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Abstract

A reduction in travel time between headquarters and plants makes it easier for
headquarters to monitor plants and gather “soft” information - i.e., information that cannot be
transmitted through non-personal means. Using a differences-in-differences methodology, I
find that the introduction of new airline routes that reduce the travel time between headquarters
and plants leads to an increase in plant-level investment of 8% to 9%. This increase in
investment is accompanied by an increase in plants’ total factor productivity of 1.3% to 1.4%.
Consistent with the argument that the reduction in travel time makes it easier for headquarters to
monitor plants and gather soft information, I find that my results are stronger: i) for plants whose
headquarters are more time constrained; ii) for plants operating in soft-information industries; iii)
during the earlier years of my sample period; iv) for plants where the information uncertainty is
likely to be greater, such as smaller plants, .peripheral plants operating in industries that are not
the firm’s main industry, and plants operating in industries with more volatile sales or wages.
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1 Introduction

Does higher information uncertainty reduce investment? This question has spurred a large

theoretical literature, which makes ambiguous predictions about the relationship between infor-

mation uncertainty and investment. One class of models assumes perfect competition, constant

returns to scale, and symmetric adjustment costs of investment (e.g., Hartman, 1972; Abel,

1983). Together, these assumptions imply that an increase in information uncertainty raises the

marginal product of capital, thereby increasing investment. Another class of models emphasizes

the role of irreversibility in investment decisions (e.g., Arrow, 1968; Bernanke, 1983; McDon-

ald and Siegel, 1986; Pindyck, 1988; Dixit and Pindyck, 1994). If investment is irreversible,

the “option to wait”is valuable, which means the option value constitutes an opportunity cost

of current investment. Since the option value increases with information uncertainty, higher

information uncertainty reduces current investment.1

Establishing the sign of the relationship between information uncertainty and investment

is also diffi cult empirically. Earlier studies focus on aggregate data and typically find evidence

consistent with models of irreversible investment (e.g., Pindyck and Solimano, 1993; Alesina

and Perotti, 1996; Caballero and Pindyck, 1996). However, as Guiso and Parigi (1999) point

out, there are important concerns with using aggregate data. First, theories of information

uncertainty and investment have been developed at the micro-level; aggregate implications have

not been fully worked out. Second, much of the information uncertainty comes from (idiosyn-

cratic) shocks at the firm level. In the aggregate, these shocks are likely to cancel out, implying

that aggregate measures of information uncertainty are unlikely to reflect them. Later studies

using firm-level data find evidence consistent with models of irreversible investment. Leahy

and Whited (1996) and Bloom, Bond, and Van Reenen (2007) measure information uncertainty

using the variance of the firm’s daily stock returns in a sample of Compustat and U.K. manu-

facturing firms, respectively. Guiso and Parigi (1999) use Italian survey data. Their measure

1Depending on the assumptions, the predictions from either class of models can be reversed, which only adds

to the ambiguity of the relationship between information uncertainty and investment. For example, Caballero

(1991) shows that the convexity of the marginal product of capital, which is at the core of the first class of models,

can be weakened and even overturned by allowing for a suffi cient degree of either decreasing returns to scale or

imperfect competition. The predictions of the real options literature can be reversed as well. For example, Abel

et al. (1996) show that considering the option to expand in addition to the option to wait renders the (net) effect

of information uncertainty on investment ambiguous, as it now depends on the relative value of the two options.
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of information uncertainty is based on managers’ subjective assessment of the distribution of

future demand for the firm’s products, as reported by the survey.

Empirical studies using firm-level data are potentially subject to the same critique as empir-

ical studies using “aggregate”data. This is because investment takes place at the plant level,

not at the firm level. Accordingly, firm-level data are ultimately also aggregate data, and mea-

sures of information uncertainty at the firm level are unlikely to reflect (idiosyncratic) shocks

at the plant level. Another important concern with existing studies is that omitted variables

may influence both investment and the measure of information uncertainty, making it diffi cult

to establish causality.

This paper is an attempt to address both of these concerns. First, I use plant-level data

provided by the U.S. Census Bureau for the manufacturing sector for the period 1977 to 2005.

Second, I use plausibly exogenous variation in information uncertainty. I combine the Census

plant-level data with airline data from the U.S. Department of Transportation, which contain

information about all flights that have taken place between any two airports in the U.S. The

source of exogenous variation which I exploit in this paper is the introduction of new airline

routes that reduce the travel time between headquarters and plants.2 A reduction in travel

time makes it easier for headquarters to monitor plants and gather “soft” information– i.e.,

information that cannot be transmitted through non-personal means.3 Using a differences-in-

differences methodology, I find that the introduction of new airline routes leads to an increase in

plant-level investment of 0.8 to 0.9 percentage points. Given that the sample mean of investment

is 0.10 (treated and non-treated plants alike), this implies an increase in plant-level investment

of 8% to 9%. The effect is stronger for larger reductions in travel time, and it is only significant

for travel time reductions of at least one hour.

2Some papers use geographic distance as a proxy for information uncertainty (e.g., Lerner, 1995; Coval and

Moskowitz, 1999, 2001; Petersen and Rajan, 2002; Garmaise and Moskowitz, 2004). An advantage of using travel

time is that it entails plausibly exogenous variation. In contrast, geographic distance is typically the outcome of

(endogenous) locational choices.

3Stein (2002) defines soft information as information that “cannot be credibly transmitted”(p. 1891) and that

“cannot be directly verified by anyone other than the agent who produces it”(p. 1892). Similarly, Petersen (2004)

notes that “[w]ith soft information the context under which it is collected and the collector of the information are

part of the information. It is not possible to separate the two. This is why soft information is collected in person

and historically the decision maker was the same person as the information collector”(pp. 7-8). In contrast, with

hard information “[t]he collection method need not be personal”(p. 6).
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While a reduction in travel time between headquarters and plants may help reduce infor-

mation uncertainty, it may also help reduce information asymmetry. Moreover, in the case of

monitoring, it may help improve plant-level managers’ incentives, e.g., to increase plant-level

productivity or develop new investment opportunities. In either case, the theoretical literature

makes ambiguous predictions as to how this may affect investment. For instance, in the capital

budgeting literature, private information by plant (or division) managers may lead to either

over- or underinvestment by headquarters (e.g., Harris and Raviv, 1996, 1998; Bernardo, Cai

and Luo, 2001, 2004). Similarly, while most agency models ascribe a positive role to monitoring,

some argue that (too much) monitoring may reduce managerial initiative (e.g., Crémer, 1995;

Aghion and Tirole, 1997; Burkart, Gromb, and Panunzi, 1997).

An important question is whether investment is effi cient. While neoclassical models of invest-

ment generally presume effi ciency, a class of models in the organizational and capital budgeting

literature argues that investment decisions within firms are distorted by lobbying and rent-

seeking activities (e.g., Milgrom, 1988; Meyer, Milgrom, and Roberts, 1992; Rajan, Servaes, and

Zingales, 2000; Scharfstein and Stein, 2000). For instance, it could be the case that plant-level

investment does not increase because information uncertainty (or asymmetry) is reduced, but

rather because the introduction of new airline routes makes it easier for plant-level managers to

lobby headquarters for bigger capital budgets. In this case, the increase in investment should be

ineffi cient, a result that has been emphasized by the rent-seeking literature. My results do not

support this prediction. On the contrary, I find that plants’total factor productivity increases

by 1.3% to 1.4%. Likewise, I find that plants’return on capital and operating margin increase

by 1.3 and 0.9 percentage points, respectively.

In this paper, a treatment is the introduction of a new airline route that reduces the travel

time between headquarters and plants. Thus, a treatment is defined at the plant-headquarters

level, meaning it is uniquely defined by two airport locations. This provides me with a tight

identification. For instance, a concern is that the increase in investment might not be due

to the introduction of new airline routes, but rather due to contemporaneous economy-wide

shocks, local shocks in the plant’s vicinity, or shocks at the firm level. While the differences-

in-differences methodology accounts for the possibility of economy-wide shocks (via the control

group), I can additionally account for local and firm-level shocks by including MSA-year and

firm-year controls, respectively (see Bertrand and Mullainathan (2003) for a similar approach).
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Both of these shocks are identified here, because not all local plants have their headquarters in

the same city or region, and because not all plants of a company are affected by the introduction

of a new airline route, respectively.

Another related concern is that the introduction of new airline routes might be the out-

come of lobbying by individual plants or firms experiencing positive investment shocks (“reverse

causality”). While the inclusion of MSA- and firm-year controls already mitigates this concern,

I provide additional evidence suggesting that my results are unlikely to be driven by reverse

causation. First, if a plant experiences a positive investment shock prior to the introduction of

a new airline route, then I should find an “effect”already before the new route is introduced.

However, I find that investment increases only with a lag of six to twelve months, meaning there

is no effect either before the introduction of a new airline route or immediately after. Second, I

show that my results are robust when I consider only new airline routes that are the outcome

of a merger between two airlines or the opening of a new hub. Arguably, it is less likely that a

single plant is so powerful that it can successfully lobby for an airline merger or the opening of

a new hub.

Even if we take as given the result that the introduction of new airline routes leads to an

increase in plant-level investment, there might be alternative stories that have little to do with

monitoring or information gathering by headquarters. For instance, suppose a company with

headquarters in Boston has a plant in Memphis. In 1986, Northwest Airlines opened a new

hub in Memphis and started operating direct flights between Boston and Memphis. (No direct

flights between the two cities had been offered previously.) It is possible that the new direct

route between Memphis and Boston leads to an increase in commerce between the two cities,

with the effect that plants located in Memphis have now access to cheaper input goods from

Boston suppliers. Or it might trigger an increase in tourism with more visitors now coming from

Boston, stimulating local growth in the Memphis area that benefits, perhaps in some indirect

way, local plants. In either case, investment at the Memphis plant might increase for reasons

that have nothing to do with monitoring or information gathering by headquarters.

While I cannot completely rule out such alternative stories, they are unlikely to explain my

results. First, if investment also increases at other Memphis plants, then this is already accounted

for by the inclusion of MSA-year controls. Second, I show that my results are stronger for plants

whose headquarters are more time constrained, consistent with the notion that a reduction in
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travel time between headquarters and plants relaxes the time constraints of managers (who

must regularly travel to plants to monitor them, gather (soft) information, etc.). Third, I show

that my results are stronger for plants operating in soft-information industries. Fourth, I show

that my results are stronger during the earlier years of the sample period, where other, non-

personal, means of monitoring or transmitting information (internet, corporate intranet, video

conferencing) have been either unavailable or less developed. Fifth, I show that my results are

stronger for plants where the information uncertainty is likely to be greater, such as smaller

plants, “peripheral plants” operating in industries that are not the firm’s main industry (and

where headquarters is likely less knowledgeable), and plants operating in industries with more

volatile sales or wages.

The rest of this paper is organized as follows. Section 2 describes the data and empirical

methodology. Section 3 contains the main results. Section 4 presents robustness checks. Section

5 examines interaction effects with plant, firm, and industry characteristics. Section 6 concludes.

Appendices A to C contain information on the construction and measurement of variables.

2 Data

2.1 Data Sources and Sample Selection

A. Plant-level Data

The data on manufacturing plants are obtained from three different data sets provided by the

U.S. Census Bureau. The first data set is the Census of Manufactures (CMF). The CMF covers

all U.S. manufacturing plants with at least one paid employee. The CMF is conducted every

five years, in years ending with 2 and 7 (“Census years”). The second data set is the Annual

Survey of Manufactures (ASM). The ASM is conducted in all non-Census years and covers a

subset of the plants covered by the CMF: plants with more than 250 employees are included

in every ASM year, while plants with fewer employees are randomly selected every five years,

where the probability of being selected is higher for relatively larger plants. Although the

ASM is technically referred to as a “survey,” reporting is mandatory, and fines are levied for

misreporting. The CMF and ASM cover approximately 350,000 and 50,000 plants per year,

respectively, and contain information about key plant-level variables that I use in my analysis,

such as capital expenditures, total assets, value of shipments, material inputs, employment,
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industry sector, and location.

The third data set is the Longitudinal Business Database (LBD), which is compiled from the

Business Register. The LBD is available annually and covers all U.S. business establishments

with at least one paid employee.4 The LBD contains longitudinal establishment identifiers along

with data on employment, payroll, industry sector, location, and corporate affi liation. I use the

longitudinal establishment identifiers to construct longitudinal linkages between the CMF and

ASM.

Given that the LBD covers the entire U.S. economy, it also contains information on non-

manufacturing establishments of companies that have plants in either the CMF or the ASM.

I use this information to construct firm-level variables, such as the total number of employees,

the number of establishments, and the number of industry segments per firm. For my analysis,

the most important firm-level information is the ZIP code of the company’s headquarters. At

the firm level, the Census Bureau distinguishes between single- and multi-unit firms. Single-

unit firms consist of a single establishment. For these firms, the ZIP code of the establishment

coincides with the ZIP code of headquarters by construction. Multi-unit firms consist of two

or more LBD establishments, with one establishment being the company’s headquarters. To

determine the location of headquarters, I supplement the LBD with data from two other data

sets provided by the Census Bureau: the Auxiliary Establishment Survey (AES) and the Stan-

dard Statistical Establishment List (SSEL). The AES contains information on non-production

(“auxiliary”) establishments, including information on headquarters. The SSEL contains the

name and address of all U.S. business establishments. Appendix A outlines the procedure used

to obtain the location of headquarters from these data sets. A potential concern with this pro-

cedure is that the main source of information on headquarters, the AES, is available only every

five years between 1977 and 2002. To fill in the missing years, I always use the information

from the latest available AES. As the Census years are deterministic, this measurement error is

unlikely to introduce any systematic bias. It merely introduces noise into the regression, which

only makes it harder for me to find any significant results.

My sample covers the period from 1977 to 2005. (1977 is the first available AES year; 2005

is the latest available ASM year.) To be included in my sample, I require that a plant has a

4An establishment is a “single physical location where business is conducted”(Jarmin and Miranda, 2003, p.

15). Establishments are the economic units used in the Census data sets. In the manufacturing sector, the term

“plant” is commonly used as a synonym for establishment.
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minimum of two consecutive years of data. Following common practice in the literature (e.g.,

Foster, Haltiwanger, and Syverson, 2008), I exclude plants whose information is imputed from

administrative records rather than directly collected. I also exclude plant-year observations for

which employment is zero or missing. Finally, to ensure that the physical distance between

plants and headquarters is comparable across years, I exclude firms that change the location of

headquarters during the sample period (7% of the firms in my sample). The results are virtually

identical if these firms are included.

The above selection criteria leave me with 1,332,824 plant-year observations. In the difference-

in-difference estimation, I use a 10-year window around the treatment date, implying that treated

plants are included from five years before the treatment to five years after the treatment. Using

a 10-year treatment window reduces my sample only slightly, leaving me with a final sample of

1,291,280 plant-year observations. That said, the length of the treatment window is immaterial

for my results; all results are similar if I use a different treatment window or no treatment win-

dow at all, meaning that all plant-year observations of treated plants are included either before

or after the treatment (as in, e.g., Bertrand and Mullainathan, 2003).

B. Airline Data

The data on airline routes are obtained from the T-100 Domestic Segment Database (for the

period 1990 to 2005) and ER-586 Service Segment Data (for the period 1977 to 1989), which are

compiled from Form 41 of the U.S. Department of Transportation (DOT).5 All airlines which

operate flights in the U.S. are required by law to file Form 41 with the DOT and are subject to

sanctions for misreporting. Strictly speaking, the T-100 and ER-586 are thus not samples; they

include all flights that have taken place between any two airports in the U.S.

The T-100 and ER-586 contain monthly data for each airline and route (“segment”). The

data include origin and destination airports, flight duration (“ramp-to-ramp time”), scheduled

departures, departures performed, passengers enplaned, and aircraft type.

5The T-100 Domestic Segment Database is provided by the Bureau of Transportation Statistics. The annual

files of the ER-586 Service Segment Data are maintained in the form of magnetic tapes at the U.S. National

Archives and Records Administration (NARA). I obtained a copy of these tapes from NARA.
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2.2 Empirical Methodology

The introduction of new airline routes that reduce the travel time between plants and head-

quarters makes it easier for headquarters to monitor plants or gather “soft” information– i.e.,

information that cannot be transmitted through non-personal means. To examine the impli-

cations for plant-level investment and productivity, I use a differences-in-differences approach.

Specifically, I estimate:

yijlt = αi + αt + β × treatmentijlt + γ ′Xijlt + εijlt, (1)

where i indexes plants, j indexes firms, l indexes plant location, t indexes years, yijlt is the

dependent variable of interest (investment or productivity), αi and αt are plant and year fixed

effects, respectively, treatment is a dummy variable that equals one if a new airline route that

reduces the travel time between plant i and its headquarters has been introduced by time t, X

is a vector of control variables, and ε is the error term. Location is defined at the Metropolitan

Statistical Area (MSA) level.6 The main coeffi cient of interest is β, which indicates the effect of

the introduction of new airline routes.

My identification strategy can be illustrated with a simple example. Suppose a company

headquartered in Boston has a plant located in Memphis. In 1985, no direct flight was offered

between Boston Logan International Airport (BOS) and Memphis International Airport (MEM).

The shortest way to connect both airports was an indirect flight operated by Delta Airlines with

a stopover in Atlanta. In 1986, Northwest Airlines opened a new hub in MEM. As part of this

expansion, Northwest started operating direct flights between BOS and MEM as of October

1986. The introduction of this new route reduced the travel time between BOS and MEM and

is coded as a “treatment”of the Memphis plant in 1986.7

6As defined by the Offi ce of Management and Budget, an MSA consists of a core area that contains a

substantial population nucleus, together with adjacent communities that have a high degree of social and economic

integration with that core. MSAs include one or more counties, and some MSAs contain counties from several

states. For instance, the New York MSA includes counties from four states: New York, New Jersey, Connecticut,

and Pennsylvania. Since MSAs represent economically integrated areas, they are likely to be affected by the same

local shocks. By definition, the MSA classification is only available for urban areas. For rural areas, I consider

the rural part of each state as a separate region. There are 366 MSAs in the U.S. plus 50 rural areas based on

state boundaries (the District of Columbia has no rural area). For expositional simplicity, I refer to these 416

geographic units as “MSAs.”

7Section 2.3.C describes how the reduction in travel time in this specific example is computed.
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To measure the effect on investment at the Memphis plant, one could simply compare in-

vestment after 1986 with investment before 1986. However, other events in 1986 might have also

affected investment at the Memphis plant. For instance, there might have been a nationwide

surge in investment by U.S. plants– e.g., due to favorable economic conditions or low interest

rates. In that case, an increase in investment at the Memphis plant might not be due to the

new airline route between MEM and BOS. To account for this possibility, I include a control

group that consists of all plants in the U.S. that have not (yet) been treated. (Due to the stag-

gering introduction of new airline routes, a plant remains in the control group until it is treated

(possibly never); see, e.g., Bertrand and Mullainathan, 2003.) I then compare the difference in

investment at the Memphis plant before and after 1986 with the difference in investment at the

control plants before and after 1986. The difference between these two differences is the esti-

mated effect of the introduction of the new airline route between BOS and MEM on investment

at the Memphis plant.

Including a control group accounts for the possibility of economy-wide shocks that are con-

temporaneous with the introduction of the new airline routes. However, since a treatment is

defined at the plant-headquarters level, I can make the identification even tighter by also con-

trolling for local shocks in the plant’s vicinity, thereby separating out the effect of the new airline

routes from the effect of contemporaneous local shocks. Suppose, for instance, another plant,

which is also located in the Memphis area, has its headquarters in Chicago. (Direct flights

between Chicago O’Hare Airport and MEM were offered in each year during my sample.) If

investment at the other Memphis plant also increases in 1986, then an increase in investment at

the original Memphis plant (with headquarters in Boston) might not be due to the new airline

route between MEM and BOS but rather due to a contemporaneous local shock in the Memphis

area. In principle, I could control for such local shocks by including a full set of MSA fixed

effects interacted with year fixed effects. Unfortunately, computational diffi culties make it in-

feasible to estimate a specification with so many fixed effects. Instead, I follow the approach

in Bertrand and Mullainathan (2003) and account for local shocks by including “MSA-year”

controls, which are computed as the mean of the dependent variable in the plant’s MSA in a

given year, excluding the plant itself.

Since a treatment is defined at the plant-headquarters level– meaning each treatment is

uniquely defined by two airport locations– I can make the identification even tighter by also
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controlling for shocks at the firm level. In the above example, suppose the company headquar-

tered in Boston has also other plants that are not located in Memphis. If investment at these

other plants also increases in 1986, then an increase in investment at the Memphis plant might

not be due to the new airline route between MEM and BOS but rather due to a contemporane-

ous shock at the firm level. Analogous to the construction of the MSA-year controls, I account

for firm-level shocks by including “firm-year”controls, which are computed as the mean of the

dependent variable across all of the firm’s plants, excluding the plant itself.8

In addition to accounting for economy-wide shocks, local shocks, and shocks at the firm level,

my framework can address several concerns.

1. An important concern is that the introduction of new airline routes might be the outcome

of lobbying by individual plants or firms experiencing positive investment shocks (“reverse

causality”). This concern is very much minimized here. First, if the investment shock also

affects other plants in the same MSA– e.g., the local economy experiences a boom, which

leads local plants to lobby for a new airline route– then it is already accounted for by the

inclusion of MSA-year controls. Similarly, if the investment shock is at the firm level and

headquarters lobbies for the introduction of a new airline route to a specific plant, then it is

already accounted for by the inclusion of firm-year controls. It remains the possibility that

the investment shock is specific to a single plant who lobbies for the introduction of a new

airline route to its headquarters. In that case, neither MSA-year controls nor firm-year

controls would account for this possibility. However, I provide auxiliary evidence suggesting

that this possibility is rather unlikely. First, I show that investment increases only with a

lag of six to twelve months, meaning there is no effect either before the introduction of a

new airline route or immediately after. Second, I show that my results are robust when I

consider only new airline routes that are the outcome of a merger between two airlines or

the opening of a new hub. Arguably, it is less likely that a single plant is so powerful that

it can successfully lobby for an airline merger or the opening of a new hub.

2. Even if we take as given the result that the introduction of new airline routes leads to an

increase in plant-level investment, there are alternative stories that have little to do with

8Firm-year controls are set to zero for single-unit firms (i.e., firms with a single plant). Since for single-unit

firms the ZIP code of the plant and the ZIP code of headquarters are the same by definition, all treated plants

necessarily belong to multi-unit firms.
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monitoring or information gathering by headquarters. For instance, in the above example,

suppose the new airline route between MEM and BOS leads to an increase in commerce

between the two cities, with the effect that plants located in Memphis have now access

to cheaper input goods from Boston-based suppliers. Or suppose it triggers an increase

in tourism with more visitors now coming from Boston, stimulating local growth in the

Memphis area that benefits, in some indirect way, local plants. In either case, investment

at the Memphis plant might increase for reasons that have nothing to do with monitoring

or information gathering by headquarters.

While I cannot completely rule out such alternative stories, they are unlikely to explain my

results. First, if investment also increases at other Memphis plants, then this possibility

is already accounted for by the inclusion of MSA-year controls. Second, I show that my

results are stronger for plants whose headquarters are more time constrained, consistent

with the notion that the reduction in travel time relaxes the time constraints of managers

(who must regularly travel to plants to monitor them, gather (soft) information, etc.).

Third, I show that my results are stronger for plants operating in soft-information indus-

tries. Likewise, my results are stronger during the earlier years of the sample period, where

other, non-personal, means of monitoring or transmitting information (internet, corporate

intranet, video conferencing) have been either unavailable or less developed (see Petersen

and Rajan (2002) for a similar research question). Fourth, I show that my results are

stronger for plants where information uncertainty is likely to be greater, such as smaller

plants, “peripheral plants” operating in industries that are not the firm’s main industry

(and where headquarters is likely less knowledgeable), and plants operating in industries

with more volatile sales or wages.

3. The time variation in travel time used to construct the treatment dummy comes entirely

from the introduction of new airline routes. In reality, travel time can also vary for other

reasons, such as the introduction of new roads, changes in speed limits, and the expansion of

railroad networks. Unfortunately, lack of comprehensive data makes it diffi cult to account

for such sources of travel time variation. Nevertheless, their omission is unlikely to affect

my results. First, I show that my results are only significant for large reductions in

travel time (at least one hour), which almost always come from long-distance trips, where

air travel is the optimal means of transportation. Second, plants whose travel time to
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headquarters is reduced through the expansion of roads and railroad networks are assigned

to the control group. Thus, to the extent that such alternative sources of travel time

reduction lead to an increase in plant-level investment, their omission would imply that

my results understate the true effects of a reduction in travel time.9

4. I do not consider the termination of existing airline routes, but only the introduction of

new airline routes. Terminations are much less frequent than introductions. Moreover,

since routes that are discontinued are mainly minor regional routes, the resulting increase

in travel time is likely to be modest. In robustness checks, I show that my results are

unchanged if I additionally account for the termination of existing airline routes. Precisely,

I augment the specification in equation (1) by adding a second treatment dummy that

equals one whenever the termination of an existing airline route leads to an increase in

travel time between plants and headquarters. I find that including this second treatment

dummy has no effect on the coeffi cient on the original treatment dummy.

5. My focus on commercial airlines may be too narrow if companies own private jets (or if

they contract with jet charter services). However, if managers use private jets to fly from

headquarters to plants, then the introduction of new airline routes should not matter.

Accordingly, if the effect documented here comes only from a subset of the treatment

group– namely, plants whose headquarters actually makes use of commercial airlines–

while the rest of the treatment group does not respond to the treatment (because private

jets are used), then this merely implies that the treatment dummy will be noisy and its

coeffi cient will be biased toward zero (“attenuation bias”), which only goes against my

finding any significant results.10

9Large reductions in travel time through the expansion of roads and railroad networks are less likely during

my sample period, given that most of today’s road and railroad infrastructure was already in place before the

beginning of my sample in 1977. Most of the railroad network was built prior to WWI. The latest major extension

of the road network was the completion of the Interstate Highway System. Construction began in 1956 after the

enactment of the National Interstate and Defense Highways Act. By 1975, the system was mostly complete

(see Michaels, 2008). In contrast, the airline industry was deregulated early during my sample period (Airline

Deregulation Act of 1978), which triggered an expansion of airline routes in the following decades. Hence, most

of the time series variation in travel time during my sample period is likely due to changes in airline routes, not

due to the expansion of roads and railroad networks.

10A story in which the unobserved use of private jets might explain an increase in investment after the intro-

13



6. My sample spans 29 years of data (from 1977 to 2005). Arguably, the effect of a new

airline route on investment may not be permanent, and whatever happens five or more

years later may not be due to the treatment. To account for this possibility, I use a 10-

year treatment window that begins five years before the treatment and ends five years

after the treatment. However, my results are similar if I use different treatment windows

(6, 8, 12, 14 years) or no treatment window at all, meaning that all plant-year observations

of treated plants are included either before or after the treatment. I also provide direct

evidence on the dynamic effects of the introduction of new airline routes by considering

successive 6-month intervals before and after the treatment. As expected, I find that the

effect becomes weaker approximately 30 months after the treatment.

7. An important concern with the differences-in-differences methodology is that serial cor-

relation of the error term can lead to understated standard errors (Bertrand, Duflo, and

Mullainathan, 2004). In all my regressions, I cluster standard errors at the MSA level.

This clustering not only accounts for the presence of serial correlation within the same

plant, but also for any arbitrary correlation of the error terms across plants in the same

MSA in any given year as well as over time (see Petersen, 2009). My results are similar

if I cluster standard errors at the firm level or at both the MSA and firm level. Finally,

I also obtain similar results if I collapse the data into two periods, before and after the

introduction of a new airline route, using the residual aggregation method in Bertrand,

Duflo, and Mullainathan (2004).

2.3 Definition of Variables

A. Measuring Productivity

My main measure of plant productivity is total factor productivity (TFP). TFP is the difference

between actual and predicted output. Predicted output is the amount of output a plant is

expected to produce for given levels of inputs. To compute predicted output, I use a log-

duction of a new airline route goes as follows. Suppose managers use corporate jets to travel from headquarters

to plants before the introduction of a new airline route. Once the new airline route is introduced, however, the

private jet is no longer needed. As a consequence, the company sells the jet and uses the proceeds to finance new

investment. However, in this case, investment should increase for all plants of the company– or at least for other

plants besides the treated plant– which is already accounted for by the inclusion of firm-year controls.
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linear Cobb-Douglas production function (e.g., Lichtenberg, 1992; Schoar, 2002; Bertrand and

Mullainathan, 2003; Syverson, 2004; Foster, Haltiwanger, and Syverson, 2008). Specifically,

TFP of plant i in year t is the estimated residual from the regression

yit = β0 + βkkit + βllit + βmmit + εit, (2)

where y is the logarithm of output, and k, l, and m are the logarithms of capital, labor, and

material inputs, respectively. To allow for different factor intensities across industries and over

time, I estimate equation (2) separately for each industry and year. Accordingly, TFP can

be interpreted as the relative productivity of a plant within its industry. Industries are clas-

sified using 3-digit SIC codes. (The results are qualitatively similar if I use 2- or 4-digit SIC

codes).11 To match the variables of the production function as closely as possible, I use data

from the longitudinal linkage of the CMF and ASM. Appendix B describes how these variables

are constructed and how inflation and depreciation are accounted for.

In my main analysis, I estimate equation (2) by ordinary least squares (OLS). While this

approach is common in the literature (e.g., Schoar, 2002; Bertrand and Mullainathan, 2003), it

is not uncontroversial. Recent research in industrial organization argues that two econometric

issues arise when production functions are estimated by OLS (for a review, see Ackerberg et

al., 2007). To illustrate these arguments, it is helpful to decompose the error term in equation

(2) into two components: εit = ωit + ηit. While both components are unobservable to the

econometrician, only ηit is unobservable to the plant. The other component, ωit, represents

productivity shocks that are observed or predictable by the plant at the time when it makes

its input decisions. Intuitively, ωit may represent variables such as the expected downtime due

to machine breakdowns or temporary productivity losses due to the integration of newly hired

workers. A classic endogeneity problem arises here since the plant’s optimal choices of inputs

kit, lit, and mit will generally be correlated with the observed or predictable productivity shock

11Until 1996, SIC codes were the basis for all Census Bureau publications. Since 1997, the Census Bureau has

been using the North American Industry Classification System (NAICS). SIC codes were not discontinued until

the 2002 Census, though. From 2002 to 2005, SIC codes are obtained as follows. For plants “born”before 2002,

I use the latest available SIC code. For plants born between 2002 and 2005, I convert NAICS codes into SIC

codes using the concordance table of the Census Bureau. The concordance is not always one-to-one, however.

Whenever a NAICS code corresponds to multiple SIC codes, I use the SIC code with the largest shipment share

within the NAICS industry. Shipment shares are obtained from the 1997 CMF, which reports both NAICS and

SIC codes.
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ωit. As a consequence, OLS estimates of the coeffi cients in equation (2) will be biased and

inconsistent. This endogeneity problem is often referred to as “simultaneity problem.”

The second endogeneity issue, the “selection problem,”arises if a plant whose observed or

predictable productivity shock ωit is below a certain threshold decides to shut down. Since plants

have knowledge of ωit prior to this decision, surviving plants will have ωit drawn from a selected

sample. The selection criteria may be determined by the production inputs. For instance, plants

with larger capital stock may afford to survive longer at lower productivity levels, inducing a

negative correlation between ωit and kit in the sample of surviving plants. This correlation, in

turn, renders the OLS estimates biased and inconsistent.

A variety of techniques have been proposed to address the simultaneity and selection prob-

lems. In robustness checks, I use the structural techniques suggested by Olley and Pakes (OP,

1996) and Levinsohn and Petrin (LP, 2003). OP and LP address the simultaneity problem by

using investment and intermediate inputs, respectively, to proxy for the productivity shock ωit.

The intuition is that profit-maximizing behavior induces plants expecting positive productivity

shocks to increase investment and use more intermediate inputs, respectively.12 The selection

problem is addressed by estimating plant survival propensity scores. Appendix C describes how

OP’s and LP’s techniques are implemented using the plant-level data in my study. Regardless of

whether I use the techniques of OP or LP, however, I find that my results are virtually identical

to those when I estimate TFP by OLS.

TFP measures rely on structural assumptions (e.g., Cobb-Douglas production function). In

robustness checks, I use two alternative measures of plant performance that are independent of

structural assumptions: operating margin (OM) and return on capital (ROC). The numerator

of OM is the value of shipments minus labor and material costs. This numerator is then divided

by the value of shipments. All dollar values are expressed in 1997 dollars.13 ROC is defined

similarly, except that the numerator is divided by the value of capital. OM and ROC are

12OP’s technique requires that investment levels be always strictly positive. This requirement comes at a cost,

since discarding plant-year observations with zero investment results in an effi ciency loss. The primary motivation

of LP’s procedure is to mitigate this effi ciency loss by focusing on plants’choices of intermediary inputs. Unlike

investment, intermediary inputs are rarely zero.

13Deflators for shipments and material costs are available at the 4-digit SIC level from the NBER-CES Man-

ufacturing Industry Database. Deflators for labor costs are available at the 2-digit SIC level from the Bureau of

Economic Analysis.
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industry-adjusted by subtracting the industry median in a given 3-digit SIC industry and year.

A limitation of the productivity measures used in my study is that they do not include head-

quarters and other firm-level costs that are not reported at the plant level (e.g., overhead costs,

research and development expenditures). As a consequence, the measures may overestimate

the true productivity of plants of companies with high firm-level costs. However, by including

the firm-year control in regression (1), I account for any time-varying firm-level component of

productivity. Hence, the omission of firm-level costs at the plant level is unlikely to affect any

of the regression coeffi cients.14

Finally, all of the productivity measures are subject to extreme values. To avoid that outliers

drive my results, I winsorize all productivity measures at the 2.5th and 97.5th percentiles of their

empirical distribution.

B. Measuring Investment

Investment is defined as total capital expenditures divided by capital stock. Both the numerator

and denominator are expressed in 1997 dollars.15 Investment is industry-adjusted by subtracting

the industry median in a given 3-digit SIC industry and year. To mitigate the effect of outliers,

I winsorize investment at the 2.5th and 97.5th percentiles of its empirical distribution.

C. Measuring Travel Time Reductions

The itinerary between headquarters and plants is constructed to reflect as closely as possible

the decision-making of managers. I assume that managers are time constrained and that they

make optimal decisions. Accordingly, they choose the route and means of transportation (car,

plane) that minimizes the travel time between headquarters and plants.

14Likewise, the productivity measures used in my study may misrepresent a plant’s true productivity if transfer

prices between vertically related segments of the same firm are strategically distorted. To address this concern,

I have constructed a matrix of vertical relatedness from the Input-Output tables of the Bureau of Economic

Analysis. Based on this matrix, I identify upstream and downstream segments using the procedure described in

the Appendix of Ozbas and Scharfstein (2010) and construct dummy variables indicating whether a plant belongs

to a downstream or upstream segment. I obtain virtually identical results when these dummies are included in

my regressions.

15Capital expenditures are deflated by the 4-digit SIC investment deflator from the NBER-CES Manufacturing

Industry Database. Appendix B describes how real capital stock is constructed.

17



To identify the location of headquarters and plants, I use 5-digit ZIP codes from the LBD.

(More precisely, I use the latitude and longitude corresponding to the centroid of the area

spanned by the ZIP code.) The travel time between any two ZIP codes is computed as follows.

Using MS Mappoint, I first compute the travel time by car (in minutes) between the two ZIP

codes. This travel time is then used as a benchmark for comparison with the travel time by air

based on the shortest airline route. Whenever traveling by car is faster, air transportation is

ruled out by optimality, and the relevant travel time is the driving time.

To determine the shortest airline route between any two ZIP codes, I use the itinerary

information from the T-100 and ER-586 data. The shortest airline route minimizes the total

travel time between plant and headquarters. The total travel time consists of three components:

1) the travel time by car between headquarters and the origin airport, 2) the duration of the

flight, including the time spent at airports and, for indirect flights, the layover time, and 3) the

travel time by car between the destination airport and the plant. The travel time by car to and

from airports is obtained from MS Mappoint. Flight duration per segment is obtained from the

T-100 and ER-586 data (average ramp-to-ramp time of all flights performed between any two

airports). The only unobservable quantities are the time spent at airports and the layover time.

I assume that one hour is spent at the origin and destination airports together and that each

stopover takes another hour.16

None of my results are sensitive to the assumptions made about the time spent at airports

and the layover time. I obtain virtually identical results when making different assumptions.

Hence, while the assumptions reflect what I believe are sensible estimates (see footnote 16), they

do not impact any of my results. Also, note that while the assumptions affect the measurement

of total travel time, they have no impact on the construction of the treatment dummy. A

16The rationale behind these assumptions is as follows. First, most airlines require passengers to check in at

least 30 minutes before departure. This cutoff is a lower bound for the time spent at the origin airport. To the

extent that managers are time-constrained, they minimize the time spent at the airport. Accordingly, I assume

that managers arrive at the origin airport about 10 to 20 minutes before the 30-minute cutoff and only need

another 10 to 20 minutes to exit the destination airport. In total, these timing conventions correspond to an

average time of approximately one hour at the origin and destination airports together. Second, most airlines

have a minimum connection time of 30 minutes. In many cases, however, the actual connection time is longer.

To obtain an estimate of the average layover time, I randomly selected 100 indirect flights from the most recent

year of my sample and used the airlines’current websites to obtain estimates of the layover time. The average

layover time based on these calculations is approximately one hour.
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“treatment,” as defined in my study, is the introduction of a new airline route that reduces

the travel time between headquarters and plants. Thus, the identification comes entirely from

changes in travel time. When comparing different airline routes, the time spent at the origin

and destination airports therefore “cancels out,”as it is the same for all routes. Likewise, the

layover time only affects the magnitude of the change in travel time, but not whether a change

in travel time is coded as a treatment. For example, if a direct flight replaces an indirect flight,

the resulting total airborne time is shorter regardless of the assumed duration of the layover.

As an illustration of how the travel time is computed and how the treatment dummy is

constructed, consider the example from Section 2.2. In this example, I consider a company

headquartered in Boston with a plant located in Memphis. In 1985, no direct flight was offered

between BOS and MEM. The shortest way to connect both airports was an indirect flight

operated by Delta Airlines with a stopover in Atlanta. The total travel time, including travel

to and from the airports by car, was 420 minutes.17 In 1986, Northwest Airlines opened a new

hub in MEM. As part of this expansion, Northwest started operating direct flights between BOS

and MEM as of October 1986. The travel time associated with this new route is 290 minutes.18

Hence, the introduction of the new direct route from BOS to MEM reduced the travel time

from headquarters to the Memphis plant by 130 minutes (32% of the original travel time) and

is therefore coded as a “treatment”of the Memphis plant in 1986.

I sometimes refer to the physical distance between headquarters and plants. The physical

distance in miles (“mileage”) is computed using the great-circle distance formula used in physics

and navigation. The great-circle distance is the shortest distance between any two points on the

surface of a sphere and is obtained from the formula

r × arcos
(
sinλP sinλHQ + cosλP cosλHQ cos[φP − φHQ]

)
,

17 In this example, I assume that headquarters are located in the financial district of Boston (ZIP code 02110)

and that the plant is located in an industrial area in Memphis (ZIP code 38115). The total travel time (in

minutes) is obtained as follows: 10 (driving time from headquarters to BOS) + 180 (flight time from BOS to

ATL) + 95 (flight time from ATL to MEM) + 15 (driving time from MEM to the plant) + 60 (time spent at BOS

and MEM airports) + 60 (layover at ATL) = 420 minutes. Note that, in this example, the driving time between

headquarters and plant if the entire trip is done by car is 1,175 minutes. Hence, air transportation is clearly the

optimal means of transportation.

18The travel is computed as follows: 10 (driving time from headquarters to BOS) + 205 (flight time from

BOS to MEM) + 15 (driving time from MEM to the plant) + 60 (time spent at BOS and MEM airports) = 290

minutes.

19



where λP (λHQ) and φP (φHQ) are the latitude and longitude of the ZIP code of the plant

(headquarters), respectively, and r is the approximate radius of the Earth (3,959 miles).

2.4 Summary Statistics

Table 1 provides summary statistics for all 1,291,280 plant-year observations (column [1]) and

separately for plants that are treated during the sample period (column [2], “Eventually New

Airline Route”) and plants that are never treated during the sample period (column [3], “No

New Airline Route”). For each plant characteristic, the table reports the mean and standard

deviation (in parentheses).19 All dollar values are expressed in 1997 dollars.

Column [1] shows that the average plant has shipments of about $50 million and employs 213

workers. It is located 312 miles away from headquarters, which corresponds to a travel time of

slightly over 2 hours (based on the optimal route and means of transportation). Furthermore, the

average plant belongs to a firm that employs a total of 9,203 workers, owns 111 establishments,

and operates in eight different 3-digit SIC industries.20

The sample of eventually treated plants accounts for a relatively small fraction of the total

plant-year observations (about 5.5%). That the group of eventually treated plants is relatively

small is not a concern, however. Reliable identification of the treatment dummy only requires

that this group be suffi ciently large in absolute terms. A sample of 70, 467 plant-year observations

is a suffi ciently large sample.21

The summary statistics also indicate that eventually treated plants differ from non-treated

19Due to the Census Bureau’s disclosure policy, I cannot report median or other quantile values.

20The number of establishments (“plants”) reported here differs from the number in Bertrand and Mullainathan

(2003, p. 1054), who report an average of 45 plants per firm. The reason is that I use the LBD to obtain the

number of establishments, which includes not only all manufacturing plants but all (i.e., manufacturing and non-

manufacturing) plants. In contrast, Bertrand and Mullainathan only report the number of manufacturing plants

per firm.

21The treatment group is based on 10,533 treated plants. Thus, on average, I have about seven years of data

for each treated plant. Since I consider a symmetric window of five years before and after the introduction of

a new airline route, the maximum possible number of years is ten by construction. Missing years can occur for

three reasons. First, as stated in Section 2.1, the ASM is a rotating probability sample. While plants with more

than 250 employees are included in each ASM year, plants with fewer than 250 employees are randomly selected

every five years. Second, plants can be acquired by other firms after the treatment. Third, a small number of

plant-year observations is lost due to missing values of the variables used in the regressions. I have verified that

my results are robust if I include only plants for which I have data for the entire 10-year treatment window.
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plants in important ways. Specifically, eventually treated plants are larger, belong to larger

firms, and are located farther away from headquarters. All of these differences make sense

intuitively. In order to be treated, a plant needs to be suffi ciently far away from headquarters,

so that air travel is the optimal means of transportation. (The average distance to headquarters

is 854 miles in column [2], while it is only 281 miles in column [3].) However, plants that are

located farther away from headquarters are often part of larger companies that own many, and

bigger, plants, and that operate in many different industries. As the firm-level statistics in

Table 1 show, eventually treated plants belong to parent companies that are 2.6 times bigger

(measured by employees), have 2.8 times more plants, and operate in more than twice as many

industries as the parent companies of plants that are never treated.

The differences between eventually treated plants and non-treated plants are not the result

of the introduction of new airline routes, as they exist even before the introduction of these

new routes. That said, they raise the important question of whether the control group is an

appropriate one. There are several reasons why this should not be a serious concern. First, I

control for plant size and age in all my regressions. (I could additionally control for firm size and

age, and the results would be virtually unchanged.) Second, due to the staggered nature of the

introduction of new airline routes, eventually treated plants are first in the control group and

only later– once they have been treated– in the treatment group. This is the same approach

as in Bertrand and Mullainathan (2003). Third, again following Bertrand and Mullainathan

(2003), I show in robustness checks that my results are unchanged if I restrict the sample to

the 70,467 plant-year observations of eventually treated plants. Fourth, as is shown in Table 3

below, I obtain virtually identical results if I allow time shocks to differentially affect plants of

different size by interacting plant size with a full set of year dummies.

The 70,467 plant-year observations in column [2] of Table 1 correspond to 10,533 treated

plants. In Table 2, I provide auxiliary information about the nature of the treatments. New

airline routes can be classified into four categories: 1) “Direct to Direct”: a new direct flight

using a different route replaces a previously optimal direct flight (e.g., the new direct flight uses

an airport that is closer to headquarters or the plant); 2) “Indirect to Indirect”: a new indirect

flight using a different route replaces a previously optimal indirect flight (e.g., the new indirect

flight has only one stopover, while the previously optimal indirect flight had two stopovers); 3)

“Indirect to Direct”: a new direct flight replaces a previously optimal indirect flight (e.g., the
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new direct flight from BOS to MEM in the above example); 4) “Road to Flight”: a new direct

or indirect flight replaces car travel as the previously optimal means of transportation.

For all treated plants (column [1]) and separately also for each of the above four categories

(columns [2] to [5]), Table 2 reports the average distance in miles between headquarters and

plants, the average travel time before and after the introduction of the new airline route, and

the average travel time reduction, both in absolute and relative terms. As column [1] shows,

the average travel time reduction across all treated plants is 1 hour and 43 minutes, which

amounts to a reduction of 25%. The breakdown in columns [2] to [5] shows that there is

heterogeneity across the four categories. The category “Indirect to Indirect” accounts for the

largest reduction in travel time (2 hours and 26 minutes), followed by the category “Indirect to

Direct”(2 hours and 7 minutes) and the category “Direct to Direct”(1 hour and 12 minutes).

Larger reductions in travel time are associated with longer physical distances (1,211, 942, and

726 miles, respectively). Finally, the category “Road to Flight”only applies to a small subset of

treated plants (609 plants) whose location is relatively close to headquarters (191 miles), which

explains why for these plants travel by car was previously the optimal means of transportation.

Not surprisingly, the average reduction in travel time is small for this category (47 minutes).

3 Results

3.1 Main Results

Table 3 presents the main results. All regressions include plant and year fixed effects. Standard

errors are clustered at the MSA level.22 Column [1] shows the effect of the introduction of new

airline routes on investment. Investment is defined as capital expenditures divided by capital

stock and is industry-adjusted at the 3-digit SIC level. As is shown, the coeffi cient on the

treatment dummy is 0.008, which implies that investment increases by 0.8 percentage point

on average. The coeffi cient is statistically highly significant. It is also significant in economic

terms. Given that the sample mean of investment is 0.10 (treated and non-treated plants alike),

an increase of 0.8 percentage points implies that investment increases by 8%.

In columns [2] and [3], I examine the robustness of this result to using alternative speci-

22As mentioned earlier, my results are similar if I cluster standard errors at the firm level or at both the MSA

and firm level. I also obtain similar results if I collapse the data into two periods, before and after the introduction

of a new airline route, using the residual aggregation method in Bertrand, Duflo, and Mullainathan (2004).
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fications. In column [2], I account for the possibility of local shocks (by including MSA-year

controls) and shocks at the firm level (by including firm-year controls). I also control for plant

age and size. MSA- and firm-year controls are defined in Section 2.2. Age is the logarithm of

one plus the number of years since the plant is covered in the LBD. Size is the logarithm of

the number of employees. As is shown, the results are not sensitive to the inclusion of control

variables. In fact, the coeffi cient on the treatment dummy is slightly larger (0.009). In column

[3], I allow time shocks to differentially affect plants of different size by interacting plant size

with a full set of year dummies. Again, this has little impact on my results.23

Overall, I find that the introduction of new airline routes leads to an increase in plant-level

investment. This result is consistent with models of irreversible investment predicting a negative

association between information uncertainty and investment (e.g., Arrow, 1968; Bernanke, 1983;

McDonald and Siegel, 1986; Pindyck, 1988; Dixit and Pindyck, 1994) as well as capital budgeting

models predicting that information asymmetry between plants (or divisions) and headquarters

leads to underinvestment (e.g., Bernardo, Cai, and Luo, 2001, 2004).

An important question is whether investment is effi cient. While neoclassical models of invest-

ment generally presume effi ciency, a class of models in the organizational and capital budgeting

literature argues that investment decisions within firms are distorted by lobbying and rent-

seeking activities (e.g., Milgrom, 1988; Meyer, Milgrom, and Roberts, 1992; Rajan, Servaes, and

Zingales, 2000; Scharfstein and Stein, 2000). For instance, it could be the case that investment

does not increase because information uncertainty (or asymmetry) is reduced, but rather be-

cause the introduction of new airline routes makes it easier for plant-level managers to lobby

headquarters for bigger capital budgets. In this case, however, the increase in investment should

be ineffi cient, a result that has been emphasized by the rent-seeking literature.24

To examine the implications for effi ciency, I re-estimate the specifications in columns [1] to

[3] with TFP as the dependent variable. The results, which are shown in columns [4] to [6], are

inconsistent with theories of ineffi cient investment. Across all three specifications, the coeffi cient

on the treatment dummy is highly significant. The coeffi cient lies between 0.013 and 0.014, which

23 I also obtain similar results if I interact year dummies with other plant characteristics from Table 1 (excluding

capital expenditures and capital stock, which enter into the definition of the dependent variable).

24 In a follow-up paper (Giroud and Mueller, 2010), I explore this issue further by looking at investment

spillovers across different plants of the same firm. The follow-up paper also looks at aggregate effects at the firm

level, showing that TFP increases not only at the treated plant but at the firm level overall.
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implies an increase in plant-level productivity of 1.3% to 1.4%. In robustness checks, I show

how this effect on TFP also translates into other measures of performance, such as cash-flow

based measures (return on capital and operating margin). Further evidence is also provided in

Table 4 below, where I show that TFP increases only with a lag of six months after the increase

in investment.

In the remainder of this paper, I use the specification in columns [2] and [5]– which includes

MSA- and firm-year controls, plant age, and plant size– as my baseline specification. However,

all my results are similar if I exclude these four controls (see, e.g., columns [1] and [4] of Table

1), if I include only a subset of the controls, or if I additionally control for firm age and size.

3.2 Dynamic Effects of New Airline Routes

An important concern is that the introduction of new airline routes might be the outcome of lob-

bying by individual plants or firms experiencing positive investment shocks (“reverse causality”).

As discussed earlier, the inclusion of MSA- and firm-year controls accounts for the possibility

of investment shocks at the MSA and firm level, respectively. It remains the possibility that

the investment shock is specific to a single plant who lobbies for the introduction of a new

airline route to its headquarters. In the following, I test an implication of this hypothesis (see

Bertrand and Mullainathan (2003) for a similar test). Precisely, if a plant experiences a positive

investment shock prior to the introduction of a new airline route, then I should find an “effect”

already before the new route is introduced.

To examine this hypothesis, I study in detail the dynamic effects of the introduction of new

airline routes. Given that annual records in the CMF and ASM are measured in calendar years,

the end month of each plant-year observation is December. Since the T-100 and ER-586 segment

data are at monthly frequency, this means I know precisely in which month a new airline route

is introduced. Thus, I am able to reconstruct how many months before or after the introduction

of a new airline route a given plant-year observation is recorded. For instance, consider again

the example from Section 2.2, where a new direct flight between MEM and BOS is introduced

in October 1986. In that case, the 1985 observation of the Memphis plant with headquarters in

Boston is recorded nine months before the treatment, the 1986 observation of the same plant is

recorded three months after the treatment, the 1987 observation of the same plant is recorded

15 months after the treatment, and so on.

24



By exploiting the variation in the months in which new airline routes are introduced, I can

replace the treatment dummy in equation (1) with a set of dummies indicating the time interval

between plant-year observation and treatment. Specifically, I use a set of eight dummies. The

first dummy, “Treatment (-12m, -6m),” equals one if the plant-year observation is recorded

between 12 and six months before the treatment. The other dummies are defined accordingly

with respect to the intervals (-6m, 0m), (0m, 6m), (6m, 12m), (12m, 18m), (18m, 24m), (24m,

30m), and 30 months and beyond (“30m +”), respectively.

Table 4 shows the results. The main variables of interest are Treatment (-12m, -6m) and

Treatment (-6m, 0m), which measure the “effect”of new airline routes prior to their introduction.

Finding such an “effect”would be symptomatic of reverse causation. As column [1] shows, the

coeffi cients on both variables are small and insignificant. What is more, the coeffi cient on

Treatment (0m, 6m), which captures the effect of new airline routes within the first six months

after their introduction, is also insignificant. The only way to reconcile a lobbying story with

these results is to argue that plants lobby for the introduction of new airline routes in anticipation

of investment shocks that occur in the distant the future. For instance, suppose it takes, say, six

months between the lobbying and the introduction of a new airline route. In this case, reverse

causation would imply that plants lobby for new airline routes in anticipation of investment

shocks that occur 12 to 18 months later. While not impossible, this is unlikely. Nevertheless, in

Section 4.1, I provide further evidence that is inconsistent with a lobbying story. Specifically, I

show that my results are robust to considering only new airline routes that are the outcome of a

merger between two airlines or the opening of a new hub. Arguably, it is less likely that a plant

is so powerful that it can successfully lobby for an airline merger or the opening of a new hub.

The other estimates in column [1] provide further insights into the dynamic effects of the

introduction of new airline routes. While the effect becomes significant after six months, it

remains initially small in economic terms (0.005). It is only after 12 months that the effect

becomes large and highly significant. Specifically, the coeffi cients on Treatment (12m, 18m),

Treatment (18m, 24m) and Treatment (24m, 30m) are between 0.013 and 0.014, which implies

that investment increases by 13% to 14%. In the longer run (i.e., 30 months and beyond), the

magnitude of the coeffi cient reverts to a lower level (0.009), suggesting that the effect of the

introduction of new airline routes becomes weaker over time.

Column [2] reports the results for TFP as the dependent variable. The dynamic pattern
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is similar to above, except that the increase in TFP occurs with a lag of six months after the

increase in investment. As above, the effect on TFP becomes weaker in the longer run.

3.3 Small versus Large Reductions in Travel Time

Any new airline route that reduces the travel time between headquarters and plants is coded as

treatment, regardless of the magnitude of the travel time reduction. Arguably, the treatment

effect may be stronger for larger reductions in travel time. To examine this hypothesis, I interact

the treatment dummy in equation (1) with a set of five dummies indicating the magnitude of the

travel time reduction: (∆t ≤ 30 min), (∆t > 30 min and ∆t ≤ 1 hr), (∆t > 1 hr and ∆t ≤ 1 hr

30 min), (∆t > 1 hr 30 min and ∆t ≤ 2 hr), and (∆t > 2 hr).25 The results are shown in Table

5. In column [1], the dependent variable is investment. As is shown, the introduction of new

airline routes has a small and insignificant effect on investment if the travel time reduction is less

than one hour. Accordingly, if the time saving associated with the introduction of new airline

routes is small, managers do not seem to find it worthwhile to change their existing itineraries.

Once the reduction in travel time exceeds one hour, the effect becomes significant. Moreover,

it is monotonic in the magnitude of the travel time reduction. The strongest effect is observed

when the reduction in travel time is more than two hours. In this case, investment increases by

15%, which is almost twice as large as the average treatment effect reported in Table 3.

In column [2], the dependent variable is TFP. The results mirror those in column [1]. The

effect is again monotonic in the reduction in travel time, is strongest when the travel time

reduction exceeds two hours, and is small and insignificant when the travel time reduction is

less than one hour.

4 Robustness

4.1 Hub Openings and Airline Mergers

In Section 3.2, I addressed concerns that the introduction of new airline routes might be the

outcome of lobbying by plants or firms experiencing positive investment shocks (“reverse causal-

ity”). I now present further evidence suggesting that this possibility is unlikely. Specifically, I

25 I obtain similar results if instead of using 30-minute cutoffs, I use quintiles based on the empirical distribution

of the reduction in travel time.
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consider new airline routes that are the outcome of a merger between two airlines or the open-

ing of a new hub.26 Arguably, it is less likely that a plant or firm is so powerful that it can

successfully lobby for an airline merger or the opening of a new hub.

Table 6 provides a list of all airline hubs that were opened during the sample period.

The list is compiled from two sources: newspaper reports and airlines’ annual reports. The

newspaper reports are obtained from various newspaper databases (ProQuest, Factiva, and

Newsbank America’s Newspapers). Specifically, I ran a search for articles that contain the

airline name, the airport name, and the word “hub.” These articles are supplemented with

information about hub openings that airlines self-report in their annual reports. As can be seen,

most of the hub openings date back to the 1980s. In the years following the Airline Deregulation

Act of October 1978, airlines started competing for strategic hub locations. As a result, the

1980s witnessed a substantial increase in the number of hub openings (Ivy, 1993).

Table 7 provides a list of airline mergers that were completed during the sample period. The

list is compiled from the same sources as the list of hub openings and is supplemented with merger

information from Thompson’s Securities Data Corporation (SDC) database. While many airline

mergers were completed during the sample period, I only consider mergers that account for at

least one treatment in my sample. Mergers of small commuter airlines servicing few locations

often fail to satisfy this criterion.27 As can be seen, the pattern of airline mergers mirrors that

of new hub openings. The increase in competition induced by the Airline Deregulation Act of

1978 forced many airlines to file for bankruptcy or merge with another airline. By 1990, this

26 I thank Adair Morse for suggesting the idea to look at hub openings.

27 I apply three additional criteria when compiling the list of airline mergers. First, I only consider mergers

that resulted in an actual merger of the airlines’operations. For example, Southwest Airlines acquired Muse Air

in 1985 and operated it as a fully-owned subsidiary until its liquidation in 1987. Since an integration of the Muse

Air routes into the Southwest network never occurred, I do not code this event as a merger. Second, the year of

the merger listed in Table 7 is the year in which the airlines merged their operations, not the year in which the

merger was consummated. For example, Delta Airlines acquired Western Airlines on December 16, 1986. For a

few months, Western was operated as a fully-owned subsidiary. It is only several months later, on April 1, 1987,

that Western’s operations were merged into the Delta network. Hence, in Table 7, the merger year is 1987. Third,

in two cases, the term “Acquirer Airline”refers to the name of the merged entity, not the actual acquirer. In the

1997 merger of AirTran Airways and ValueJet Airlines, the acquirer was actually ValueJet. However, the merged

carrier retained the AirTran name, brand, and identity. Likewise, in the 1982 merger of Continental Airlines and

Texas International Airlines, the acquirer was Texas Air (the owner of Texas International Airlines). The merged

airline retained the Continental name, however.
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consolidation phase was largely over. As a result, industry-wide concentration increased sharply,

with the nine largest airlines representing a total market share of over 90% of domestic revenue

passenger miles (Goetz and Sutton, 1997).

Based on the list of hub openings and airline mergers, I divide the 10,533 treated plants

into three categories: “hub treatments,” “merger treatments,” and “other treatments.” Hub

treatments involve new airline routes that are introduced by airlines in the same year as they

open a new hub. Merger treatments are defined analogously with respect to airline mergers.28

In total, my sample includes 1,761 hub treatments and 535 merger treatments, which combined

account for 22% of all treated plants.29

In Table 8, I replace the treatment dummy in equation (1) with a set of three dummies

indicating whether the treatment is a hub treatment, merger treatment, or “other”treatment.

In column [1], the dependent variable is investment. In column [2], the dependent variable is

TFP. As is shown, the coeffi cients on all three dummies are economically large and statistically

significant. They are largest for hub treatments, slightly smaller for merger treatments, and

smallest for the “other” treatments. These differences among the coeffi cients are reflective of

the fact that new airline routes that are introduced as part of a hub opening or airline merger

are mostly long-distance routes, which tend to be associated with larger travel time reductions.

As was shown in Table 5, larger travel time reductions are associated with stronger treatment

effects. The average travel time reduction for hub treatments is 2 hours, and the average travel

time reduction for merger treatments is 1 hour and 51 minutes.30 In contrast, the average travel

time reduction for the “other”treatments is 1 hour and 39 minutes. Most importantly, however,

that all three coeffi cients are large and significant is inconsistent with reverse causality arguments

based on individual plants or firms lobbying for the introduction of new airline routes.

28 If a merger treatment coincides with a hub treatment, I classify the event as a hub treatment. For instance,

in 1987, Delta Airlines merged the operations of Western Airlines into their network and opened a new hub in

Salt Lake City on the basis of the former Western hub at the same time.

29Due to Census Bureau’s disclosure policy, I cannot report treatment counts for individual hub openings and

airline mergers.

30The average reduction in travel time of two hours for hub treatments is likely a lower bound. By construction,

layover times are assumed to be constant across airports. However, one of the very benefits of hub airports is to

reduce the layover time of indirect flights. Hence, the actual reduction in travel time due to new hub openings is

likely larger than two hours.
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4.2 Alternative Control Groups

In my baseline regressions, the control group consists of all plant-year observations that have not

been treated by time t. In Table 9, I examine the robustness of my results to using alternative

control groups.

A. Multi-unit Firms

In columns [1] and [2], I exclude single-unit firms, meaning the sample is comprised exclusively

of multi-unit firms. Single-unit firms consist of a single establishment (“unit”), which implies

that the ZIP code of the plant and the ZIP code of headquarters are the same by definition.

Consequently, single-unit firms cannot possibly be affected by the introduction of new airline

routes, which implies they are never in the treatment group. Since the control and treatment

groups should ideally be similar except for the treatment, it is an open question of whether

single-unit firms should be in the control group. As columns [1] and [2] show, my results are

virtually unaffected when single-unit firms are excluded.

B. Eventually Treated Plants

A more serious concern is that eventually treated plants and plants that are never treated during

the sample period differ in important ways. As is shown in Table 1, eventually treated plants

are larger, belong to larger firms, and are located farther away from headquarters. As discussed

previously, these differences make sense intuitively. In order to be treated, a plant needs to be

suffi ciently far away from headquarters, so that air travel is the optimal means of transportation.

However, plants that are located far away from headquarters are often part of larger companies

that own more, and bigger, plants. While these differences are intuitive, they raise the question

of whether the control group is an appropriate one. There are several reasons why this should

not be a serious concern. First, I control for plant size and age in all my regressions. (I could

additionally control for firm size and age, and the results would be unchanged.) Second, due to

the staggered introduction of new airline routes, eventually treated plants are first in the control

group and then in the treatment group. Third, the staggered introduction of new airline routes

allows me to exclude plants that are never treated during the sample period altogether, so that

the control group consists only of eventually treated plants that have not yet been treated by

time t (see Bertrand and Mullainathan (2003) for a similar robustness check). Columns [3] and
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[4] show the results from re-estimating (1) using only the sample of eventually treated plants.

As is shown, the results are qualitatively similar to my baseline results. While the effect on

investment is slightly larger than before (0.011, compared to 0.009 in column [2] of Table 3), the

effect on TFP is slightly smaller (0.010, compared to 0.013 in column [5] of Table 3).

C. Increase in Travel Time

In my baseline specification, I consider only the introduction of new airline routes, not the ter-

mination of existing routes. By construction, plants whose travel time to headquarters increases

due to the termination of existing airline routes are therefore in the control group. Under the

hypothesis that an increase in travel time leads to a decrease in investment and productivity,

this “misclassification”will bias upward the coeffi cient on the treatment dummy, meaning I will

overestimate the effect of the introduction of new airline routes. While this is a valid concern, it

is very much minimized here, for two reasons. First, terminations of existing airline routes are

only relevant for 3,071 plants in my sample. Accordingly, they only account for a small subset

of the control group. Second, my results are unchanged if I assign these plants to a separate

treatment group consisting of plants whose travel time to headquarters increases due to the

termination of existing airline routes. (Analogous to plants whose travel time is reduced due to

the introduction of new airline routes, the plants are first in the control group and then– once

they are treated– in the treatment group.)

Specifically, I augment the specification in equation (1) by including a second treatment

dummy (“increase in travel time”), which equals one whenever the termination of an existing

airline route leads to an increase in travel time between the plant and its headquarters. The

results are reported in columns [5] and [6].31 Not surprisingly, the coeffi cient on the “increase

in travel time”dummy is of the opposite sign as the coeffi cient on the main treatment dummy.

(That the former coeffi cient is statistically weaker is likely due to the fact that it is identified with

much fewer observations.) Most importantly, however, the coeffi cient on the main treatment

dummy is identical to that in my baseline regressions, both for investment and TFP. Hence,

31The number of observations decreases slightly from 1,291,280 to 1,282,228. In the main specification, plant-

year observations of treated plants are restricted to five years before and after the treatment. For consistency, I

apply the same rule to plants that are treated due to an increase in travel time. The results are unchanged if I

use the entire sample of 1,291,280 plant-year observations instead.
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whether I account for increases in travel time is immaterial for my results.32

4.3 Alternative Measures of Productive Effi ciency

My main measure of productivity is TFP. In Table 10, I consider alternative measures of

productive effi ciency. In the first two regressions, I use margin-based measures. In column

[1], the dependent variable is return on capital (ROC). In column [2], the dependent variable

is operating margin (OM). In either case, the results are similar to before. Specifically, the

introduction of new airline routes leads to a significant increase in ROC (OM) by 1.3 (0.9)

percentage points. Given the high correlation of TFP with both ROC (60%) and OM (50%),

this is not surprising.

In columns [3] and [4], I use the structural techniques of Olley and Pakes (OP, 1996) and

Levinsohn and Petrin (LP, 2003), respectively, to estimate the coeffi cients of the Cobb-Douglas

production function. As discussed previously, these methods account for the endogeneity of

input choices as well as selection effects. In either case, the results are similar to before. Again,

this is not surprising, given that the correlation between TFP estimated by OLS and TFP

estimated using OP’s (LP’s) technique is 81% (84%).33

5 Interaction Effects

In this paper, a treatment is the introduction of a new airline route that reduces the travel time

between plants and headquarters. A natural interpretation is that this reduction in travel time

makes it easier for headquarters to monitor plants or gather “soft” information– i.e., informa-

tion that cannot be transmitted through non-personal means (see footnote 3 for a definition).

However, even if we take as given the result that the introduction of new airline routes leads

32Similar to the analysis in Section 4.1, I can focus exclusively on terminations of existing airline routes due

to exogenous reasons, such as hub closings, airline mergers, and bankruptcies. Analogous to what I find in Table

8, the effect is strongest for hub closings and airline mergers. That said, the effect is small and insignificant for

bankruptcies, which is likely due to the limited scope of the bankrupt airlines’operations. (The vast majority of

bankrupt airlines are small regional carriers, meaning the resulting increase in travel time, and thus the treatment

effect, is relatively modest.)

33Since OP’s and LP’s techniques require non-missing lag values of the production factors, the sample size in

columns [3] and [4] of Table 10 is smaller than in Table 3. In addition, OP’s method requires non-zero investment

values, which further reduces the sample size. OP’s and LP’s techniques are described in Appendix C.
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to an increase in plant-level investment, there are alternative stories that have little to do with

monitoring or information gathering. For instance, in the example of the Memphis plant with

headquarters in Boston, suppose the new airline route between MEM and BOS leads to an

increase in commerce between the two cities, with the effect that plants located in Memphis

have now access to cheaper input goods from Boston-based suppliers. Or suppose it triggers

an increase in tourism with more visitors now coming from Boston, stimulating local growth in

the Memphis area that benefits, in some indirect way, local plants. In either case, investment

at the Memphis plant might increase for reasons that have nothing to do with monitoring or

information gathering by headquarters.

While I cannot completely rule out such alternative stories, I believe they are unlikely to

explain my results. First, if investment also increases at other Memphis plants, then this possi-

bility is already accounted for by the inclusion of MSA-year controls. Second, I provide below

auxiliary results that are supportive of an information-type story while, collectively, they are

diffi cult to reconcile with alternative stories. In particular, I show that my results are stronger:

1. for plants whose headquarters are more time constrained, consistent with the notion that

the reduction in travel time relaxes the time constraints of managers (who must regularly

travel to plants to monitor them, gather (soft) information, etc.);

2. for plants operating in soft-information industries;

3. during the earlier years of my sample period, where other, non-personal, means of moni-

toring or transmitting information (internet, corporate intranet, video conferencing) have

been either unavailable or less developed;

4. for plants where the information uncertainty is likely to be greater, such as smaller plants,

“peripheral plants” operating in industries that are not the firm’s main industry (and

where headquarters is likely less knowledgeable), and plants operating in industries with

more volatile sales or wages.

A. Headquarters’Time Constraints

Most alternative stories, including the two stories sketched above, do not involve headquarters.

Accordingly, measures of headquarters’time constraints should have no effect on the results. In
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contrast, if the introduction of new airline routes makes it easier for headquarters to visit plants,

then my results should be stronger for plants whose headquarters are more time constrained. To

examine this hypothesis, I construct two measures of headquarters’time constraints. The first

measure is the number of employees at headquarters divided by the total number of plants of the

company (“Managers/Plants”). The second measure is the number of employees at headquarters

divided by the total distance (in miles) between headquarters and all of the company’s plants

(“Managers/Total Distance”). In either case, the idea is that managers based at headquarters

must regularly visit the company’s plants. The lower is the ratio of managers to plants– or

the greater is the average distance the managers must travel– the more time constrained are

headquarters.

Though employees at headquarters are white-collar employees, not all of them are “man-

agers.” The number of employees at headquarters also includes, e.g., secretaries and clerical

employees working at headquarters. Nevertheless, as long as the number of other employees is

roughly proportional to the number of managers, this measurement error is unlikely to affect

my results. Bearing this limitation in mind, I sort treated plants into two categories, “high

time constraint” and “low time constraint,” indicating whether headquarters’time constraint

lies above or below the median value of all treated plants in the year prior to the treatment.

Using pre-treatment values to sort plants mitigates concerns that the classification is affected

by the treatment itself.

To examine whether my results are stronger for plants whose headquarters are more time

constrained, I interact the treatment dummy in equation (1) with two dummies indicating

whether headquarters’time constraint is low or high. The results are presented in Table 11.

As is shown, the effect of a reduction in travel time on investment is stronger when headquarters

are more time constrained. In column [1], where headquarters’ time constraint is measured

by “Managers/Plants,” the coeffi cient on the interacted treatment dummy is 0.012 when time

constraints are high but only 0.006 when time constraints are low. The difference is significant

at the 5% level (the p-value of the F -statistic is 0.028). The difference becomes even more

pronounced when the measure of time constraints takes into account the geographic dispersion

of plants. In column [3], where headquarters’time constraint is measured by “Managers/Total

Distance,” the coeffi cient on the interacted treatment dummy is 0.013 when time constraints

are high but only 0.005 when time constraints are low. The difference is significant at the 1%
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level (p = 0.002). The results when TFP is the dependent variable (columns [2] and [4]) mirror

those for investment. In sum, my results are stronger for plants whose headquarters are more

time constrained, consistent with the notion that the reduction in travel time relaxes the time

constraints of managers.

B. Soft- versus Hard-information Industries

If the introduction of new airline routes makes it easier for headquarters to gather soft informa-

tion about plants, then my results should be stronger for plants operating in soft-information

industries. In contrast, under most alternative stories, whether a plant operates in a soft- or

hard-information industry is immaterial for the results.

To test this hypothesis, I sort treated plants into soft- and hard-information industries using

the classification in Landier, Nair, and Wulf (2009), which is based on Petersen and Rajan

(2002). In columns [1] and [2] of Table 12, I interact the treatment dummy in equation (1)

with two dummies indicating whether a plant operates in a soft- or hard-information industry.

As is shown, the treatment effect is stronger for plants in soft-information industries. When

investment is the dependent variable, the coeffi cient on the interacted treatment dummy is 0.012

in soft-information industries but only 0.007 in hard-information industries. The difference is

significant at the 10% level (p = 0.079). The results when TFP is the dependent variable mirror

those for investment. Overall, my results are stronger for plants in soft-information industries,

consistent with the notion that the reduction in travel time makes it easier for headquarters to

gather soft information about plants.

C. Innovations in Information Technology

The period from 1977 to 2005 witnessed major innovations in information technology. These

innovations (e.g., internet, corporate intranet, video conferencing) played an important role in

facilitating information flows both within and across company units (for a review, see Dewett

and Jones, 2001), thus reducing the need for headquarters to “physically” travel to plants.

Consequently, if the introduction of new airline routes matters because it makes it easier for

headquarters to visit plants, then my results should be stronger during the earlier years of the

sample period.

To examine this hypothesis, I interact the treatment dummy in equation (1) with three

dummies indicating different time periods: before 1986 (nine years), between 1986 and 1995
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(ten years), and after 1995 (ten years). The results are presented in columns [3] and [4] of

Table 12. As is shown, the treatment effect is stronger during the earlier years of the sample

period. When investment is the dependent variable, the coeffi cient on the interacted treatment

dummy is 0.013 for the pre-1986 period, 0.010 for the period between 1986 and 1995, and only

0.005 for the post-1995 period. The difference between the pre-1986 and post-1995 coeffi cients

is significant at the 5% level (p = 0.012). The results when TFP is the dependent variable are

similar. In sum, as innovations in information technology reduce the need for headquarters to

“physically”travel to plants, the treatment effect becomes gradually weaker.

D. Information Uncertainty at the Plant and Industry Level

If the introduction of new airline routes reduces information uncertainty between plants and

headquarters, then my results should be stronger for plants where the information uncertainty

is likely to be greater. To test this hypothesis, I sort treated plants along five different attributes

that are likely to be correlated with the information uncertainty faced by headquarters.

The first attribute is the relative size of a plant within the company. The idea is that

headquarters has more knowledge about larger plants within the company, and less knowledge

about relatively smaller plants. Relative plant size is defined as the number of employees of the

plant divided by the total number of employees of the company (from the LBD). I sort treated

plants into “small”and “large”plants depending on whether the relative plant size is above or

below the median value across all of the company’s plants in the year prior to the treatment.

The second attribute is whether a plant operates in a “main” or “peripheral” industry of

the company. Main industries are 3-digit SIC industries that account for at least 25% of the

company’s employees in the year prior to the treatment. All other industries are classified as

peripheral.34 The idea is that headquarters has more knowledge about plants operating in the

company’s main industries, for two reasons. First, companies are likely to spend more time and

34The 25% cutoff is the same as in Maksimovic and Phillips (2002), except that I use employees instead of

shipments. Shipments is only available for manufacturing plants in the CMF and ASM. Thus, computing industry

shares based on shipments measures the share of a given industry across all manufacturing industries, not across

all industries within a company. Using employees overcomes this limitation since the LBD reports employees for

all establishments. Nevertheless, I have verified that my results are similar if I restrict the sample to “pure”

manufacturing firms (i.e., firms which exclusively have manufacturing establishments) and determine main and

peripheral industries on the basis of shipments.
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resources developing their core businesses. Second, companies have typically more experience in

their core industries.

The third attribute is whether a plant was acquired by the company during the sample

period (but prior to the treatment). The idea is that headquarters faces higher information

uncertainty with respect to acquired plants as opposed to “own” plants, which the company

built from scratch (or acquired before the sample period).

The fourth attribute is sales volatility within a plant’s industry. Sales volatility is closely

related to the notion of information uncertainty in the theoretical literature on uncertainty and

investment, which often models uncertainty as “demand uncertainty”(e.g., Abel, 1983; Pindyck,

1988). Sales volatility is computed as the standard deviation of annual shipment growth across

all plants in a given 3-digit SIC industry. Treated plants are sorted into industries with high

or low sales volatility depending on whether sales volatility in the plant’s industry lies above or

below the median value across all industries in the year prior to the treatment.

The fifth attribute is wage volatility in a plant’s industry. While sales volatility represents

uncertainty in output markets, wage volatility represents uncertainty in input markets.35 Wage

volatility is computed as the standard deviation of the hourly wage of production workers (pro-

duction worker payroll divided by total production worker hours) across all plants in a given

3-digit SIC industry. Treated plants are sorted into industries with high or low wage volatility

depending on whether wage volatility in the plant’s industry lies above or below the median

value across all industries in the year prior to the treatment.

For each of the five attributes, I interact the treatment dummy in equation (1) with two

dummies indicating the two possible realizations of the attribute (e.g., small and large plants).

Table 13 presents the results for the first three attributes, which all measure information

uncertainty at the plant level. In columns [1] and [2], the attribute is the relative size of a plant

within the company. As is shown, the treatment effect is stronger for relatively smaller plants.

When investment is the dependent variable, the coeffi cient on the interacted treatment dummy

is 0.013 for small plants but only 0.005 for large plants. The difference is significant at the 1%

level (p = 0.001). The results are similar when TFP is the dependent variable.

In columns [3] and [4], the attribute is whether a plant operates in a “main”or “peripheral”

industry of the company. As is shown, the treatment effect is stronger for plants in periph-

35The relationship between wage uncertainty and investment is modeled in, e.g., Hartman (1972).
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eral industries. When investment is the dependent variable, the coeffi cient on the interacted

treatment dummy is 0.014 for plants in peripheral industries but only 0.004 for plants in main

industries. The difference is significant at the 1% level (p = 0.000). The results when TFP is

the dependent variable mirror those for investment.

In columns [5] and [6], the attribute is whether a plant was acquired by the company during

the sample period. Above I argued that headquarters may face greater information uncertainty

with respect to acquired plants, meaning the treatment effect should be stronger. However,

this hypothesis is not supported by the data. As is shown, the coeffi cients on the interacted

treatment dummies are almost identical for acquired and own plants, both for investment and

TFP. A possible explanation is that plants are not acquired randomly. Rather, any acquisition

involves due diligence, so that eventually headquarters may know as much about acquired plants

as it does about own plants. In fact, headquarters may choose to acquire only plants where the

information uncertainty is small (selection effect).

Table 14 presents the results for the last two attributes, which measure information un-

certainty at the industry level. In columns [1] and [2], the attribute is sales volatility within

a plant’s industry. As is shown, the treatment effect is stronger when sales volatility is high.

When investment is the dependent variable, the coeffi cient on the interacted treatment dummy

is 0.013 when sales volatility is high but only 0.006 when it is low. The difference is significant

at the 1% level (p = 0.004). The results are similar when TFP is the dependent variable.

In columns [3] and [4], the attribute is wage volatility within a plant’s industry. As is

shown, the results are qualitatively similar to those for sales volatility. When investment is

the dependent variable, the coeffi cient on the interacted treatment dummy is 0.011 when wage

volatility is high but only 0.007 when it is low. However, while qualitatively similar, the results

are weaker in the sense that the difference between the two coeffi cients is only significant at

the 10% level (p = 0.100). The results when TFP is the dependent variable mirror those for

investment, except that the difference between the two coeffi cients is insignificant.

6 Conclusion

Using the introduction of new airline routes as a source of exogenous variation in headquarters’

information about plants, I examine the effects on plant-level investment and productivity.

Consistent with models of irreversible investment– as well as capital budgeting and contracting
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models predicting underinvestment– I find that a reduction in travel time between plants and

headquarters leads to an increase in plant-level investment and productivity. I also provide

auxiliary results suggesting that the reduction in travel time makes it easier for headquarters to

monitor and gather soft information about plants, as opposed to alternative stories that have

little to do with monitoring or information gathering. Specifically, I show that my results are

stronger for plants whose headquarters are more time constrained, plants operating in soft-

information industries, and plants where information uncertainty is likely to be greater, such as

smaller plants, “peripheral plants”operating in industries that are not the firm’s main industry,

and plants operating in industries with more volatile sales or wages.

In this paper, I focus on plants that are directly affected by the introduction of new airline

routes, i.e., plants whose travel time to headquarters is reduced as a consequence. However,

better monitoring or access to soft information at one plant may have indirect effects on other

plants of the same company. For instance, if the company is financially constrained, it may

have to fund investment at the treated plant by withdrawing funds from other plants. Another

example are “information spillovers”across plants of the same company. For instance, informa-

tion gathered at the treated plant could be relevant for investment at other plants, e.g., plants

operating in the same industry. More generally, that the introduction of new airline routes

might have indirect effects on other plants of the same company raises a whole set of interesting

questions: Does investment at the other plants increase or decrease? And which other plants are

affected (plant and industry attributes)? And does the answer depend on whether the company

is financially constrained? And what is the aggregate effect on investment and TFP at the firm

level? These, as well as many related, questions are currently being examined in a follow-up

paper (Giroud and Mueller, 2010).

Appendix

Appendix A: Location of Headquarters

The primary source of headquarters data is the AES, which contains information on auxiliary

establishments every five years from 1977 to 2002. An auxiliary is any establishment whose prin-

cipal function is to “manage, administer, service, or support the activities of the company’s other

establishments” (U.S. Census Bureau, 1996, p. 133). Auxiliary establishments include head-
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quarters, warehouses, garages, and other facilities primarily engaged in servicing a company’s

operating establishments.

To distinguish headquarters from other auxiliary establishments, I use the selection criteria

of Aarland et al. (2007). Specifically, in the years 1997 and 2002, headquarters are identified by

the 6-digit NAICS industry code 551114.36 In the former years (1977, 1982, 1987, and 1992),

prior to the introduction of NAICS codes, headquarters are identified as those establishments

for which the joint category of management, administrative, and clerical employees dominates

each of the other employment categories.

These criteria do not differentiate between a company’s main corporate headquarters and

regional or divisional administrative offi ces. As a result, these criteria may return more than one

“headquarters” per company. In my manufacturing sample, 20% of the multi-unit companies

have multiple headquarters in the AES. To identify the main headquarters, I supplement the

AES with information from the SSEL. The SSEL contains name and address information for

all U.S. business establishments. This information typically includes a brief description of the

establishment. Accordingly, I search for keywords that explicitly point to the main headquarters

(such as “corporate headquarters”or “company headquarters”). This procedure identifies the

main headquarters for 24% of the companies with multiple headquarters. For the remaining

companies, I supplement the AES with payroll information from the LBD. The main headquar-

ters is then identified as the headquarters with the highest payroll. The intuition behind this

criterion is twofold. First, the main company headquarters is likely to be substantially larger

than regional or divisional administrative offi ces. Second, the main headquarters employs the

CEO and most senior executives of the company, whose salaries are likely to translate into

relatively higher payroll figures.

Finally, not all multi-unit companies have headquarters data in the AES. Since by definition

auxiliary establishments are physically separated from the production facilities, the AES covers

only stand-alone headquarters. For example, headquarters that are integrated into manufactur-

ing plants are classified as manufacturing establishments and appear in the CMF. To determine

36The NAICS Industry 551114 comprises “establishments (except government establishments) primarily en-

gaged in administering, overseeing, and managing other establishments of the company or enterprise. These

establishments normally undertake the strategic or organizational planning and decision-making role of the com-

pany or enterprise. Establishments in this industry may hold the securities of the company or enterprise” (U.S.

Census Bureau, 2000, Appendix B).
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the headquarters location of companies without stand-alone headquarters, I apply similar cri-

teria as above. Specifically, all LBD establishments of the company are matched to the SSEL.

Whenever the name and address information from the SSEL is not suffi cient to determine the

corporate headquarters, I select the establishment with the highest payroll from the LBD (or

highest white-collar payroll from the CMF if all establishments are manufacturing plants). Ar-

guably, the latter criterion is subject to misclassification if, e.g., the headquarters is located in

the smallest plant of the company. Fortunately, the impact of such misclassification is mitigated.

In my sample of manufacturing firms, companies without stand-alone headquarters are mainly

small companies, with only a few plants. These plants are typically located in the same MSA or

county, which makes air travel an unlikely means of transportation between headquarters and

plants. As a consequence, companies without stand-alone headquarters account for only 7% of

the treated plants. The results are unaffected if these plants are excluded from the sample.

To assess the accuracy of the headquarters location obtained from the Census micro data, I

merge my dataset with Compustat using the Compustat-SSEL bridge maintained by the Cen-

sus Bureau. Compustat contains firm-level information on large publicly traded U.S. companies,

including the ZIP code of the company’s headquarters. A drawback is that Compustat’s ZIP

codes are only available for the latest available year of the database (2009), and may therefore

be an incorrect benchmark for companies whose headquarters has moved since the last AES year

(2002). Nevertheless, this inaccuracy will merely understate the actual match between head-

quarters locations from Compustat and the Census micro data. The merged sample consists of

4,045 companies corresponding to 312,774 plant-year observations. The headquarters location is

the same for 84% of the companies, which account for 91% of the plant-year observations. While

this match may be considered satisfactory, I have also verified that my results are qualitatively

similar if I restrict my sample to the publicly traded Compustat firms and use headquarters ZIP

codes from Compustat instead.

Appendix B: Variables of the Production Function

This appendix describes how the variables of the production function are constructed. Unless

otherwise specified, all variables are measured at the plant level and are obtained from the

longitudinal linkage of the CMF and ASM.

Output is total value of shipments plus changes in the value of inventories for finished goods
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and work in process, divided by the 4-digit SIC shipment deflator from the NBER-CES Manu-

facturing Industry Database. Material is the sum of cost of materials and parts, cost of fuels,

cost of purchased electricity, cost of resales, and cost of contract work, divided by the 4-digit SIC

material deflator from the NBER-CES Manufacturing Industry Database. Labor is measured in

“production worker-equivalent hours,” following the procedure in Lichtenberg (1992). Specifi-

cally, labor is calculated as production worker hours times the ratio of total wages (including

supplemental labor costs) to wages of production workers. This procedure assumes that the ratio

of production to non-production wage rates is equal to the ratio of their marginal products.

Following Lichtenberg (1992), capital is calculated using the perpetual inventory method.

This method requires an initial value of real capital stock. For each plant, I select the earliest

available book value of capital. To account for depreciation, I multiply this value by the 2-

digit SIC adjustment factor from the Bureau of Economic Analysis (BEA). This adjustment

factor is the ratio of industry net capital stock in current dollars to industry gross capital

stock in historical dollars. The adjusted book value of capital is then divided by the 4-digit

SIC investment deflator from the NBER-CES Manufacturing Industry Database. If the earliest

available book value of capital corresponds to the year in which the plant was “born” (as

identified by the “birth”flag in the LBD), no adjustment for depreciation is needed. In this

case, the book value is simply divided by the 4-digit SIC investment deflator.

The initial value of real capital stock is then written forward using the recursive perpetual

inventory formula

Kit = Kit−1 × (1− δit) + Iit,

where i indexes plants, t indexes years, K is the value of real capital stock, δ is the 2-digit

SIC depreciation rate from the BEA, and I is capital expenditures divided by the 4-digit SIC

investment deflator. Until the 1997 Census, all necessary variables are available separately for

buildings and machinery. Accordingly, I calculate the capital stock for each asset category, and

add them together to obtain the final measure of capital stock. As of 1997, only aggregate

capital stock variables are available.

Appendix C: Structural Estimation of Total Factor Productivity

In this appendix, I describe how the coeffi cients in equation (2) are estimated using LP and

OP’s techniques. I first describe LP’s technique, which relies on variation in mit to proxy for
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the productivity shock ωit. How to implement OP’s technique is discussed subsequently.

Consider the log-linear Cobb-Douglas production function in equation (2). By decomposing

the error term εit into ωit and ηit, (2) can be rewritten as

yit = β0 + βkkit + βllit + βmmit + ωit + ηit. (3)

Suppose that the demand for material inputs mit is strictly monotonic in ωit conditional on kit

and lit.37 Accordingly, it can be expressed as

mit = ft (ωit, kit, lit) . (4)

The function f (·) is indexed by t to account for time-varying variables that are part of the

state space, but do not vary across plants (e.g., input prices). Since (4) is strictly monotonic in

ωit, it can be inverted to generate

ωit = f−1t (mit, kit, lit) . (5)

Inserting (5) into the production function (3) yields

yit = β0 + βkkit + βllit + βmmit + f−1t (mit, kit, lit) + ηit

= Φit (kit, lit,mit) + ηit. (6)

Estimating equation (6) is the first stage of the procedure.38 Since the function ft (·), and

hence the inverse function f−1t (·), depend on the primitives of the model, the functional form of Φ

is unknown. To overcome this limitation, (6) can be estimated non-parametrically. Specifically,

I estimate (6) by OLS using a third-order polynomial in {kit, lit,mit}. The predicted values from

37LP state conditions under which the demand for material inputs is strictly increasing in ωit.

38Equation (6) is not identical to the first stage equation in the original LP article. In LP, the demand

for material inputs ft (·) does not depend on lit. As a result, the first stage equation is of the form yit =

βllit + φit (kit,mit) + ηit. By treating φit (·) non-parametrically, LP are able to identify βl in the first stage

equation. In a recent article, Ackerberg, Caves, and Frazer (ACF, 2006) argue that lit is collinear with the non-

parametric terms used to approximate φit (·), which may impair the identification of βl. To avoid this collinearity

problem, they propose a modification of LP’s procedure in which βl is not estimated in the first stage, but in

the second stage using lit−1 as instrument. This procedure accommodates the more general case in which labor

enters the demand function for material inputs. In this paper, I overcome the collinearity problem by using ACF’s

modification of LP’s technique. ACF’s critique also applies to OP’s methodology and is addressed similarly.
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this regression are estimates of Φit, denoted by Φ̂it. Combining (3) and (6), the productivity

shock can now be expressed as

ωit (β) = Φ̂it − β0 − βkkit − βllit − βmmit,

where β = (β0, βk, βl, βm)′. In the second stage of the procedure, I assume that the productivity

shock follows a first-order Markov process. Accordingly, ωit is generated by

ωit (β) = g (ωit−1 (β) , pit) + ξit,

where ξit is the innovation in the productivity shock, and pit is the survival propensity score ob-

tained from a probit regression of the exit choice on a third-order polynomial in {kit−1, lit−1,mit−1}.

To obtain an expression for ξit, I regress ωit (β) on a third-order polynomial in {ωit−1 (β) , pit}.

The residuals from this regression are the implied ξit (β)’s. Under the assumption that capital

stock at time t is determined at time t − 1, ξit (β) is orthogonal to kit. Moreover, labor and

material inputs at time t− 1 are uncorrelated with the innovation at time t. The corresponding

moment conditions can be written compactly as

E

ξit (β)


1

kit

lit−1

mit−1



 = 0.

These four moment conditions are used to estimate the four coeffi cients in β using the GMM

criterion.

The estimation technique of OP is similar. Instead of using mit to “proxy” for the pro-

ductivity shock ωit, OP use the logarithm of investment (total capital expenditures divided by

the investment deflator from the NBER-CES Manufacturing Industry Database), denoted by

ιit. Equation (4) is replaced by the optimal investment decision ιit = ft (ωit, kit, lit). OP state

conditions under which ιit is strictly monotonic in ωit. Provided these conditions hold, ft (·) is

invertible and the resulting expression for ωit can be plugged into (3). The remainder of the

procedure mirrors LP’s procedure, with ιit and ιit−1 entering the third-order polynomials used

to estimate Φit and pit, respectively.
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Table 1 

Summary Statistics: Plants and Parent Companies 

 
“All Plants” refers to all plants in the sample. “Eventually New Airline Route” refers to plants that are treated during 

the sample period, i.e., plants whose travel time to headquarters is reduced through the introduction of a new airline 

route. “No New Airline Route” refers to plants that are not treated during the sample period. Total value of ship-

ments, capital stock, and capital expenditures are expressed in 1997 dollars using 4-digit SIC deflators from the 

NBER-CES Manufacturing Industry Database. Capital stock is constructed using the perpetual inventory method 

described in Appendix B. Employees is the number of employees of the plant. Distance to Headquarters is the great-

circle distance between the plant’s ZIP code and the ZIP code of headquarters (in miles). Travel time is the total 

travel time based on the shortest route and fastest means of transportation (car or plane) between the plant’s ZIP 

code and the ZIP code of headquarters (in minutes). Employees (firm-level) is the total number of employees of the 

parent company to which the plant belongs. Number of plants (firm-level) and number of industries (firm-level) are 

the number of LBD establishments and 3-digit SIC industries, respectively, of the parent company to which the plant 

belongs. All figures are sample means across all plant-year observations. Standard deviations are in parentheses. The 

sample period is from 1977 to 2005. 

 

 

Eventually New No New

All Plants Airline Route Airline Route

[1] [2] [3]

Total Value of Shipments 50,196 75,752 48,721

(360,930) (222,685) (367,270)

Capital Stock 20,710 33,615 19,965

(106,473) (118,024) (105,719)

Capital Expenditures 1,791 2,770 1,735

(26,610) (12,423) (27,202)

Employees 213 300 208

(568) (638) (564)

Distance to Headquarters (miles) 312 854 281

(563) (616) (544)

Travel Time (minutes) 126 362 113

(170) (135) (162)

Employees (firm-level) 9,203 22,211 8,452

(32,351) (47,696) (31,070)

Number of Plants (firm-level) 111 279 101

(431) (730) (405)

Number of Industries (firm-level) 8.15 17.41 7.62

(13.01) (15.52) (12.65)

Number of Observations 1,291,280 70,467 1,220,813

 



Table 2 

Summary Statistics: Travel Time Reductions 

 
“All” refers to all treated plants, i.e., plants whose travel time to headquarters is reduced through the introduction of 

a new airline route during the sample period. “Indirect to Indirect” refers to the subset of treated plants for which a 

new indirect flight using a different route replaces a previously optimal indirect flight. “Indirect to Direct” refers to 

the subset of treated plants for which a new direct flight replaces a previously optimal indirect flight. “Direct to Di-

rect” refers to the subset of treated plants for which a new direct flight using a different route replaces a previously 

optimal direct flight. “Road to Flight” refers to the subset of treated plants for which a new direct or indirect flight 

replaces car travel as the previously optimal means of transportation. Distance to Headquarters is the great-circle 

distance between the plant’s ZIP code and the ZIP code of headquarters (in miles). Travel time before is the total 

travel time between the plant’s ZIP code and the ZIP code of headquarters based on the shortest route and fastest 

means of transportation (car or plane) before the introduction of the new airline route (in minutes). Travel time after 

is defined accordingly. ∆ travel time is the difference between travel time after and travel time before, either in mi-

nutes or as a percentage of the travel time before. All figures are sample means across all plants. The sample period 

is from 1977 to 2005. 

 

 

Indirect to Indirect to Direct to Road to

All Indirect Direct Direct Flight

[1] [2] [3] [4] [5]

Distance to Headquarters (miles) 854 1,211 942 726 191

Travel Time Before (minutes) 417 566 466 338 253

Travel Time After (minutes) 314 420 339 266 206

∆ Travel Time (minutes) -103 -146 -127 -72 -47

∆ Travel Time (%) -25% -26% -27% -21% -19%

Number of Observations 10,533 1,911 3,469 4,544 609

 



Table 3 

The Effect of New Airline Routes on Plant-level Investment and Productivity 
 

Investment is the ratio of capital expenditures to capital stock, which is industry-adjusted by subtracting the industry 

median across all plants in a given 3-digit SIC industry and year. Total factor productivity (TFP) is the residual from 

estimating a log-linear Cobb-Douglas production function by Ordinary Least Squares for each 3-digit SIC industry 

and year at the plant level. Treatment is a dummy variable that equals one if a new airline route that reduces the tra-

vel time between the plant and its headquarters has been introduced. MSA-year and firm-year indicate the mean of 

the dependent variable in the plant’s MSA and firm, respectively, excluding the plant itself. Age is the natural loga-

rithm of one plus the number of years since the plant has been in the LBD. Size is the natural logarithm of the num-

ber of employees of the plant. Standard errors are clustered at the MSA level. The sample period is from 1977 to 

2005. Standard errors are in parentheses. *, **, and *** denotes significance at the 10%, 5%, and 1% level, respec-

tively. 

 

 

Dependent Variable:

[1] [2] [3] [4] [5] [6]

Treatment 0.008*** 0.009*** 0.010*** 0.014*** 0.013*** 0.013***

(0.001) (0.001) (0.001) (0.003) (0.003) (0.003)

MSA-year 0.153*** 0.148*** 0.080*** 0.080***

(0.022) (0.022) (0.012) (0.012)

Firm-year 0.205*** 0.205*** 0.186*** 0.186***

(0.006) (0.006) (0.005) (0.005)

Age -0.060*** -0.061*** 0.015*** 0.018***

(0.002) (0.002) (0.002) (0.003)

Size 0.029*** 0.012***

(0.001) (0.002)

Plant Fixed Effects Yes Yes Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes Yes Yes

Size × Year Fixed Effects No No Yes No No Yes

R-squared 0.39 0.41 0.41 0.60 0.61 0.61

Number of Observations 1,291,280 1,291,280 1,291,280 1,291,280 1,291,280 1,291,280

Investment TFP



Table 4 

Dynamic Effects of New Airline Routes 

 
Treatment (-12m, -6m) is a dummy variable that equals one if the plant-year observation is recorded between six and 

12 months before the introduction of the new airline route. Treatment (-6m, 0m), Treatment (0m, 6m), Treatment 

(6m, 12m), Treatment (12m, 18m), Treatment (18m, 24m), Treatment (24m, 30m), and Treatment (30m +) are de-

fined analogously. All other variables are defined in Table 3. Standard errors are clustered at the MSA level. The 

sample period is from 1977 to 2005. Standard errors are in parentheses. *, **, and *** denotes significance at the 

10%, 5%, and 1% level, respectively. 
 

 

Dependent Variable: Investment TFP

[1] [2]

Treatment (-12m, -6m) -0.000 -0.001

(0.003) (0.005)

Treatment (-6m, 0m) -0.001 -0.001

(0.002) (0.004)

Treatment (0m, 6m) 0.003 0.001

(0.003) (0.005)

Treatment (6m, 12m) 0.005** 0.006

(0.002) (0.005)

Treatment (12m, 18m) 0.013*** 0.012**

(0.003) (0.005)

Treatment (18m, 24m) 0.014*** 0.020***

(0.002) (0.004)

Treatment (24m, 30m) 0.014*** 0.020***

(0.003) (0.005)

Treatment (30m +) 0.009*** 0.013***

(0.002) (0.004)

MSA-year 0.153*** 0.080***

(0.022) (0.012)

Firm-year 0.205*** 0.186***

(0.006) (0.005)

Age -0.060*** 0.015***

(0.002) (0.002)

Size 0.029*** 0.012***

(0.001) (0.002)

Plant Fixed Effects Yes Yes

Year Fixed Effects Yes Yes

R-squared 0.41 0.61

Number of Observations 1,291,280 1,291,280

 



Table 5 

Small versus Large Reductions in Travel Time 

 
(∆t ≤ 30 min), (∆t > 30 min and ∆t ≤ 1 hr), (∆t > 1 hr and ∆t ≤ 1 hr 30 min), (∆t > 1 hr 30 min and ∆t ≤ 2 hr), and 

(∆t > 2 hr) are dummy variables indicating the magnitude of the travel time reduction. All other variables are de-

fined in Table 3. Standard errors are clustered at the MSA level. The sample period is from 1977 to 2005. Standard 

errors are in parentheses. *, **, and *** denotes significance at the 10%, 5%, and 1% level, respectively. 

 

 

Dependent Variable: Investment TFP

[1] [2]

Treatment × (∆t ≤ 30 min) 0.003 0.002

(0.004) (0.009)

Treatment × (∆t > 30 min and ∆t ≤ 1 hr) 0.002 0.004

(0.003) (0.005)

Treatment × (∆t > 1 hr and ∆t ≤ 1 hr 30 min) 0.006** 0.012**

(0.003) (0.006)

Treatment × (∆t > 1 hr 30 min and ∆t ≤ 2 hr) 0.014*** 0.017***

(0.003) (0.006)

Treatment × (∆t > 2 hr) 0.015*** 0.019***

(0.002) (0.004)

MSA-year 0.153*** 0.080***

(0.022) (0.012)

Firm-year 0.205*** 0.186***

(0.006) (0.005)

Age -0.060*** 0.015***

(0.002) (0.002)

Size 0.029*** 0.012***

(0.001) (0.002)

Plant Fixed Effects Yes Yes

Year Fixed Effects Yes Yes

R-squared 0.41 0.61

Number of Observations 1,291,280 1,291,280

 



Table 6 

Summary Statistics: Hub Openings 

  
The table provides a list of airline hubs that are opened during the sample period. “Airline” is the name of the airline 

carrier. “City” is the city of the airport in which the new hub is opened (Federal Aviation Administration (FAA) 3-

letter airport codes are in parentheses). “Year” is the year of the hub opening. The list is compiled from newspaper 

reports and airlines’ annual reports. The sample period is from 1977 to 2005. 

 

 

Airline City Year

American Airlines Dallas (DFW) 1981

Piedmont Airlines Charlotte (CLT) 1981

American Airlines Chicago (ORD) 1982

Piedmont Airlines Dayton (DAY) 1982

Trans World Airlines St. Louis (STL) 1982

Western Airlines Salt Lake City (SLC) 1982

Piedmont Airlines Baltimore (BWI) 1983

Republic Airlines Detroit (DTW) 1984

Republic Airlines Memphis (MEM) 1985

America West Airlines Las Vegas (LAS) 1986

American Airlines Nashville (BNA) 1986

Eastern Airlines Philadelphia (PHL) 1986

Northwest Airlines Detroit (DTW) 1986

Northwest Airlines Memphis (MEM) 1986

Northwest Airlines Minneapolis (MSP) 1986

Piedmont Airlines Syracuse (SYR) 1986

United Airlines Washington (IAD) 1986

American Airlines Raleigh-Durham (RDU) 1987

Continental Airlines Cleveland (CLE) 1987

Delta Airlines Salt Lake City (SLC) 1987

American Airlines San Jose (SJC) 1988

Braniff Kansas City (MCI) 1988

American Airlines Miami (MIA) 1989

Delta Airlines Orlando (MCO) 1989

US Airways Baltimore (BWI) 1989

US Airways Charlotte (CLT) 1989

America West Airlines Colombus (CMH) 1991

Trans World Airlines Atlanta (ATL) 1992

United Airlines Los Angeles (LAX) 1997

Midwest Airlines Kansas City (MCI) 2000

 



Table 7 

Summary Statistics: Airline Mergers 

  
The table provides a list of airline mergers that are completed during the sample period and that account for at least 

one treatment during the sample period. The list only includes mergers that result in a merger of the airlines’ opera-

tions. “Acquirer Airline” is the name of the acquiring airline carrier. “Target Airline” is the name of the acquired 

airline carrier. “Year” is the year in which the operations of the two airlines are merged. This list is compiled from 

newspaper reports, airlines’ annual reports, and the Securities Data Corporation (SDC) database. The sample period 

is from 1977 to 2005. 

 

 

Acquirer Airline Target Airline Year

North Central Airlines Southern Airways 1979

Pan American World Airways National Airlines 1980

Republic Airlines Hughes Airwest 1980

Continental Airlines Texas International Airlines 1982

People Express Airlines Frontier Airlines 1985

Alaska Airlines Jet America Airlines 1986

American Airlines Air California 1986

Northwest Airlines Republic Airlines 1986

Piedmont Airlines Empire Airlines 1986

Trans World Airlines Ozark Airlines 1986

Continental Airlines New York Air 1987

Continental Airlines People Express Airlines 1987

Delta Airlines Western Airlines 1987

Braniff Florida Express 1988

US Airways Pacific Southwest Airlines 1988

US Airways Piedmont Airlines 1989

Air Wisconsin Aspen Airways 1990

Delta Airlines Pan American World Airways 1991

Southwest Airlines Morris Air 1994

AirTran Airways ValueJet Airlines 1997

American Airlines Reno Air 1999

American Airlines Trans World Airlines 2001

 



Table 8 

Hub Openings and Airline Mergers 

  
Treatment (Hub) and Treatment (Merger) are dummy variables that equal one if the treatment dummy equals one 

and the new airline route is introduced by an airline in the same year as it opens a new hub or merges operations 

with another airline, respectively. Treatment (Other) is a dummy variable that equals one if the treatment dummy 

equals one and the treatment is not a hub or merger treatment as defined above. All other variables are defined in 

Table 3. Standard errors are clustered at the MSA level. The sample period is from 1977 to 2005. Standard errors are 

in parentheses. *, **, and *** denotes significance at the 10%, 5%, and 1% level, respectively. 

 

 

Dependent Variable: Investment TFP

[1] [2]

Treatment (Hub) 0.017*** 0.019***

(0.002) (0.005)

Treatment (Merger) 0.014** 0.018**

(0.006) (0.009)

Treatment (Other) 0.008*** 0.011***

(0.001) (0.003)

MSA-year 0.153*** 0.080***

(0.022) (0.012)

Firm-year 0.205*** 0.186***

(0.006) (0.005)

Age -0.060*** 0.015***

(0.002) (0.002)

Size 0.029*** 0.012***

(0.001) (0.002)

Plant Fixed Effects Yes Yes

Year Fixed Effects Yes Yes

R-squared 0.41 0.61

Number of Observations 1,291,280 1,291,280

 



Table 9 

Alternative Control Groups 
 

In columns [1] and [2], the sample is restricted to plants that belong to multi-unit firms consisting of more than one 

establishment. In columns [3] and [4], the sample is restricted to plants that are eventually treated—i.e., plants 

whose travel time to headquarters is reduced through the introduction of a new airline route during the sample pe-

riod. Increase in travel time is a dummy variable that equals one if the travel time to headquarters increases during 

the sample period due to the termination of an existing airline route. All other variables are defined in Table 3. Stan-

dard errors are clustered at the MSA level. The sample period is from 1977 to 2005. Standard errors are in paren-

theses. *, **, and *** denotes significance at the 10%, 5%, and 1% level, respectively. 

 

 

Dependent Variable: Investment TFP Investment TFP Investment TFP

[1] [2] [3] [4] [5] [6]

Treatment 0.009*** 0.012*** 0.011*** 0.010*** 0.009*** 0.013***

(0.001) (0.003) (0.002) (0.003) (0.001) (0.003)

Increase in Travel Time -0.005** -0.008*

(0.002) (0.005)

MSA-year 0.133*** 0.090*** 0.084** 0.084** 0.153*** 0.083***

(0.019) (0.015) (0.042) (0.041) (0.022) (0.012)

Firm-year 0.207*** 0.186*** 0.257*** 0.293*** 0.205*** 0.185***

(0.006) (0.005) (0.016) (0.016) (0.006) (0.005)

Age -0.072*** 0.013*** -0.047*** 0.038*** -0.060*** 0.015***

(0.002) (0.003) (0.004) (0.009) (0.002) (0.002)

Size 0.026*** 0.020*** 0.027*** 0.025*** 0.029*** 0.012***

(0.001) (0.002) (0.002) (0.006) (0.001) (0.002)

Plant Fixed Effects Yes Yes Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes Yes Yes

R-squared 0.37 0.61 0.32 0.65 0.41 0.61

Number of Observations 825,097 825,097 70,467 70,467 1,282,228 1,282,228

Multi-unit Firms Eventually Treated Plants Increase in Travel Time

 



Table 10 

Alternative Measures of Productive Efficiency 

 
Return on capital is the total value of shipments minus labor and material costs, divided by capital stock. Operating 

margin is the total value of shipments minus labor and material costs, divided by total value of shipments. All dollar 

values are expressed in 1997 dollars using industry-level deflators from the NBER-CES Manufacturing Industry 

Database and the Bureau of Economic Analysis. Return on capital and operating margin are industry-adjusted by 

subtracting the industry median across all plants in a given 3-digit SIC industry and year. TFP (Olley and Pakes) and 

TFP (Levinsohn and Petrin) are computed using the methodology of Olley and Pakes (1996) and Levinsohn and 

Petrin (2003), respectively, as described in Appendix C. All other variables are defined in Table 3. Standard errors 

are clustered at the MSA level. The sample period is from 1977 to 2005. Standard errors are in parentheses. *, **, 

and *** denotes significance at the 10%, 5%, and 1% level, respectively. 

 

 

Dependent Variable: Return on Operating TFP (Olley TFP (Levinsohn

Capital Margin and Pakes) and Petrin)

[1] [2] [3] [4]

Treatment 0.013*** 0.009*** 0.010*** 0.013***

(0.004) (0.003) (0.004) (0.003)

MSA-year 0.153*** 0.181*** 0.247*** 0.197***

(0.018) (0.069) (0.014) (0.017)

Firm-year 0.219*** 0.309*** 0.399*** 0.355***

(0.008) (0.018) (0.007) (0.008)

Age 0.014*** 0.021*** -0.018*** -0.012***

(0.003) (0.003) (0.005) (0.004)

Size 0.070*** -0.007*** 0.054*** 0.059***

(0.002) (0.002) (0.002) (0.002)

Plant Fixed Effects Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes

R-squared 0.61 0.63 0.62 0.61

Number of Observations 1,291,280 1,291,280 940,064 1,081,893

 



Table 11 

Headquarters’ Time Constraints 

  
In columns [1] and [2], headquarters’ time constraint is measured as the number of employees at headquarters di-

vided by the total number of plants of the company (“Managers/Plants”). In columns [3] and [4], headquarters’ time 

constraint is measured as the number of employees at headquarters divided by the total distance (in miles) between 

headquarters and all of the company’s plants (“Managers/Total Distance”). High time constraint is a dummy varia-

ble that equals one if the measure of headquarters’ time constraint lies above the median value across all treated 

plants in the year prior to the treatment. Low time constraint is defined analogously. All other variables are defined 

in Table 3. Standard errors are clustered at the MSA level. The sample period is from 1977 to 2005. Standard errors 

are in parentheses. *, **, and *** denotes significance at the 10%, 5%, and 1% level, respectively. 
 

 

Dependent Variable: Investment TFP Investment TFP

[1] [2] [3] [4]

Treatment × High Time Constraint 0.012*** 0.015*** 0.013*** 0.015***

(0.002) (0.004) (0.002) (0.003)

Treatment × Low Time Constraint 0.006*** 0.010** 0.005** 0.009*

(0.002) (0.004) (0.002) (0.005)

MSA-year 0.153*** 0.080*** 0.153*** 0.080***

(0.022) (0.012) (0.022) (0.012)

Firm-year 0.205*** 0.186*** 0.205*** 0.186***

(0.006) (0.005) (0.006) (0.005)

Age -0.060*** 0.015*** -0.060*** 0.015***

(0.002) (0.002) (0.002) (0.002)

Size 0.029*** 0.012*** 0.029*** 0.012***

(0.001) (0.002) (0.001) (0.002)

Plant Fixed Effects Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes

R-squared 0.41 0.61 0.41 0.61

Number of Observations 1,291,280 1,291,280 1,291,280 1,291,280

Managers/Plants Managers/Total Distance

 



Table 12 

Soft- versus Hard-information Industries and Innovations in Information Technology 

 
Soft- and hard-information industry are dummy variables that equal one if the plant operates in a soft- and hard-

information industry, respectively, in the year prior to the treatment. The classification of industries into soft- and 

hard-information industries is adopted from Landier, Nair, and Wulf (2009). Pre 1986, Between 1986 and 1995, and  

Post 1995 are dummy variables that equal one if the plant-year observation lies within the specified time interval. 

All other variables are defined in Table 3. Standard errors are clustered at the MSA level. The sample period is from 

1977 to 2005. Standard errors are in parentheses. *, **, and *** denotes significance at the 10%, 5%, and 1% level, 

respectively. 

 

 

Dependent Variable: Investment TFP Investment TFP

[1] [2] [3] [4]

Treatment × Soft-information Industry 0.012*** 0.017***

(0.002) (0.004)

Treatment × Hard-information Industry 0.007*** 0.009**

(0.002) (0.004)

Treatment × Pre 1986 0.013*** 0.019***

(0.002) (0.004)

Treatment × Between 1986 and 1995 0.010*** 0.012***

(0.002) (0.004)

Treatment × Post 1995 0.005** 0.009*

(0.002) (0.005)

MSA-year 0.153*** 0.080*** 0.153*** 0.080***

(0.022) (0.012) (0.022) (0.012)

Firm-year 0.205*** 0.186*** 0.205*** 0.186***

(0.006) (0.005) (0.006) (0.005)

Age -0.060*** 0.015*** -0.060*** 0.015***

(0.002) (0.002) (0.002) (0.002)

Size 0.029*** 0.012*** 0.029*** 0.012***

(0.001) (0.002) (0.001) (0.002)

Plant Fixed Effects Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes

R-squared 0.41 0.61 0.41 0.61

Number of Observations 1,291,280 1,291,280 1,291,280 1,291,280

 



Table 13 

Information Uncertainty at the Plant Level 

 
Large plant is a dummy variable that equals one if the relative size of the plant (number of employees of the plant 

divided by total number of employees of the parent company) lies above the median value across all of the compa-

ny’s plants in the year prior to the treatment. Small plant is defined analogously. Main Plant is a dummy variable 

that equals one if the plant operates in a main industry of the company in the year prior to the treatment. Main indus-

tries are 3-digit SIC industries that account for at least 25% of the company’s employees. Peripheral plant is defined 

analogously with respect to industries that account for less than 25% of the company’s employees. Acquired plant is 

a dummy variable that equals one if the plant is acquired by the company during the sample period and prior to the 

treatment. Own plant is a dummy variable that equals one if the plant is not an acquired plant. All other variables are 

defined in Table 3. Standard errors are clustered at the MSA level. The sample period is from 1977 to 2005. Stan-

dard errors are in parentheses. *, **, and *** denotes significance at the 10%, 5%, and 1% level, respectively. 

 

 

Dependent Variable: Investment TFP Investment TFP Investment TFP

[1] [2] [3] [4] [5] [6]

Treatment × Large Plant 0.005*** 0.008**

(0.002) (0.004)

Treatment × Small Plant 0.013*** 0.017***

(0.002) (0.004)

Treatment × Main Plant 0.004** 0.008**

(0.002) (0.004)

Treatment × Peripheral Plant 0.014*** 0.016***

(0.002) (0.004)

Treatment × Own Plant 0.009*** 0.012***

(0.002) (0.004)

Treatment × Acquired Plant 0.010*** 0.014***

(0.002) (0.004)

MSA-year 0.153*** 0.080*** 0.153*** 0.080*** 0.153*** 0.080***

(0.022) (0.012) (0.022) (0.012) (0.022) (0.012)

Firm-year 0.205*** 0.186*** 0.205*** 0.186*** 0.205*** 0.186***

(0.006) (0.005) (0.006) (0.005) (0.006) (0.005)

Age -0.060*** 0.015*** -0.060*** 0.015*** -0.060*** 0.015***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Size 0.029*** 0.012*** 0.029*** 0.012*** 0.029*** 0.012***

(0.001) (0.002) (0.001) (0.002) (0.001) (0.002)

Plant Fixed Effects Yes Yes Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes Yes Yes

R-squared 0.41 0.61 0.41 0.61 0.41 0.61

Number of Observations 1,291,280 1,291,280 1,291,280 1,291,280 1,291,280 1,291,280

 



Table 14 

Information Uncertainty at the Industry Level 

 
High sales volatility is a dummy variable that equals one if the plant operates in a 3-digit SIC industry whose sales 

volatility lies above the median value across all 3-digit SIC industries in the year prior to the treatment. Sales volatil-

ity is the standard deviation of annual shipment growth across all plants in a given 3-digit SIC industry. High wage 

volatility is a dummy variable that equals one if the plant operates in a 3-digit SIC industry whose wage volatility 

lies above the median value across all 3-digit SIC industries in the year prior to the treatment. Wage volatility is the 

standard deviation of the hourly wage of production workers (production worker payroll divided by total production 

worker hours) across all plants in a given 3-digit SIC industry. Low sales volatility and low wage volatility are de-

fined analogously. All other variables are defined in Table 3. Standard errors are clustered at the MSA level. The 

sample period is from 1977 to 2005. Standard errors are in parentheses. *, **, and *** denotes significance at the 

10%, 5%, and 1% level, respectively. 

 

 

Dependent Variable: Investment TFP Investment TFP

[1] [2] [3] [4]

Treatment × High Sales Volatility 0.013*** 0.018***

(0.002) (0.004)

Treatment × Low Sales Volatility 0.006*** 0.008**

(0.002) (0.003)

Treatment × High Wage Volatility 0.011*** 0.015***

(0.002) (0.004)

Treatment × Low Wage Volatility 0.007*** 0.010***

(0.002) (0.003)

MSA-year 0.153*** 0.080*** 0.153*** 0.080***

(0.022) (0.012) (0.022) (0.012)

Firm-year 0.205*** 0.186*** 0.205*** 0.186***

(0.006) (0.005) (0.006) (0.005)

Age -0.060*** 0.015*** -0.060*** 0.015***

(0.002) (0.002) (0.002) (0.002)

Size 0.029*** 0.012*** 0.029*** 0.012***

(0.001) (0.002) (0.001) (0.002)

Plant Fixed Effects Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes

R-squared 0.41 0.61 0.41 0.61

Number of Observations 1,291,280 1,291,280 1,291,280 1,291,280

 
  

 


