum_{j=1}^{m} H_j^* = \tilde{H}$$
State Level Histograms: Linear solve with invariants

- This rounding using IP that is equivalent to LP when using barrier+crossover or simplex algorithms.
 - Under conditions like TUM constraint matrix or nice obj + rhs
- H_j^* are nonnegative fractional state level histograms

\[
\arg\min_{\tilde{H}_1, \ldots, \tilde{H}_m} \sum_{j=1}^{m} || \tilde{H}_j - H_j^* ||_1
\]

s.t. $\tilde{H}_j \succeq 0$ for all j

$|\tilde{H}_j[x] - H_j^*[x]| \leq 1$ for all j and cells x

$C_i(\tilde{H}_j) = \text{true}$ for all j

$\sum_j \tilde{H}_j = \tilde{H}$
Implied constraints deduced by hand + FME

L_2 solve: creates nonnegative fractional histogram
 - Implied constraints C_0 are added to the problem.
 - Implies fractional feasible extension exists.

L_1 solve: rounds to nonnegative integer counts.
 - Generally, linear implied constraints do not always guarantee feasible integer solution
 - They do if the problem constraint matrix is TUM (then linear solve is also usually fast)
 - Some of our implied invariant constraints are not TUM
 - But integer optimal solution exists
 - Solve is slow
 - Possibly equivalent to TUM constraints (network flow and a few others)
Example

- 3 digit GQ code of occupied group quarters might be invariant
 - Similar to college dorm example
 - But 28 types of GQ
 - In general, $\approx 2^{28}$ implied constraints, one for each combination of GQ.
 - Can be much smaller, depending on data.
 - For each combination S of GQ:
 - Total population living in GQ of types in S is $\leq c$
 - c depends on total population in blocks that have GQ types from S
 - Constraint matrix is not TUM
 - Might be equivalent to TUM (via network flows)
 - Network flow integrality theorem says an integer solution exists
Workarounds

"The Failsafe"
- In the worst case, breaks out of the framework.
- If a solve fails (or is slow) in, e.g., county level histogram H_c
 - Cannot find feasible tract histograms H_1, \ldots, H_k with $\sum_i H_i[x] = H_c[x]$ for all x
 - Drop this requirement
 - Use weaker requirements (e.g., total population matches: $\sum_i \sum_x H_i[x] = \sum_x H_c[x]$) and other tricks
 - Generate tracts
 - The county is changed to the sum of the tracts
 - Worse accuracy but invariants maintained

"Minimal Schema"
- S_0: smallest set of attributes that cover the invariants + all geography.
- Generate nonnegative integer histogram in 2 solves L_2 followed by L_1.
 - Simultaneously for all levels of geography, estimate group quarters population by GQ type (nothing else)
 - Then extend to the other attributes.
 - Works if these problems fit in memory
- Cutting plane: find the instance-level necessary constraints
Have explored many invariants.

Choice of invariants is policy decision.
- Policy can be affected by privacy semantics
- Policy can be affected by computational difficulty

Current set of invariants being explored:
- State population totals are invariant.
- \# occupied GQ facilities of each type in each block are invariant.
- Total \# of housing units in each block are invariant.
- Auxiliary information about GQ (age restrictions, female-only, male-only, co-ed).
- Also structural zeros.

Historical invariants deducible from
Outline

1. Introduction

2. Schema Extension: TopDown without invariants

3. Invariants

4. The TopDown Algorithm with invariants

5. zCDP/RDP vs. Pure DP
Currently using pure DP with Laplace noise and geometric mechanism.
Planning experiments with Gaussian noise and RDP/zCDP.
Choice of Gaussian variance via reductions from RDP/zCDP to (ϵ, δ)-differential privacy.

How to choose failure probability?

Conservative: $\delta = 10^{-14}/4$
 - $\approx 4 \times 10^8$ people
 - $\approx 10^{-6}$ chance of failure
 - Based on (ϵ, δ)-DP algorithm that returns a random record with probability 10^{-6}

Moderate: $\delta = 10^{-6}$
 - Rough interpretation: each bit of a person’s record has probability 10^{-6} of getting less privacy than ϵ-differential privacy
For $\delta = 10^{-14}$ (conservative value)

Moment accountant privacy budget split across 6 levels of geographic hierarchy.

For identity queries, noise variance

<table>
<thead>
<tr>
<th>ϵ</th>
<th>Laplace Variance</th>
<th>Gaussian Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>288.0</td>
<td>785.6</td>
</tr>
<tr>
<td>2</td>
<td>72.0</td>
<td>199.4</td>
</tr>
<tr>
<td>3</td>
<td>32.0</td>
<td>89.9</td>
</tr>
<tr>
<td>4</td>
<td>18.0</td>
<td>51.3</td>
</tr>
<tr>
<td>5</td>
<td>11.5</td>
<td>33.3</td>
</tr>
</tbody>
</table>
For $\delta = 10^{-9}$ (intermediate conservative value)

Moment accountant privacy budget split across 6 levels of geographic hierarchy.

For identity queries, noise variance:

<table>
<thead>
<tr>
<th>ϵ</th>
<th>Laplace Variance</th>
<th>Gaussian Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>288.0</td>
<td>509.3</td>
</tr>
<tr>
<td>2</td>
<td>72.0</td>
<td>130.3</td>
</tr>
<tr>
<td>3</td>
<td>32.0</td>
<td>59.2</td>
</tr>
<tr>
<td>4</td>
<td>18.0</td>
<td>34.0</td>
</tr>
<tr>
<td>5</td>
<td>11.5</td>
<td>22.2</td>
</tr>
</tbody>
</table>
For $\delta = 10^{-6}$ (moderate value)

Moment accountant privacy budget split across 6 levels of geographic hierarchy.

For identity queries, noise variance:

<table>
<thead>
<tr>
<th>ϵ</th>
<th>Laplace Variance</th>
<th>Gaussian Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>288.0</td>
<td>343.5</td>
</tr>
<tr>
<td>2</td>
<td>72.0</td>
<td>88.8</td>
</tr>
<tr>
<td>3</td>
<td>32.0</td>
<td>40.7</td>
</tr>
<tr>
<td>4</td>
<td>18.0</td>
<td>23.6</td>
</tr>
<tr>
<td>5</td>
<td>11.5</td>
<td>15.6</td>
</tr>
</tbody>
</table>
- Gaussian variance is larger than Laplace
- But tails are lighter (fewer outliers)
- May affect postprocessing steps
- Might have better tuned query workload
- So experiments are planned (but many other problems need solving)
- Most likely scenario:
 - Use pure differential privacy
 - Report corresponding RDP/zCDP parameters using reductions from ϵ-differential privacy to RDP/zCDP
Thank You