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ABSTRACT

This paper develops two algorithms. Algorithm 1 computes
the exact, Gaussian, log-likelihood function, its exact, gradient
vector, and an asymptotic approximation of its Hessian matrix,
for discrete-time, linear, dynamic models in state-space form.
Algorithm 2, derived from algorithm 1, computes the exact,
sample, information matrix of this 1likelihood function. The
computed quantities are analytic (not numerical approximations)
and should, therefore, be useful for reliably, quickly, and
accurately: (i) checking local identifiability of parameters by
checking the rank of the information matrix; (ii) wusing the
gradient vector and Hessian matrix to compute maximum likelihood
estimates of parameters with Newton methods; and, (iii) computing
asymptotic covariances (Cramer-Rao bounds) of the parameter
estimates with the Hessian or the information matrix. The
principal contribution of the paper is algorithm 2, which extends
to multivariate models the univariate results of Porat and
Friedlander (1986). By relying on the Kalman filter instead of
the Levinson-Durbin filter wused by Porat and Friedlander,
algorithms 1 and 2 can automatically handle any pattern of
missing or linearly aggregated data. Although algorithm 1 is
well known, it 1is treated in detail in order to make the paper

self contained.



1. Introduction.

This paper develops two algorithms. Algorithm 1 computes
the exact, Gaussian, log-likelihood function, its exact, gradient
vector, and an asymptotic approximation of its Hessian ﬁatrix,
for discrete-time, linear, dynamic models in state-space form.
Algorithm 2, derived’ from algorithm 1, computes the exact,
sample, information matrix of this likelihood function. The
’computed quantities are analytic (not numerical approximations)
and should, therefore, be useful for reliably, quickly, and
accurately: (i) checking local identifiability of parameters by
checking the rank of the information matrix ([10, pp. 1071-
i0731); (ii) using the gradient vector and the Hessian matrix to
compute maximum likelihood estimafes of parameters with Newton
methods ([27, pp. 442-450)); and, (iii) computing asymptotic
covariances (Cramer-Rao bounds) of the parameter estimates with
the Hessian or the information matrix ([40, pp. 68-86]). The
principle contribution of the paper is algérithm 2, which extends
to multivariate models the wunivariate results of Porat and
Friedlander {[37). By relying on the Kalman filter instead of the
Levinson-Durbin filter used by Porat and Friedlander, algorithms
1 and 2 can automatically handle any pattern of missing or
linearly aggregated data. Although algorithm 1 is well known, it
is treated in detail in order to make the paper self contained.

Box and Jenkins [11], Reinsel [38], and Zadrozny [46]
stated recursive formulas for computing the gradient of the
approximate, conditional, Gaussian, log-likelihood function of

univariate and multivariate, ARMA (autoregressive moving-average)



and ARMAX (ARMA with exogenous variables) models. Akaike [1]
stated formulas, requiring inverse Fourier transformation for
their final resolution, for computing the gradient of a spectral
approximation of the Gaussian, log-likelihood function of a
multivariate ARMA model. Kashyap [26] described ,a Lagrange-
multiplier method for computing the gradient of an asymptotic
approximation of this log-likelihood when the model is
multivariate ARMAX. Wilson aﬁd Kumar [45] essentially restated
Kashyap's method for a state-space formulation of a model. |
Recently, there has been a shift toward using exact
likelihood functions. This has been prompted by falling costs of
computing and the recognition that an approximate likelihobd may
lead to seriously biased parameter estimates. For example,
Hillmer and Tiao [23] showed this to be the case for an ARMA
model with seasonal MA roots close to the unit circle. In the
same vein, the accuracy of Akaike’'s [l] approximation depends on
the AR and MA roots being sufficiently outside the unit circle.
Ansley and Kohn [6] and Melard [33] stated algorithms,
involving the = Chandrasekhar form of the Kalman filter, for
computing the gradient of the ewxact, Gaussian log-likelihood of a
~ univariate, ARMA model. The Chandrasekhar form takes advantage of
the observation wvector being smaller than the state vector
([35]), but has the disadvantage of not being able to handle
missing (or irregularly observed) data. In a related article,
Ansley and Kohn [5] use the standard form of the Kalman filter,
which can handle missing data. The likelihood and gradient parts

of the present algorithm 1 are essentially identical to the



algorithm stated by Harvey and McKenzie [20]. More recently, Tuan
[41] developed a quick gradient algorithm for univariate, ARMA
models. His algorithm uses backward and forward representations
of the model and produces, as an automatic by-product, a
Lagrange-multiplier.statistic for testing the goodness of fit of
the model.

Akaike [1], Reinsel [38], and Zadrozny [46] also stated
formulas for computing approximations of the Hessian which are
asymptotically equivalent to each other, and to the present one.
This equivalence and equation (5.7) below indicate that these
Hessian matrices are positive semi-definite by construction and
are expected to be positive definite when the parameters are
locally identifiable. (We are concerned with minimizing -2 times
the log-likelihood, so that the relevant - Hessian should be
‘ positive definite, not mnegative definite.) A Hessian is useful
for computing maximum likelihood estimates only if it is positive
definite ([27, pp. 442-450]). The exact ‘Hessian is generally
positive definite only in a neighborhood of a local minimum and
must, therefore, generally be modified to make it positive
definite. For this reason, we only consider the approximate
Hessian. It is straightforward to extend algorithm 1 to ome which
computes the exact Hessian, but this involves the additional
disadvantage of a much greater computational burden. Algorithm 1
requires very little extra work to compute the approximate
Hessian, beyond the work required to compute the log-likelihood
and its gradient. In their articles [5, 6], Ansley and Kohn also

stated algorithms for computing the exact, Hessian matrix, but



did not show how to modify it, if necessary, to make it positive
definite. Algorithm 1 also bears some resemblance to the gradient
and Hessian algorithm developed by Berndt et al. [9], which has
been frequently cited in the econometrics literature.

There appears to be much less literature on the computation
of information matrices in general, linear, dynamic models. Box
and Jenkins [11, pp. 240-246] stated closed-form expressions‘for
asymptotic information matrices in some special univariate, ARMA
models. Zadrozny [46] stated infinite-series representations of
asymptotic information matrices in multivariate, ARMAX models.
Apparently only Porat and Friedlander [37] have developed résults
similar to present ones for computing the exact, sample,
information matrix. They describe an analogous method, based on
Levinson-Durbin filtering, for computing the sample, information
matrix in univariate, stationary, 1linear, dynamic models with
exogenous variables. As an example, they work out details for the
univariate, ARMA model. Their results do‘not immediately extend
to multivariate models. The present paper extends their wofk to
multivariate models by replacing Levinson-Durbin filtering with
Kalman filtering. In both algorithm 2 and in ©Porat and
Friedlander's algorithm, the asymptotic, information matrix is
readily obtained by iterating the sample, information matrix to
convergence.

In section 2, we introduce the state-space form of a linear
dynamic model. 'In section 3, we describe how to compute with the
Kalman filter the exact, Gaussian log-likelihood for a model in

state-space form. In sections 4 and 5, we extend the likelihood



algorithm to additionally compute the exact gradient and the
approximate Hessian. At the ends of these sections, we also state
chain rules which extend these results to models with
differentiable equality restrictions on pérameters. In section 6,
we extend the results of sections 3 to 5 to algorithm 2, which
computes the sample information matrix. Section 7 ends the paper
with some remarks, including remarks about the possibilities of

using so-called square-root versions of the Kalman filter.

2. State-Space Form of a Linear Dynamic Model.

We start this section by describing in general terms the
state-space form of a time-varying, linear, dynamic model and end
it by illustrating how the commonly used, time-invariant,
ARMAX(p,q,r,) model (autoregressive, moving-average model with
exogenous variables) can be put into this form. Throughout this
section and the remainder of the paper, we shall follow
coventional assumptions.

A state-space representation has three essential parts: (i)
a state vector which comprises the relevant information for
forecasting the process in question; (ii) a law of motion which
tells how the state wvector evolves over time; and, (iii) an
observation (or measurement) equation which tells how
observations of the process are made in terms of the state
vector.

Let u(t) be an n x 1 vector process of interest which is
generated for time periods t = 1, ..., N. Let x(t) be an s x 1,

state vector of a particular, state-space representation of the



generating process of u(t). A process which can be represented in
state-space form will have infinitely many state-space
representations. The state law of motion of a process which is

linear in variables has the form
(2.1) x(t) = F(¢,t)x(t-1) + G(¢,t)e(t) + H(s,t)z(L),

where e(t) is ann x 1, unobser?able, disturbance wvector; z(t)
is an h =x 1, observable, nonstochastic vector of exogenous
variables; and, the ¢ x s, s x n, and s x h system matrices,
F(¢,t), G(¢,t), and H(é,t), are known, nonstochastic functions of
a p x 1 vector of underlying, structural parameters, ¢, and of
time, t. For simplicity, we shall suppress the ¢ and t arguments
whenever they are not explicitly needed.

Thé disturbance wvector, e(t), 1is assumed to be serially
uncorrelated and to be uncorrelated with all past values of x(t).
Becausé the mean of u(t) can be accounted for with constant terms
(setting some element of z to be identically equal to one),
without loss of generality, e{t) is assumed to have a zero mean.
Finally, x(1), e(t), and, hence, u(t), are assumed to have
Gaussian (or normal) probability distributions. These
distributional assumptions are denoted by =x(1) -~ N[ux(¢,1),
ZX(¢,1)] and e(t) ~ NIID[O, Ee(¢,t)].

The observation equation is constructed in two steps. Let
w(t) denote the m x 1 vector of potential observations on u(t),
where m < n. By "potential™ we mean that w(t) is not yet adjusted

for the fact some or all of its elements may be unobserved



(missing) in period t. The relation between w(t) and x(t) in a

linear model is
(2.2) w(t) = A(g,t)x(t) + §(v).

The m x s matrix A(¢,t) does three things: (i) it picks out
elements of =x(t) which correspond to u(t); (ii) it forms linear
combinations of elements of x(t) to aécount for some eiements of
u(t) being observed as linear (cross-sectional or temporal)
aggfegates; and, (iii) it represents the part of the model for
» u(t) which cannot be captured by (2.1).

The m x 1 vector ¢{t) is an optional vector of observation
errors. Following the usual practice, we assume that ((t) is
seriélly uncorrelated and that it is uncorrelated with all values
of the state vector and of its disturbances. In other words, {(t)
- NIID[O, 3,($,£)] and Be(r)e(t) T = 0 and E¢(r)x(1). = 0, for all
r, t =z 1 (superscript T denotes transposifion). In principle, Zf
can be time varying even when the model is time - invariant,

although, in practice, ¥_ is usually taken to be time invariant,

¢
even when the model is assumed to be time varying. When Zg
depends = on parameters to be estimated, then, it is convenient to
include these in ¢, even though observation error covariances are
not usually thought of as structural quantities.

When A(&,t) does not represent a part of the model, then,
it does mnot depend on (¢,t) and is simply a selection matrix of

O's and 1's. This usual case is illustrated below with the ARMAX

model. The time-varying, regression model ([25, pp. 391-397])



illustrates the case in which temporal variation in A represents
a part of the model. Linear rational expectations models in which
economic agents  explicitly solve linear-quadratic dynamic
optimization problems ([18], [19]) provide an example in which
the dependence of A on ¢ represents a part of the model. Suppose
for the moment that z(t) in (2.1) is not an exogenous vector but
is a control wvector which an agent in such a model sets
optimally. Then, the agent's opﬁimal decision rule is of the form
z(t) = A1(¢)x(tel), where Al’ depends on ¢ through the solutionv
of a Riccati equatiom ([48]). Suppose further that =x(t)
partitions as x(t) = [xl(t)T, x2(t)T]T, where xl(t) is observable
(by us as well as by the agents in the model) and xz(t) is
unobservable (at least by us), and that w(t) = [z(t+1)", xl(t)T]T
+ [0 7, "7 Then, a4 = (a,H7, 8717, where 4, = [T,
0] is the selection matrix Whichk picks xl(t) out of x(t).
Examples in which A accounts for cross-sectional and temporal
aggregation are, respectively, given by Anéley and Kohn [3] and
Zadrozny [47].

Tov continue, let y(t) denote the m(t) x 1 vector of values
of w for period t which are actually observed, where m(t) =< m.
Therefore, we have y(t) = A(t)w(t), where A(t) is the m(t) x m
selection matrix which picks out the observed elements of w(t). A
frequently occuring example of missing data is the case in which
different wvariables in a multivariate model are observed at

different frequencies ([47], [49]). Upon combining (2.2) and y(t)

= A(t)w(t), we get the observation equation,



(2.3) y(t) = D(4,t)x(t) + v(t),

where D(é,t) = A(t)A(¢,t) and v(t) = A(t){(t). Error v(t)
inherits ((t)'s properties: wv(t) =~ NIID[O, EV(¢,t)], where
5,(4,t) = A(t)Zg(qS,t)A(t)T, and Ev(r)e(t) = 0, for all r and t.
This approach for handling missing data originates with Jones
[24] and was extended to multivariate cases by Ansley and Kohn
[31.

In the céée of the exogenous variables, z, we shall assume
that there are no missing values. In the event that some <values
of =z are missing from the sample, then, one can either include z
in the model and treat it symmetrically with u, or one can
interpolate the missing values of z. The latter possibility is
discussed .in Zadrozny [49], in the context .of continuous-time
models.

Let the coefficients of the state-space representation,
(2.1) and (2.3), be collected in the ﬁector f = [vec(F)T,
vec(G)T, vec(H)T, vec(Ee)T, vec(D)T, vec(Zv)T]T, where vec(-)
vectdrizes a matrix columnwise by putting column 2 below column
1, etc. A particulat model is, therefore, characterized by a
mapping, 6 = W¥(¢,t), from (4,t) to 6. We assume that the
admissible values of ¢ lie in an open set, so that any equality
restrictions are incorporated in ¥, and that ¥ is differentiable
at least once with respect to ¢.

The estimation problem being considered here is the problem
of estimating ¢ by maximizing with respect to ¢ the Gaussian

likelihood of the observations on y(t). Under general assumptions



10

on the model, in particular, on the restrictioh mapping ¥, the
estimates will be consistent, asymptotically efficient, and will
have a known (usually Gaussian) asymptotic distribution. Within
limits, these properties are preserved when the true, data
generating process is not Gaussian, but the Gaussian likelihood
is still being maximized ([17] and references therein). We shall
not directly be concerned with assumptions which ensure these
properties; rather, we shéll only state assumptions on
parameters, implicitly in terms of 0, which are sufficient to
ensure that the computational formulas can be implemented.

It is computationally convenient to set up V¥ so that
admissible values of ¢ 1lie in a Euclidian space, 1i.e., are
unconstrained. When this is done, the algorithm for maximizing
the likelihood does mot have to worry about going off, hitting,
or crossing a boundary which defines a restriction on ¢. Let o
denote a k x 1 vector of initially specified, structural
parameters which the model specificatibn maps into #, as § =
T'(ax,t). The mapping I' is supposed to account for restrictions on
§ in terms of a, including constant values of elements of 4.
However, in an initial specification, a is also 1likely to be
subject to equality restrictions (ﬂi(al, ...,'ak) = () and strict
inequality restrictions (ﬁi(al, v ey ak) < 0) which are not
incorporated in I'. Such restrictions may often be incorporated
into a mapping from structural parameters to 6, by
reparameterizing o« to ¢ with an elementary, smooth, monotonic
transformation. For example, suppose that a is a scalar which is

restricted by ¢, < a < ¢ Then, the reparameterization a = II(¢)

1 2°
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- (cl + c2e¢)/(1 + e¢), for -=» < ¢ < 4o, imposes ¢y <a< Cy-
Thus, in this case and in general, ¥ is the composite mapping
V(¢,t) = T(I($),t). Nonstrict, inequality restrictions (Bi(al,
- ak) < 0) cannot be handled in this wéy; we shall not further
be concerned with such restrictions, which ' involve further,
substantial difficulties.
We mnow illustrate one way of putting the time-invariant,
ARMAX(p,q,r) model into state~$pace form. Let u(t) be ann x 1

vector which is generated by the ARMAX(p,q,r) process

(2.4) u(t) = Alu(t—l) + ...+ Apu(t~p)
+ Boe(t) + ... + qu(t-q)
+ Coz(t) + ...+ Crz(t-r),

where e(t) is n x 1 and ~ NIID[O, Ze]. (There is some redundancy
(identification problem) involving BO and Ze, which can be
resolved, e.g., by setting BO = In or Ze E\In’ the n x n identity
matrix; which normalizations are feasible or convenient depends
on the prior restrictions in terms of ¢.) The model is time
invariant when the system matrices, Ai’ Bi’ Ci’ and Ze, are time
invariant.

Following Ansley and Kohn [3], let x(t) = [x ()", ...,
xk(t)T]T be the s x 1 state vector, where the xi(t) are n x 1 and

k = max(p, q + 1, r + 1), so that s = nk. Now, setting w(t) =

Xl(t) = u(t), one gets the state law of motion

(2.5) x(t) = Fx(t-1) + CGe(t) + Hz(t),
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F=[a g 0 ..... o 1. = [8, ] H=[c, ]
Lo "0 : :
"I
A0 Ll 0 B, 1 Cp .1

where Ai = 0 for 1 > p, Bi = 0 for i > q, Ci =0 for 1 > r, and
the =zero and identity matrices in F are all n x n. If all of the
elements of u(t) are oﬁserved directly (not as cross-sectional or
temporal aggregates) and if thefe are no missing observations,
then, in the obsefvation equation A(¢,t) = [I, O, ..., 0] and

A(t) = I, where the zero and identity matrices are all n x n.

3. Exact Gaussian Log-Likelihood Function.

First, we give some definitions.(Let Y(t) = {(y(1), ...,
y(t)} and Z(t) - {(z(1), ..., z(t)}, for t =1, ..., N, so that
Y(N) and'Z(N) are the full samples of observations on y(t) and
z(t). Let L{t)}, for t = 1, ..., N, denote the nonconstant part of
-2 times the exact, Gaussian, log—likeiihood function of Y(t)
conditional on Z(t). L(t) is directly a function of §, which, in
turn, 1s vrestricted by § = §(¢,t); however, for simplicity and
without loss, we mostly suppress explicit references to § and ¢
in the notation. Let k(tlt—l) = E[x(t)|¥Y(t-1), Z(t)] and y(t|t-1)
= E[y(t)|Y(t-1), Z(t)], with associated errors, x(t) = x(t) -
x(tft-1) and £(t) = y(t) - y(t|t-1), and error covariances, V(t)
= E{%(t)i(t)T] and M(t) = E[G(t)ﬁ(t)T]. (For present purposes, we
could equivalently define =x(t|t-1) and y(t|t-1) with Z(N)
instead of Z(t) in the conditioning sets.) Following the usual

practice, we call £(t) the innovation of y(t), even though an
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innovation is usually defined to be -a prediction error from
predicéing a wvariable solely with its current and past values;
here Z(t) is also used in the prediction of y(t).

Given #, Y(N), and Z(N), the algorithm computes L{(N) by
iterating over t = 1, ..., N, as follows. At the beginning of
iteration t, x(t|t-1), V(t), and L(t-1) are given from the
previous iteration. Given the values of these qﬁantities, L(t-1)

is wupdated with

(3.1) M(t) = 5 () + D(E)V(L)D(t) T,

(3.2) g(ty = y(r) - D(o)r(t|t-1),

L(t-1) + InM(t) | + £()TM(e) Le(ey,

(3.3) L(t) =

where |-| is the determinant; and, x(t|t-1) and V(t) are wupdated
with
e s e T, . -1

(3.4) J(t) = Fe+H)V{eID(t) Mty ~,

(3.5) x(t+l|t) = F(t+l)x(t|t-1) + H(t+l)z(t+l) + J(t)é(t),
(3.6) V(t+l) = G(t+l)Ee(t+l)G(t+1)T + F(t+1)V(t)F(t+1)T

- J(EM(E)T(E) T,

This is the basic form of the Kalman filter; J(t) is the

Kalman gain matrix. In keeping with the notation L(t), we have
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written F(¢é,t) as F(t), etc., and shall continue to do 80,
Tterations (3.1) to (3.6) follow the statement of the basic
Kalman filter given by Morf and Kailath [34] and Zadrozny [49]
and differ from the statement of the basic filter given by Jones
[24] and Ansley and Kohn [3] in that they do not also involve
x(t|t) = .E[x(t)|Y(t), Z(t)] and its error covariance. These
quantities are ummecessary for computing the likelihood function
and are easily removed, so that, for purposes of computing the
likelihood function, the two wversions of the filter are
essentially equivalent.

It is more efficient to compute with closely related
iterations stated in terms of the normalized inmovation vector.
To state these iterations, we first mnote that L(N) is computable
if and only if M(t) is positive definite over the sample, 1i.e.,
M(t) > 0, for t=1, ..., N; Further down in this section, we
discuss restrictions on parameters which ensure that this
condition holds. When M(t) > 0, then, if has a unique Cholesky
(or square-root) decomposition, M(t) = O(t)ﬂ(t)T, where (t) is a
unique, lower triangular matrix which has positive elements on
its principal diagonal ([13,‘ pp. 82-921). Q(t) is called the
Cholesky factor (or square root) of M(t).

Let 5(t) be the normalized, innovation vector defined by
n(t) = Q(t)'lf(t), so that it has an identity covariance matrix.

Then, equivalent to (3.1) to (3.6) are

(3.7) aceaw’ - 5 (6 + D(£)V(t)D(t)T,
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(3.8 (e =8y - D],

(3.9)  L(t) = L(t-1) + 2-Inja(t) | + n(t) n(e),

(3.10) K(t) = F(t+1)V(t)D(t)TQ(t)-T,

(3.11) x(t+l|t) = F(t+1)x(t]t-l) + H(t#l)z(t+1) + K(t)n(t),

(3.12) V(t+l) = G(t+l)Ze(t+l)G(t+l)T + F(t+1)V(t)F(t+l)T

- R(OR(E)T,

where superscript -T denotes inversion and transposition. By
writing (3.7), we mean that M(t) is first computed according to
the right side of (3.7) and is, then, Cholesky factorized ([13,
p. 86-89]). |

To start the iterations, the initial values, x(1|0)’and
V(1l), must be specified. Obviously, we also set L(0) = 0. We
shall only explicitly treat the specification of x%(1]|0) and V(1)
in the stationary case. We thus 1limit the discussion because,
whereas there is general agreement about how to set x(1]0) and
V(1) in the stationary case so as to obtain the exact likelihood
function, this question is still ﬁot entirely settled in the
nonstationary case. We shall, however, briefly discuss some of
the methods which have been proposed for the nonstationary case.

There is general agreement that in the stationary case the
exact likelihood is obtained when x(1|0) = By the unconditional

mean of x(t), and V(1) = ZX, the unconditional covariance of
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%x(t). A model is stationary when its. law of motion and the
structural part of its observation equation (e.g., A1(¢) in the
example in section 2) are time invariant and when its state law
of motion is asymptotically stable. The latter condition means
that F has all eigenvalues inside the unit circle in the complex
plane.

When constant terms are used to account for means of the
data, it is appropriate in the stationary case to set x(1|0) = By

= 0. In the stationary case, the unconditional covariance of

x(t), Ex, solves the (discrete-time, algebraic) Lyapunov
equation,
(3.13) % - FLF - 6z ',

X b4 e

When F has all eigenvalues inside the unit circle and GzeGT is

positive (semi-} definite, then, (3.13) vyields a unique,
symmetric, and positive (semi-) definite vélue of Zx ([2, pp. 64~
67]). Therefore, in the stationary case, the exact likelihood is
obtained when x(1]0) = 0 and V(1) = Zx, where Zx solves (3.13).
There are wvarious methods for solving (3.13). An obvious,
but computationally inefficient, way to solve (3.13) is to apply
the vectorizaticn rule vec(ABC) = [C ® A]-vec(B) ([36, p. 954],

[14, p. 25]) to it, to obtain
‘ ‘ T
(3.14) {ISS - [F® F]}vec(ZX) = vec(GEeG ),

where Iss is the s2 X s2 identity matrix, s being the dimension
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of =x(t). Equation (3.14) 1is in the standard form of a linear
system, Ab = ¢, and can, therefore, be solved for b = vec(Ex) by
any standard method ([13, pp. 52-80]). Kohn and Ansley [28]
discuss a more sophisticated version of tﬁis idea, which takes
into account the symmetry of Zx and GZeGT, as well as, in ARMAX
cases, the companion form of F. There are other, transformation
and iterative, methods for solving (3.13) ([15}, [44]).

When  the model is  nonstationary (time wvarying or
asymptotically unstable), the unconditional mean and covariance,
B and Zx, are not well defined; in particular, when some
eigenvalues of F are mnear the unit circle, (3.13) is ill
conditioned. Therefore, 1in the nonstationary case, one cannot
meaningfully set x(1]|0) = Py and V(1) = Zx. The following methods
have been suggested for setting these values in the nonstationary
case.

First, x(1]0) and V(1) may be set according to prior
information, although in economic applicafions little or nothing
is generally known about x(l), except to the extent that it
comprises presample (t < 1) values of y(t). As a way of imposing
a diffuse, prior distribution on the unknown elements of x(1),
Harvey and Phillips [21], Ansley and Kohn [4], and others have
suggested setting the prediction-error covariances of these state
variables to infinity. When this is done, the wvalues of x(1]0)
corresponding to the wunknown variables do mnot affect the
likelihood computations and éan, thus, be set to any value.
Ansley and Kohn [4], Kohn and Ansley [29], and Bell and Hillmer

[7] showed‘that such a partially-diffuse prior is equivalently
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and computationally more effectively implemented with a data-
transformation method which is a generalization of differencing.
Bergstrom [8] and Harvey and Stock [22] described methods.for
estimating x(1|0) by generalized least squares and setting V(1)
to the covariance of the GLS estimator. Bergstrom suggested using
conventional formulas; following Rosenberg [39], Harvey and Stock
suggested using Kalman-filtering-like recursions. Fortunately,
the problem of setting initial &alues is mitigated by the fact
that when the model is stabilizable and detectable ([30, pp. 53-
81)), conditions which generally hold, then, L(N) is Op(l) in
x(1{0) and V(l). This is true whether or not the model is
stationary.
We now discuss restrictions on ¢ which ensure that M(t) >
0, fort=1, ..., N, i.e., that L(N) is computable. In essence,
L(N) is éomputable if the model and the sampling scheme transmit
enough variations from e(t) and ((t) to y(t), éo that y(t) has a
nonsingular probability distribution. If V(1) = 0 and B () +
D(E)G(D)E_()6(t) ' D(t)" > O, for t = 1, ..., N, then, a
vstraightforward induction proof shows that M{(t) > 0, for t = 1,
., N, V(1) 2 0 holds automatically, by construction. Therefore,
L(N) is vcomputable if Ev(t) = A(t)Zg(t)A(t)T > 0 or if
D(£)G(£)E_(£)G(£) 'D(t)" > 0, for t= 1, ..., N. In practice,
G(t)Ee(t)G(t)T has much 1less than full rank, but D(t) has full
tow rank and picks a full-rank part out of G(t)Ee(t)G(t)T, 50
that D(t)G(t)Ze.(t)G(t)TD(t)T has full rank, for t = 1, ..., N.
For  example, in the ARMAX model, (2.4) and (2.5),

D(t)G(t)Ee(t)G(t)TD(t)T = BOzeBg’ so that L(N) is computable if
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B, and Ze have full ranks. We shall assume, as 1is usually the

0
case in practice, that M(t) inherits full rank from e(t), for t =

1, ..., N.

We note that often the most convenient way to enforce
symmetry and positive definiteness on Ze(t) and Zg(t), and,
thereby, enforce M(t) > 0, is to reparameterize these covariances
to their Choleksy»factors. That‘is, reparameterize Ee(t) to Q(t),
where Q(t) is lower triangular and satisfies Q(t)Q(t)T = Ze(t),
and impose Qii(t) >0, for i =1, ..., n; and, reparameterize
Eg(t) té R(t), where R(t) 1is lower triangular and satisfies
R(ER(E)T = Z.(t), and fmpose R ;(t) >0, for 1 =1, ..., m.

We conclude this section by noting some computational
efficiencies in the evaluation éf (3.7) to (3.12). Because Q(t)
is lower triangular, it is best to view (3.8) as Q(t)n(t) = y(t)
- D(t)x(t]t-1) and to solve for n(t) by forward elimination ([13,
pp. 52-53]); similarly, it is best to view (3.10) as Q(t)K(t)T =
_D(t)V(t)F(t+l)T and to solve for K(t)T by‘ forward elimination.
These solutions of (3.8) and (3.10) will be feasible if Oii(t) >
0, for t =1, ..., Nand 1 =1, ..., m(t), which will be the case
if M(t) > 0, for t =1, ..., N. Because }(t) is lower triangular,
det[Q(t)] = Qll(t)---ﬂm(t)m(t)(t), so that I1n|Q(t)] isv most
effectively computed as £E ?ii) ln[ﬂii(t)]. By computing with
(3.7) to (3.12) instead of with (3.1) to (3.6), one avoids having
to compute the determinant or the inverse of M(t). Structural
information about vpatterns of =zeroes and ones in F(t), G(t),
H(t), Ee(t), D(t), and Ev(t) should, of course, also be exploited

to avoid unnecessary multiplications with zeroes or omes. In ARMA
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or ARMAX models especially, F(t), G(t), and H(t) will have

exploitable, sparse patterns.

4, Exact Gradient of the Log-Likelihood Function.

Following the advocacy of Neudecker [36] and Magnus and
Neudecker [32], for algebraic and notational convénience, we
shall derive and state vresults with differential forms.
Differential forms are not directly useful for computations, but,
as we mnow show, they are immediately convertible to computable,
partial-derivative forms.

Let A(f) be a representative, differentiable, m x n, matrix
function of the p = 1, parameter vector § = (91, cees GP)T. The m
¥ n matrices akA = {BAij/Bﬂk}, for k=1, ..., p, collect first-
order derivatives of A(#) in partial-derivative form, where Aij
is the (i,j) element of A. Let dA;, = X ﬁ'zl(aAij/aek)dek, where
dak is an infinitesimal wvariation in ﬂk. The m x n matrix dA =
{dAij} is the differential form of firsf-order derivatives of
A(8). Except for the scalar factor'dﬁk, BkA is a special case of
dA, so that te obtain partial-derivative forms from differential
forms, we only have to everywhere replace d with ak,‘for k=1,

.., p. Let a = (al, C ey amn)T = vec(A). The mn x p matrix VA =
(aah/aak} = [vec(alA), vy vec(apA)] is the gradient form of
first-order derivatives of A(f) (usually VA is called the
gradient when A is a scalar and is called the Jacobian
otherwise),

We shall use the following differentiation rules. Suppose

A(6) and B(ﬁ) are representative, m x n and n x q,



21

differentiable, matrix functions of §.. Componentwise application
of the scalar product rule of differentiation yields the matrix
product rule of differentiation, d(AB) = dA-B + A-dB ([36, p.
955], [14, p. 79]). Setting B = A-l when A is square and
invertible and using dI = 0 shows that d(A-l) = -A-l~dA-A'l. To
avoid confusion, it should be understood that d only operates on
the matrix immediately following it, unless it is followed by
parentheses: e.g., dAB = d(A)B »# d(AB). Finally, when A is a

1

square matrix and det(A) > O, then, d[ln(det(A)] = tr[A ~-dA]

([14, p. 79]).

Using these differentiation rules, the differentials of

(3.7) to (3.12) with respect to # are seen to be

(4.1) da(e)ae)’ + ace)da(e)T = a5_(t) + dD(£)V(E)D(t)

+ D(t)dV(t)D(t) T + D(£)V(t)dD(t)T,

-n(t)‘l[dn(t)q(t) + dn(t)x(£|t-1)

(4.2) dn(t) =
+ D(t)dx(t|t-1)],
(4.3) dL(t) = dL(t-1) + 2-tr[0(t) 1dace)] + 2-n(t) Tdn(t),
T -T T -T
(4.4) dR(t) = dF(t+1)V(t)D(£) 0(t) T + F(t+1)dv(t)D(t) n(t)
+ F(t+1)V(£)dD(t) a(e) T - K(t)dn(t) ae) T

(4.5) dx(t+l]t) = dF(t+l)x(t|t-1) + F(t+l)dx(t]t-1)

+ dH(t+1)z(t+1) + dK(t)n(t) + K(t)dn(t),



22

(4.6) dV(t+l) = dG(t+1)Ze(t+l)G(t+l)T + G(t+l)d2e(t+1)G(t+1)T

+ G(t+1)ze(t+1)dc(t+1)T + dF(E+1)V(£)F(t+1) T
+ F(t+1)dV(t)F(t+1)T + F(t+1)V(t)dF(t+1)T

- dR(E)R(E)T - R(t)dr(t)T.

In obtaining (4.1) to (4.6), dy(t) = 0 and dz(t) = O, for t = 1,

., N, were wused; these edualities hold because the given
realizations of y(t) and z(t) are independent of variations in 4
which are being considered. Note also that, because Q(t) is lower
triangular, in (4.3) it is expedient to compute tr{n(t)_léﬂ(t)}
as £1%) (o, (0 Fan, ()],

To describe how to efficiently solve for d0(t), let the
right side of (4.1) be denoted by C(t). Let Qij(t), dhij(t), and
Cij(t)’ respectively, denote the (i,j) elements of Q(E), da(e),
and C(t). Because (4.1) is symmetric and Q(t) and dQ(t) are lower
triangular, we only need to consider (i,j) for i =1, ..., m(t)
and j =1, ..., 1. The lower triangularity of Q(t) and dQ(t)
imply that, for i = j, the (i,j) element of (4.1) is Zi@i
[dﬂik(t)ﬂjk(t) + ﬂik(t)dﬂjk(t)] = Cij(t)‘ Therefore, for j = 1,

., m(t),

- -1 o oej-1
(4.7) dﬂjj(t) ij(t) [ij(t)/2 zkwldnjk(t)njk(t)]’

the summation over k being null when j = 1; and, for i = j, ...,

m(t),
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-1
4.8 as. . = 0, .. - 0., ..
(4.8) 1J(t) ’ OJJ(t) {Clj(t) Qlj(t)dﬂJJ(t)

- Zi];;;:[dﬂik(t)ﬂjk(t) + nik(t)dnjk(t)]}v’

the summation over k being null when j = 1,

Therefore, given 0Q(t) and C(t), the eleménts of d(t) are

recursively computed with (4.7) and (4.8), in the order (1,1),

o (m(e),1), (2,2), ..., (m(t),2), ..., (m(t),m(t)). The only
condition required to executevthe gradient recursions, (4.1) to
(4.8), is that Q(t) be nonsingular, i.e., Oii(t) # 0, for i = 1,

.., m(t). This condition, of course, holds when M(t) > 0, for t
=1, ..., N, i.e., when L(N) is computable.

The relevant starting values for (4.1) to (4.8) are x(1}0),
dx(1]0), V(1), dv(l), L(0), and dL(0). The values of x(1]0),
V(1), and L(0) are chosen as before. Of course, L(0) = 0 implies
dL(0) = 0. When means are accounted for with z, so that x(1[0) E'
0, then, dx(1]0) = 0. When V(1) = ZX, where ZX solves (3.13),
then, dV(l) = dEx, where dEX solves ‘

T

T + FZ dFT + dGZ GT + GdZ GT + GX dG™,
b4 e e e

(4.9) d5 - FdS FL = dFs F
X x x

which is obtained by differentiating (3.13). Equation (4.9) has
the same, Lyapunov form as (3.13) and can, therefore, be solved

in the same manner.
We remind the reader that to make the vrelations just
derived computable, d is replaced with ak everywhere, for k = 1,
., p. The computations involve a double loop: for t =1, ..., N

and for k=1, ..., p. When t = 1, ..., N is the outer loop, the
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observations only need to be traversed once; when k =1, ..., p
is the outer loop, the storage of intermediate partial derivative
matrices is reduced. In practice, p and N will generally,
respectively, be relatively small and relatively large, so that
it will generally be preferable to let t = 1, ..., N be the outer
loop. Also, because the gradient computations use quantities
propagated’ in the likelihood computations, it is expedient to
merge the likelihood and gr;dieﬁt computations, e.g., fgr each t
to evaluate in the order (3.7), (4.7), (4.8), (3.8), 4.2y, ...,
(3.12), (4.6).

Again, we remind the reader to take advantage of all other,
generally occuring sparsity. In this regard the partial-
derivative forms of the constituent matrices of 4, namely akF(t),
BkG(t), akH(t), 8kze(t), akD(t), and akZV(t), will be extremely
sparse selection matrices: for each particular k, one of these
matrices has one element equal to one and has all other elements
equal to zero; the remaining of these matrices are equal to zero.
For example, suppose that we are considering an ARMAX model in
the form (2.4) and (2.5) and tﬁat 01 is the (1,1) element of the
leading AR coefficient matrix, Al' Then, the (1,1) element of alF
is 1, all of its other elements are 0, and BlG, 61H, 612e, aln,
and alzv are 0. One should directly make the selections implied
by these matrices and not multiply with them. By contrast,
derived quantities like akn(t) and 6kK(t) will generally be full.

The gradient is extended as follows to models with
differentiable restrictions on §. Let the differentiable mapping

6 = ¥(¢) describe restrictions on § in terms of ¢, as in section
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2. Let us write the gradient of the log-likelihood parameterized
in 6 as VaL(N) and the gradient of the restriction mapping as
V¢W. Consider the composite, differentiable, matrix function C(4)
= B(A(f)) formed with the differentiable, matrix functions B(A)
and A(d). The gradient of A(#) can be alternatively defined by
- vec(dA) = VA-vec(df) = VA-df. Then, the gradient of C(§) is seen
to be given by the chain rule VQ = VB-VA. Applying this resulf to
the restricted 1log-likelihood parameterized in ¢ shows that its

gradient vector is given by

(4.10) V¢L(N) = VoL(N)-V¢W.

5. Approximate Hessian of the Log-Likelihood Function.
We first define second-order matrix derivatives, which
extend the first-order derivatives defined in the previous

section. Let A(4) be a representative, twice-differentiable, m x

n, matrix function of § = (01, N ﬁp)T, The m X n matrices ailA

o= {azAij/aakaal}, for k and 1 = 1, ..., p, collect second-order

derivatives of A(#) in partial-derivative form, where Aij is the
. 2 P P 2

(i,j) element of A. Let d Aij zkyd_zl_l(a Aij/aokaal)dokdel,

where {d€k | k=1, ..., p} and (d&1 | 1 - 1, ..., p)} are

independent, infinitesimal sets of wvariations in 6. The m x n

matrix dzA e {dzA ) is the differential form of second-order

ij
derivatives of A(f). Let b = (bl, ey bmnp)T = vec(VA). The mnp
X p matrix V2A e {abh/aek} = [vec(al(VA)), v, vec(ap(VA))] is

the Hessian form of second-order derivatives of A(§).
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After differentiating (4.3), consolidating terms, and

summing over t =1, ..., N, we get

(5.1) L) = 2- £} (-erface) taacoac ance)

erfa(e) " ta%ace)] + dn(e)Tan(e)

+

2-n(t) Tace) Laacryace) taace)n(e)

+

+ 2-q(t)Tn(t)'1qn(t)n(t)‘ldn(t)x(t|t§1)

+

2-n(0) Tace) Yaace)ace) Ipieydx(e|t-1)

n(t) Tace) " La%a(e)nce)

¥

n(t) Tace) ta?p(eyxce]e-1)

L

2-n(t) Tact) " tap(e)dx(tlt-1)

n(t)Tn(t) "lD(t)«izx(u t-1)).

The recursions in sections 3 and 4 produce exact values of
the log-likelihood and of its gradient for any admissible value
of #. By contrast, the approximate Hessian derived in this
section accurately approximates the egact Hessian only to the
extent that some additional conditions hold. One possible set of
conditions is that: (i) the model being used correctly represents
the true data generating process; (ii) the model is stationary;

A

(iii) 6 = 00, the true value of 6 (or #§ = 6§, a consistent
estimate of 00); and, (iv) N - o,

Under these additional conditions, #(t) is uncorrelated
with Y(t-1) for all t = 2. Also, because dx(tjt-1) and dzx(tit-l)
lie in the linear space spanned by Y(t-l),v En(t)dx(tlt-l)T = 0
and En(t)dzx(t|t-l)T = 0. Then, following a line of argument

similar to that given by Tunnicliffe-Wilson [43, pp. -78s79], it
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can be shown that 5(t), dx(t|t-1), -and dzx(t}t—l) deviate from
realizations of a stationary, Gaussian, generalized, linear
process by op(vt), where 0 < v <1 is the maximal absolute
eigenvalue of F. As a result, Hannan'’s Theorem 6 [16, p. 210]

implies that, almost surely,

(5.2) ;_1:; /M- £} _n(vyaxcee-1T = By(eyance(e-1T = o,
(5.3) ;ﬁf (/) - Z§=1n(t)d2x(tit-l)T - En(t)d’x(t]e-1)T = 0,
G4 am- sl aene’ - menm? -1

We assume that enough assumptions are in force so that Q(t)
and its derivatives converge to limiting valueé or to periodic
cycles as t - o, In the time invariant case, a sufficient
condition for these quantities to converge to unique, limiting
values 1is that the state-space form éf the model, (2.1) and
(2.3), is stabilizable and detectable ([30, pp. 459-4671, [17]).
Cases in which the model is time invariaﬁt and D(t) varies
because of missing data have apparently not been studied. Some
numerical experiments suggest that when the model is time
invariant, stabilizable, and detectable, and data are
periodically missing (e.g., different variables are observed at
different frequencies), then, Q(t) and its derivatives converge
to periodic cycles.'

Given that Q(t) and its derivatives converge to limiting

values or to periodic cycles, equations (5.2) to (5.4) imply that
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on the right side of (5.1): the sum of terms 1 and 4 differs
from the negative of term 1 by op(N); the sum of terms 2 and 7 is
op(N); and, terms 5, 6, 8, 9, and 10 are op(N). Then, d2L(N) has
the op(N) approximation

(5.5) a’t = 2- £} erlace) Taaceace) o))

+ dn(t) Tdn(e)),

which yields the approximate Hessian matrix V2£(N), with (j,k)
element
(5.6) 92 £(N) = 2- N (tr[ﬂ(t)”la n(t)n(t)'la Q(t)]
. jk t=1 j K
T
+ 8jn(t) 8,n(t)},
where j and k = 1, ..., p. To obtain V2£(N), in addition to L(N)

and VL(N), one only needs to additionally compute with (5.6).

Because Q(t), 6j0(t), and Qk(t) are lowér triangular, it is

m

expedient to compute tr{Q(t)-lajO(t)Q(t)-lakﬂ(t)] as 2 =1

[ajﬂii(t)akﬂii(t}/ﬂii(t)2}.

We now show that V2£(N) is positive semi-definite by
construction, as desired. Let A(f) be a twice-differentiable, m x
n, matrix function of §. Analogous to vec(dA) = VA.df, it can be
shown that V2A satisfies vec(dzA) = [dt9T l@ Imn]-V?A-dB.
Accordingly, in (5.5) we make the substitutions dzf(N) -
doT-VZE(N)-dﬂ, dn(t) = Vp(t)-df, and vec(dQ(t)) = VQ(t)-df. Let

A, B, and C be any matrices (not necessarily differentiable)

conformable to the product ABC. Then, tr(AB) = vec(AT)T-vec(B)
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([36, p. 954], [14, p. 19]) and, as noted before, vec (ABC) = [CT
® A]l-vec(B).

We apply these rules to the right side of (5.5) to get its
terms into quadratic forms in dé. We,.then, cancel the common
factors, d0T and df, across both sides of the equality. The

result is

G.7 vEm =2-5% e ee e aw) Hvacy

+ V() Vn(t)) .

Equation (5.7) is positive semi-definite by construction, in
pafticular, because Q(t) > 0 implies [Q(t)”l ® Q(t)-l] > 0. When,
in addition to Q(t) > 0, [Vﬂ(t)T, Vr;(t)T]T has full column rank
for at least one t = 1, ..., N, then, V2£(N) will be positive
definite; [Vﬂ(t)T, Vq(t)T]T is expected to have full column rank
when 6 is locally identifiable ([40, pp. 81-82]).

Analogous to the general, gradient; chain rule VC = VB-VA,
for the composite mapping C(x) = B(A(x)), where B and C are qxr

and x is s x 1, we can verify the Hessian chain rule VZC = [VAT ®

Iqr]-VZB'VA o+ [IS ® VB]-VzA. Consider A(x) to be the restriction
function, 8 = ¥(¢4,t), and consider B(A) to be the log-1likelihood
function parameterized in 6. Asymptotically, when 6 is at 00 (or
at a consistent estimate of it), then, VB = 0. Thus, we get the
chain rule extension of V?E(N) to V§£(N),

2

T 2
(5.8) V¢£(N) - V¢¢ -Vaf(N)-V¢?.
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6. Sample and Asymptotic Information Matrices.

The sample and asymptotic information matrices of the
parameter vector @ are IH(N) = (1/2)-E[VL(N)TVL(N)] and Ia(w) =
(N/2)-éiiE{VL(N)TVL(N)/N]. Under regularity conditions ([40, pp.
37-38]) which are known to hold in the present case, it is easier
to compute these with equivalent expressions obtained by
replacing VL(N)TVL(N) with VZL(N). In fact, because, as in the
previous section, we are presuming that the model being
considered is correct and that § = 00 (or § = ;, a consistent
; estimate of 00, and N - o), the expectation operator can be
understood to be with zrespect to  the true  probability
distribution. Therefore, the right-most equalities of (5.2) to

(5.4) apply, so that E[V2L(N)] - E[V2£(N)], for finite N and as N

-+ w, Accordingly, we are concerned with computing the sample and

asymptotic, information matrices iIin terms  of Ig(N) =
(1/2)-E[V2E(N)] and I, (=) = (N/Z)-Ilqifg{vzf(m/m.

To compute E[B?kf(N)] with (5.6), we need to develop a

method for computing E[ajn(t)Takn(t)]. To do this, we use dy(t) =
0, dv(t) =0, and de(t) = 0, for £t = 1, ..., N. Like dy(t) = O,
dv(t) = 0 and de(t) = 0 hold because the given realizations of
v{(t) and e(t) arz independent of variafions in 6 which are being
considered. Using dy(t) = 0 and dv(t) = O, (2.3) implies that
dp(t)x(t) + D(t)dx(t) = 0. Therefore, (3.8) and (4.2) may be

combined as

* ko *
(6.1) ﬂj(t) = Dj(t)xj(t) + Ej(t)V(t),
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for j =1, ..., p, where n;(t) and §§(t) are defined by n;(t) =
~% P -
[n(t)T, ajn(t)T]T and E(6) = [%(6)T, Bjx(t)T}T, so that the

* *
coefficient matrices Dj(t) and»Ej(t) are given by

D;(t) - Tace) oe) 0 .
D(t)

_n(t)”lajn(t) ace)

E;(t) - T ace) "t J.

'-ﬂ(t)-lajﬂ(t)ﬂ(t)-l

Because v(t) is uncorrelated with §(t) and ajﬁ(t), (6.1) implies

that
(6.2)  Elny()m ()] = DIV (DD (0)" + E{(Z (O)EL(e)",

for j and k = 1, ..., p, where V;k(t) - \E[§§(t)§:(t)T]. Then,
E[Bjn(t)akp(t)T] is given by the (2,2) (south-east) quadrant of
(6.2).

To continue, we derive a recursion, corresponding to
(3.12), for wupdating V;k(t) to V;k(t+l). We carry out the
following steps: combine (2.1) and (3.11) into prediction-error
form; wuse de(t) = 0 to différentiate (2.1); use thg‘differential
of (2.1) to put (4.5) into prediction-error form; combine the two

prediction-error, differential forms into a single equation; and,

eliminate q?(t) from this equation using (6.1). The result is
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(6.3) §§(t+l) - Q;(t+l)§;(t) + G;(t+l)e(t+1) . K;(t)E;(t)v(t),

for j =1, ..., p, where the as yet undefined coefficient

matrices in this equation are given by

* * * *
®, (t+l) = F_ (t+l) - K, (£)D,(t),
J( ) J( ) J( )J( )

F}‘(tw—- F(t) 0 ,c§<t>= ey ],
ajF(t) F(t) ajG(t)

K;(t) - [ k(o) o 1.
84R(E)  K(t)

~k
Then, because xj(t), e(t+l), and v(t) are uncorrelated with each

other, (6.3) implies that
* * * * T - % * T
(6.4) ij(t+l) = Qj(t+1)vjk(t)¢k(t+l) + Gj(t+l)ze(t+1)Gk(t+l)
* * * T % T
+ Kj(t)Ej(t)Zv(t)Ek(t) K (€)".

A little algebra shows that the (1,1) quadrant of (6.4) is
identical to (3.12); this must be the case because the (1,1
quadrant of (6.4) and (3.12) both update V(t) = E[X(t)R(t) ].

The starting value of V;k(t) is set in essentially the same
way as the starting value of V(;): in the stationary case, V;k(l)

solves



33

(6.5) v;‘k(l) - F?V?k(l)F;T - G;ZeG:,r.
Like (4.9), (6.5) has the Lyapunov form of (3.13) and can,
therefore, be solved in the same way.

IH(N) = (1/2)-E[V2£(N)] is, thus, computed with (5.6) by
appending the (2,2) quadrant of (6.2) and the (2,1) and (2,2)
quadrants of (6.4) and (6.5) to the recursions of sections 3 and
4 whichi are needed to produce (t) and 8kﬂ(t). Again, we
emphasize that lower triangularity and other sparsity of the
relevant, coefficient sub-matrices in (6.2), (6.4), and (6.5)
should be exploited in the computations; we shall not further
explicate these computational efficiencies.

To compute Iﬂ(w) one continues .in this fashion until
E[V2£(N)/N] has converged in some norm (e.g., the L2 norm {13,
pp. 11-16]). When Q(t), Bjﬂ(t), and V;k(t) converge to limiting
values as t© =+ «, as will be the case when the model is time
invariant, stabilizable, and detectable,‘and no data ére missing,
then, Ig(w) can be more simply computed in terms of £(N), the N-
th term in (5.6): Ig(w) = N'§i$ £(N).

The Hessian, chain rule (5.8) 1implies the similar,
information-matrix, chain rule,

T

(6.6) I¢(N) = V¢? «Ie(N)-V¢W,

which is valid for finite N and in the limit as N - o,

7. Concluding Remarks.
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The cumulated effect of rounding or truncation errors
inherent to finite-precision, computer arithmetic may cause,
after a certain number of iterations, (3.7), (3.10), and (3.12)
to produce a value of M(t) which is not positive definite. There
are so-called square-root filtering algorithms which avoid this
problem by propagating square roots of M(t) and V(t) instead of
the covariances themselves. Square-root filters have the
following  advantages, whiﬁh come at the cost of greater
computational complexity: (i) given a nonsingular value of Q(t),
M(t) = Q(t)ﬂ(t)T is always positive definite, even after rounding
or truncation; (ii) the effective stored precision of a
covariance matrix is doubled when it is stored in terms of its
square vyoot; (iii) square-root algorithms are numerically more
stable because they propagate with perfectly conditioned,
orthogonal, transformation matrices ([lé, PP. 24-29]): We did not
develop gradient, Hessian, and information matrix algorithms from
a square-root likelihood algorithm Because differentiation
destroys orthogonality and because the resulting algorithms would
invoive substantially more computations than the present ones. In
any case, recursions (3.7), (3.10), and (3.12) can be replaced in
algorithms 1 or 2 with a square-root analogue, e.g., the one
described in the appendix. For further discussions comparing
Kalman and square-root filtering, see [2, pp. 147-164], [34],
[35], and [43].

The approximate Hesslan, sample information, and asymptotic
information matrices considered here are generally asymptotically

equivalent. Nevertheless: (i) to save on computations, it seems
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best to use the approximate Hessian in nonlinear-estimation
‘iterations; (ii) although there is some controversy about this
([12]), it seems best to use the sample or asymptotic information
matrices to compute covariances (Craﬁer-Rao bounds) of the
estimated parameters, because these matrices better reflect
asymptotic theory of inference ([40, pp. 68-86]) than the
approximate Hessian matrix; and, (iii) although theory ([10, pp.
1071-1073]) indicates that 1ocalbidentifiability is checked by
checking the rank of the sample information matrix, the
approximate Hessian matrix may better detect underidentifiability
caused by insufficient variation in the data. Generally, one will
only be able to numerically determine the rank of I¢(N) or Vif(N)
at a representative scatter of values of ¢. The rank of a matrix
can be reliably calculated with the singular value decomposition
([13, pp. 16~20]5. Present resultsvshould be especially wuseful
when data are missing; the principal advantage here of the Kalman

filter is 1its ability to automatically‘handle any pattern of

missing data.

Appendix: A Householder-Transformation Square-Root Filter.

Let (3.7), (3.10), and (3.12) be replaced with

(A.1)
l-ﬂ(t) 0 0 A(E)R(t) D(E)W(t) 0

= 'P(t)r
Lx(t) W(t+l) O 0 F(e+1)W(t) G(t+1)Q(t+1)

where Q(t), R(t), and W(t) are lower-triangular square roots of

Ee(t), Zg(t), and V(t), and P(t) is an orthogonal matrix to be
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specified. Viewed as B(t) = A(t)P(t), (A.l) defines the (m(t)+s)
x (m(t)+s+n) matrices A(t) and B(t). When P(t) is any (m(t)+s+ﬁ)
®  (m(t)+s+n) orthogonal matrix which induces the indicated
pattern of zeroes in B(t), then, (3.7), (3.10), and (3.12) are
equivalent to (A.1). This is immediately verified by multiplying
out B(E)B(t)T = A(t)P(t)P(t) A(t)T and using P(t)P(t)T = I.
Because O(t) and W(t) are lower triangular, B(t) is also lower
triangular,. |
Let Aij(t) denote the (i,j) element of A(t). For j = 1,
., m(t) + s, let the scalar aj(t), the (m(t)+s+n) X 1 wvector
uj(t), and the (m(t)+$+n) X (m(t)+s+n) matrix Pj(t) be defined
sequentially by

2 2.1/2
(A.2) o () = [Aj (O + Ay (05,

(A.3) uj(t) = [0, ..., O, Ajj(t) + s%gn(Ajj(t))-aj(t),
: T
Ay 31 (B s Ay e (BT
(A.4) P.(t) =1 - 2[v, (), (t) 1/Iv.(£) v, (£)].
J J J j b

Then, P(t) is given by
(A.5) P(t) = Pl(t) <o Pj(t) cee Pm(t)+s(t)'
For j =1, ..., m(t) + s, let Bj(t) = A(t)P (E) - Pj(t).

Postmultiplication of Bj-l(t) by the Householder transformation

matrix Pj(t) causes: (i) the first j-1 rows of Bj_l(t) and Bj(t)
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to be identical; (ii) the (j,j) element of Bj(t) to be
nonnegative; and, (iii) the elements (j,j+1), ..., (j,m(t)+s+n)
of Bj(t) to be zero ([13, pp. 38-43]). Therefore, B(t) =

Bm(t)+s(t) is a lower-triangular matrix, with nonnegative

elements on its principal diagonal, as desired. In practice,
uj(t)Tuj(t) = 0 causes no difficulties in the division in (A.4),
because, when this is the case, Pj(t) =1 and (A.2) to (A.4) are
replaced by Pj(t) = T, When.the state-space coefficient matrices
are especially sparse, it may be more efficient to instead
construct P(t) with a sequence of Givens transformations ([13,

Pp. 43-47]).
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