Managing the Privacy-loss Budget for the 2020 Census

John M. Abowd and Victoria Velkoff
Associate Director R&M, Chief Scientist and Associate Director Demographic Programs
U.S. Census Bureau
Census Scientific Advisory Committee
March 28, 2019
Update on Reconstruction and Re-identification

• As presented to the American Association for the Advancement of Science (AAAS) on February 16, 2019

• Technical paper under internal review prior to submission for external peer review
What We Did

• Database reconstruction for all 308,745,538 people in 2010 Census
• Link reconstructed records to commercial databases: acquire PII
• Successful linkage to commercial data: putative re-identification
• Compare putative re-identifications to confidential data
• Successful linkage to confidential data: confirmed re-identification
• Harm: attacker can learn self-response race and ethnicity
What We Found

• Census block and voting-age correctly reconstructed in all 6,207,027 inhabited blocks

• Block, sex, age, race, ethnicity reconstructed
 • Exactly: 46% of population (142 million of 308,745,538 records in CEF)
 • Allowing age +/- one year: 71% of population (219 million of 308,745,538)

• Block, sex, age linked to commercial data to acquire PII
 • Putative re-identifications: 45% of population (138 million of 308,745,538)

• Name, block, sex, age, race, ethnicity compared to confidential CEF
 • Confirmed re-identifications: 38% of putative (52 million; 17% of population)

• For the confirmed re-identifications, race and ethnicity are learned exactly, not statistically
Schedule of Publications

• Reapportionment (December 31, 2020) unaffected by differential privacy
• Redistricting (PL94-171, March 31, 2021)
• Citizen Voting-Age Population (CVAP, March 31, 2021) CVAP is not an official 2020 product
• Standard Data Products (Spring 2021-Summer 2023)
 • Using OMB standard race and ethnicity groups
 • Including complex join queries (household-person tables)
 • Using detailed race and ethnicity categories
 • Using detailed American Indian and Alaska Native categories
• Public-use microdata (after all other releases)
Many Historical Invariants

• An invariant is published as-enumerated (no confidentiality protection)
• There is only one Constitutional invariant: reapportionment
• There are no statutory invariants
 • Confidentiality protection applies to all products
• Historically there were many invariants (2010 examples below):
 • Total population at all geographic levels
 • Voting-age population at all geographic levels
 • Number of housing units at all geographic levels
 • Number of occupied housing units at all geographic levels
 • Number and type of group quarters at all geographic levels
 • Detail in type of group quarters varies by geographic level
2018 E2E Test and 2020 Census Invariants

• Invariants in the 2018 End-to-End Census Test:
 • Total population of Providence, RI (only county tested)
 • Number of housing units at all geographic levels
 • Number of occupied housing units at all geographic levels
 • Number and type of group quarters at all geographic levels
 • Table P-42 had only 7 group quarters types

• DSEP sets the final invariants
Invariants Massively Complicate the Problem

• Internal research shows
 • Population invariants at the block and tract level were major contributors to the accuracy of the reconstruction-abetted re-identification experiments run on the 2010 Census
 • Protecting confidentiality and maintaining fitness-for-use require removing invariants at the block and tract levels

• Every invariant results in a compromise of the confidentiality protections: some plausible attack strategies are advantaged more than the formal privacy-loss parameter allows

• Formal privacy guarantees are strongest when there are no invariants and the privacy-loss parameter is used to control accuracy (see Dan Kifer talk distributed with CSAC materials)
Managing a Global Privacy-loss Budget

• There are three generic uses of the global privacy-loss budget
 • Person-level queries
 • Bulk of PL94-171 and Citizen Voting-Age Population (CVAP) tables
 • Many Demographic and Housing Characteristics (DHC) tables
 • Some tables using detailed race and ethnicity, AIAN
 • Household-level queries
 • One PL94-171 table, no CVAP tables
 • Many DHC tables
 • Most tables in detailed race, ethnicity and AIAN products
 • Household-person queries
 • None in PL94-171 nor CVAP
 • Balance of tables in DHC

• Public-use microdata would be developed from these queries, so there is no additional privacy-loss
Allocating Privacy Loss across Sets of Tables

• Requires treating the entire confidential database (CEF) as relational with hierarchy-defined relations (see Michael Hay talk, distributed with CSAC materials)

• Requires implementing privacy-loss accounting for the entire database not just separate components like person tables (PL94-171)

• Current policy: person is primary (the privacy-loss budget provides guarantees to each person in the United States)

• Privacy-loss accounting manages the budget over persons, household and household-person joins
Allocating Privacy Loss to Household and Person Tables

• Mostly solved problems
 • PL94-171, CVAP
 • Can be combined with person-level tables in DHC
 • Basic analysis was presented at the December 6, 2018 CSAC meeting

• Tractable problems
 • Balance of person tables in DHC
 • Household tables in DHC

• Remaining problems
 • Optimizing the allocation of privacy loss across the geographic hierarchy
 • Implementing improved strategies for other variables (age, OMB race)
 • Optimizing overall workload
Allocating Privacy Loss to Household-Person and Sparse Tables

• Household-person join queries are challenging
 • Computation of the sensitivity must be correctly automated
 • Privacy-loss accounting must be properly implemented
 • Resulting protected tables cannot be accurately represented with microdata
 • Requires computing published tables from protected summaries instead

• Sparse queries are also challenging
 • Detailed race, ethnicity and AIAN tables historically applied to very small populations in select geographies
 • Requires data-dependent algorithms that are not yet implemented or tested
 • Even with these algorithms, the volume of data previously published has set very difficult expectations
The Importance of Formal Privacy

• Block-level summary data from the decennial census have a long history, an important and valid use case, and can be delivered with the current formal privacy system, as demonstrated in the 2018 End-to-End Census test.

• Abandoning formal privacy for the balance of 2020 Census publications exposes the entire set of publications, including the block-level tables, to the same reconstruction-abetted re-identification attack strategy to which the 2010 Census was vulnerable.

• The current environment is equivalent to exposing a major cybersecurity vulnerability: you can’t patch one part and leave other parts exposed—you have to fix the whole system.
Questions for CSAC

• How should the Census Bureau communicate the vulnerabilities that invariants produce while trying to eliminate them from the publications?
• How can the Census Bureau effectively communicate to users that complete accuracy of inputs to their use cases is infeasible, and was not true historically?
• How can the Census Bureau best do principled balancing of the accuracy requirements of diverse use cases?
• In tuning the full geographic hierarchy, which levels make the most sense to optimize for accuracy?
• If the only feasible algorithms for producing household-person join tables and detailed race, ethnicity and AIAN tables cannot deliver microdata for tabular publication, should the Census Bureau invest in a dissemination system that publishes from protected tables instead?
• How should the Census Bureau assess the use case for PUMS and restricted-access to the confidential microdata?
• Should the Census Bureau relax the requirement that all published tables be fully consistent, as other national statistical offices have done for their census publication?
• How can the Census Bureau incorporate systems that will give a holistic perspective on the impact of these changes?
Thank you.

John.Maron.Abowd@census.gov and Victoria.A.Velkoff@census.gov