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ABSTRACT 

This paper develops and applies a method for directly 
estimating a multivariate, autoregressive moving-average (ARMA) 
mode wi th mixed-frequency, time-series data. Unlike standard, 
s frequency methods, the method does not require the data to 
be transformed to a single frequency (by temporally aggregating 
higher-frequency data to lower frequencies or interpolating lower­
frequency data to higher frequencies) or the model to be restricted 
by frequency. Subject to computational constraints, the method can 
handle any number of variables and frequencies. In addition, 
variables can be treated as temporally aggregated and observed with 
errors and delays. The key to the method is to view lower­
frequency data as periodically missing and to use the missing-data 
variant of the Kalman filter. 

In the application, a bivariate, ARMA model is estimated with 
monthly observations on total employment and quarterly observations 
on real GNP, in the U.S., for January 1958 to December 1978. The 
estimated model is, then, used to compute monthly forecasts of the 
variables for 1 to 12 months ahead, for January 1979 to December 
1988. Compared with GNP forecasts, in particular, for similar 
periods produced by established econometric and time series models I 
present GNP forecasts are generally more accurate for 1 to 4 months 
ahead and about equally or slightly less accurate. for 5 to 12 
months ahead. The application, thus, shows that the present method 
is tractable and able to effectively exploit crOSS-frequency sample 
information, in ARMA estimation and forecasting, which standard 
methods cannot exploit at all. 
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1. Introduction. 

A general problem in the estimation of multivariate economic time­

series models is that observations on different variables tend to be 

recorded and published at different frequencies. For example, in the 

U.S., data on gross national product (GNP), the unemployment rate, and 

the money stock (e.g., M2) are, respectively, available at quarterly, 

monthly, and weekly sampling intervals. Therefore, virtually any attempt 

to estimate a multivariate economic time-series model confronts the 

problem of efficiently using mixed-frequency data. Standard time-series 

estimation methods are generally not satisfactory in this respect 

because they are designed for data at a single frequency. When using a 

single-frequency method with mixed frequency data, one has three 

options: (i) to transform the data to a single frequency by temporally 

aggregating higher-frequency observations to the lowest frequency in the 

data; (ii) to transform the data to a single frequency by interpolating 

lower-frequency observations to the highest frequency in the data; or 

(iii) to causally order the variables by frequency, with higher­

frequency variables being causally prior to lower-frequency variables, 

and suitably restricting the autoregressive part of the model by 

frequency, so that each causal block of the model can be estimated 

separately, at its own frequency (e.g., Fitzgerald and Miller 1989, 

Trehan 1989). 

Neither of these three options is generally satisfactory. First, 

temporal aggregation destroys sample information. Second, commonly used 

interpolation methods generally do not fully exploit the available 

sample information. For example, in statistics, it is common to 

interpolate time series separately, using only their serial correlations 
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(e.g., Harvey and Pierse 1984). In economics, regresssion methods, which 

emphasize correlations across variables, are favored, but even the most 

advanced regression-interpolation method which exploits serial 

correlations in residuals (Litterman 1983) will generally be unable to 

exploit all significant cross-serial correlations. When the goal is to 

estimate a model, for forecasting or other purposes, interpolation is at 

best an intermediate nuisance and at worst a source of distortion in the 

data to be used in estimation. Third, the consequences of inappropriate 

causality and other restrictions, of course, depend on the application. 

For example, as we shall demonstrate, such restrictions can markedly 

degrade the forecasting abilities of a model. 

This paper describes and illustrates a method for directly 

estimating a multivariate, autoregressive moving-average (ARMA) model 

with mixed-frequency, time-series data. Unlike standard, single-

frequency methods, the method does not require the data to be 

transformed to a single frequency or the model to be restricted by 

frequency, in particular, causally ordered by frequency. Subject to 

computational constraints, the method can handle any number of variables 

and frequencies. In addition, variables can easily be treated as 

temporally aggregated and observed with errors and delays. 

The approach of the method is to assume that the model operates at 

the highest frequency in the data. All variables are assumed to be 

generated, but not necessarily observed, at this highest frequency. 

Variables which are observed at lower frequencies are viewed as being 

periodically missing. For example, in monthly-quarterly data, the model 

is assumed to generate all variables at monthly intervals and each 

quarterly observation is assigned to a month in that quarter (the month 
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can vary from variable to variable and quarter to quarter), so that 

observations for the remaining months in the quarter are viewed as 

missing. Then, the Kalman filter (KF), modified to handle missing 

observations (Jones 1980, Ansley and Kohn 1983), is used to compute the 

Gaussian (or normal distribution) likelihood function in maximum 

likelihood estimation. The modification basically involves skipping 

computations in the standard KF which are associated with the missing 

observations. The method allows one to handle any set of frequencies, 

indeed, any pattern of missing data, subject only to the data having 

enough information to identify the parameters (estimate tllem with finite 

precision). 

In the application, a bivariate ARMA model is estimated with 

monthly observations on total employment and quarterly observations' on 

real GNP, in the U.S., for the period January 1958 to December 1978. The 

estimated model and the modifiedKF are, then, used to compute monthly 

forecasts of GNP and total employment, for 1 to 12 months ahead, for the 

period January 1979 to December 1988. Several low-order models were 

considered (seasonally adjusted data were used). The ARMA(l,l) model was 

judged to be the best model, in terms of maintaining a balance among the 

criteria of: (a) minimizing a bias-corrected Akaike information 

criterion (Hurvich and Tsai 1989), (b) providing the most accurate GNP 

forecasts (in terms of lowest overall standard errors of forecasts for 1 

to 12 steps ahead), (c) eliminating serial correlatioIls of innovations 

(residuals), and (d) having the most parsimonious parameterization. 

Accuracy of GNP forecasts, in particular, was emphasized, because the 

novelty is the ability of the method to produce monthly forecasts of 

quarterly data with a general, monthly. ARMA model. 
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The application shows that the method is computationally 

tractable. With sufficient experience, a similar exercise can be 

conducted in an afternoon on a personal computer. The application also 

shows that the method can exploit significant cross-frequency sample 

information (cross-serial correlations between variables observed at 

different frequencies) which standard single-frequency methods cannot 

exploit at all. First, whereas the data (in the form of annualized 

percentage changes) had significant OWll- and cross-serial correlations 

for lags up to about 6 months, innovations of the best model displayed 

almost no significant serial correlations. Second, the GNP forecasts of 

the model compare well with those for similar periods produced by 

established econometric and vector autoregressive models (McNees 1986, 

Roberds 1988), Generally, present forecasts were more accurate for 1 to 

4 months ahead and about equally or slightly less accurate for 5 to 12 

months ahead. To provide a more direct evaluation of the ability of the 

method to exploit cross-frequency information, forecasts are also 

developed with separate, univariate models and with a model restricted 

in the manner of option (iii) above. Compared with the best results, the 

latter forecasts are notably less accurate for 1 to 4 months ahead an~ 

are about equally accurate for 5 to 12 months ahead. The results are 

encouraging for the present method, because they show that it can 

produce superior short-term and competitive medium term forecasts with a 

small information set (observations on few variables). 

The KF also makes it easy to account for temporal aggregation, 

precision of data (observation or measurement errors), and,timeliness of 

data (production delays), complications which are difficult to handle 

with non-KF methods. Here, GNP is treated as temporally aggregated, as a 
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moving sum of three consecutive monthly values. This is the natural 

thing to do because GNP is a flow which accrues over a period of time. 

In fact, doing so markedly improved the fit and forecasting accuracy of 

the model. Covariances of observation errors were set by calibration and 

the (meager) available information about the relative precisions of the 

data. Introducing observation-error covariances in this way improved the 

results of estimation and forecasting. 

Unlike in Conrad and Corrado (1979), Howrey (1984), or Scadding 

(1987), no attempt was made here to account for the different precisions 

of preliminary and revised data by modelling their observation errors. 

Nor, unlike in Bordignon and Trivellato (1989), was any attempt made to 

account for timeliness of data, as one should in a real-time exercise. 

Simply, the most up-to-date historical record, which mixes extensively' 

revised earlier values with preliminary recent values, was used. In the 

aforementioned studies, the standard KF was applied to single-frequency 

data. It would be useful to extend the present application by similarly 

accounting for precision and timeliness of data. 

We also note two pertinent sets of studies. First, the question of 

whether preliminary GNP data should be construed as forecasts or as 

error-corrupted observations of true GNP has recently been debated 

extensively, but inconclusively (e.g., Mankiw and Shapiro 1986, Mork 

1987, Scadding 1988). This debate has been conducted outside of the 

framework of the KF. Second, Corrado and co-researchers (see, e.g., 

Corrado and Greene 1988 and references therein) have applied the theory 

of optimal linear combinations of forecasts to update quarterly 

forecasts of GNP, and other aggregates for the U.S. economy, with 

monthly forecasting information. They interpret the method of combining 
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forecasts in terms of a nonrecursive KF. 

The paper proceeds as follows. Section 2 introduces the general 

ARMA model and a state-space representation of it which is convenient 

for estimation and forecasting. Section 3 discusses how to compute the 

Gaussian likelihood function with the modified KF. Although the material 

in sections 2 and 3 is familiar (e.g., Zadrozny 1988, 1989), it is 

included to make the paper self-contained. Section 4 discusses the 

application and section 5 concludes the main text with remarks. An 

appendix discusses restrictions on parameters under which the KF 

converges and is numerically stable. Convergence and numerical stability 

of the KF are generally necessary for the computations to be tractable 

and feasible, and, therefore, determine the practical limitations of the 

present method. 

2. State-Space Representation of the ARMA Model. 

The discussion in this section proceeds at a general level except 

in the treatment of frequencies of observation. Although, to avoid 

cumbersome notation, we only explicitly discuss the monthly-quarterly 

case of the application, the generalization to any number of frequencies 

of observation should be apparent. 

We assume that the model operates at the highest available 

frequency in the data, in this case monthly. Let the n x 1 vector u(t) 

collect the n variables of the model. Because the data are assumed to 

have been adjusted for mean values and other possible fixed (regression) 

effects, we write the general, monthly, ARMA(p,q) model for u(t) as 

(2.1) A(L)u(t) = B(L)e(t), 
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for t = 1, ... , N, where A(L) = AO - ~ ~=l ~Lk, B(L) = ~ ~=O BkL
k

, L is 

the monthly lag operator (e.g., Lu(t) = u(t-l», and e(t) is an n x 1, 

unobserved, Gaussian (normally distributed), white··noise (serially 

uncorrelated), disturbance vector with zero mean and constant, 

covariance matrix. The distributional assumptions on e(t) are denoted by 

e(t) NIID[O, 2: ], 
e 

where 2: 
e 

T 
Ee(t)e(t) (superscript T denotes 

transposition). In general, especially in models motivated by an 

economic theory, the coefficient matrices, AO' . . ~ ~ B, will be 
q 

restricted in terms of a smaller number of structural parameters, 

collected in the vector ~. 

The coefficient matrices may assume any values in R
nxn

, subject to 

the following restrictions. First, we require that the model be complete 

(produce a unique realization of u(t) for given values of past u's and 

current and past e's). Therefore, we assume that AO is nonsingular. 

Second, we assume that any identities in the data have been removed, so 

that the model implies a nonsingular, probability distribution of the 

data. One of the conditions which usually helps to ensure this result, 

and which we assume, is that B02:eB~ > 0 (positive definite). The other 

condi tions are discussed in section 3. Third, "there is redundancy (an 

identification problem) among A
O

' B
O

' and 2: which needs to be 
e 

eliminated with some normalization. We adopt the normalization A = I , o n 

BO = lower triangular, and 2: = I , where I is the n x n identity 
e n n 

matrix. This normalization is convenient because, given ~ 
e 

> 0 when all elements on the principal diagonal of BO are nonzero. 

A state-space representation of a linear, dynamic model has two 

major parts: (i) a state vector and its law of motion, which comprise 
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the relevant information for forecasting the process in question; and 

(ii ) an observation (or measurement) equation which tells how 

observations of the process are made in terms of the state vector. We 

now develop for (2.1) a state vector and law of motion. 

By analogy with a continuous-time analysis (Zadrozny 1988), we 

define stocks as variables which are observed at the fundamental, 

monthly, sampling interval and define flows as variables which are 

observed as sums (temporal aggregates) over several monthly intervals. 

Partition u(t) 

of stocks and u
2
(t) is an n

2 
x 1 subvector of flows, so that n

l 
+ n

2 

n. Let wet) be the m x 1 vector of potential observations on u(t). By 

"potential" we mean that wet) is not yet adjusted for the fact that some 

or all of its elements may be unobserved (missing) in period t: Also, 

partition wet) 

of stocks and w
2
(t) is an m

2 
x 1 subvector of flows, so that m

l 
+ m

2 

m. Note that m
l 

~ n
l 

and m
2 

~ n2' hence, m ~ n, the strict inequalities 

holding when some stocks or flows are observed as cross-sectional 

aggregates. 

Abstracting for the moment from observation errors, stocks are 

observed as wl(t) = ul(t) and flows are observed as 
v 
k=O 

where the C 's 
k 

are n
2 

x n2' diagonal, indicator matrices, 

with zeroes and ones on the principal diagonal, and v is the maximum lag 

in any flow observation. By setting leading C
k 

.. 's 
,1.1. 

0, where C
k 

.. is 
,1.1. 

the (i,i) element of C
k

, each flow can be observed with its own delay, 

and, by setting trailing C
k 

.. 's = 0, each flow can have its own degree 
, 1.:1. 

of temporal aggregation. In this scheme, a variable which is observed 

directly (not temporally aggregated), but with delay, is treated as a 
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"flow. " 

Let x(t) be 
T 

the s x 1, state vector of the form x(t) = [x1(t) , 

.. G • , 

T T 
x (t) 1 , where r 

r 
max(p, q + 1, v) and ~(t), for k = 1, r, 

is n* x 1, where n* 

* ~": 
x n matrices ~ and Bk be defined by 

* 

[ ~1 ~2 

1 ' 
* 

~ [ :!] , (2.2) ~ 0 Bk 

~l ~2 0 

0 C
k 

0 

where ~j is quadrant (i,j) of ~ and Bi 
k 

is block-row i of B
k

, 

conformable with the partition u(t) = [ul(t)T, 
T T 

u
2
(t) 1 . Let the law of 

motion of x(t) be 

(2.3) x(t) Fx(t-l) + Ge(t), 

where F 
[ A~ I 0 0 

1 ' 
G -[i: l' 

0 
0 

.* I 
A 0 . ~ . . . .. . 0 

r r-l 

* * ~ = 0 for k > max(p, v), Bk = 0 for k > q, and the zero and identity 

matrices in F are all n* x n*. F is called the state transition matrix 

and is in companion form when it has the above sparse pattern. 

To see that x(t) and (2.3) constitute a valid state vector and law 

of motion for (2.1), mUltiply out (2.3), to obtain the representative 

equation 

(2.4) 
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for k = 1, ... , r, where x let) = 0, for all t. Use (2.4), for k r, 
r+ 

to eliminate x (t-l) in (2.4), for k 
r 

r - 1. Then, use the result to 

eliminate x l(t-l) in (2.4), for k = r - 2. Continue in this fashion r-

until (2.4), for k = 1, is 

(2.5) 

Next, partition xl(t) 

T T 
= [xlI (t) , x

12 
( t) , 

* conformably with ~ in (2.2), as 

and x
13

(t) are n 2 x 1, so that, using ~ = 0 for k > p and Bk = 0 for k 

> q, (2.5) becomes 

(2.9) 

(2.7) 

T T T 
So far, we have not set [x1l(t) , x

12
(t) 1. Letting [x1lCt) , 

T T 
x

12
(t) 1 

u(t), for all t, we see that (2.1) and (2.6) are 

identical. Therefore, (2.3) is a valid state-space representation of 

(2.1) . 

u
2 Ct), we see that x

13
(t) is the "lagged" part in 

temporally agreggated or delayed observations. This state-space 
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representation extends a common one (e.g., Ansley and Kohn 1983) to 

include temporal aggregation. The meaning of ~(t), for k = 2, r, 

now becomes clear: these state variables cumulate AR terms, MA terms, 

and lagged observations in a compact way. 

The observation equation is constructed in two steps. Let (t) be 

an m x 1, unobserved vector of observation errors which is partitioned 

T T T 
conformably with w(t) as (t) = [(l(t) , (2(t) ] . Then, in the absence 

of cross-sectional aggregation, error-corrupted stocks and flows are, 

respectively, observed as wl(t) = xll(t) + (l(t) and w
2
(t) = C

O
x

12
(t) + 

xI3 (t) + (2(t), or, equivalently, as 

(2.8) w(t) ~x(t) + (t), 

where 

Inl is the n l x n
l

, identity matrix, and In2 is the n
2 

x identity 

matrix. If some stocks or flows are observed as cross-sectional 

aggregates, then, ~ is appropriately reduced by row-wise summations. 

Following usual practice, we assume that (t) is a Gaussian, white 

noise, with zero mean and a constant, covariance matrix, and that it is 

uncorrelated with all values of the state vector and its disturbances. 

That is, (t) ~ NIID[O, Z(l, where Z( ~ 0 (positive semi-definite), and 

E(T)e(t)T = 0 and E(T)x(l)T = 0, for all T, t ~ 1. As in the effective 

reparameterization of Ze to BO = lower triangular with the normalization 

In' it is convenient to reparameterize Z( to R, where R is lower 

triangular and satisfies RRT = ZC' and, thereby, automatically impose Z( 

~ O. 
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So far, ~ has been described as a matrix of zeroes and ones which 

selects and, cross-sectionally and temporally, aggregates state 

variables. However, ~ may also incorporate contemporaneous interactions 

among observable variables (a simultaneous-equations part of the model), 

which cannot be put into the law of motion, (2.3), at least if the state 

is to be of minimal dimension. Such a part of ~ will depend on the 

parameter vector, <j>. For example, this will occur in a linear rational 

expectations model with explicit dynamic optimization, if one of the 

equations in (2.8) represents an agent's optimal linear decision rule 

(e.g., Hansen and Sargent 1980). 

To conclude the construction of the observation equation, let yet) 

denote the met) x 1 vector of values of w for period t which are 

actually observed, where met) ~ m. Therefore, we have yet) A(t)w(t) , 

where A(t) is the met) x m selection matrix which picks out the observed 

elements of wet). Combining (2.8) and yet) = A(t)w(t), we get the 

observation equation 

(2.9) yet) D(t)x(t) + vet), 

where D(t) = A(t)~ and vet) = A(t)(t). Disturbance vet) inherits the 

properties of (t): vet) - NIID[O, ~ (t)], where ~ (t) = A(t)~(A(t)T and 
v v 

EV(T)e(t)T = 0, for all T and t. 

In the application, n = 2 and u(t) = [ul(t), u
2
(t)]T = [%~EMP(t), 

%~GNP(t)]T, where %~EMP and %~GNP are annualized, percentage changes in 

total employment and real GNP (the data and their transformation to 

percentage changes are discussed in detail in section 4). Both variables 

are treated as observed without delay. %6EMP is treated as a stock and 
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%~GNP is treated as a flow, as a three-month sum. Therefore, wet) 

T (wI (t), w2(t)] , where w1 (t) = u 1 (t) and 

( 2 ) d [ 1 0 0 0 ... OJ h 
u 2 t- , an ~ 0 1 1 0 ... 0 ' were ~ has a total of 3 e max(p, q+l, 

2) columns. %~EMP is observed every month, for t 1, ... , N. 

Observations on %~GNP are registered in the third month of a quarter. 

Suppose, for the sake of illustration, that t = 1 is the first month of 

a quarter (e.g., January). Then, when %~EMP and %~GNP are both observed, 

for t 3,6, ... , met) 2 and A(t) = 1
2

, the 2 x 2 identity matrix; 

when only %~EMP is observed, for t = 1, 2, 4, 5, met) = 1 and A(t) 

equals the 1 x 2 vector [1, OJ. 

The idea of accounting for missing data in this way, by zeroing 

out relevant state variables with a time-varying observation equation, 

originates with Jones (1980) and was extended to multivariate cases by 

Ansley and Kohn (1983). The idea of treating mixed-frequency data in 

this way was proposed by Zadrozny (1988). 

Although, following the application and usual practice, we have 

assumed that the model, (2.1), and the first part of the observation 

equation, (2.8), are time invariant, the likelihood computations of 

section 3 remain valid if (2.1) and (2.8) are time varying in the sense 

that their coefficients are known, nonstochastic functions of time. When 

this is the case, then, one simply has to add time arguments to the 

coefficients, i.e., write AO(t), B (t), ~ (t), ~(t), and ~(t). For 
q e 

example: A
O

' ... , B ,~ will be time varying when (2.1) is a period-by­
q e 

period linearization of a nonlinear model; ~ will be time varying when 

(2.8) is the regression equation in a time-varying regression model 

(e.g., Judge et al. 1980, pp. 391-397); and, ~( will be time varying 

when data come from sample surveys of different sizes and accuracies. 
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3. Computing the Likelihood Function with the Kalman Filter. 

Let e 

vec(B )T]T collect the unnormalized coefficients of (2.1), which depend 
q 

on structural parameters to be estimated, where vec(-) vectorizes a 

matrix columnwise and ·vech(·) vectorizes the lower-triangular part of a 

matrix columnwise. ~( (or its reparameterization R) is not included in 

BO' which is the effective reparameterization of ~e' and ~( 

are not both identifiable and, following usual procedure, we propose 

e, because 

setting ~( according to the presumed accuracy of the data and estimating 

A particular model is characterized by a mapping, e = w(¢), from ¢ 

to e. For computational purposes, we treat ¢ as lying in an unrestricted 

set (Euclidian space), so that any equality or strict inequality 

restrictions are built into W. Non-strict inequality restrictions can be 

accounted for by attaching a penalty to the likelihood function. We 

propose to estimate (2.1) by maximizing the Gaussian likelihood with 

respect to ¢, under the restrictions in W. Under general smoothness 

restrictions on W, estimates will be consistent and asymptotically 

efficient and will have a Gaussian, asymptotic distribution. (To obtain 

the asymptotic properties, in theory, one may have to restrict ¢ to a 

compact region.) Within limits, these properties are preserved when the 

model and the assumption of a Gaussian distribution differ from the data 

generating process. See, for example, Hannan (1979) and the references 

therein. 

In this paper, we shall simply take for granted restrictions which 

guarantee these properties of the estimates and shall instead 



15 

concentrate on restrictions on parameters which ensure that the 

likelihood function is well-defined. As we discuss further in this 

section, the likelihood function is well-defined when the model implies 

that the data have a nonsingular, joint, probability distribution. 

Let yet) = (y(1) , ... , y(t)}, for t = 1, ... , N, so that yeN) is 

the full sample of observations on yet). Let L(t), for t = 1, ... , N, 

denote the nonconstant part of -2 times the exact, Gaussian, log-

likelihood function of yet). Although Let) is directly a function of e 

and a composite function of ¢, for simplicity, we suppress reference to 

e and ¢. Let xCtlt-l) = E[x(t)IY(t-l)] and y(tlt-l) = E[y(t)IY(t-l)], 

with associated errors, i(t) = x(t) x(tlt-l) and ~(t) y( t) 

y(t!t-l), and error covariances, Vet) 

E[~(t)~(t)Tl. Vector ~(t) is called the innovation of yet), because it 

represents new information in yet), beyond that contained in Y(t-l). 

The Kalman filter (KF) provides one way of decomposing a time 

series into its innovations. In fact, the KF itself has many possible 

implementations. A comprehensive discussion of theoretical and 

computational properties of various KF implementations is given by 

Anderson and Moore (1979). Schweppe (1965) is usually cited as the first 

one to propose computing the Gaussian likelihood function of a time 

series with its innovations. 

The following equations are one possible implementation of the KF 

which, given the model, its parameters, and the data, computes L(N) by 

iterating over the sampling times, t 1, N. At the start of 

iteration t, x(tlt-l), Vet), and L(t-l) are given from the previous 

iteration. Given the values of these quantities, L(t-l) is updated with 
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(3.1), ( 
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th 

in the order in whi.ch 

) , (.I,") , and (3.6 are 

and t:) . is call 

we the 

under cert~ain condit:ion:iI (3.) to (3. ) are a 

To t:art thE~ i ter<'l tlons , 10) and 1) must: 'be and, 

of course, o O. We limit the discussion on how to set 10) and 

1) to A model vihen its law of 

and the structural i observation are t:ime 
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invar.iant and when its stat:e law of motion is stable 0 The 

latter condtition means that F is a ",time) stable matrix, i 0 ., 

has all less than one in modulus, and Kohn (1985) and 

Bell a11<1 Hillmer (1987) descrihe a data·,transformation method for 

initi.aliz 110) and V(l), which, a1 

c,lse, also in the s case, 

function is obti~,ined in cat;e 

\0) the unc,ond:l t:i.onal :IlH:~an of ,and 1) 

have been ad for means and fixed effect.s - 0 and solves the 

) 

3,8) 

l~en F i.s a stable nmtrix (308) a 

semi-definite value of and lI-loore 1979, pp. 6/1,.-67). Wlu':m, in 

addition, the stat;e vector is or stiibilizable, then, > 0 

( i,s :i.n the 

In stun, :Ln the is (~ase, the e:rrE,ct li.kt:>lilwod function 

obt:ained wb,el:1. 110) o ,;md 1 , where (3.8) . 

.8) 0 An obvlous, but 

way to solve (3.8) is to the vectorizatlon 

vee ) A] "vec(B) 1969, po 954), where A, :8, and (" 
,I 

are conformable matrices and €I is the Kronecker , to obtain 

( "9) (I - [F €I F) 
is 

- vee ) , 
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2 2 
where I 2 is the s x s identity matrix, s being the dimension of x(t). 

s 

Equation (3.9) is in the standard form of a linear system, Ab = c, and 

can, therefore, be solved for b = vec(~ ) by any standard method (Golub 
x 

and Van Loan 1983, pp. 52-80). Kahn and Ansley (1982) describe how to 

exploit the symmetry 
T 

of ~ and GG and the companion form of F in the 
x 

solution of (3.9). In the application, we exploited symmetry, but did 

not attempt to exploit the companion form of F. 

Next, we state restrictions on parameters which guarantee that the 

likelihood function is well-defined, hence, computable. L(N) is well-

defined if the model and the sampling scheme transmit enough variations 

from e and ( to y so that 
N 

{y(t)}t=l have a nonsingular, joint, 

probability distribution. Because, given x(liO) and Vel) ~ 0, the KF 

effects 

N 
(y(t)}t=l 

Ei;( t) 1; ( t) T 

a one-to-one transformation from 
N 

{y(t)}t=l to 
N 

{!;(t»)t=l' 

has a nonsingular distribution if and only if M(t) 

> 0, for t = 1, ... , N. If Vel) ~ ° and ~ (t) + D(t)GGTD(t)T v . 

> 0, for t = 1, ... , N, then, a simple induction proof shows that M(t) > 

0, for t 1, ... , N. In the stationary case, (3.8) 

0. Therefore, L(N) is computable if ~ (t) 
v 

yields Vel) = 

A( t)~(A( t) T > 0, if 

D(t)GGTD(t)T > 0, or if both of these conditions hold, for t = 1, 

N. In practice, GG
T 

usually has much less than full rank, but D(t) has 

full row rank and picks a full-rank part out of GG
T

, so that 

D(t)GGTD(t)T > 0, for t = 1, o ~ • , N. In the application, ~( > ° and B
O 

has full column rank, conditions which, given the sampling scheme 

discussed at the end of section 2, respectively, imply ~v(t) > ° and 

D(t)GGTD(t)T > 0, hence, M(t) > 0, for t - 1, ... , N. 

We conclude this section by recommending some efficiencies in 

computations with (3.1) to (3.9). Whenever possible, known blocks of 
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in the given matrices, F, G, D(t), and ~ (t), 
v 

should be exploited to avoid unnecessary arithmetic. The computed 

matrices, M(t), K(t), ~(t), and Vet), are generally dense (not sparse), 

even when the given matrices are sparse. An exception is that ~(t) 

inherits the companion form of F when D(t) only picks linear 

combinations out of the first n* x 1 block of x(t), as in the present 

setup. In our experience, unless sparsity and KF convergence are 

exploited, applications at least as complex as the present one are 

intractable on a personal computer. 

Also, rather than invert M(t) and multiply with its inverse in 

(3.3) and (3.4), it is better to first Cholesky factorize M(t) and, 

then, solve the appropriate triangular, linear systems. When M(t) > 0, 

it has the unique, Cholesky factorization M(t)'= O(t)O(t)T, where O(t) 

is lower triangular, with positive elements on the principal diagonal. 

For example, in (3.3), it is recommended to first solve O(t)~(t) = ~(t) 

by 
T -1 T 

forward elimination and, then, compute ~(t) M(t) E(t) as ~(t) ~(t). 

See, e.g., Golub and Van Loan (1983, pp. 52-54 and 86-92). In addition, 

Cholesky factorization of M(t) provides an on-line test of whether the 

computations are proceeding successfully. The full set of computations 

is successful when M(t) > 0, for t = 1, ... , N, and M(t) > ° if and only 

if O .. (t) > 0, for i 
LL 

1, ... , met). In the Cholesky factorization 

algorithm, O .. (t) is obtained by taking the square root of a positive 
L1 

number. The algorithm fails at subiteration (i,t) when this number is 

not positive: O .. (t) > ° cannot be computed, so that M(t) is not 
11 

positive definite. Finally, we note that it is best to compute In!M(t)1 

as 2·r ~~~) In[Oii(t»). 
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4. Application to Forecasting ~ GNP at Monthly Intervals. 

The data used in the application were obtained in April 1989 from 

the Federal Reserve Board. They span January 1947 to December 1988 and 

are seasonally adjusted. GNP is on a 1982 basis. The data are historical 

series, which mix revised, early values with preliminary, recent values. 

Although we took account of observation errors, we treated the data as 

being homogeneous in their degree of revision. This is justified because 

the data mostly comprise final revisions. The employment data are 

produced and published, in Employment and Earnings, by the Bureau of 

Labor Statistics. They are based on monthly surveys of payrolls of 

establishments and represent totals over all types of employees and 

establishments. The GNP data are produced and published, in Survey of 

Current Business, by the Bureau of Economic Analysis. They are based on 

numerous surveys and are produced and revised by a lengthy process 

(e.g., Carson 1987, Young 1987). 

The given data are Yl(t) = EMP(t), for t = 1 (January 1947), 2, 3, 

... , where EMP(t) denotes the stock of employment in month t, and Y
2
(t) 

GNP(t) + GNP(t-l) + GNP(t-2), for t = 3, 6, 9, ... , where GNP(t) 

denotes the (unobserved) accumulated flow of real GNP in month t. Prior 

to using them, we transformed the data into mean-adjusted, (approximate) 

annualized, percentage changes as Y1(t) = %~EMP(t) - %~EMP, for t = 2, 

3, 4, ... , and Y2(t) = %~GNP(t) - %~GNP, for t = 6, 9, 12, ... , where 

%~EMP(t) = l200{ln[Y
l
(t)] - In[Y

l 
(t-l)]} and %~GNP(t) = 400{ln[Y

2
(t») -

In[Y
2
(t-3)]}. To call EMP and GNP stocks and flows is a purely 

interpretive statement, to clarify the meaning of the given data. By 

contrast, as we now explain, for a given (structural) model of the 

underlying variables, (2.1), each classification of %~EMP and %6GNP into 
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stocks and flows yields an effectively different (reduced form) model of 

the observations and, therefore, has substantive implications for 

estimation and forecasting. 

Momentarily write Y2(t) as yiCt) and define y~(t) as 

m 
Y2(t) + + - In[Y2(t-l)]1 adjusted for mean, so that y~(t) 

m 
Y2(t-2). Now, in the notation of section 2, Yl(t) was treated as a stock 

in the sense that Yl(t) = wl(t) + (l(t), where wl(t) is the true value 

of Yl(t), and y
2
(t) was treated as a flow in the sense that Y2(t) 

+ w
2
(t-l) + w

2
(t-2) + (2(t), where w

2
(t) is the true value of 

(As we noted in section 2, Y2(t) is registered in the third month 

of a quarter.) By contrast, if Y2(t) were treated as a stock, then, we 

would have Y2(t) = w
2
(t) + (2(t), where w

2
(t) would be the true value of 

yi(t). 

The difference is that in the flow case Y2(t) enters the model as 

. m 
the true value of Y2(t), whereas in the stock case y

2
(t) enters the 

model as the true value of yiCt). Treating %~GNP as a flow is more 

appealing because it places %~GNP in the model symmetrically with %~EMP, 

as a monthly first difference. Generally, treating a variable as a flow 

implicitly imposes MA-type restrictions on disturbances of the model, so 

that misspecifying a variable as a flow generally reduces the fit and 

forecasting ability of a model. As it was, treating %~GNP as a flow 

markedly improved fit and forecasting ability. 

We transformed the data into annualized, percentage changes in 

order to make the forecasts comparable with those of others and to make 

the data stationary. In particular, by removing trends, differencing 

made the data stationary. Because trends dominated variations in the 

undifferenced data, a failure to remove them would have resulted in 
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severe collinearity problems in estimation and biased' tests. Because the 

transformed data display somewhat greater variations from 1947 to 1957 

than in later years, to be sure that we had a statioIlary sample, we only 

used values from 1958 to 1988. 

There has been some discussion lately about whether trends should 

be removed by differencing or by linear regression (e.g., Whiteman and 

Roberds 1989). A generalization of differencing, which recognizes that 

variables may share common trends, is to treat them as co integrated 

(Engle and Granger 1987). The approach of Fountis and Dickey (1989) for 

isolating common trends among co integrated variables is a natural one in 

a state-space framework. The model can also legitimately be estimated 

with undetrended data if appropriate restrictions are placed on the 

parameters. This has been done especially in Bayesian analyses (e.g., 

Doan, Litterman, Sims 1984, Roberds 1988). 

We now discuss how we set ~(' the covariance matrix of observation 

* * errors. Let Y.(t) and y.(t), for i 1 and 2, denote true values 
1. 1. 

corresponding to observations, Y.(t) and y.(t). 
1. 1. 

(Note * that y. (t) 
1. 

is 

equivalent to w. (t) 
1. 

of section 2.) Because the model is specified in 

* terms of the transformed data, we set (.(t) = y.(t) 
1. 1. 

y. (t). 
1. 

Because 

* * * In[Y,(t)] - In[Y.(t)] = (Y.(t) - Y.(t» + Y.(t), we define the relative 
.1. 1. 1. 1 1. 

error of observing Y.(t) as E.(t) = In[Y.(t)] 
1. 1. 1. 

* In[Y. (t) J. 
1. 

* * * 
Let 

E{ln(Y.(t)] - In[Y.(t-b.)]l, [.1. = E{ln[Y.(t)] - In[Y.(t-b.)]l, and O. 
1. 1. 1. 1. 1. 1. 1. 1. 

* * [.1. - [.1 •. Then, using y.(t) = a. {In[Y.(t)] - In[Y.(t-b.)] - [.1.) and y.(t) 
1. 1. 1. 1. 1. 1. 1. 1. 1. 

* * * = a.{1n[Y.(t)] - In[Y.(t-b.)) - [.1.l, where [aI' a
2

) = [1200, 1+00) and 
1. 1. 1. 1. 1. 

[1, 3], 

E. (t-b.) - 0 .. 
1. 1. 1. 

The relation w.(t) 
1. 

we obtain (.Ct) = a.w.(t), where w.(t) = E.(t) -
1 1. 1. 1. 1. 

E. (t) - E. (t-b.) - O. can be viewed in two 
1. 1. 1. 1. 
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ways. Either way we run into a difficulty. First, to be consistent with 

the asstnnption that (.(t) is serially uncorrelated, we can assume that 
~ 

w. (t) 
~ 

is serially uncorrelated. But, then, E.(t) is a random walk, so 
1. 

that, strictly speaking, the available covariance information on E. (t) 
~ 

cannot be used to restrict the covariances of w.(t) and (.Ct). On the 
~ ~ 

other hand, we can assume that w. (t) follows a stationary, ARMA model. 
~ 

But, then, the state-space representation should be extended to 

incorporate the model of w. (t). 
1. 

If there are direct measurements of (. (t), t:he model of w. (t) can 
~ ~ 

be estimated prior to estimating the principal model, (2.1). For 

example, (2(t) of GNP could be measured as the difference between 

preliminary and revised observations (e.g., 15- and 45-day estimates). 

We leave this possibility for a future investigation. Without such 

measurements, an identification problem prevents the model for w.(t) 
~ 

from being estimated simultaneously with (2.1). 

We followed the second option, that w. (t) 
~ 

is covariance 

stationary, but did not attempt to incorporate a model of w.(t) in the 
~ 

state-space representation. That is, we ignored the contradiction 

between treating (.Ct) as a white noise in the Kalman filter and using 
1. 

serial correlations of wi(t) in setting ~(' Because 0i can absorb the 

mean of we set EE.(t) 
~ 

° and, consistent with the previous 

assumption that E(.(t) 
~ 

0, we assumed that O. = 0. 
~ 

Because employment and GNP data are constructed with different 

source data, we assumed that Cor[El(t), E
2
(t)] 

Cor[(l(t), (2(t)] = 0. Letting o~ = var[ci(t)] and 

0, hence, that 

interpreting 0. as 
~ 

the relative, sampling error or relative, statistical discrepancy of a 

variable, Employment and Earnings and Survey of Current Business tell us 
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that 01 = .001 and 02 = .0015. Therefore, 8. (t) 
1. 

E. (t-b.) 
1. 1. 

implies that - P
2

)] = diag[2.88(1 -

PI) , 0.72(1 - P
2

) ], where Pi = Cor[ E. (t), 8.(t-b.)]. To resolve 2::(' we 
1. 1 1. 

assumed that PI = P2 and considered the values Pi = -1, - .5, 0, .5, and 

.99. Although the results did not vary dramatically over these values of 

P., the best results, in terms of lowest serial correlations of 
1. 

innovations, highest t-ratios of parameters, and highest forecasting 

accuracy, were obtained with Pi = .5. Therefore, the reported results 

are all based on Pi = .5, hence, on 2::( = diag[l.44, .36]. 

We searched for the best model of the transformed data, for 

January 1958 to December 1978, by starting with the ARMA(3,l) model and 

reducing it in stages to the ARMA(l,l) model. Under general conditions 

(e.g., Hannan 1979), the estimated parameter vector, e, is 

asymptotically distributed as N[O, 3], where 3 is consistently estimated 
A 

4[~~(N)T • ~~(N)l-l and ~~(N) = numerically approximated, row-by ... 
A A 

form gradient of L(N) evaluated at e. Therefore, t. 
1 

e./s. is 
1 1 

asymptotically distributed as N[O, 1], where s. = positive square-root 
1. 

of the (i,i) element of 3. At each stage, we considered setting to zero 

parameters 
A 

which were highly insignificant in the sense that Ie. I < .1 
1 

and It. I = le./s. I < .1. The insignificant parameters were eliminated 
1. 1 1 

only when doing so reduced bias-corrected Akaike information criterion 

(AlC). The reductions in AlC were always ~ 1 in absolute value. There is 

as yet no general means of judging statistical significance of 

reductions in AlC. 

Akaike (1973) introduced AlC as an operational approximation of 

the Kul1back-Leibler measure of information. Minimum AlC guides one to 

the true data generating process because Kullback-Leibler information is 
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minimized (at zero) when the model is identical to the data generating 

process and increases as the model diverges from the data generating 

process. The theory of AlC has recently been further extended by Findley 

and Wei (1989). Because the originally specified AlC is biased in finite 

samples, in the sense that it tends to overfit the data, others have 

proposed versions of AlC which attempt to correct for this bias by 

penalizing the number of parameters more heavily. We used the version 

proposed by Hurvich and Tsai (1989). 

Figures 1 to 4 report own- and cross-serial correlations of the 

transformed data, for January 1958 to December 1988. Figures 1 to 3 

report significant, own-serial correlations of employment and 

significant, cross-serial correlations of employment and GNP, at 0 to 6 

month lags. The especially significant, employment-GNP, cross-serial 

correlations, at 1 to 4 month lags, in Figure 3, show the potential for 

using employment to forecast GNP. Figure 4 reports insignificant OWD-

serial correlations of GNP. 

Table 1 reports estimation statistics of the best model. 

Considering that the data were adjusted for trend, an R2 of .228 for 

employment is fair and an of .472 for GNP is good. Although R2, 

defined as 1 - variance of innovations variance of observations, is 

not a reliable statistic (e.g., in the present estimation method it can 

be < 0), nevertheless, it conveniently summarizes the fit of individual 

equations in a model. Figures 5 to 8 report own- and cross-serial 

correlations of innovations of the estimated model. Judging by 2-

standard-error confidence bounds on individual correlations and Ljung-

Box (1978) Q statistics, the model successfully reduced the data to 
A 

white-noise innovations. Only 9
1

, 9
4

, and 6
5 

appear to be significant at 
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conventional 10% and 5% levels ( I ti I :::: 1. 645, 1. 96). Perhaps, tLl- is 
A 

unusually large because the numerical approximation of ~L(N) was 

" 
insuffuciently accurate. Among remaining parameters, only 6

2 
is in the 

range of significance (It. I :::: 1). Setting to zero the least significant 
1. 

parameters, 6
3 

and 6
6 

to 6
11

, increased AIC and reduced forecasting 

ability. 

" 
This result and the high correlations among 6

3 
and 6

6 
to 6

11
, 

A 

indicated by ~, suggest that linear restrictions -- but not simple, zero 

restrictions might be imposed on 8
3 

and 6
6 

to ell' This could be done 

with orthogonal, t ratios, as follows. Suppose that 3 has an eigenvalue 

decomposition, ~ = ZfZ- l , where f is the diagonal matrix of positive, 

real eigenvalues, and Z is the matrix of column eigenvectors, z, . 
1. 

Furthermore, suppose that the eigenvalues are distinct, so that Z is 

orthogonal (ZTZ I) . 
-~ T" 

Then, T = r Z 6 is the vector of orthogonal t 

T" -~ 
ratios, with i-th element T. = z.6/1 .. That is, T. is asymptotically 

1. 1. 1 1. 

distributed as N[O, 1], independently of Tj' for j ~ i. The idea is to 

impose the linear restriction z~e = 0 if T. is insignificant. Imposing 
1. 1. 

T 
z,6 0 is equivalent to restricting e along a long axis of an 

1 

elliptical, confidence region in the parameter space. 

To compute forecasts, first note that (2.3), (2.9), and the white-

noise assumptions on their disturbances imply that 

(4.1) x(t+k+llt) = Fx(t+klt), 

(4.2) y(t+klt) DC t+k)x( t+k It) , 

for k = 1, .,., k, where x(t+klt) E[x(t+k)IY(t)] and y(t+klt) 
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E[y(t+k)IY(t)]. Let t = 1, ... , Nl denote the estimation period and let 

t - Nl+l, ... , N2 denote the forecasting period. Set e e, ~( as 

prescribed, x(lIO) = 0, and Vel) with (3.8). Given these values, iterate 

with the Kalman filter over t = 1, ... , Nl-k, to obtain x(N1-k+lIN1-k). 

Given x(N
1

-k+lIN
1

-k), iterate with (4.1) and (4.2), for k = 1, ... , k. 

Using (3.5), update x(N
l

-k+lIN
l

-k) to X(N1-k+2INl-k+l). Given 

x(Nl-k+2IN1-k+l), iterate with (4.1) and (4.2), for k 1, ... , k. 

Continue in this fashion, for t - N
l

-k+2 •... , N
2

-1, to obtain the 

desired forecasts. 

Note also that all data were adjusted with estimation-period 

sample means. This made the forecasting exercise more realistic. If 

estimation and forecasting period means are different and data in the 

forecasting period are adjusted with their own means, then, in effect, 

the forecasts are based on advance knowledge of mean shifts. 

Table 2 reports standard errors of forecasts of the best model 

over the period January 1979 to December 1988. Table 3 compares standard 

errors of the GNP forecasts with ones for similar periods reported by 

McNees (1986), Roberds (1988), and Trehan (1989). Considering that they 

are based on a smaller information set (observations on fewer 

variables), the present forecasts compare favorably. Table 2 also 

reports Theil U statistics, defined as U = standard error of a forecast 

+ standard error of the corresponding naive forecast, where the naive 

forecast is the most recent observation at the time the forecast is 

made. Theil U statistics are free of units of measurement and provide a 

basic test of the competitiveness of a set of forecasts. If forecasts 

which cost something to be produced yield U's ~ 1, then, they are 

dominated by the costless, naive method and are uncompetitive. In this 
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respect, present forecasts are quite competitive. 

To see how much cross-variable feedbacks contributed to the 

forecasts, we developed univariate forecasts which are reported in 

Tables 4 and 5. In both bases, ARCl) models were judged to be the best 

models. Comparing Tables 4 and 5 with Table 2, we see that GNP 

contributes marginally to forecasting employment, but that employment 

contributes substantially to forecasting GNP. In the latter case, the 

quarterly statistics are compared with monthly statistics for 3, 6, 9, 

and 12 months ahead. 

To see how well the present method exploited mixed-frequency, 

sample information, we developed forecasts with a bivariate, AR model 

restricted to mimic the limited ability of conventional, regression 

methods to use mixed-frequency data. In this respect, GNP was restricted 

to quarterly lags. We started with an AR(3) model and, using minimum 

AIC, reduced it to an AR(l) model. Estimation and forecasting statistics 

of the model are reported in Tables 6 and 7. Compared with the 

unrestricted, ARMA(l,l) model in Table 1, the restricted, AR(1) model 

yielded a similar R2 of .227 for employment, a notably lower R2 of .304 

for GNP, and mostly significant t ratios. Except for GNP-employment, 

cross-serial correlations, which were on the borderline of significance, 

the model displayed insignificant serial correlations of innovations. In 

particular, GNP-employment, cross-serial correlations at 2 and 10 month 

lags had significant values of .318 and -.284. Evidently, the present 

method was much more successful at capturing feedbacks from employment 

to GNP, even though conventional, regression methods allow employnlent to 

appear in the GNP equation at any monthly lags. Comparing Tables 2 and 

7, we see that this advantage translated into uniformly better forecasts 
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of both variables, in particular, substantially better forecasts of GNP 

from 1 to 5 months ahead. 

The computations were carried out with a FORTRAN program written 

by the author. In the program, the likelihood function is maximized with 

a trust-region method, using MINPACK subprograms (More et al. 1980), and 

many of the matrix computations are done with EISPACK (Smith et al. 

1976) and LINPACK (Dongarra et al. 1979) subprograms. The program was 

compiled with version 3.00 of the Lahey Computer Systems FORTRAN 77 

compiler and was run on a Northgate Computer Systems 386 personal 

computer, operating at 20 MHz clock speed with a numerical co-processor. 

Single-precision arithmetic (about 6 significant decimal digits) was 

used. In estimating the best model, each iteration took about 26 

seconds. Computing forecasts of the best model took about 1 minute and 

20 seconds. Doing all of the computations underlying the reported tables 

and figures took about 25 minutes. 

5. Conclusion. 

This paper has developed and applied a Kalman-filtering method for 

estimating a multivariate ARMA model with mixed-frequency, stock-flow 

data. The application shows that the method can usefully exploit cross-

frequency, sample information and is computationally tractable. 

Virtually any attempt to estimate a multivariate, economic, time-series 

model confronts the problem of efficiently using mixed-frequency, stock­

flow data. The present method efficiently solves this problem. The 

method allows one to easily account for the sampling complications of 

mixed frequencies and other patterns of missing data, temporal 

aggregation (stocks versus flows) , cross-sectional aggregation, 
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precision of observations, and timeliness of observations. In 

particular, because one does not have the problem of reformulating the 

model to conform with the sampling scheme, the method allows one to use 

the available sample information, without compromising either the model 

or the sampling scheme. 

The best model which we obtained adequately fit data for 1958 to 

1978 and yielded superior short-term and competitive medium-term 

forecasts for 1979 to 1988. Although many parameters especially MA 

parameters were individually insignificant, judging by AlC and 

forecasting ability, they were jointly significant. This suggests that 

by imposing appropriate restrictions, individual significance of 

parameters could be increased, without reducing the fit of the model 

and', thereby, possibly increasing its forecasting ability. In this 

respect, tests with orthogonal, t ratios, discussed at the end of in 

section 4, might suggest useful, linear restrictions. One might also 

consider restrictions of the form commonly imposed in Bayesian, AR 

models (e.g., Doan, Litterman, Sims 1984, Roberds 1989). Also, as we 

mentioned in section 1, one should account for different precisions and 

timeliness of preliminary and revised data and one should consider other 

monthly variables to aid in forecasting GNP, e.g., sales, industrial 

production (see Trehan 1989), and total hours worked average hours 

worked per employee x total employment. 

Parameters must be identified in order for their estimates to be 

consistent and asymptotically normally distributed. The best model 
A 

appeared to be identified locally, because SeN) was positive definite, 

and globally, because different starting values in estimation led to the 

same estimates. In particular, the model appeared to be identified with 
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respect to aliasing (e.g., Hansen and Sargent 1983, Christiano 1985). 

Except for some specialized results (e.g., Christiano 1985), known 

conditions for identifying ARMA models mostly pertain to sing1e-

frequency, stock data (e.g., Hannan 1979 and references therein) and, 

therefore, provide little information about conditions for identifying 

ARMA models with mixed-frequency, stock-flow data. The known results do 

show the close link between identifiability and reconstructibility-

controllability (e.g., Burmeister, Wall, and Hamilton 1986). The end of 

the appendix shows the greatly increased complexity of conditions for 

reconstructibility-controllability, in the bivariate, ARMA(l,l) model, 

when single-frequency, stock data is replaced by mixed-frequency, stock-

flow data. Conditions for identifying general, ARMA models with mixed-

frequency, stock-flow data can be expected to be correspondingly 

complex. 

Appendix. Convergence and Numerical Stability of the Kalman Filter. 

Computations with (3.1) to (3.7) are generally intractable unless 

the KF converges and its convergence is exploited. The KF is said to 

converge if M(t), K(t), ~(t), and Vet) converge to constant values or to 

periodic cycles as t ~ 00 When the KF converges, computations are 

considerably simplified by skipping (3.1), (3.4), (3.6), and (3.7) and 

using the limiting values of M(t), K(t), ~(t), and Vet). Equations (3.1) 

to (3.7) indicate that M(t), K(t), and ~(t) converge to constant values 

or to periodic cycles according to whether Vet) does. Vet) converges to 

a periodic cycle of periodicity p if, for any E > 0, there is a T such 

that t :? T implies IIV( t) - V( t-p) II < E, where 11·11 is some matrix norm. 

00 

In such case, (V(t»)t=l has p convergent subsequences. That is, for i 
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1, 
<Xl - p 

... , p, {V(pt+i)}t=O converges to Vi' where (Vi}i=l constitutes the 

limiting, periodic cycle. Of course, if p = 1, M(t), K(t), ~(t), and 

Vet) converge to constant values. 

Unless the parameters satisfy certain conditions, (3.1) to (3.7) 

are numerically unstable. That is, accumulated errors, arising from 

truncation (or rounding) inherent to finite-precision, computer 

arithmetic, eventually dominate computed values, often after a 

relatively small number of iterations. When this happens, the algorithm 

almost certainly fails, i. e., produces an M( t) which is not positive 

definite. Verhaegen and Van Dooren (1986) showed that (3.1) to (3.7) are 

numerically stable if M(t) is sufficiently positive definite (M(t) » 

0), the KF is asymptotically stable, and Vet) is symmetrized each time 

after it is ~omputed with (3.7). From (3.1), M(t) » 0 if ~ (t) » 0 or 
v 

D(t)V(t)D(t)T » O. In practice, controllability (defined below) can be 

counted on to make D(t)V(t)D(t)T > 0 but not necessarily» O. 

Therefore, in practice, one may need ~(» 0, hence ~ (t) 
v 

» 0, to 

ensure M(t) » O. Instead of symmetrizing Vet) each time after computing 

it with (3.7), one can reduce (3.7) so that it only involves the lower-

or upper-triangular part of Vet), or, one can use a symmetrical, but 

computationally more complex, version of (3.7). Our experience confirms 

Verhaegen and Van Dooren's results: to keep the algorithm numerically 

stable, in particular, ~( must be » 0 and the KF must be asymptotically 

stable. An increase in computational precision cannot make the algorithm 

stable; it can only delay the iteration at which the algorithm fails. 

In this appendix, we discuss restrictions on parameters which 

ensure that the KF converges and is asymptotically stable. First, we 

adapt standard proofs to show that, if the model and sampling exhibit 
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periodic variation and the state vector is reconstructible. and 

controllable, then, the KF converges to a periodic cycle and is 

asymptotically stable. These conclusions continue to hold if 

reconstructibility and controllability are, respectively, weakened to 

detectability and stabilizability. For brevity, we only explicitly 

consider the stronger conditions. Second, we discuss restrictions on the 

parameters of the bivariate, ARMA(l,l) model which ensure that the state 

vector is controllable and effectively reconstructible (we will explain 

the qualification effectively). In the application, the sampling scheme 

has periodicity p 3 months and the best, estimated model is a 

bivariate, ARMA(l,l) model (see Table 1). 

To define reconstructibility, let R(t) .0. , 

(Ft-l)TD(t)T]T. The state vector, x, is said to be (completely) 

reconstructible if there is a t such that R(t ) has full (column) rank 
r r 

s, where s is the dimension of x. This property is so called because, 

abstracting from disturbances and observation errors, there is a t at 
r 

which x can be exactly computed with the accumulated observations, yell, 

.0. , yet ). r 
If D(t) is time invariant and x is reconstructible, there 

will be a t ~ s, so that there is no need to look for t beyond s. This 
r r 

follows from the Cayley-Hamilton theorem, which says that every square 

matrix satisfies its own characteristic equation, so that the rows of 

t s-l s-2 
F , for t ~ s, are linearly dependent on the rows of F ,F , ... , F. 

Therefore, given that D(t) is time invariant, x is reconstructible if 

R(s), called the reconstructibility matrix, has full rank s. It is 

difficult to determine such a general, upper bound, beyond which one 

need not look for t, if D(t) may exhibit any possible, periodic 
r 

variation. 
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To define controllability, let C(t) - (G, FG, The 

state vector, x, is said to be (completely) controllable if there is a 

t such that C(t ) has full (row) rank s. This property is so called 
c c 

because, when eCt) is viewed as a control vector and xl and x* are any 

initial and target values of x, there is a finite control sequence, 

e( l) , 00. , e(t ), 
c 

which moves x from x(l) to x(t ) = x~~. 
c 

Symmetrically with reconstructibility, x is controllable if C(s), called 

the controllability matrix, has full rank s (in this paper, G is always 

time invariant). 

For a full discussion of reconstructiblity, controllability, and 

their less restrictive counterparts, detectability and stabilizability, 

see, e.g., Kwakernaak and Sivan (1972, pp. 53-81 and 459-466). 

To emphasize their positions in calender time, we now index the 

sampling times as t = t
l

, ... , tN. So far we have, in effect, treated 

the starting time, t
l

, as fixed and the finishing time, tN' as variable. 

Now, we consider tN to be fixed at some value and let tl ~ -00. Let Q be 

any symmetric, positive semi-definite matrix. For each let 

N 
{V(t.)}. l' generated by (3.1), (3.4), (3.6), and (3.7), start with 

J J= 

V(tl ) - Q. Let V(tl,tN) denote V(tN) in (V(tj)}~=l' i.e., the last value. 

in the sequence of V's from tl to tN. 

We assume that: (a) 2:: (t) 
v > 0, for all t; (b) x is 

reconstructible, for some (hence, all) tl sufficiently below t
N

; and, 

(c) x is controllable. Then, VC-oo,t
N

) lim -
V(t

1
,t

N
) exists. That is, 

tl~-oo 

for any E > 0, there is a T such that t ~ T implies IIV( t, t
N

) - V( -00, t
N

) II 

< E. The proof of this result follows by noting that the KF has a dual, 

linear, optimal, regulator problem in which the analogous result holds. 

See, e.g., Kwakernaak and Sivan (1972, pp. 490-501 and 525-536). Also, 
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under assumptions (a) to (c), V(_oo,t
N

) exists for any nonstochastic, 

temporal variation in the model and sampling. 

Although V(-oo,tN) is independent of Q, it is generally dependent 

on tN' We now prove that if the model and sampling exhibit periodic 

variation, then, for each V(_oo,t
N

) is an element in a limiting, 

periodic cycle, (V.)~ l' In the focal case, in which mixed-frequency 
~ ~= 

data induce periodic sampling, periodic variation in KF iterations 

arises in A(t): [A(t
l

), ... , A(t ), A(t 1)' ... , A(t2 ), 
p p+ P 

... J 

. . ~ , A, AI' ... , A, ... J. More generally, of course, periodic 
p p 

variation in KF iterations may also arise in F, G, iJ., and In 

general, for i = 1, ... , p, let T. be the set of sampling times from -00 
~ 

to 00 in the i-th period of the model-sampling cycle. In the focal case, 

T. is the set of t 8 (_00, 00) for which A(t) = A .. Then, T = u ~ 1 T. is 
~ ~ 1.= 1. 

the set of all sampling times from _00 to 00. 

Such a partition exists for. any periodic variation in the model 

and sampling. Let periodici ty 

sampling, PI min[p, P 1 
m s' 

in model, p = periodicity in 
s 

overall 

periodicity used to construct T. Then, p = P2 if P2/PI 

where int[eJ is the integral part of a number, and P = p.p otherwise. m s 

We now consider KF iterations over sampling times in T .. 
l 

Because 

consecutive sampling times in T. are p periods apart, we need to modify 
l 

(3.7) for this purpose. First, after eliminating M(t), K(t), and ~(t) 

using (3.1), (3.4), and (3.6), we can write (3.7) as the Riccati 

equation, V(t+l) 

Ll.V(t)/::,.T]A(t)T}-1 

+ FV(t)F
T 

+ 

A(t)Ll.V(t)F
T

. Then, we iterate p - 1 times on the 

Riccati equation, starting with any t 8 T., to obtain the time-invariant 
1. 

mapping V(t+p) - IT. [Vet)]. IT. is time invariant because it embodies 
l,p l,p 
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any periodic variation in the model and sampling. Despite its time 

invariance, TI. generally varies with i. 
~,p 

To see these properties of TI. , 
~,p 

consider the case of the 

application, as discussed at the end of section 2. In this case, T = 

{oo., -1,0,1, ... ) 
3 

U T., where T. is the set of i-th months of 
i=l ~ ~ 

quarters. Because t 1 is the first month of a quarter, Tl = { ... , -5, 

- 2, 1, 4, 7, ... 1, T 2 = { .•. , - 4, -1, 2, 5, 8, ... }, and T 3 { ... , -3, 

0, 3, 6, 9, ... ). Because TI
l

,3 is formed by starting with t 8 T
l

, TI
l

,3 

is defined by the sequence [A(t), A(t+l), A(t+2)l = [A
l

, AI' A2l, where 

Al [1, 0] and A2 = 12' Correspondingly, TI 2 ,3 and TI 3 ,3 are defined by 

the sequences [A
l

, A
2

, All and [A
2

, A
l

, All. 

N 
Consider again sequences {V(t.». 1 generated by the Riccati 

J J= 

equation, where 
. N 

{t.). 1 is a sequence of consecutive sampling times in 
J J= 

T, tl is a variable element of Ti which ~ _00, tN is a fixed of element 

T., and V(t
l

) = Q ~ O. Let {to .}~ 1 denote the subsequence of sampling 
~ ~J J= 

N 
times in (t.). 1 

J J= 

{Vet .. )}~ 1 is a 
~J J= 

implies that 

generated by the 

which are consecutive elements of T .. 
~ 

Because 

subsequence of (V(t.)}~ l' 
J J= 

lim - .-
V(tl,t

N
) = V(-oo,t

N
) 

tl~-OO 

N 
Because (V(t .. ». 1 is 

~J J= 

time-invariant mapping II. , 
1.,p 

the convergence of 

V(til,t iN ) as til ~ _00 only depends on tiN - til; in particular, it does 

not depend on the locations of til and tiN in calender time. Therefore, 

for 

Evidently, V(-oo,t;N) only depends on i. To emphasize this, we write 

VC-oo,t;N) as V .. Now, to say that the subsequence 
1. 

to V. is equivalent to saying that 
1. 

converges to the periodic cycle {V.}~ l' 
1. 1.= 

the full 

00 

(Vet .. ». 1 
~J J= 

converges 

sequence 
00 

(Vet.». 1 
J J= 

This concludes the proof that if the model and sampling exhibit 
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periodic variation, with overall periodicity p, and assumptions (a) to 

00 

(c) hold, then, {M(t), K(t), ~(t), V(t)}t=l' generated by KF iterations 

(3.1) , (3.4), (3.6), and (3.7), converges to a periodic cycle, {M
i

, Ki' 

- p 
~., V.}. l' Todd (1989) gave a related proof in an analysis of 
~ ~ ~= 

economic models formulated as linear optimal regulators. 

seasonal 

We now consider asymptotic stability of the KF. Using (2.3), 

(2.9), (3.2), (3.5), and (3.6), we derive x(t+1) = ~(t)x(t) + Ge(t+1) 

K(t)v(t). The KF is said to be asymptotically stable if, abstracting 

from disturbances and observation errors, e and v, the state-predic"tion 

error, x, approaches 0 as t ~ 00. The KF is known to be asymptotically 

stable if assumptions (a) to (c) hold. This is true for any 

nonstochastic, temporal variation in the model and sampling. See, e.g., 

Kwakernaak and Sivan (1972, pp. 534-536). 

For the case in which the model and sampling vary periodically, 

with periodicity p, we now characterize asymptotic stability in terms of 

limiting closed-loop matrices. Analogous to the construction of IT. , 
~,p 

for i ~ 1, ... , p and t e T., we 
~ 

iterate p 1 times on x(t+1) 

~(t)x(t), to obtain x(t+p) e. (t)x(t), where e. (t) = ~(t+p) 
~,p ~,p 

~(t). If the KF converges, 
lim e. (t) = e. = ~. 1 q\~p ~ .. . .. 
t....oo ~,p ~,p ~- ~ 

in the limit as x(t+pk) 
k~ 

for k = 1, Moreover, t ~ 00 in T., - (e. ) x(t), 
~ ~,p 

2, Therefore, when the KF is asymptotically stable, e. is a 
~,p 

stable matrix, for i 1, ~ . . , p. Except in special cases, the 

eigenvalues of the e. 's are difficult to characterize in terms of the 
~,p 

eigenvalues of the ~. 's. For example, when the ~.'s are all upper- or 
~ ~ 

lower-triangular, the j-th eigenvalue of S. is the product of the j-th 
~,p 

eigenvalues of the ~. 's. 
~ 

When the model is explosively nonstationary (F has some 
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eigenvalues on or outside the unit circle) and observations are 

periodically missing, then, some ~. 's may be unstable. In such a case, 
~ 

if the KF is asymptotically stable, then, remaining ~. 's 
~ 

must be 

sufficiently stable to ensure stable S. 's. Equation (3S) in Verhaegen 
~,p 

and Van Dooren (1986) shows that numerical stability of the KF will be 

more fragile in such cases because, within the sampling cycle, unstable 

~.'s may cause computational errors to build up to dangerous or 
~ 

catastrophic levels before they can be mitigated by stable ~. 's. 
1. 

To conclude, we consider restrictions on parameters under which x 

is controllable and effectively reconstructible when the model and 

sampling are as in the application. We only consider some sufficient 

conditions and do not attempt to investigate necessary conditions. To 

see how the sampling scheme complicates the restrictions, we first state 

restrictions for the case of a bivariate ARMA(I,I) model whose variables 

are stocks observed every period. In this case, R(2) has full rank (4), 

hence, x is reconstructible, for all parameter values, and, C(2) has 

full rank, hence, x is controllable, if (i) lAB + el ¢ ° and (ii) lei ¢ 

0, where, for simplicity, AI' BO' and BI are denoted as A, B, and C. 

Generally, we want reconstructibility for the convergence proof 

because it ensures that V(tl,t
N

) is bounded from above as tl ~ -00. When 

the data are sampled as in the application, columns 3 and 6 of R(t) are 

identically equal to zero for all t, so that state variables 3 and 6, x3 

and x
6

' are unreconstructible. However, elements of V(tl,t
N

) associated 

with x3 and x6 are bounded as long as the remaining state variables, Xl' 

X2' x
4

' and xs' are reconstructible. This follows for two reasons. 

First, when Xl' x2' x4 ' and Xs are reconstructible, elements of V(tl,tN) 

associated with these state variables are bounded. Second, as an 
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analysis of the state representation reveals, and are just 

cumulators of lagged values of flows, x
2 

and xS ' and have no active role 

to play in the update of Vet) with the Riccati equation. Columns 1, 2, 

4, and 5 of R(3) have full rank, so that and are 

reconstructible, if (iii) A12 ~ 0, where A12 is the (1,2) element of A. 

In the situation in the application, C(3) has full rank (6), 

hence, x is controllable, if Ici ¢ 0, (iv) B21 ¢ 0, (v) B22 ~ 0, (vi) 

(A21 All)BllB22 

AllBllB22(AllB21 

BllB22(A11C2l + 

+ B22 (C2l 

A
21

B
ll

) + 

A21Cll ) + 

Cll) + B21 (C12 - C
22

) ¢ 0, and (vii) 

A11B21(BllC22 B21C12 + B
22

C
ll

) 

Cll (B21 C22 
B22C21 ) ~ 0. Evidently, 

restrictions (ii) to (vii) are satisfied by the best model reported in 

Table 1. 
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Figure 1. Monthly Serial Correlations of Employment. 
============---========----===============---==,====== 

C(k) k 
1.00: 0 
.416: 1 
.439: 2 
.326: 3 
.234: 4 
.229: 5 
.142: 6 
.127: 7 
.095: 8 
.137: 9 
.073: 10 
.058: 11 
.034: 12 
.016: 13 

- .071: 14 
.016: 15 

-.046: 16 
-.035: 17 
-.058: 18 
- .113: 19 
- .109: 20 
- .112: 21 
- .152: 22 
-.124: 23 
- .153: 24 
- .179: 25 
- .ll3: 26 
-.179: 27 
- .110: 28 
-.100: 29 
- .134: 30 
- .074: 31 
-.100: 32 
-.049: 33 
-.057: 34 
-.100: 35 
- .106: 36 

1.0---0.8---0.6---0.4---0.2---0.0---0.2---0.4---0.6---0.8---1.0 
*: 

.* 
* 

* 
* *. 
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* 
* 
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* 
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* 
* 
* 

* 
* 

* *. 
* 

* 
~~ 

* 

* 
* 

* 
* 

* 

* 
* 

* 

* 
* 

1.0---0.8---0.6---0.4---0.2---0.0---0.2---0.4---0.6---0.8---1.0 

a. Figures 2 to 9 are based on Yl(t) = mean-adjusted, annualized, 
monthly, first-difference of the natural logarithm of employment, for 
January 1958 to December 1978, and Y2(t) = mean-adjusted, annualized, 
quarterly, first-difference of the natural logarithm of real GNP, for 
quarter 1, 1958 to quarter 4, 1988. 

b. C(k) = Cor[Yl(t), Yl(t-k)]. Asymptotic standard errors of C(k) 's range 
from .063 to .068. In figures 1 to 8, asymptotic standard error of 
C(k) = N(k)-·5, where N(k) = number of sampling times used to compute 
C(k) . 

c. Ljung-Box Q statistic = 224. Marginal significance level of Q = .538 x 
-2!S 10 ,at 36 degrees of freedom. 

=====~=================================~===============--================ 
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Figure 2. Monthly Gross-Serial Correlations of Employment and GNP. 

C(k) k 1.0---0.8---0.6---0.4---0.2---0.0---0.2---0.4---0.6---0.8---1.0 
.428: 0 * 
.380: 1 * 
.385: 2 ~~ 

.348: 3 * 

.246: 4 * 

.280: 5 * 

.360: 6 * 

.197: 7 * 

.282: 8 * 

.177 : 9 * 

.112: 10 * 

.032: 11 .* 

.107: 12 * 
-.014: 13 ?~ 

.144: 14 * 

.160: 15 * 

.023: 16 • ?~ 

.047: 17 .* 
-.067 : 18 * 

.051: 19 :* 
-.044: 20 *: 
- .110: 21 * 
- .191: 22 * 
-.146: 23 * 
-.227: 24 * 
-.123: 25 * 
- .162: 26 ?'r: 

-.147: 27 * 
-.160: 28 * 
- .096: 29 * 
- .132: 30 ?'r: 

-.088 : 31 ?'r: 

-.026: 32 *: 
- .116: 33 * 
-.132: 34 * 
-.005: 35 * 
- .153: 36 * 

1.0---0.8---0.6---0.4---0.2---0.0---0.2---0.4---0.6---0.8---1.0 

a. C(k) = Cor[Yl(t), Y2(t-k)]. Asymptotic standard errors of C(k)'s range 
from .109 to .118. 

b. Ljung-Box Q statistic = 99.6. Marginal significance level of Q = .718 
-7 x 10 ,at 36 degrees of freedom. 

~====--= --========--=----=======--=-=-- -- ============ 
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Figure 3. Monthly Cross-Serial Correlations of GNP and Employment. 
===~~=======::=:::==:=========================== ...... =========== 

C(k) 
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-.098: 24 
-.239: 25 
- .136: 26 
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1.0---0.8---0.6---0.4---0.2---0.0---0.2---0.4---0.6---0.8---1.0 

a. C(k) = Cor[Y2(t), Yl(t-k)]. Asymptotic standard errors of C(k)'s range 
from .109 to .118. 

b. Ljung-Box Q statistic = 115. Marginal significance level of Q = .248 X 
-9 10 ,at 36 degrees of freedom. 
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Figure 4. Monthly Serial Correlations of GNP. 

C(k) k 1.0---0.8---0.6---0.4---0.2---0.0---0.2---0.4---0.6---0.8---1.0 
1. 00: 0 
.000: 1 
.000: 2 
.211: 3 
.000: 4 
.000: 5 
.201: 6 
.000: 7 
.000: 8 
.034: 9 
.000: 10 
.000: 11 
.000: 12 
.000: 13 
.000: 14 

-.074: 15 
.000: 16 
.000: 17 

-.003: 18 
.000: 19 
.000: 20 

-.108: 21 
.000: 22 
.000: 23 

- .104: 24 
.000: 25 
.000: 26 

-.207: 27 
.000: 28 
.000: 29 

- .050: 30 
.000: 31 
.000: 32 

- .046; 33 
.000: 34 
.000: 35 

- .020: 36 
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*: 
1.0---0.8---0.6---0.4---0.2---0.0---0.2---0.4---0.6---0.8---1.0 

a. C(k) E[Y2(t), Y2(t-k)], where, in figures 4 and 8, C(k) = 0 when 
first three digits are insignificant or k is at non-quarterly lag at 
which C(k) cannot be computed. Asymptotic standard errors of C(k)'s 
range from .110 to .118. 

b. Ljung-Box Q statistic = 12.8. Marginal significance level of Q = .381, 
at 12 degrees of freedom (only 12 quarterly C(k)'s can be computed 
within 36 monthly lags). 
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Figure 5. Monthly Serial Correlations of Innovations of Employment. 

C(k) k 1.0---0.8---0.6---0.4---0.2---0.0---0.2---0.4---0.6---0.8---1.0 
1.00: 0 *: 
.056: 1 * 
.089: 2 * 

-.040: 3 *: 
- .ll2: 4 * 
-.043: 5 ,~ . 
- .108: 6 * 
-.076: 7 * 
-.054: 8 * 

.040: 9 .* 
-.002: 10 * 

.004: II * 
-.006: 12 * 
- .019: 13 *. 
- .151: 14 * 

.029: 15 :* 
-.004: 16 * 

.070: 17 * 

.058: 18 * 
- .009: 19 * 

.000: 20 * 

.012: 21 * 
-.049 : 22 *. 

.002: 23 * 
-.051: 24 *. 
- .092: 25 * 

.019: 26 .* 
-.097: 27 * 
- .003: 28 * 

.001: 29 * 
-.066 : 30 * 

.023: 31 .* 
-.014: 32 * 

.058: 33 * 

.045: 34 .* 
- .034: 35 *. 
-.055 : 36 * 

1.0---0.8---0.6---0.4---0.2---0.0---0.2---0.4---0.6---0.8---1.0 

a. C(k) Cor[~l(t), ~l(t-k)l, where, in figures 5 to 8, ~l(t) = 
innovation of Yi(t) and ~2(t) innovation of Y2(t). Asymptotic 
standard errors of C(k)'s range from .063 to .068. 

b. Ljung-Box Q statistic = 28.4. Marginal significance level of Q = .603, 
at 31 degrees of freedom. In figures 5 to 7, Q is evaluated at 31 = 36 

5 degrees of freedom, where 5 = integral part of 11 + 2 is meant to 
represent "average" loss of degrees of freedom in an innovation series 
due to estimation of 11 parameters. 

~=================, ==--===-~-- ======= ==-=== 
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Figure 6. Monthly Cross-Serial Correlations of Innovations 
of Employment and GNP. 
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a. C(k) = Cor[~l(t), ~2(t-k)J. Asymptotic standard errors of C(k)'s range 
from .109 to .118. 

b. Ljung-Box Q statistic = 21.8. Marginal significance level of Q = .890, 
at 31 degrees of freedom. 
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Figure 7. Monthly Cross-Serial Correlations of Innovations 
of GNP and Employment. 
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a. C(k) - Cor[€2(t), €l(t-k)]. Asymptotic standard errors of C(k)'s range 
from .109 to .118. 

b. Ljung-Box Q statistic = 27.1. Marginal significance level of Q = .669, 
at 31 degrees of freedom. 
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Figure 8. Monthly Serial Correlations of Innovations of GNP. 
==-=-= 
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a. C(k) = Cor[~2(t), ~2(t-k)l. Asymptotic standard errors of C(k)'s range 
from .110 to .118. 

b. Ljung-Box Q statistic = 9.89. Marginal significance level of Q = .195. 
Q is evaluated at 7 = 12 - 5 degrees of freedom, where, as in figures 
5 to 7, 5 "average" loss of degrees of freedom in the innovation 
series (only 12 quarterly C(k)'s can be computed within 36 monthly 
lags) . 
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Table 1. Best Overall Bivariate Employment-GNP Model: 
Unrestricted ARMA(l,l). 

1. Maximum likelihood estimates: 

parameter estimate asy. std. err. t-ratio 
--------- -------- -------------- -------

1 .799 .455 1. 75 
2 .203 .170 1.19 
3 .417 1.11 .377 
4 . 353 .0003 1228 . 
5 2.37 .934 2.54 
6 .634 4.52 .140 
7 1. 34 6.01 .222 
8 -.615 3.01 -.204 
9 1.72 3.89 .441 

10 -.697 6.20 - .112 
11 -.613 7.89 - .078 

2. Implied ARMA coefficient matrices: 

A = [ .799 .417 

J' 
B = [ 2.37 0.00 ] , 1 .203 .353 ·0 .634 1. 34 

B1 [-.615 -.697 ]. 
1.72 -.613 

3. AR and MA characteristic roots: 

AR roots .942,.209, 
MA roots = .289 ± i x .643 (modulus = .705). 

4. Model-fit summary statistics: 

variable std. err. R2 

---------- --------- ------
employment 2.83 .228 

GNP 2.82 .472 

5. Bias-corrected AIC = 1231. 

Estimation period: January 1958 to December 1978. 
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Table 2. Forecast-Evaluation Statistics of Model in Table 1. 

1. Employment forecast-evaluation statistics: 

months ahead 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

std. err. 

2.33 
2.40 
2.56 
2.69 
2.77 
2.83 
2.87 
2.93 
3.02 
3.10 
3.18 
3.22 

Theil U 

.576 

.592 

.632 

.664 

.684 

.699 

.710 

.724 

.747 

.767 

.786 

.796 

2. GNP forecast-evaluation statistics: 

months ahead std. err. Theil U 
------------ ------_ ... - -""'-- ... --

1 2.51 .437 
2 2.79 .485 
3 3.34 .582 
4 3.72 .647 
5 3.8-5 .670 
6 3.97 .692 
7 4.20 .731 
8 4.14 .721 
9 4.15 .723 

10 4.24 .738 
11 4.25 .740 
12 4.30 .749 

a. Forecast-evaluation period: January 1979 to December 1988. 
b. Standard errors of forecasts are synonymous with root-mean­

squared forecast errors. 
c. Theil U statistic = standard error of forecast + standard 

error of the naive forecast, where the naive forecast is the 
most recent observation at the time the forecast is made. 
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Table 3. Comparison with Other Forecasts for Comparable Periods. 
==---============ --=================---========================= 

l. 

2. 

Quarterly GNP forecast standard errors: 

quarters ahead Table 2 Roberds McNees 
-------------- ------- ------- ------

1 3.34 3.87 4.25 
2 3.97 3.85 3.61 
3 4.15 4.15 3.78 
4 4.30 4.34 3.82 

Monthly GNP forecast standard errors: 

months ahead 

1 
2 

Table 2 

2.51 
2.79 

Trehan 

1. 81 
3.34 

a. Column marked "Roberds" is from Table 2, part 1, column 2 in 
Roberds (1988) and reflects forecasts over quarter 1, 1977 to 
quarter 1, 1987. 

b. Column marked "McNees" is the average of columns 1 to 4 in 
Table 2 in McNees (1986) and reflects forecasts over quarter 2, 
1980 to quarter 1, 1985. 

c. Column marked "Trehan" is from Table 2, part 2, column 3 in 
Trehan (1989) and reflects forecasts over quarter 4, 1978 to 
quarter 4, 1988. 
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Table 4. Best Univariate Employment Model: AR(l). 

1. Maximum likelihood estimates: 

parameter estimate asy. std. err. t-ratio 

A1 .955 .0876 10.9 

BO 2.34 .548 4.27 

2. Model-fit summary statistics: 

standard error of innovation = 2.82, 
R2 = .235. 

3. Bias-corrected AlC = 785. 

4. Serial correlations of innovations: 

Ljung-Box Q = 25.3: 
degrees of freedom = 34, 
marginal significance = .860. 

5. Forecast-evaluation statistics: 

months ahead std. err. Theil U 
-------_ ... _-- --------- -------, 

1 2.36 .582 
2 2.41 .596 
3 2.58 .637 
4 2.70 .667 
5 2.79 .689 
6 2.85 .705 
7 2.91 .718 
8 2.96 .731 
9 3.05 .754 

10 3.13 .773 
11 3.20 .791 
12 3.24 .801 

a. Estimation period: January 1958 to December 1978. 
b. Forecast-evaluation period: January 1979 to December 1988. 
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Table 5. Best Univariate GNP Model: AR(l). 

1. Maximum likelihood estimates: 

parameter estimate asy. std. err. t-ratio 

Al .936 .252 3.71 

BO 3.89 1.89 2.06 

2. Model-fit summary statistics: 

standard error of innova"tions = 3.97, 
R2 = -.079. 

3. Bias-corrected AlC = 409. 

4. Serial correlations of innovations: 

Ljung-Box Q = 5.23: 
degrees of freedom = 10, 
marginal significance = .876. 

5. Forecast-evaluation statistics: 

quarters ahead std. err. Theil U 
-------------- --------"'" -------

1 3.81 .708 
2 4.07 .757 
3 4.29 .796 
4 4.31 .800 

a. Estimation period: quarter 1, 1958 to quarter 4, 1978. 
b. Forecast-evaluation period: quarter 1, 1979 to quarter 4, 1988. 
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Table 6. Best Standard-Method Employment-GNP Model: 
Restricted AR(l). 

1. Maximum likelihood estimates: 

parameter estimate asy. std. err. t-ratio 
-----_._-- -------- ~------------- -------

1 .938 .112 8.40 
2 .387 .242 1. 60 
3 2.31 .663 3.49 
4 loll 2.47 .452 
5 1. 78 1.03 1.72 

2. Implied ARMA coefficient matrices: 

A = [ .938 0.00 ] , B = [ 2.31 0.00 
J ' 1 .387 0.00 0 1.11 1. 78 

3. Model-fit summary statistics: 

variable std. err. R2 

---------- --------- ------
employment 2.84 .227 

GNP 3.24 .304 

4. Bias-corrected AlC = 1246. 

5. Own- and cross-serial correlations of innovations: 

variables Ljung-Box Q deg. free. margo sign. 
---------------- ----------- ---------- -----------
own-ser: emp 24.6 34 .881 
crs-ser: emp-gnp 23.5 34 .911 
crs-ser: gnp-emp 47.0 34 .0689 
own-ser: gnp 7.74 10 .655 

a. Estimation period: January 1958 to December 1978. 
b. Zero-valued coefficients in Al and BO were imposed during 

estimation. 
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Table 7. Forecast-Evaluation Statistics of Model in Table 6. 
===~~~=~~==== 

l. Employment forecast-evaluation statistics: 

months ahead std. err. Theil U 
------------ --------- -------

1 2.36 .583 
2 2.42 .598 
3 2.58 .637 
4 2.70 .667 
5 2.79 .689 
6 2.85 .70g. 
7 2.91 .718 
8 2.96 .732 
9 3.05 .753 

10 3.11 .769 
11 3.18 .786 
12 3.22 .796 

2. GNP forecast-evaluation statistics: 

months ahead std. err. Theil U 
------------ --------- -------

1 2.96 .516 
2 3.17 .552 
3 3.51 .612 
4 3.79 .660 
5 3.91 .680 
6 4.01 .698 
7 4.24 .738 
8 4.18 .727 
9 4.18 .728 

10 4.27 .744 
11 4.27 .744 
12 4.32 .752 

a. Forecast-evaluation period: January 1979 to December 1988. 
b. Standard errors of forecasts are synonymous with root-mean­

squared forecast errors. 
c. Theil U statistic = standard error of forecast + standard 

error of the naive forecast, where the naive forecast is the 
most recent observation at the time the forecast is made. 
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