
MEASURING INEQUALITY USING CENSORED DATA:

A MULTIPLE IMPUTATION APPROACH

by

Stephen P. Jenkins *
University of Essex

Richard V. Burkhauser *
Cornell University

Shuaizhang Feng *
Shanghai University of Finance and Economics and Princeton University

Jeff Larrimore *
Cornell University

CES 09-05                April, 2009

The research program of the Center for Economic Studies (CES) produces a wide range of
economic analyses to improve the statistical programs of the U.S. Census Bureau. Many of
these analyses take the form of CES research papers. The papers have not undergone the
review accorded Census Bureau publications and no endorsement should be inferred. Any
opinions and conclusions expressed herein are those of the author(s) and do not necessarily
represent the views of the U.S. Census Bureau. All results have been reviewed to ensure that
no confidential information is disclosed. Republication in whole or part must be cleared with the
authors.

To obtain information about the series, see www.ces.census.gov or contact Cheryl Grim,
Editor, Discussion Papers, U.S. Census Bureau, Center for Economic Studies 2K130B, 4600
Silver Hill Road, Washington, DC 20233, Cheryl.Ann.Grim@census.gov.



Abstract

To measure income inequality with right censored (topcoded) data, we propose multiple imputation
for censored observations using draws from Generalized Beta of the Second Kind distributions to
provide partially synthetic datasets analyzed  using complete data methods. Estimation and inference
uses Reiter’s (Survey Methodology 2003) formulae. Using Current Population Survey (CPS) internal
data, we find few statistically significant differences in income inequality for pairs of years between
1995 and 2004. We also show that using CPS public use data with cell mean imputations may lead
to incorrect inferences about inequality differences. Multiply-imputed public use data provide an
intermediate solution.
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1. INTRODUCTION 

 For assessing trends in the inequality of earnings or of household income inequality in the U.S.A., 

the March Current Population Survey (CPS) is the premier survey data source, widely used both within 

and outside government. (Administrative data are another source of information: see e.g. Piketty and Saez 

2003 who use Internal Revenue Service tax data.) The CPS is, however, subject to an important 

limitation: the data are right censored (‘topcoded’). To maximize confidentiality and to minimize 

disclosure risk, income values for each income source that are above a source-specific threshold are 

replaced in the public use data files by the threshold itself (the ‘topcode’). Internal CPS data, used by the 

U.S. Census Bureau (various years) to produce official income distribution statistics, are also topcoded 

for the same reasons, albeit to a substantially lesser degree than the public use data. Right censoring is a 

problem for estimation of inequality levels because it suppresses genuine income dispersion, and it is a 

problem for estimation of inequality trends because CPS topcode values have not been adjusted 

consistently over time – the proportion of observations in the public use data with right censored values 

has fluctuated substantially over time. Topcoding also affects estimates of standard errors of inequality 

statistics because variance estimates depend on second- and higher-order moments, and their calculation 

is affected by right censoring. See Burkhauser, Feng, Jenkins and Larrimore (2008) for a recent review of 

topcoding practices in the March CPS and for references to earlier discussions of topcoding problems in 

CPS public use and internal data.  

 All previous imputation procedures applied to CPS data that we are aware of have used methods 

that yield a single imputation for each right censored value. And only rarely has the sampling variability 

of the estimates derived from the imputation-augmented data also been estimated in a manner that takes 

proper account of the right censoring. Instead, we propose a multiple imputation approach to estimating 

inequality using topcoded data following Reiter (2003). We show how this approach provides consistent 

estimates of not only inequality measures but also their sampling variances, accounting for both stochastic 

imputation error and sampling variability. We use the method to analyze recent trends in household 

income inequality in the U.S.A., exploiting our unprecedented access to internal CPS data.  
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 Throughout the paper, income is defined in a conventional manner. It is pre-tax post-transfer 

household income excluding capital gains, adjusted for differences in household size using the square root 

of household size. (The specific procedures followed for constructing the income measure are as 

discussed by Burkhauser and Larrimore, in press.) This income definition is common in the cross-national 

comparative income distribution literature (cf. Atkinson, Rainwater and Smeeding 1995) and studies of 

U.S. income distribution trends (cf. Gottschalk and Danziger 2005). Each individual is attributed with the 

size-adjusted income of the household to which he or she belongs. Income refers to income for the 

calendar year preceding the March interview. (All references to ‘year’ are to income year rather than 

survey year.) We convert the small number of negative and zero household income values each year to 

one dollar prior to our calculations because a number of inequality indices are defined only for positive 

income values. Our samples comprise all individuals in CPS respondent households, excluding 

individuals in group quarters or in households containing a member of the military. All statistics are 

calculated using the relevant CPS sampling weights. Sample sizes are large. For example, for 2004, the 

sample income distribution refers to 207,925 individuals in 75,660 households. 

 We compare our multiple imputation estimates of inequality levels and trends from the internal 

CPS data – what we label the Internal-MI series – with two series of estimates derived from public use 

CPS data. The Public-CM series arises when top-coded values are replaced by cell mean imputations 

derived from internal CPS data. These imputations have been provided by the U.S. Census Bureau for 

each year since 1995, and are available to all users of public use CPS data. The availability of this series 

is one reason why we restrict our attention to the period 1995–2004 in this paper. A second reason is that 

we wish to avoid any potential inconsistencies in the income series arising from the introduction of 

computer-assisted personal interviewing in the CPS in survey year 1994 (Ryscavage 1995). Third, it is 

well-known that U.S. income inequality increased substantially between the mid-1970s and the mid-

1990s (see e.g. Danziger and Gottschalk 1995), and so we focus on a later period. For the decade starting 

from the mid-1990s, there is debate about the nature of inequality trends, but there is agreement that 

ascertaining trends in the very richest incomes is of particular importance in the U.S.A. and a number of 
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other OECD countries (see e.g. Atkinson and Piketty 2007, Burkhauser, Feng, Jenkins and Larrimore 

2008, and Piketty and Saez 2003).  

 The third series we analyze, labelled Public-MI, is also derived from public use CPS data, but 

applies a multiple imputation approach to estimation and inference that mimics the one that we apply to 

internal data. Although the internal data provide the best results, researchers can get access to them only 

under special conditions, whereas public use data are available to all researchers. It is therefore of interest 

to explore the extent to which results from the Public-MI series match those from the Internal-MI one. 

 Using multiply-imputed internal CPS data, we show that the inequality of household income did 

not change significantly between 1995 and 2004, whether one uses ordinal evaluations based on Lorenz 

curves or cardinal comparisons based on a number of commonly-used inequality indices. We find that the 

cell mean augmented public use data lead to substantial under-estimates of inequality levels in every year, 

though the trends over time are tracked relatively well. However, the sampling variability of estimates 

derived from the cell-mean-augmented distributions is also under-estimated and, as a result, there is a 

tendency for inequality trends over the period to be shown (incorrectly) as statistically significant. 

Multiply-imputed public use data are shown to provide an intermediate case.  

Although our research focuses on the case of right-censored data in the CPS, we would 

emphasize that the issues we have raised are applicable more widely – the CPS is not the only survey with 

topcoded data. For example, in the U.S.A., the National Longitudinal Survey of Youth topcodes some of 

its income sources as does the Panel Study of Income Dynamics. In the United Kingdom, in order to 

comply with the Statistics and Registration Services Act of 2007, the Annual Population Survey and the 

Quarterly Labour Force Survey have introduced topcodes on earnings data in their main public release 

files. In Germany, the wage data that are available from social insurance administrative registers are right 

censored at the earnings level corresponding to the upper limit to social insurance contributions.  
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2. RIGHT CENSORING IN INCOME DATA FROM THE MARCH CPS 

 

 In the March CPS, a respondent in each household is asked a series of questions on the sources of 

income for the household. Starting in 1975, respondents reported income from 11 sources, and since 1987 

they have done so for income from 24 sources. High values for each separate income source are topcoded 

by the Census Bureau; it is not simply high total household income values that are topcoded. See 

Larrimore, Burkhauser, Feng and Zayatz (2008) for a full list of topcode values in the public use and 

internal CPS data, by income source.  

 An additional complication arises because household income is the aggregation of multiple 

income sources (across income types and household members), each of which may be topcoded. As a 

result, the prevalence of topcoding in total household income is significantly greater than for any specific 

income source. For this reason, and also because income is measured using size-adjusted household 

income rather than nominal household income (see above), topcoded household income values are not 

necessarily the highest incomes – right censored observations may occur throughout the income 

distribution. Hence measuring inequality using the ratio of the 90th percentile to the 10th percentile (the 

‘P90/P10 ratio’) with the goal of minimizing the impact of topcoding on inequality estimates will not be 

entirely successful: see Burkhauser, Feng and Jenkins (in press).  

 The proportion of individuals with topcoded household income in each March CPS from 1995 

through 2004 is shown in Figure 1. In the public use data, the fraction is substantial, ranging between 

2.1% and 5.7%. In the internal data, the proportion is roughly constant and small, only about .5%. The 

much lower prevalence of right censoring in the internal data indicates their substantial value for 

assessments of inequality compared to public use data. Using internal data rather than the public use data 

means that incomes are better measured for up to approximately 5.5% more observations. Nevertheless, 

censoring remains pervasive in the internal data. The mean size-adjusted household income value for 

topcoded observations in the internal data is around $200,000. The observation at the tenth percentile of 

the distribution of topcoded incomes is at the 55th percentile of the 1995 all-persons distribution, at the 
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87th percentile of the all-persons distribution for 2000, and somewhere between these ranks in the other 

years. So, accurate estimation of the degree of inequality needs to account for a non-trivial degree of 

right-censoring, even with CPS internal data. Our multiple imputation approach provides this. 
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Figure 1. Percentage of individuals with topcoded household income in the March CPS public use data 
(solid line) and internal data (dashed line), by year. Authors’ calculations from public use and internal 
March CPS data. 
 

 

3. SINGLE IMPUTATION METHODS TO ACCOUNT FOR TOPCODING 

 

The two principal imputation approaches to account for topcoding in public use CPS data that currently 

exist are reviewed in this section. The first approach is empirically based, using cell means derived from 

internal CPS data. (Another, more ad hoc, imputation procedure is to replace each topcoded value by a 

multiple of the topcode: see e.g. Katz and Murphy (1992), Lemieux (2006), and Autor, Katz and Kearney 

(2008).) The second approach is model based, assuming that the upper tail of the income distribution has 

a specific parametric functional form. These approaches yield a single augmented data set for analysis in 
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which each topcoded value is replaced by a single imputed value: they are therefore ‘single imputation’ 

methods. 

 For each year of public use data since income year 1995 (survey year 1996), the Census Bureau 

has imputed a cell mean value to each topcoded value in the public use data. (Before 1995, the public use 

CPS data for each income source contained the topcode value for each income source for each 

observation topcoded on that source.) These imputations, derived from internal CPS data, are, for each 

source, equal to the mean source income of all individuals with incomes greater than or equal to the 

topcode, subject to some constraints on minimum cell size. For labour income sources, the means are 

calculated within cells further divided by race, gender, and employment status. The Census Bureau 

initially provided cell means for wages and salaries, self-employment income and farm income, but later 

extended them to other non-governmental income sources (1998 and thereafter). Larrimore, Burkhauser, 

Feng and Zayatz (in press) provide further details of the derivation. They also distribute a consistent set of 

cell mean imputations to the wider research community that extends the Census Bureau series back to 

1975.  

 These cell mean imputations are a substantial advance for analysis, providing more accurate 

measures of the incomes of topcoded observations than do the topcodes themselves. They have two 

limitations, however, which lead to underestimation of overall inequality statistics and their sampling 

variances. First, by construction, all observations within the same cell receive the same imputed value, 

thereby removing all within-cell income variation. Second, the cell means are derived from internal data 

which are themselves right censored. This imparts a downward bias to cell mean estimates of topcoded 

incomes (of unknown degree, since the actual incomes of the censored observations in the internal data 

are unknown), and hence also a downward bias in estimates of overall inequality and its sampling 

variance. 

 The second single imputation approach was developed before the Census Bureau cell mean series 

existed. Fichtenbaum and Shahidi (1988), using public use CPS data for 1967–1984, proposed that the 

upper tail of the U.S. income distribution for each year (specifically incomes greater than $100,000) be 
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summarized by the one parameter Pareto distribution. The authors estimated the Pareto parameter for 

each year from grouped data published by the Census Bureau, and then used the properties of the Pareto 

distribution to calculate the mean income among the richest 5% and hence their share of total income, as 

well as the adjusted income shares of poorer income groups. Estimates of the Gini inequality index for 

each year were then derived from these income share data, and shown to be between .9% and 7.3% 

greater than corresponding Gini indices estimated ignoring topcoding. Essentially the same method was 

applied by Bishop, Chiou and Formby (1994) except that they used unit record public use CPS data, 

examined 1985–1989, and compared entire distributions using Lorenz curves as well as Gini coefficients. 

Notably, Bishop, Chiou, and Formby (1994) also estimated sampling variances for their inequality 

statistics, and used statistical inference procedures to test inequality differences. However, these 

procedures did not take account of the additional variability introduced by the stochastic nature of the 

imputation process. (Also, neither Fichtenbaum and Shahidi (1988) nor Bishop, Chiou and Formby 

(1994) adjusted their family income measure to account for differences in family size and composition, 

and their estimation samples did not cover individuals from non-primary families.) A variation of the 

Pareto imputation method was also applied to public use CPS data on wages for 1979–1996 by Bernstein 

and Mishel (1997).  

 In addition to ignoring imputation uncertainty, the Pareto imputation method has the 

disadvantage, shared with the cell mean imputation approach, that only a single value is imputed to every 

topcoded observation in the relevant year, so income dispersion is under-estimated. Moreover, and as 

acknowledged by the authors cited, the goodness of the Pareto fit to CPS income data is debatable. On 

this, see also the critical discussion by Angle and Tolbert (1999). This suggests that the use of less 

restrictive parametric functional forms is productive in this context. Applications to public use CPS data 

on earnings include the two parameter gamma distribution (Angle 2003), the two parameter generalized 

Pareto (Stoppa) distribution (Burkhauser, Feng and Larrimore 2008), and the four parameter Generalized 

Beta of the Second Kind (GB2) distribution (Feng, Burkhauser and Butler 2006). In the next section, we 
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make the case for applying the GB2 distribution to CPS data on household incomes, and for using a 

multiple rather than single imputation approach. 

 

4. A MULTIPLE IMPUTATION APPROACH TO ACCOUNT FOR TOPCODING 

 

Our multiple imputation approach consists of five steps, which we outline before discussing in 

more detail. First we fit an imputation model – a parametric functional form that is presumed to describe 

the income distribution in each year 1995–2004, including right censored observations. Second, for each 

observation with a right censored income, we draw a value from the distribution implied by the fitted 

model using an appropriate randomization procedure. Third, using the distribution comprising imputed 

incomes for censored observations and observed incomes for non-censored observations, we estimate our 

various inequality indices and associated sampling variances using complete data methods. Fourth, we 

repeat the second and third steps one hundred times for each year, and finally, we combine the estimates 

from each of the one hundred data sets for each year using the averaging rules proposed by Reiter (2003) 

for the case of ‘partially synthetic’ data. This accounts for the uncertainty added to estimates by the 

imputation process as well as for sampling variability. Application of the five-step approach to internal 

CPS data yields our Internal-MI series of estimates; application to public use CPS data yields our Public-

MI series. 

 Ours is the only study that we are aware of that has applied multiple imputation methods to right 

censored data for the purposes of analyzing income inequality. The closest study to ours is An and Little 

(2007). They fit lognormal and power-transformed normal distributions to data from the 1995 Chinese 

household income project, and use the estimates to multiply impute incomes to topcoded observations. 

Their focus was on estimation of and inference about mean incomes and income regressions for a single 

year rather than estimates of income inequality and trends. Gartner and Rässler (2005) used lognormal 

distributions fitted to German wage data for 1991–2001 to multiply impute values for topcoded 
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observations. Again the focus was estimation and inference concerning mean incomes and income 

regressions rather than income inequality. 

 We assume that the distribution of size-adjusted household income in each year is described by 

the four parameter Generalised Beta of the Second Kind (GB2) distribution (McDonald 1984), with 

probability density function 
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and cumulative density function (CDF) 

F(y) = I( p, q, (y/b)a / [1 + (y/b)a] ), y > 0 

where parameters a, b, p, q, are each positive. B(p, q) = Γ(p)Γ(q)/Γ(p + q) is the Beta function, Γ(.) is the 

Gamma function, and I(p, q, x) is the regularized incomplete beta function also known as the incomplete 

beta ratio. Parameter b is a scale parameter, and a, p, and q are each shape parameters. The GB2 is a 

flexible functional form incorporating many distributions as special cases. For example, the Singh-

Maddala (Burr type 12) distribution is the special case of the GB2 distribution when p = 1; the Dagum 

(Burr type 3) distribution is the special case when q = 1; and the lognormal distribution is a limiting case. 

For details, see McDonald (1984) and Kleiber and Kotz (2003). Many studies have shown that the GB2 

model fits income distributions extremely well across different times and countries: see inter alia 

McDonald (1984), Bordley, McDonald and Mantrala (1996), Brachmann, Stich and Trede (1996), 

Bandourian, McDonald and Turley (2003), and Jenkins (in press). 

 Of particular importance in the current context is the desirable behaviour of the GB2 distribution 

in its upper tail. Consistent with extreme value theory, the upper and lower tails lie in the domain of 

attraction of the Fréchet distribution. The upper tail is regularly varying (with variation parameter equal to 

–aq) and it is heavy in that it decays like a power function as income increases, rather than decaying 

exponentially fast (as for the log-normal distribution, with middle heavy upper tail), or polynomial 

decreasing (as for Pareto distributions). See Schluter and Trede (2002, Appendix A) and Kleiber and Kotz 

(2003) on regular variation concepts and the upper tail behaviour of GB2 and other distributions.  
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 We estimate the GB2 distribution parameters by maximum likelihood (ML), separately for each 

year 1995–2004. To ensure that model fit was maximized at the top of the distribution, we fit each GB2 

distribution using observations in the richest 70 percent of the distribution only, making appropriate 

corrections for left truncation in the ML procedure. (We chose the 30th percentile as the left truncation 

point after experiments balancing goodness of fit with ease of maximization.) We specify the sample log-

likelihood for each year’s data as 
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where i = 1,…, N, indexes each individual sample observation, wi is the sample weight for i, and ci = 1 if i 

is an observation with a right censored household income value, and ci = 0 otherwise. The denominator of 

the expression adjusts for left truncation: z is the income level corresponding to the left truncation point. 

For maximization, we use the modified Newton-Raphson procedure implemented in Stata’s ml command 

(StataCorp, 2005), with the parameter covariance matrix estimates based on the negative inverse Hessian. 

Convergence was achieved easily within several iterations. For brevity, we do not report estimates for 

each year but they are available from the authors on request. 

 For the internal data, model fit varied slightly across years, but was generally excellent. This is 

demonstrated first by the precision of the parameter estimates. For example, the smallest t-ratio for any 

parameter estimate (always for p) was greater than seven, and was typically at least two or three times 

larger for a and for q. Wald tests of parameter values suggested that we could easily reject restricted 

models such as the Singh-Maddala or Dagum distributions in favour of the GB2 distribution. Excellent 

goodness of fit to the internal data is also demonstrated by the probability plots shown in Figure 2 for 

each year. These are plots of the cumulative probabilities of income expected given the estimated GB2 

parameters against the cumulative probabilities of income observed in the data. (Each chart is based on 

the richest 70% of each distribution for each year, for the reasons explained earlier.) Excellent goodness 

of fit is demonstrated by the fact that every plot lies extremely close to a 45° ray from the origin. 

Although fitted values must lie above observed values over the probabilities corresponding to right 
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censored observations in the internal data (at the very far right of each chart), we note that there is also no 

perceptible change in the nature of the plots for probabilities in the neighbourhood of these observations. 

Such smooth continuity increases our confidence in the use of the GB2 for imputing incomes to right 

censored observations in the internal CPS data. 

 We also fit GB2 models separately to public-use data for each year, using procedures that 

mimicked those for the internal data. Given the greater prevalence of right-censoring, model goodness-of-

fit was not quite as good as for the internal data, but very good nonetheless. This is illustrated by the 

probability plots shown in Appendix Figure A.  
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Figure 2. Probability plots for GB2 estimates: fitted versus observed. Plot based on richest 70% of each 
distribution only. GB2 estimates account for left-truncation and right-censoring (see text). Source: 
authors’ derivations from internal CPS data.
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 The second stage of our multiple imputation approach uses the GB2 estimates to derive imputed 

values for topcoded observations for each year using the inverse transform sampling method. Given fitted 

GB2 CDF, )(ˆ yF , the corresponding CDF for topcoded observation i is, using standard formulae for 

truncated distributions: 

)](ˆ1/[)](ˆ)(ˆ[)(ˆ
iiii tFtFyFyG −−=  

where ti is the topcode for i, and yi is the ‘true’ value for that observation (which we are unable to 

observe). Letting ui = )(ˆ
iyG , and inverting the expression for the income distribution among topcoded 

observations, we have  

( ))(ˆ)](ˆ1[ˆ 1
iiii tFtFuFy +−= − . 

A value of yi for each topcoded observation is generated by substituting into this expression a value of ui 

equal to a random draw from a standard uniform distribution. The combination of the observed incomes 

for non-topcoded observations with the imputed incomes for topcoded observations produces a partially 

synthetic data set for each year to which we can apply complete data methods to estimate our inequality 

statistics of interest. (Fully synthetic data consist of entirely multiply imputed data.) Repetition of the 

process m > 1 times produces m partially synthetic data sets for each year and, correspondingly, m sets of 

inequality estimates for each year which we combine in a manner discussed shortly. Note that the 

observations without censored data are common across each of the m partially synthetic data sets. Clear 

cut rules for the choice of m do not exist, but the number used is often relatively small (10 or fewer). In 

the next section, we report estimates based on m = 100. (In preliminary research, we used m = 20 and 

derived similar conclusions to those reported here.) 

 For inference from our multiply-imputed partially synthetic data sets, we use the combination 

formulae derived by Reiter (2003), as follows. Suppose that inference is required about some scalar Q, 

where Q is a measure of inequality such as the Gini index, and index the partially synthetic data sets by j 

= 1, …, m. Denote the point estimator of Q from partially synthetic data set j by qj and the estimator of its 

variance by vj. Reiter (2003) shows that one should estimate Q using the mean of the point estimators 
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Thus, the multiple imputation point estimate is the simple average of the point estimates derived using 

complete data methods from each of the m partially synthetic data sets. The variance of this estimate is 

the average of the sampling variances plus a term reflecting the finite number of imputations, m. Tp differs 

from Rubin’s (1987) rule for the combination of estimates in the fully synthetic data case, in which case 

mmmp vmbbT ++= / . The expression for the fully synthetic data case includes additional variability (the 

term bm) to average over the response mechanism (Rubin 1987). By contrast, ‘[t]his additional averaging 

is unnecessary in partially synthetic data settings since the selection mechanism … is not treated as 

stochastic’ (Reiter 2003, p. 5). The selection mechanism in our case refers to the choice of topcodes by 

the Census Bureau for the CPS. For large sample sizes, inference concerning Q can be based on t-

distributions with degrees of freedom vp = 21)1)(1( −+− mrm  where )/( 1
mmm vbmr −= . Because our 

sample sizes are large and m is large, vp is very large also, so the t-distribution is approximated very well 

by a normal distribution and that is what we use for inference.  

 Because cardinal indices of inequality differ in their sensitivities to income differences in 

different ranges of the income distribution (Atkinson 1970), we estimate inequality indices that reflected 

this feature in a systematic way. Specifically, we consider the mean log deviation, Theil index, and half 

the coefficient of variation squared, plus the Gini coefficient. The first three indices belong to the one 

parameter Generalized Entropy class GE(α) with parameter α = 0, 1, 2, respectively, and range from 

being bottom-sensitive (MLD) to being sensitive to income differences at the top of the distribution 
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(CV2/2). The commonly-used Gini coefficient is a middle-sensitive inequality index. (For a review of 

inequality index properties and index formulae, see Cowell 2000.) We computed distribution-free 

variance estimates for the inequality indices according to formulae provided by Biewen and Jenkins 

(2006) for GE indices and by Kovačević and Binder (1997) for the Gini index. In both cases, we account 

for the clustering of individuals in households and for the stochastic sample weights. The computations 

were undertaken using the Stata modules provided by Biewen and Jenkins (2005) and Jenkins (2006). 

 We also checked whether our estimates of inequality trends were robust to the choice of 

inequality measure by employing Lorenz dominance analysis, checking whether or not Lorenz curves of 

income distributions for pairs of years crossed. In this case, the statistics of relevance for each year are the 

cumulative shares of income for different income groups for the sample ranked in ascending order of 

income, and their sampling variances. If there is statistically significant Lorenz dominance, then there is a 

unanimous ordering of income distributions according to all standard inequality indices (Foster 1985). 

These include the four indices mentioned in the previous paragraph. Again we account for the clustering 

of individuals in households and for the stochastic sample weights. The computations of the distribution-

free variance formulae provided by Kovačević and Binder (1997) were undertaken using the Stata module 

provided by Jenkins (2006). Following common practice, the income shares were computed at the 19 

vingtiles.  

 Reiter (2003) provides a Bayesian derivation for his data combination inference formulae, and 

also the two conditions under which the inferences are valid from a frequentist perspective: that the 

analyst uses randomization valid estimators and that the synthetic data generation methods are proper in a 

sense similar to Rubin (1987). Of necessity we argue that these conditions are satisfied in our case, 

though note that it is impossible to test their validity since access to the actual values for topcoded 

observations in the internal CPS data is impossible. (Reiter developed his combination rules under the 

assumption that, in effect, the producer of the multiply imputed partially synthetic data sets had used 

imputation methods that satisfy the conditions.) Our imputation procedures are randomization based 

though not fully Bayesian since we did not draw from the posterior predictive distribution of the GB2 
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parameters in each year. Because of the complexity of implementing this procedure in our context, we 

drew from the full data posterior distribution, treating the GB2 parameters as known and appeal to the 

excellent fit of our GB2 models. An and Little (2007) employed the same procedure when they derived 

multiple imputations for data assumed to follow a power-transformed normal distribution. 

 

5. ESTIMATES OF U.S. INCOME INEQUALITY, 1995–2004 

 

We first discuss the results from our analysis of Lorenz dominance, and then the inequality 

indices. Throughout, tests for statistically significant differences are based on changes between 

distributions at least two years apart. We do not test for differences between adjacent years because of the 

rotation group structure of the CPS (about half of the sample is the same in the March CPS for 

consecutive years): our test procedures are predicated on having independent samples in each year. The 

focus is on the Internal-MI series, but supplemented by discussion of how the estimates from the Public-

CM and Public-MI series compare. Although the latter two series under-estimate inequality measures and 

associated sampling variances (as explained earlier), it is of interest to know whether these features lead 

to erroneous conclusions about inequality differences. 

 Detailed results from the Lorenz dominance analysis of the Internal-MI data for the beginning, 

middle and end of the period (1995, 2000, and 2004) are reported in Table 1. The details for the other 

years are not shown for brevity. Shown are the estimated Lorenz ordinates (cumulative income shares) at 

each successive twentieth of the distributions, together with the estimated standard errors (in parentheses) 

derived using the methods discussed in the previous section. The rightmost three columns report 

distribution-free Lorenz dominance test statistics for pairwise comparisons between the three years. For a 

pairwise comparison between year A and year B, and income group k = 1, …, 19, each test statistic (Δk) is  

( ) B
k

A
k

B
k

A
kk VVLL ˆˆˆˆ +−=Δ , 
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where A
kL̂  is the estimate of the kth Lorenz ordinate, A

kV̂  is the estimate of its variance, and 

correspondingly for year B. Hypothesis testing uses the multiple comparison union-intersection method of 

Bishop, Formby and Smith (1991a, 1991b) and Bishop, Chiou and Formby (1994). Tests are based on a 

5% significance level and take account of the fact that each dominance test is based on 19 simultaneous 

tests. The critical value is therefore obtained from the Student maximum modulus distribution (Beach and 

Richmond 1985): SMM(19,∞) = 3.01.  

 There are four possible outcomes from each set of tests associated with the comparison of years A 

and B, as Bishop and colleagues explain. First, there may be no statistically significant difference between 

any pair of Lorenz ordinates, in which case A and B are ranked as equivalent in terms of inequality (i.e. 

equality is taken as the null hypothesis): |Δk| ≤ 3.01 for all k. Second, if there are positive and statistically 

significant differences in ordinates and no negative and statistically significant differences, then A Lorenz 

dominates B: inequality is lower according to all standard inequality indices (Δk > 3.01 for some k and |Δl| 

≤ 3.01 for l ≠ k). The reverse is the case, third, if there are negative and statistically significant differences 

in ordinates and no positive and statistically significant differences (Δk < –3.01 for some k and |Δl| ≤ 3.01 

for l ≠ k). Fourth, if there are negative and positive differences that are statistically significant, the Lorenz 

curves cross and a unanimous inequality ranking cannot be derived (Δk > 3.01 for some k and Δl < –3.01 

for some l ≠ k). 
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Table 1. Lorenz Ordinates, Standard Errors, and Test Statistics for Pairwise Lorenz Comparisons (Internal-MI 
series) 

 Year  SMM test statistics (Δk) 
Cumulative 
population share 1995 2000 2004 2004 vs. 1995 2004 vs. 2000 2000 vs. 1995

.05 .0040 .0040 .0031 –.1167 –.1018 –.0006
 (.0060) (.0074) (.0053)  

.10 .0134 .0137 .0122 –.1587 –.1636 .0234
 (.0060) (.0074) (.0053)  

.15 .0266 .0268 .0250 –.2084 –.2042 .0206
 (.0059) (.0074) (.0053)  

.20 .0433 .0432 .0411 –.2746 –.2378 –.0025
 (.0059) (.0073) (.0053)  

.25 .0633 .0629 .0603 –.3722 –.2870 –.0369
 (.0059) (.0073) (.0052)  

.30 .0866 .0857 .0827 –.4988 –.3427 –.0891
 (.0058) (.0073) (.0052)  

.35 .1132 .1118 .1083 –.6344 –.3958 –.1510
 (.0058) (.0072) (.0052)  

.40 .1431 .1407 .1372 –.7760 –.3958 –.2684
 (.0057) (.0072) (.0051)  

.45 .1764 .1731 .1694 –.9233 –.4153 –.3717
 (.0057) (.0071) (.0051)  

.50 .2133 .2089 .2052 –1.0692 –.4207 –.4867
 (.0056) (.0071) (.0050)  

.55 .2538 .2483 .2447 –1.2269 –.4180 –.6188
 (.0055) (.0070) (.0050)  

.60 .2982 .2915 .2881 –1.3729 –.3981 –.7575
 (.0055) (.0069) (.0049)  

.65 .3467 .3389 .3360 –1.4774 –.3456 –.8917
 (.0054) (.0069) (.0048)  

.70 .4000 .3908 .3888 –1.5692 –.2400 –1.0665
 (.0053) (.0068) (.0048)  

.75 .4587 .4480 .4476 –1.5676 –.0432 –1.2518
 (.0052) (.0067) (.0047)  

.80 .5240 .5116 .5122 –1.7107 .0653 –1.4705
 (.0051) (.0066) (.0046)  

.85 .5975 .5835 .5859 –1.7197 .2967 –1.6982
 (.0050) (.0065) (.0045)  

.90 .6824 .6674 .6715 –1.6448 .5387 –1.8687
 (.0049) (.0064) (.0044)  

.95 .7862 .7713 .7769 –1.4738 .7473 –1.9292
 (.0046) (.0062) (.0043)  

NOTE: Standard errors are in parentheses. Source: authors’ calculations from internal CPS data. 
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 Table 1 suggests that, according to the point estimates of the ordinates, the Lorenz curve moved 

slightly outwards between 1995 and 2004 (indicating greater inequality). However, all the test statistics Δk 

are smaller than 3.01, and so we cannot reject the null hypothesis of equality of ordinates. For the two 

subperiods, the pattern of change in the ordinates is more complex – there are both positive and negative 

changes in the ordinates – but the outcome of the pairwise dominance test is the same. Indeed, we cannot 

reject the null hypothesis of no statistically significant difference between Lorenz ordinates for all 36 

pairwise comparisons undertaken (using all pairs of years 1995–2004 excluding adjacent years). Thus, 

according to Lorenz dominance tests applied to multiply imputed internal data, there was no significant 

change in inequality within and over the period 1995–2004 according to all standard inequality indices.  

 We repeated the Lorenz dominance tests using the Public-CM data and found the same result, 

with one difference. That is, we could not reject the null hypothesis of no statistically significant 

differences between Lorenz ordinates for all pairwise comparisons undertaken, with the exception of 

comparisons involving 1999 which was apparently more equal than any of the other years considered. For 

example, in the comparison between 1999 and 2004, Δk > 3.01 for k = 15, 16, 17, 18, 19, and 0 < Δk < 

3.01 otherwise. That is, cumulative income shares were significantly lower in the top quarter of the 

income distribution in 2004 compared to 1999. Apart from the results for 1999, there is consistency 

between the conclusions derived from the Internal-MI and Public-CM series. 

 Lorenz dominance tests based on the Public-MI data led to slightly different results. Again, there 

was less inequality in 1999 than in 1995 and in 1996 and 2003. In addition, 1995 was more equal than 

2003. There were also a number of Lorenz curve crossings (case 4 above). Three of these involved 1999 

(with 2001, 2003 and 2004); the fourth involved 1995 and 2000. Aside from the results from 1999, there 

is broad consistency between these estimates and those from the Internal-MI series. 

 Estimates of inequality indices and test statistics for pairwise comparisons for selected years are 

shown in Table 2 for the Internal-MI series. The test statistics are for pairwise difference-in-means t-tests, 

and so the relevant critical value using a 5% significance level is approximately 1.96. We find that the 

estimate of each index increased between 1995 and 2000 and between 2000 and 2004. The estimated 
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increase between 1995 and 2004 is largest for the GE(2) and GE(0) indices (20% and 18%, respectively), 

and smallest for the Gini and GE(1) indices (3% and 9%, respectively). However it is only for the Gini 

and GE(0) indices that the increases are statistically different from zero. (Finding significant differences 

for a specific inequality index is consistent with the Lorenz dominance test results reported above, 

because the latter were only based on comparisons at 19 income values rather than all sample values.) 

Few subperiod increases are statistically significant either – the exceptions mainly concern GE(0).  

 

Table 2. Inequality Indices, Standard Errors, and Test Statistics for Pairwise Comparisons (Internal-MI 
series) 

Index Year  Test statistics 
 1995 2000 2004  2004 vs. 1995 2004 vs. 2000 2000 vs. 1995 
Gini .4312 .4426 .4450 3.1020 .4569 2.1027
 (.0033) (.0043) (.0030)  
GE(0) .4017 .4296 .4751 7.6965 4.1924 2.6074
 (.0066) (.0084) (.0069)  
GE(1) .3732 .4156 .4051 1.7503 –.4388 1.7852
 (.0127) (.0200) (.0130)  
GE(2) .9658 1.4101 1.1600 .5650 –.4235 .8079
 (.1894) (.5163) (.2867)  
NOTE: Standard errors are in parentheses. Source: authors’ calculations from internal CPS data. 

 

 

The complete set of tests for pairwise inequality index differences are summarized in Table 3 for 

all three series. For each year, inequality index, and data source series, the cell entry shows the year(s) for 

which there is a statistically significant difference in inequality between the comparison year (column 1) 

and the year(s) shown. A blank cell means no comparison between that year and any other year is 

statistically significant. The table points to several findings about inequality differences and about 

consistency in results across series. 

 First, according to the gold standard of the Internal-MI series, few inequality differences are 

significantly different from zero. Where they are statistically significant, they typically refer to 

differences between the beginning of the period and the end of the period. The greatest number of 
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statistically significant differences refer to the GE(0) index. Also, none of the tests for differences in the 

top-sensitive index GE(2) based on the Internal-MI series are statistically significant. 
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Table 3. Pairwise Comparisons of Inequality Indices, by Index, Year and Estimate Series 
 Gini  GE(0)  GE(1)  GE(2) 

Year Internal-MI Public-CM Public-MI  Internal-MI Public-CM Public-MI  Internal-MI Public-CM Public-MI  Internal-
MI 

Public-CM Public-MI 

1997  1995 1995  1995 1995 1995   1995 1995   1995  
1998   1995, 1996  1995,1996 1995,1996 1995, 1996    1995, 1996     
1999  1995–1997 1995–1997   1997 1995, 1996   1995–1997 1995–1997   1995–1997  
2000 1995  1995, 1996  1995 1995 1995, 1996    1995–1996   1997  
2001 1995, 1996, 

1999 
1995, 1996, 
1998, 1999 

1995, 1996, 
1999 

 1995–1999 1995–1999 1995, 1996  1995, 1999 1995, 1998, 
1999 

1995, 1999   1999  

2002 1995 1995, 1999 1995, 1996, 
1999 

 1995, 1996, 
1999 

1995, 1996, 
1999, 2000 

1995, 1996, 
2000 

  1995, 1999 1995, 1996, 
1999 

  1995, 1999, 
2000 

 

2003 1995 1995, 1998, 
1999 

1995–1997, 
2001 

 1995–2000 1995–2000 1995–2001  2001 1995, 1999 1995, 1996   1999  

2004 1995 1995, 1996, 
1998–2000 

1995, 1996, 
1999 

 1995–2000, 
2002 

1995–2002 1995–2002   1995, 1998, 
1999, 2000 

1995, 1996, 
1999 

  1995, 
1998–2000 

 

NOTE: For each year, inequality index, and data source series, the cell entry shows the year(s) for which there was a statistically significant difference in inequality between that year and the 
year(s) shown. A blank cell means no comparison between that year and any other year was statistically significant. Comparisons undertaken for every pair of years 1995–2004, adjacent years 
excepted. Authors’ calculations from internal and public use CPS data. 
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 Second, we find more statistically significant differences using the Public-CM series than the 

Internal-MI series. For some reference years when comparisons based on the Internal-MI series yield no 

statistically significant differences at all, there are statistically significant differences according to the 

Public-CM series. Consider, for example, the comparisons for each of the reference years 1996–1999 for 

the Gini and GE(1) indices, and all comparisons for GE(2). And, whenever there is any statistically 

significant difference concerning a year A and a year B according to the Internal-MI series, there are often 

statistically significant differences between year A and additional years as well according to the other two 

series. For example, according to the Internal-MI series, there was a statistically significant difference 

between the Gini indices for 2004 and 1995. According to the Public-CM series, the Gini index for 2004 

differed from the estimates for 1995, 1996, 1998, 1999 and 2000. In only two instances was there a 

statistically significant difference according to the Internal-MI series but not the Public-CM one: the Gini 

comparison for 2000 and 1995, and the GE(1) comparison for 2003 and 2001. 

 The explanation for these findings is that the suppression of genuine within-cell income 

dispersion that is associated with cell mean imputations lead to underestimation of not only inequality 

indices but also their sampling variances. There is therefore a tendency for estimated inequality trends 

based on the Public-CM series to be judged statistically significant when they are not. 

 Like the Public-CM series, the Public-MI series of estimates generally leads to more statistically 

significant differences than does the Internal-MI one for any given reference year. Observe, for example, 

that according to the Public-MI series, inequality in 1995 differs from inequality in every other year 

compared, according to all indices except GE(2). There are, however, some years and indices for which 

the Public-MI series shows a significant difference and the Internal-MI one does not. See, for instance, 

the results for reference years 2001–2003 and GE(0), and reference year 2001 and GE(1). There is also 

not complete consistency between the patterns of pairwise differences found for the Public-MI and 

Public-CM series. This is unsurprising, given the different ways in which the estimates were derived. 

 The differences between the three series are highlighted by Figure 3. This shows the estimates for 

each of the four inequality indices, year by year, together with the associated 95% confidence intervals. 
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Unsurprisingly, estimates of inequality levels in each year are greater for the Internal-MI series than for 

the Public-CM series. However, both series point to similar trends over the period: they suggest that 

inequality levels fell slightly at the end of the 1990s, especially between 1998 and 1999, and again 

between 2001 and 2002. This consistency appears reassuring for analysts, especially since all researchers 

have access to cell mean-augmented public use CPS data whereas access to internal CPS data is subject to 

special conditions.  

 However, Figure 3 also clearly shows that confidence intervals for inequality indices estimated 

using the Public-CM data are too narrow by a substantial amount. This feature is particularly striking for 

the top-sensitive GE(2) index, which is not surprising because it is at the very top of the distribution that 

the data series differ in dispersion. Part of the greater fluctuation in inequality levels and wider confidence 

intervals in the Internal-MI series may reflect the GE(2)’s relatively greater non-robustness to the effects 

of outliers in the sense discussed by Cowell and Victoria-Feser (1996). However, we would argue that the 

patterns shown in Figure 3 primarily reflect sampling and imputation variability, since the averaging 

process used to combine the estimates from our 100 multiply imputed data sets are likely to smooth out 

the effects of any outliers being added by the imputation process. In sum, the reassuring consistency 

between the Internal-MI and Public-CM series evaporates if the researcher is interested in statistical 

inference and not simply point estimates. 

 The Public-MI estimate for any given year and index lies between the corresponding Internal-MI 

and Public-CM estimate, and is generally closer to the latter rather than the former. (There are a few 

exceptional cases in which the Public-MI estimate is slightly smaller than the Public-CM estimate, most 

of which involve the estimates for 1995 or 1996.) Our explanation for lower inequality in the Public-MI 

series than the Internal-MI one is that the imputation model underlying the Public-MI series does not 

work as well as the model underlying the Internal-MI series and this, in turn, is related to the substantially 

greater prevalence of topcoded data in the public use data compared to the internal data. It is the same 

feature that leads to confidence intervals that are smaller than for Internal-MI series. (They are, however, 

larger than for the Public-CM series as the construction of the Public-MI series incorporates more 
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variability via its imputation process.) Our explanation for the Public-MI estimates being relatively close 

to the Public-CM one is that derivation of the Public-MI series did not use any information from the 

internal data, whereas the Public-CM series did. The impetus to inequality that is added by the 

randomization process in the derivation of the former source is matched by the use of information about 

actual incomes from the internal data in the latter source. 

The final feature of Figure 3 that we wish to comment on is the results for 1999. Relative to trend, 

this appears to be an outlier year, and echoes results from the Lorenz dominance analysis reported earlier. 

Interestingly, the index estimates for 1999 are above those for immediately previous and succeeding years 

according to the Public-MI series, but below them according to the other two series. Indeed, if the results 

for 1999 were discarded, the trends for the three series would look much more similar. We do not have a 

complete explanation for the exceptional 1999 results. We rule out differences in the imputation process 

for the public data for that year, because we can see no clear differences between the parameter estimates 

of the GB model for 1999 and those for the years before and afterwards. And the computer code used to 

implement the imputation randomization process is generic. Since the Internal-MI and Public-CM series 

both rely on internal data for their derivation, whereas the Public-MI series does not, we suspect that there 

is some feature of the internal data for that year that underlies the pattern. 
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Figure 3. Inequality indices with 95% confidence intervals, 1995–2004. Internal-MI series (solid line), 
Public-CM series (long-dashed line), and Public-MI series (short-dashed line), derived from internal and 
public use CPS data. 
 

 

6. DISCUSSION 

 

We have demonstrated how a multiple imputation approach may be used to estimate inequality 

levels and trends from right censored income data. With a suitable imputation model, researchers may 

impute values to topcoded observations, thereby creating multiple partially synthetic data sets to be 

analyzed using complete data methods. Estimates combined using straightforward formulae can be used 

for statistical inference.  

 Applying the multiple imputation approach to internal data from the CPS, we have shown that no 

clear cut conclusions about the changes in income inequality over the period between 1995 and 2004 can 

be drawn. According to Lorenz dominance analysis, there was no significant change in inequality 
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according to all standard inequality indices. For some specific indices, such as the Gini or the GE(0), 

there was a statistically significant increase in inequality between 1995 and 2004; for more top-sensitive 

indices such as GE(1) and GE(2), changes did not differ significantly from zero.  

 Can these results be reconciled with the evidence of an increase in inequality since the mid-1990s 

found by researchers using Internal Revenue Service administrative record data on personal adjusted 

income, notably Piketty and Saez (2003)? In one sense, they cannot, because we have used inequality 

measures that use information about all incomes in the distribution, ranging from poorest to richest. This 

is an important advantage of data from large general population surveys such as the CPS. By contrast, the 

nature of Piketty and Saez’s (2003) data means that they focus exclusively on top income shares as their 

inequality measures. In another sense, however, our results can be reconciled with Piketty and Saez’s. 

Burkhauser, Feng, Jenkins and Larrimore (2008) use exactly the same multiply imputed partially 

synthetic data as discussed in this paper and consider statistics summarizing top income shares. The 

estimates of trends in the income shares of subgroups within the richest tenth of the distribution match the 

Piketty and Saez (2003) estimates, with the exception of the trends for the top 1% of the distribution. 

Arguably the mismatch in estimated trends for the very richest incomes reflects differences between the 

data sources in income definitions, sample coverage, and changes over time in the way income is 

reported. For further details, see Burkhauser, Feng, Jenkins and Larrimore (2008). 

 Our analysis enables assessment of the public use CPS data augmented by the Census Bureau’s 

cell mean imputations for topcoded observations, at least in the context of estimation of income inequality 

and its trends. Taking the estimates from the multiply imputed internal data as the gold standard shows 

that the cell mean-augumented data track trends in inequality indices over the decade since 1995 

reasonably well, though inequality levels are – unsurprisingly – underestimated. However, we have also 

shown that suppression of income dispersion within cells, combined with use of right censored CPS 

internal data to construct cell means, also has impacts on variance estimates. Compared to their multiply 

imputed internal data counterparts, they are underestimated, leading to confidence intervals that are too 

narrow and a tendency to incorrectly find statistically significant inequality differences. Put another way, 
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cell mean imputations for topcoded observations may do an excellent job of helping estimate mean 

incomes, but their very nature makes them less suitable for estimation and inference concerning statistics 

based on higher order moments. 

 Although few researchers would find it practical to go through the procedures required to access 

the internal CPS data, and to undertake the research using the data within a U.S. Census Bureau Data 

Center, we have shown that there is a feasible alternative that works reasonably well. That is, our 

comparisons of the three series shows a multiple imputation approach applied to topcoded public use CPS 

data can yield results about income inequality that in several senses lie between those derived using 

multiple imputation applied to internal data and those derived using cell-mean augmented public use data. 

The Public-MI approach takes account of income dispersion at the top of the distribution and also takes 

account of the variability of estimates. Because the public use data are, by definition, in the public 

domain, it would also be easier for researchers to build more sophisticated imputation models and 

improve the quality of estimates derived. These models might allow for subgroup differences, for instance 

allowing for covariates in the estimation of a parametric model or also incorporating the information 

available from the cell mean imputations. As argued in the Introduction, the multiple imputation methods 

we propose may be applied in a number of contexts beyond the CPS: right censoring is a relatively 

common feature of income data sets. 
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APPENDIX. Probability Plots from GB2 Distribution fit to Public-Use CPS Data 
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Figure A. Probability plots for GB2 estimates: fitted versus observed. Plot based on richest 70% of each 
distribution only. GB2 estimates account for left-truncation and right-censoring (see text). Source: 
authors’ derivations from public-use CPS data. 




