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Abstract

Whether and to what extent environmental regulations influence the competitiveness of firms
remains a hotly debated issue. Using detailed production data from tens of thousands of U.S.
manufacturing plants drawn from Annual Survey of Manufactures, we estimate the effects of
environmental regulations—captured by the Clean Air Act Amendments’ division of counties
into pollutant-specific nonattainment and attainment categories—on manufacturing plants’ total
factor productivity (TFP) levels. We find that among surviving polluting plants, a nonattainment
designation is associated with a roughly 2.6 percent decline in TFP. The regulations governing
ozone have particularly discernable effects on productivity, though effects are also seen among
particulates and sulfur dioxide emitters. Carbon monoxide nonattainment, on the other hand,
appears to increase measured TFP, though this appears to be concentrated among refineries.
When we apply corrections for two likely sources of positive bias in these estimates (price
mismeasurement and sample selection on survival), we estimate that the total TFP loss for
polluting plants in nonattaining counties is 4.8 percent. This corresponds to an annual lost output
in the manufacturing sector of roughly $14.7 billion in 1987 dollars ($24.4 billion in 2009
dollars). These costs have important implications for both the intensity and location of firm
expansions.
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I. Introduction 

Sustainable development has been a popular phrase among policymakers and economists 

for over a decade.  Although a key tenet of maintaining a sustainable development path rests on 

an appropriate measurement of the benefits and costs of providing environmental quality, the 

empirical evidence remains spotty.  For example, on the cost side, an important economy-wide 

link is the relationship between environmental regulation and competitiveness.  The conventional 

wisdom is that stricter environmental standards impose a drag on productivity, hindering firms 

from competing on international markets and discouraging expansion of their domestic 

production activities.  Proponents of this view point to the U.S. experience as evidence: long an 

economy with balanced trade, it began experiencing persistent trade deficits with the onset of 

stricter environmental standards in the 1970s (Jaffe et al., 1995).  But there is an alternative 

view—disseminated within academic circles by Porter (1991), for example—that holds that more 

stringent regulations enhance productivity growth.   

Not surprisingly, the issue has played prominently in policy circles.  In North America, 

environmental considerations played a major role in the NAFTA debate.  Opponents predicted 

that NAFTA would induce U.S. and Canadian firms to move their operations to Mexico, where 

they could better compete on the global market due to lax local environmental regulations.1  

Such capital flows would in turn impact multilateral trade.  Parallel arguments on both sides can 

be found in recent European negotiations, where competitiveness issues played a prominent role 

in discussions of differences in environmental regulations among member states in the context of 

the Single European Act.  Notwithstanding each side’s arguments, the empirical evidence 

remains inconclusive. 

                                                 
1 Ross Perot famously argued that “If NAFTA passes you’ll hear a flushing sound of millions of American jobs 
going south” when debating Al Gore on CNN’s Larry King Show.  Vice President Al Gore’s response was a broad 
appeal based on the Porter (1991) hypothesis.   



 2

In this study, we examine detailed production data from tens of thousands of U.S. 

manufacturing plants drawn from the Annual Survey of Manufactures to investigate air quality 

regulation’s effects on manufacturing productivity.  Following the passage of the 1970 Clean Air 

Act Amendments, the Environmental Protection Agency (EPA) established separate national 

ambient air quality standards—a minimum level of air quality that all counties are required to 

meet—for four criteria pollutants: carbon monoxide (CO), tropospheric ozone (O3), sulfur 

dioxide (SO2), and total suspended particulates (TSPs).  As a part of this legislation, every U.S. 

county receives annual nonattainment or attainment designations for each of the four pollutants.  

The nonattainment designation is reserved for counties whose air contains concentrations of the 

relevant pollutant that exceed the federal standard.  Emitters of the regulated pollutant in 

nonattainment counties are subject to greater regulatory oversight than emitters in attainment 

counties.  Non-polluters are free from regulation in both categories of counties. 

Previous research has found that the nonattainment designations have been associated 

with benefits and costs.  On the benefit side, recent research has found that nonattainment status 

is associated with declines in TSPs and ozone concentrations.  These regulation-induced air 

quality improvements have been connected to higher housing prices and reductions in infant 

mortality (Chay and Greenstone 2003 and 2005).  On the cost side, these regulations are 

associated with reductions in the scope of manufacturing activity (Henderson 1996; Becker and 

Henderson 2002; Greenstone 2002). 

Our work departs from previous research in three fundamental ways.  The first is that by 

measuring the impact on productivity—the amount of output obtained from a given set of 

inputs—we believe that this is the first study to obtain an estimate of the regulation’s economic 
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costs in the manufacturing sector.2  Our results will have a clearer economic interpretation than 

Greenstone’s (2002) finding that nonattainment designations are associated with reductions in 

employment, investment, shipments.  Those results indicate the manufacturing sector shrinks in 

nonattaining counties.  Our results, which focus on productivity effects, speak to the efficiency of 

the manufacturing sector; i.e., given the inputs being used, whether nonattainment changes how 

effectively the sector converts these inputs into outputs.  These estimates can be directly plugged 

into a cost-benefit analysis of the Clean Air Act. 

Second, whereas the bulk of the literature has focused on outcomes in a single industry or 

a small set of industries over a few years (see e.g., Denison, 1979, Barbera and McConnell, 

1990; Gray and Shadbegian, 1995), we analyze data from the entire manufacturing sector over 

several decades.  Because the manufacturing sector contains a large fraction of the economic 

activity subject to air quality regulation, we can gauge not just regulation’s impacts on specific 

producers, but obtain a sense of its aggregate effects over this time period as well. 

Third, this paper uses the principal instruments of the Clean Air Act Amendments 

(CAAAs), the pollutant-specific, county-level attainment/nonattainment designations as its 

measures of regulation.  These four designations are the “law of the land” and capture the 

regional and industry variation that Congress imposed with this legislation.3  In fact, these 

designations govern the writing and enforcement of the plant-specific regulations that restrict the 

behavior of polluters.  Moreover, the simultaneous evaluation of each pollution-specific 

regulation is important, because many plants emitted multiple pollutants and many counties were 

designated in nonattainment for multiple pollutants.  The use of these regulations should address 

                                                 
2 Gollop and Roberts (1983) estimates the economic costs of SO2 regulation in the utility sector during the 1970s.  
They estimate the impact of a different feature of the Clean Air Act Amendments than nonattainment designations. 
3 A few states and localities (e.g., California) have imposed regulations that are stricter than the federal ones.  Any 
regulations over and above the federally mandated ones are unobserved variables in the subsequent analysis. 
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the concern of Jaffe et al. (1995) that previous studies rely on regulation measures that are too 

aggregated (e.g., state-level measures) to detect differences in stringency.4 

Importantly, there is spatial, temporal, and industry-based variation in the impact of the 

regulations associated with nonattainment designations.  Consequently, the analysis exploits 

variation across plants in different industries in the same county and within the same industry 

across counties, as well as variation within plants over time.  These multiple sources of variation 

mean that the resulting estimates are purged of a wide variety of potential confounders.   

We find that among surviving plants in heavily polluting industries, a nonattainment 

designation is associated with a 2.6 percent decline in total factor productivity.  The regulations 

governing ozone have particularly notable effects on productivity.  As we explain below, this 

estimate is very likely an understatement of the true loss in output due to nonattainment 

designations.  When we apply our estimated corrections for this understatement, the total 

estimated drop in affected plants’ productivity is 4.8 percent.  In aggregate, these productivity 

losses lead to lost manufacturing output on the order of $14.7 billion annually in 1987 dollars 

($24.4 billion in 2009 dollars).  The portion of such lost output costs borne by the producers 

themselves will affect both the level and location of production, and as such influence patterns of 

firm expansion and contractions. 

The remainder of our study is organized as follows.  The next section briefly reviews the 

CAAA attainment designation process and its implications for producers.  Section III reviews the 

data.  Section IV presents the empirical specification, and Section V reports the benchmark 

results.  Section VI discusses reasons why our estimates in Section V are likely to understate true 

productivity losses suffered by plants in polluting industries when their county is declared as 

                                                 
4 In the previous literature, authors frequently use survey-based evidence from the Pollution Abatement Costs and 
Expenditures publication (e.g., Gray, 1987; Gray and Shadbegian, 1995).   



 5

nonattaining.  We further interpret our results and conclude in Section VII. 

  

II. The CAAA as the Basis of a Research Design 

A. Background on the CAAAs and Their Enforcement 

Environmental air quality regulation in the U.S. has evolved into an interesting amalgam, 

with the federal government typically setting ambient standards and the states carrying out these 

mandates.  This was not always the case.  Prior to 1970, states and localities were primarily 

responsible for providing environmental quality.  Disappointed with the outcomes associated with 

decentralized control of the environment, federal authorities began to take a more active role in 

environmental regulation with passage of the National Environmental Policy Act and the first Clean 

Air Act Amendments in 1970.  Federal organizations, such as the Environmental Protection Agency 

and the Council on Environmental Quality, were created to administer and enforce these statutes. 

The 1970 CAAA were ambitious, and required that all states meet national ambient air 

quality standards (NAAQS) for certain criteria air pollutants—carbon monoxide, sulfur dioxide, 

total suspended particulates5, and ozone6 (other pollutants, such as lead, have subsequently been 

added to the list).  To do so, states with air quality exceeding the federal guidelines were required 

to submit a State Implementation Plan (SIP) that detailed their plans to bring violating areas into 

compliance.  Given the amount of confusion, and the inadequate resources to carry-out these 

plans, many areas of the country had failed to meet the standards by the 1975 deadline. 

                                                 
5 In 1987 the EPA changed its focus from the regulation of all particulates (i.e., TSPs) to the smaller PM10s, which 
have an aerodynamic diameter equal to or less than 10 micrometers.  In 1997 the PM10 regulation was replaced with 
a PM2.5 one.  
6 There are separate standards for ozone (O3) and nitrogen dioxide (NO2).  In principle, a county could meet one of 
these standards, but not the other.  However, O3 is the result of a complicated chemical process that involves NO2, 
and the vast majority of counties that were nonattainment for NO2 were also nonattainment for O3.  As a result, we 
designated a county nonattainment for O3 if the EPA labeled it nonattainment for either O3 or NO2.  All future 
references to O3 refer to this combined measure.   
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Due to this lack of progress, Congress passed the 1977 CAAA.  The 1977 CAAA 

stipulated that starting in 1978 every county in the U.S. was to be designated annually as being 

in-attainment or out-of-attainment (nonattainment) of NAAQS.  A county’s attainment status 

was to be determined with respect to each of the criteria air pollutants.  If a county is not in 

attainment of the federal standard with respect to one of these pollutants, the state must submit 

periodic comprehensive plans that will lead to attainment status in the near future.  If standards 

are not met in due time, states risk losing federal monies that help to fund state-level public 

goods and services (see, e.g., Becker and Henderson, 2002; Greenstone, 2002).7 

Environmental regulations in nonattainment counties can potentially be very costly for 

plants.  Polluting plants entering or expanding in a county labeled out-of-attainment are subject 

to a standard of “Lowest Achievable Emission Rate (LAER)” without consideration of cost for 

all investments.  These abatement expenditures potentially run into the millions of dollars and 

represent a significant cost for firms in pollution intensive sectors.  Further, emissions from new 

investment must be offset by emissions reductions from an existing source within the same 

county.8 

Polluting plants locating in attainment areas, on the other hand, face a more lax 

regulatory standard.  These plants are subject to the standard of “Prevention of Significant 

Deterioration (PSD).”  This entails permitting and the installation of the “Best Available Control 

Technology (BACT)” for new plants that have the potential to emit over 100 tons of a criteria 

pollutant in a year.  The BACT is negotiated on a case-by-case basis and the economic burden on 

                                                 
7 While the EPA denoted each county beginning in 1978 as either in or out of attainment for each criteria air 
pollutant, Greenstone (2002) compiled the data back to 1972 using air quality data collected via filing a Freedom of 
Information Act petition.   
8 The reduction in pollution due to the offset has to be larger than the expected increase in pollution associated with 
the new investment.  The offsets could be purchased from a different facility or generated by tighter controls on 
existing operations at the same site (Peirce, Vesilind, and Weiner 1998).  
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the plant is considered in arriving at a final solution.  Given that the installation of BACT in 

attainment areas is likely to be much less costly than the installation of LAER in nonattainment 

areas, new polluting plants and expansions of existing ones could face significantly lower 

pollution control capital construction costs in attainment areas versus nonattainment counties. 

Given that SIPs require states to develop plant-specific regulations for every major source 

of air pollution, existing plants in nonattainment areas also face greater regulatory scrutiny than 

plants in attainment areas.  These plant-specific regulations typically have come in the form of 

emissions limits.  Beyond the necessary abatement investments, inspections and regulatory 

oversight are more persistent in nonattainment areas.  Further, the size of the existing polluter 

importantly determines the level of regulation (see Becker and Henderson, 2002). 

Beyond the size of the plant, regulation also importantly depends on whether the sector is 

a major contributor to the pollutant type under consideration.  We follow Greenstone (2002) and 

classify sectors based on their emission levels.  Using information from EPA’s Sector Notebook 

Project, we label industrial sectors as “pollution-intensive” if they emit at least 10 percent of the 

total industrial sector’s emissions of the pollutant under consideration.9  All other industries are 

considered non-emitters.  Table 1 catalogs the industry designations for each pollutant.   

Both the states and the EPA are given substantial enforcement powers to ensure that the 

CAAA’s intent is met.  For instance, the EPA must approve all state regulation programs in order 

to limit the variance in regulatory intensity across states.  On the compliance side, states run their 

own inspection programs and frequently fine non-compliers.  The 1977 legislation also made the 

plant-specific regulations both federal and state law.  This gives the EPA legal standing to 

                                                 
9 This is higher than the seven percent threshold used in Greenstone (2002).  Below, we present evidence suggesting 
that the marginal plants experiencing productivity impacts from nonattainment designations are in industry groups 
accounting for between seven and ten percent of industrial sector emissions.  Plants in cleaner industry groups see 
little measurable productivity effects; those in dirtier industry groups see impacts that are roughly the same size as 
those just above our 10 percent cutoff. 
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impose penalties on states that do not aggressively enforce the regulations and on plants that do 

not adhere to the regulations.  A number of studies document the effectiveness of these 

regulatory actions at the plant level (Nadeau 1997, Cohen 1998).  Perhaps the most direct 

evidence that the regulations are enforced successfully is that air pollution concentrations 

declined more in nonattainment counties than in attainment ones during the 1970s and 1980s 

(Henderson 1996, Chay and Greenstone 2003a and 2005, Greenstone 2002). 

 

B. Variation in Regulation as the Basis of a Research Design 

The structure of the CAAAs provides three sources of variation in which plants were 

affected by the nonattainment designations.  This subsection summarizes these three dimensions 

of variation and highlights their importance from an evaluation perspective.  It also briefly 

discusses some of the sources of this variation and why they may reinforce the credibility of the 

subsequent analysis. 

The first dimension of variation is that at any point in time the pollutant-specific 

nonattainment designations are reserved for counties whose pollution concentrations exceed the 

federal standards.  This cross-sectional variation allows for the separate identification of 

industry-specific shocks and regulatory effects.  This may be especially important in the period 

we study, because there were dramatic shocks—oil crises, recessions, and increases in foreign 

competition—that differentially affected industries. 

The second dimension of variation is that a county’s attainment/nonattainment 

designations vary over time as its air quality changes.  Consequently, individual plants might be 

subject to regulations in one period but not in a different one.  This longitudinal variation allows 

for the inclusion of plant fixed effects in equations analyzing plant-level productivity.  
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Consequently, the paper presents estimated regulation effects that are derived from within-plant 

comparisons under the attainment and nonattainment regulation regimes. 

The third dimension of variation is that within nonattainment counties only plants that 

emit the relevant pollutant(s) are subject to the regulations.  Therefore the nonpolluting plants in 

nonattainment counties act as a comparison group to study the effects on the productivity of 

polluting plants in counties designated as dirty.  It also allows us to include controls for 

differential average productivity movements across broader geographic areas. 

Some of the sources of variation in nonattainment status reinforce the credibility of an 

evaluation based on the CAAAs.  County-level nonattainment designations are federally 

mandated and are therefore less likely to be related to differences in tastes, geographic attributes, 

or underlying economic conditions across counties.  Moreover, nonattainment designations 

depend on whether local pollution levels exceed the federal standards.  While pollution levels are 

not randomly assigned, scientific evidence suggests that during the years under study many 

counties were designated nonattainment due to pollution that was related to weather patterns—a 

factor which is likely to be unrelated to local manufacturing sector activity.10 

  

                                                 
10 Cleveland et. al. (1976) and Cleveland and Graedel (1979) document that wind patterns often cause air pollution 
to travel hundreds of miles and that the concentration of O3 in the air entering the New York region in the 1970s 
often exceeded the federal standards.  Figure 1b in Greenstone (2002) graphically depicts the counties that were 
designated nonattainment for O3 and reveals that virtually the entire Northeast, even counties without substantial 
local production of O3, is in O3 nonattainment for at least one period.  It is evident that this region’s nonattainment 
designations partially reflect its location downwind from heavy O3 emitters in the Ohio Valley. 
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III. Data 

 Our primary data sources are a county-level panel on CAAA attainment status and 

production microdata for manufacturing plants from the U.S. Census Bureau.  We describe each 

in turn. 

 

A. CAAA Attainment Status Data 

As mentioned above, we collected information on annual CAAA nonattainment status of 

3,141 U.S. counties from 1972 to 2000.  We observe in each year whether or not the county is in 

attainment with CAAA standards for each of four pollutants: ozone (O3), total suspended 

particulates (TSPs), sulfur dioxide (SO2), and carbon monoxide (CO).  We construct county-

level nonattainment measures from this data. 

Table 2 summarizes the variation in attainment status across counties and over time.  It 

reveals the distribution of counties’ lagged and current nonattainment status by pollutant.  It also 

includes a pooled category of “any pollutant,” which holds if the county is nonattaining in any 

one or more of the four pollutants we track.  The numbers in the table are the fractions of the 

94,230 county-years in the annual data over 1972-2000 in each category corresponding to lagged 

and contemporaneous attainment status.  For example, 81.2 percent of counties were in 

attainment for all pollutants in both the current and previous years; 1.9 percent were in 

nonattainment in the current year but were in attainment the previous year, and so on.  

Counties fall into nonattainment and come back into attainment at roughly the same rates, 

indicating little change in average nonattainment rates over time.  However, this hides clear 

patterns in the time series for all pollutants (not shown here for space reasons) that show a rapid 

rise in the number of counties in nonattainment in the 1970s and a slow but steady decline 

thereafter.  Looking at specific pollutants, changes in attainment status are most common for 

ozone, with TSPs close behind.  Sulfur dioxide and carbon monoxide attainment changes are 
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notably less frequent than for the other two pollutants. 

These within-county changes in attainment status are a basic source of identification for 

our estimates of the effects of nonattainment status.  While the county-years that see attainment 

status changes are a modest share of the entire sample, they still correspond to hundreds and 

sometimes thousands of county-level changes.  Moreover, because most of the attaining counties 

are in rural areas with little manufacturing activity, the counties that are always in attainment of 

the federal standards account for a much smaller fraction of economic activity than their shares 

in Table 2.11  Hence the share of manufacturing plants and output that exists in counties that 

experience attainment status changes is much larger than the percentages in Table 2 suggest.  

Additionally, recall that even within county-year combinations, plants in heavily-emitting 

industries are targeted by the CAAA regulations while “clean” industries are unaffected by them; 

the analysis below exploits this source of variation as well.12 

 

B. Census Manufacturing Micro Data 

 The other primary data source is the of plant-level micro data on manufacturers from the 

U.S. Census Bureau.  This is comprised of the Annual Survey of Manufactures (ASM), the 

Longitudinal Business Database (LBD), and the Census of Manufactures (CM).  These contain 

detailed information for tens of thousands of manufacturing plants each year of observation.  A 

plant—or “establishment” in Census Bureau terminology—is a physical location where 

economic activity takes place.  In the manufacturing sector, this can be thought of as a factory.  

A firm can own one or many plants. 

                                                 
11 See the maps in Greenstone (2002) for information on the location of non-attaining counties by pollutant.  
12 The results in Table 2 are for the binary nonattainment indicators.  When we use the attainment scores described 
above instead, there is scope for additional variation over time, since counties can vary in the number of intercensal 
years they are in nonattainment. 
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The ASM contains production data that include plant revenues, several labor input 

measures, book values of equipment and structures capital stocks, investment in equipment and 

structures, and expenditures on inputs.  We use these data to calculate plants’ total factor 

productivity levels as described below.  The ASM data also include a unique permanent plant 

identifier that allows us to link plants across years and estimate models with plant fixed effects.  

Critically, we also observe the state and county in which a plant is located, allowing us to match 

plants to our county-level attainment status file. 

 The ASM, as its name indicates, is taken annually.  The ASM sample is comprised of 

rotating five-year survey panels that begin in years ending with “4” or “9” and end in years 

ending with “8” or “3” respectively.  The panels are selected to be representative of the 

manufacturing sector.  Large plants (those with over 250 employees) are sampled with certainty; 

sampling probabilities increase with size for plants below this threshold.  A typical ASM year 

contains about 60,000 plants.  The ASM microdata contain plants’ sample weights (the inverse 

of their sampling probabilities), allowing us to obtain values that are representative of the entire 

manufacturing sector.  ASM data are available from 1972 on, but information on capital stocks is 

only available until 1993.  Because we need capital inputs to construct total factor productivity 

measures, our ASM sample spans 1972-1993. 

The most important purpose of the ASM production data is to construct measures of 

plants’ total factor productivity (TFP) levels.  Most of our empirical specifications use TFP 

measures based on index number methods, where a plant’s TFP is its logged output minus a 

weighted sum of its logged labor, capital, materials, and energy inputs.  That is, 

, 

where the weights j are the input elasticities of input j{l, k, m, e}.  (Thus our TFP measure is 
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the natural logarithm of a plant’s ratio of output to inputs.)  Output is the plant’s inventory-

adjusted total value of shipments deflated to 1987 dollars.  Inputs are plant-specific, but we use 

industry-level input cost shares to measure the input elastiticies.  These cost shares are computed 

using reported industry-level labor, materials, and energy expenditures from the NBER 

Productivity Database (which is itself constructed from the ASM).  Capital expenditures are 

constructed as the reported plant’s capital stocks multiplied by their respective BLS capital rental 

rates in the corresponding two-digit industry.  Details on the construction of the TFP index are in 

the Appendix.  We will also test for the robustness of our results to alternative TFP measurement 

approaches below. 

 A major advantage of the ASM for our purposes is its frequency.  That it is a survey 

rather than a census is a weakness.  The fact that it is designed as a representative sample, 

however, and that we have the sampling weights, assuages our concerns on this point.  Another 

potential weakness is that the ASM’s rotating panel structure could pose a problem for 

identifying which plants exit, as in panels’ final years it will not be clear whether a plant that 

disappears from the sample does so because it is rotated out of the sample or because it ceased 

operations.  Identifying exiters will be important below when we try to correct for the likely 

possibility that those plants which take the largest productivity hits from regulatory action are 

also more likely to exit.  Fortunately, we can supplement our ASM files with LBD data, which 

contains annual data on plants’ activity status, and therefore identifies the actual year of exit (if 

exit has in fact occurred). 

The CM, which is a census of the roughly 350,000 manufacturing plants operating in the 

U.S. in a typical year, is only taken quinquennially, in years ending in “2” and “7”.  We will use 

CM data for one particular industry (ready-mixed concrete) in a specification below where we 
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investigate the effects of nonattainment designation on plants’ prices.  Plant-level price data is 

typically not available in producer microdata of this sort, but the CM collects separate 

information on plants’ revenues and physical quantities for a limited number of industries.  This 

allows us to compute plant-level average unit prices as well as measure TFP in physical terms, as 

opposed to the standard deflated-revenue-based real output measures which confound within-

industry price variation with output variation.  (We discuss these output measurement issues, and 

their implications for our estimates of regulation’s productivity effects, in greater detail below.) 

 

IV. Empirical Specification 

We seek to measure the effect of CAAA nonattainment on plants’ productive efficiencies 

as embodied in their TFP levels, measured as described above.  Because a plant’s TFP reflects 

how much output it produces from a given amount of inputs, our estimates below measure the 

expected change in a plant’s output due to the nonattainment regulation given a fixed set of 

inputs.  We estimate the following specification: 

(1) ∑  

     , 

where i indexes a plant, t references a year, p indicates a pollutant, and c indexes a county.  Two 

indicator functions are the core of the regression’s explanatory variables.  I[nocaaacpt] equals one 

if the county c in which plant i is located is declared to be in nonattainment with the CAAA 

guidelines for pollutant p in year t.  I[pollindip] equals one if plant i is in an industry that is 

classified as a heavy emitter of pollutant p using the method described above. 

The parameters of interest are the , which capture TFP differentials for plants that are 

a) located in counties deemed to be in nonattainment with the CAAA for a particular pollutant 
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and b) are in industries that are known to be heavy emitters of that same pollutant.  The main 

effects of the indicator functions control for possibly confounding systematic productivity 

differences.  For example, counties in dense urban areas might be more likely to be found to be 

in nonattainment, while at the same time plants in such counties might enjoy productivity 

benefits from agglomeration spillovers.  Including the main effect I[nocaaacpt] controls for this 

possibility.  Likewise, including I[pollindip] controls for systematic productivity differences 

across high- and low-emissions industries.13 

This basic identification approach means that we are measuring nonattainment’s impact 

on plant productivity by comparing polluting plants in nonattaining counties to nonpolluting 

plants in nonattaining counties.  Thus we are focusing on the average productivity effect of the 

pollutant-specific regulations on the plants that they directly target. 

In addition to these core variables we also include in our benchmark specification a large 

set of additional controls to remove as many remaining confounding factors as possible.  These 

include including industry-by-ASM-panel fixed effects and Census-geographic-division-by-

ASM-panel fixed effects, which are contained in Xit in the specification equation above.  Industry 

in this case is categorized by two-digit SIC code, while an ASM panel is the five-year span 

covering a single ASM sample frame.  These industry-by-time-period and division-by-time-

period fixed effects control for differential changes in average productivity levels across 

industries and geography.14  We also include plant fixed effects ηi for each of the roughly 

                                                 
13 Even though our benchmark specification includes plant fixed effects, I[pollindip] is identified because some 
plants switch industry classifications during our sample.  These industry switchers are substantial in number; if we 
exclude them our sample drops by one-third.  We test our results for robustness to excluding industry changers 
below. 
14 The extent of disaggregation in our industry-by-period and geography-by-period controls is subject to 
computational constraints.  There are 20 two-digit SIC manufacturing industries, five ASM periods, and nine Census 
geographic divisions.  Thus there are 145 (205 + 95) time-varying fixed effects in addition to the roughly 200,000 
plant fixed effects in our benchmark specification.  Specifications using fixed effects based on more disaggregated 
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189,000 plants in our estimation sample.  These fixed effects remove the influence of all 

permanent plant-level factors that influence productivity levels. 

We use this specification to estimate productivity effects of two types of nonattainment 

designations.  In one, we pool across the four pollutants (O3, TSPs, SO2, and CO) when defining 

I[nocaaacpt] and I[pollindip].  In this case, I[nocaaacpt] equals one if the county is in CAAA 

nonattainment for any one or more of the four pollutants, and I[pollindip] is one if the plant is in a 

heavily-emitting industry in one or more of the pollutants in which the county is in 

nonattainment.  This specification captures average productivity effects of nonattainment 

designations for plants in polluting industries.  The second specification controls separately and 

simultaneously for each of the four pollutants, allowing us to measure pollutant-specific effects 

while holding the impacts of others constant.  This latter specification is useful if there is 

heterogeneity in plants’ costs tied to which particular pollutant must be abated and is also 

informative about the impacts on plants in industries that are heavy emitters of multiple 

pollutants. 

All of our TFP regressions are weighted by the plant’s ASM representative real output.  

This is the product of the plant’s reported real output and the plant’s ASM weight (its inverse 

sampling probability in the ASM panel; see Section III).  Consequently, the regressions measure 

average TFP effects on a dollar-weighted basis, which means that the results can be interpreted 

as aggregate average effects.  Also we cluster standard errors at the county by year level to 

account for the likely dependence in TFP innovations across plants in the same county and year. 

An important note about this identification scheme is that we are explicitly categorizing 

                                                                                                                                                             
industry, time, or geographic categories proved computationally unworkable given our sample size of over 1.1 
million plant-year observations.  However, we will explore the robustness of our benchmark results to two-digit-
industry-by-year and division-by-year fixed effects (for a total of 2022 + 922 = 638 fixed effects) below. 
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plants in industries that emit less than 10 percent of the industrial sector’s emissions as a non-

emitter.  But a subset of these industries are emitters of the regulated pollutants and likely to be 

subject to CAAA regulations too.  This is relevant to the interpretation of the subsequent results, 

because these “clean” plants are used to control for local shocks to economic activity that may 

confound the nonattainment designations.  In as much as these plants are influenced by the 

regulations, this strategy would bias the estimated impact of nonattainment status toward zero 

(since both the “treatment” and “control” groups would be affected by the regulations).  We will 

discuss this issue, and some other factors likely to positively bias our estimates of 

nonattainment’s productivity effects, in greater detail below. 

 

V. Results 

A. Benchmark Specification 

Table 3 shows the values of  obtained from estimating our basic empirical specification 

with various sets of fixed effects.  The fixed effects increase in detail, and thus control for more 

data variation, moving from left to right in the table.  While all specifications include the main 

effects of the indicator variables described above, for parsimony we only report the coefficient of 

interest: that on the interaction ( ). 

The results in columns 1 and 2 include a full set of four-digit SIC industry fixed effects.15  

                                                 
15 When estimating TFP effects in a sample that pools producers from different industries, it is necessary to control 
for inherent differences in the average TFP levels across industries.  Large between-industry differences in average 
factor intensities can lead to variation in the industries’ average plant-level TFP values.  Controlling for these 
differences allows more meaningful comparisons within a pooled sample.  For example, suppose the sample 
contains plants from two industries.  One industry’s plants use average inputs of 1K employee-hours and $100K 
capital to produce each $100K of output.  (We ignore intermediate inputs in this example for simplicity.)  The other 
industry’s plants use on average 5K employee-hours and $5K of capital to make each $100K in output.  Average 
TFP in the first industry will be on the order of ln(100) – ln(1) – ln(100) = 0, but average TFP in the second industry 
will be on the order of ln(100) – ln(5) – ln(5) = 1.38.  If we neglect to include industry (or, even better, plant) fixed 
effects, these inherent differences in technology could be confounded with across-industry differences in polluter 
status and nonattainment probabilities. 
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The coefficient in column 1, which shows the estimate for the composite “any pollutant” 

indicators, implies that a plant in a dirty industry and a nonattaining county suffers a TFP drop of 

4.2 percent.  (Our TFP indexes are logged measures, hence a coefficient of -0.042 implies a 4.2 

percent drop in TFP, or equivalently, a 4.2 percent drop in output produced from a fixed set of 

inputs.)  This effect is precisely estimated, with a standard error of 0.4 percent.  The results in 

column 2 indicate that this average effect pooled across industries hides considerable differences 

in pollution-specific TFP effects of nonattainment.  Plants in ozone-emitting industries in 

counties declared in nonattainment with CAAA ozone standards see productivity losses of 3.6 

percent.  TSP emitting plants in TSP-nonattaining counties appear to, if anything, see marginally 

significant TFP growth of about 0.9 percent.  Sulfur dioxide emitters see marginally significant 

TFP declines on the order of 1.6 percent when their county is in nonattainment for SO2, and CO 

emitters suffer significant productivity losses on the order of 1.9 percent.  Note that these 

pollution-specific TFP effects are estimated holding attainment status in the other pollutants 

constant, so plants in industries that are emitters of multiple pollutants may see total productivity 

effects that are larger than any of these pollution-specific components if their county is declared 

in nonattainment for multiple pollutants.  This cumulative effect would explain why the estimate 

from the specification in column 1 is larger than the components in column 2. 

Columns 3 and 4 control for industry-year fixed effects rather than time-invariant 

industry effects.  This captures all common productivity movements within a four-digit industry 

from year to year.  The estimated any-pollutant interaction effect on TFP is now -2.4 percent 

(standard error of 0.3 percent), smaller than the less saturated specification in column 1.  This 

suggests that trends in nonattainment and average TFP levels within an industry are negatively 

correlated; controlling for these by allowing industry effects to vary year-by-year reduces the 
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estimated effect of nonattainment on TFP.  The pollution-specific estimates in column 4 suggest 

this spurious negative correlation between TFP and nonattainment designations is concentrated 

in ozone and SO2; these coefficients see the largest (positive) changes from their counterparts in 

column 2.  Ozone’s TFP effect is still negative and significant, but is now on the order of -1.8 

percent.  Estimated SO2 nonattainment effects, however, are now virtually zero.  TSP and CO 

designations are essentially the same magnitude as before, though the former is now statistically 

significant at the five percent level. 

Columns 5 and 6 add controls for geographic movement in average productivity levels, 

by including Census-division-by-ASM-panel fixed effects.  There is little change in the 

composite pollutant interaction coefficient from column 3; here it is -2.3 percent (s.e. = 0.3 

percent).  The same pattern of similarity holds comparing the pollution-specific estimates in 

column 6 to those in column 4. 

Columns 7 and 8 replace the industry-year fixed effects with plant fixed effects.  Now, all 

effects of nonattainment on productivity are identified from within-plant TFP variations.  Not 

surprisingly, the R2 of the regression rises notably with the inclusion of these plant fixed effects.  

The estimated composite effect in column 7 is a statistically significant 3.6 percent TFP drop, 

slightly larger but in the neighborhood of the previous specification’s estimate.  Among the 

pollution-specific estimates in column 8, again O3 is the largest, at -4.5 percent.  Interestingly, 

adding plant fixed effects makes the TSP estimate negative and significant but makes the CO 

estimate positive and significant.  Apparently, all else equal, plants with persistently high (low) 

productivity levels in TSP- (CO-) emitting industries are more likely to be in nonattaining 

counties.  Controlling for plant fixed effects removes this correlation and produces the observed 

movement in the coefficients. 
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Columns 9 and 10 add two-digit-SIC-by-ASM-panel fixed effects to control for any 

differentials in broad productivity changes across manufacturing industries.  The composite 

pollutant effect estimate in column 9 is -2.6 percent (s.e. = 0.6 percent), again in line with 

previous estimates.  Ozone is yet again the largest single component effect in the pollution-

specific specification in column 10, at -2.2 percent (s.e. = 0.7 percent), notably smaller than in 

the previous specification.  TSPs have a marginally significant negative impact on productivity 

of 1.3 percent, and perhaps SO2 as well, though its -1.6 percent estimated effect has a p-value of 

0.111.  As with the earlier specification that also included plant fixed effects, CO nonattainment 

is estimated to have a positive and significant impact on TFP; here, it is a marginally significant 

1.7 percent. 

Columns 11 and 12 allow finer intertemporal variation in the controls.  Instead of using 

the industry- and geography-based fixed effects vary by ASM panels, it allows them to vary by 

year.  In general, the estimated coefficients are larger in magnitude than those from the coarser 

fixed effect structure in columns 9 and 10.  The composite pollutant interaction coefficient in 

column 11 is now -4.4 percent (s.e. = 0.7 percent).  Nonattainment in O3 is now estimated to 

shrink the productivity levels of ozone emitters by 5.7 percent, and SO2 nonattainment is tied to a 

2.1 percent productivity drop.  TSP effects are negative but insignificant, and again CO is found 

to positively influence productivity. 

Looking across these specifications, there are some consistent results.  A nonattainment 

designation for any pollutant reduces the TFP of plants that are heavy emitters of that pollutant 

by around 2 to 4 percent.  Pollution-specific effects are concentrated in particular on O3 

nonattainment, which incidentally is one of the most commonly emitted pollutants among our 

industries.  The estimated effects for TSPs and SO2 nonattainment are less statistically significant 
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and smaller, though typically in the neighborhood of -1 to -2 percent.  CO nonattainment, on the 

other hand, is associated with productivity increases when plant fixed effects are included in the 

specification. 

While our results are robust (and in fact imply larger magnitude effects than most of the 

other specifications) when we include the full array of controls in columns 11 and 12, this 

specification was unfortunately unworkable as a practical matter.  Many regression runs with this 

specification failed due to insufficient hardware resources (despite the formidable capabilities of 

the Census Bureau server), and successful runs took inordinate amounts of time.  And we were 

completely unsuccessful in being able to obtain estimates from specifications with even finer 

fixed effect structures, like using four-digit-by-ASM-period or state-by-year controls, to 

successfully run.  Hence we will use as our benchmark for the paper’s remaining exercises the 

highlighted specification in columns 9 and 10 of Table 3.  This specification is the one we 

discussed in Section IV and includes plant, two-digit-industry-by-ASM-panel, and division-by-

ASM-panel fixed effects.  This specification balances computational feasibility with the ability 

to control for a broad set of possibly confounding variations.  Additionally, this specification’s 

estimates of the productivity effects of CAAA nonattainment are toward middle of those 

presented in Table 3, offering a somewhat conservative measure of total TFP impacts.   

 One way to assess the magnitude of these effects is to multiply them by the total observed 

output of the affected plants.  Because TFP changes can be interpreted as the percentage loss of 

output (or gain if the estimate is positive) due to nonattainment, we can infer from observed 

outputs what output would have been if the plant’s county were in attainment rather than out of 

attainment of federal air quality standards.  For instance, the average yearly output of plants in 

any polluting industry in non-attaining counties was roughly $292 billion (in 1987 dollars).  
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Taking the column (9) estimate at face value, the estimated average annual cost of CAAA 

nonattainment in lost output was therefore about $8 billion in 1987 dollars.16  Similar 

calculations for the pollutant-specific results in the second column of Table 4 indicate a smaller 

annual lost output cost of just over $3.8 billion (again in 1987 dollars). 

 

B. Dynamic Effects 

The specifications above assume that nonattainment’s productivity impact is completely 

contemporaneous.  Yet it seems possible that there could be longer-lasting cumulative effects of 

nonattainment on plant productivity.  For example, it is difficult for the EPA and local 

environmental regulators to compel compliance of all plants in high-pollution industries within 

the first year of nonattainment.  It may take a year or more for all plants to take the required 

costly abatement actions.  The permitting requirements for plant expansions can involve 

prolonged negotiations between engineers and consultants detailing required start-up capital.  

The regulations affect plants’ production choices (e.g., their capital stocks), and the impacts of 

these choices on TFP may affect productivity many years after a county has moved from 

nonattainment to attainment status.  Finally, as an empirical matter, nonattainment is 

autocorrelated; dirty counties often keep that designation for several years. 

 To explore the possibility of cumulative productivity effects, we estimate a version of our 

benchmark specification where we also include indicators of lagged nonattainment status.  The 

total estimated impact of being subject to the nonattainment related regulations for multiple years 

is then the summed marginal effects across the contemporaneous and lagged impacts.  (These 

lags are included both as main effects and interacted with the polluting-industry indicators.  As 

                                                 
16 This is computed as the difference between the counterfactual output of $300 billion (= $292B/(1 – 0.026)) and 
the observed output of $292B. 
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with the contemporaneous effects, we are interested primarily in the interaction coefficients.)  

We estimate specifications including one and two years of lagged attainment status.  Note that 

the estimation sample necessarily becomes smaller when these lags are included, as not all plant-

year observations have lagged information available. 

These cumulative marginal TFP effects are reported in Table 4.  (We suppress the 

individual coefficients for brevity.)  We’ve included the estimates from the benchmark 

specification from Table 3 for comparison.  Looking first at the estimated impacts in the pooled 

pollutant regressions in columns 1a and 2a, there is mild evidence of a cumulative regulatory 

impact.  The estimated effect from the specification that includes one lag yields an estimated 

TFP loss of -2.6 percent, the same as the contemporaneous effect, but the specification 

accounting for two years of nonattainment lags indicates a total productivity drop of 3.1 percent. 

 This cumulative effect is less apparent on a pollutant-by-pollutant basis.  The point 

estimates of the effects of TSP, SO2, and CO nonattainment become slightly larger once one lag 

of nonattainment is introduced, but adding a second lag only has a notable effect on the 

estimated effect for SO2.  Further, O3 actually fall as lags of nonattainment are introduced.  

Hence while the composite effects appear to grow somewhat with consecutive nonattainment, 

this results from a combined effect across pollutants with differing temporal patterns in their 

impact. 

 Thus there is some evidence that productivity impacts are larger if a high-emitting plant’s 

county is consistently in nonattainment, with the total effect being perhaps one-fourth to one-

third larger than the contemporaneous effect.  However, this pattern does vary when looking at 

pollutant-specific nonattainment impacts which, in particular, seem to peak after a second 

consecutive year in nonattainment. 
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C. Robustness Checks 

 In this subsection we check the robustness of our results to several variations in the 

details surrounding our measurement practices and our empirical specification. 

 

Excluding Industry Switchers. Our regular sample includes a substantial number of plants that 

switch industries during the sample.  Some of these plants may switch out of (or into) high-

emissions industries.  If these shifts are coincident with nonattainment designations in the plants’ 

counties, this could impact the estimated effects of nonattainment.  To see if our benchmark 

results are sensitive to this industry switching, we estimate our benchmark specification 

including only those plants that remain in the same four-digit SIC industry during their entire 

time in the sample.  This shrinks the sample to 806,700 observations and 135,177 unique 

plants.17 

The results from this smaller sample are in columns 1 and 2 of Table 5.  They 

qualitatively, and to some extent quantitatively, match those in the benchmark.  The estimated 

TFP effect of nonattainment in the pooled pollutant specification, shown in the third column of 

the table, is a statistically significant -1.6 percent, though smaller than the benchmark estimate.  

In the pollutant-specific specification, the largest divergence from the benchmark results is that 

                                                 
17 Excluding any four-digit SIC industry changers is quite conservative in that some of these switchers may change 
from one industry that is a heavy emitter of a particular pollutant to another industry that is similarly a heavy 
polluter of that pollutant.  For example, suppose due to a change in the products it made that a plant moved from the 
Brick and Structural Clay Tile industry (SIC 3251) to the Structural Clay Products, Not Elsewhere Classified 
industry (SIC 3259).  Because both of these four-digit industries are considered part of the heavy O3/TSP/SO2 
emitting Stone, Clay, Glass, and Concrete industry group (SIC 32), the indicator variables definitions for this plant 
would not change.  As such, neither would this or other similar cases lead to changes in the interaction coefficients.  
However, if as discussed above there are systematic differences in average TFP levels across four-digit industries 
within particular heavy-emitter industry groups, then plant fixed effects would not control for such changes for 
industry-shifting plants.  As such, restricting attention to plants that stay in the same narrow industry will avoid this 
problem. 
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the negative impact of ozone nonattainment is now insignificant, at 1.1 percent.  That fact that 

ozone-emitting industry groups are such a large share of all emitters in our sample, this result 

probably explains the smaller estimated effect in the pooled specification.  The TSP and SO2 

effects are significant and larger in magnitude at -2.7 and -2.2 percent, respectively.  Again 

plants in industries that emit large amounts of carbon monoxide experience a productivity gain as 

in the benchmark sample. 

 

Heavy-Emissions Industry Definitions.  As we discussed above, a key source of identification for 

CAAA’s productivity effects is in the comparison of dirty (high-emissions) and clean (low-

emissions) plants in nonattaining counties.  This is based on the notion that environmental 

regulators will focus abatement efforts on the heaviest polluters first.  However, our threshold for 

dirty—that the plant’s industry group account for at least 10 percent of the industrial sector’s 

emissions of a pollutant—is arbitrary.  Here we consider in this section how our results might be 

sensitive to this 10 percent emissions share cutoff. 

 We first estimate our benchmark specification where any industry group accounting for at 

least seven percent of industrial emissions of a pollutant is considered a heavy emitter.  This is 

the same cutoff used in Greenstone (2002).  We then obtain estimates using a more stringent 

cutoff the industry group accounts for at least 12 percent of industrial emissions of that 

pollutant.18  The results are in columns 3 through 6 of Table 5. 

 Columns 3 and 4 show the results using the seven percent cutoff.  The pooled-pollutant 

estimated effect is -2.1 percent, slightly smaller but similar to the estimate using only industries 

that meet the 10 percent cutoff.  The ozone-specific estimate exhibits the same comparative 

                                                 
18 Which formerly clean industry groups become dirty (in the seven percent cutoff specification) or dirty industry 
groups become clean (in the 12 percent specification) can be seen in Table A2 of Greenstone (2002), which lists all 
industry groups tracked by the EPA and their pollution-specific emissions shares. 
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pattern, being smaller than its 10 percent analog but still statistically significant at -1.7 percent.  

The estimated TSP and SO2 effects are smaller in magnitude, however, and insignificant.  The 

CO estimate is exactly the same because there are no industry groups that account for between 7 

and 10 percent of industrial sector emissions of carbon monoxide.  These weaker results are what 

would be expected given that we are letting cleaner plants into the set of which we identify 

productivity impacts.  Other results using an even lower cutoff threshold—namely, that the 

industry group account for 4.5 percent of total industrial emissions—were even weaker, 

suggesting the marginal plants to experience significant productivity impacts from nonattainment 

designations are those in industry groups accounting for around seven percent of industrial 

emissions. 

 The results using the 12 percent cutoff group are in columns 5 and 6.  Here, the results 

are quite similar to those from the benchmark.  The composite effect in the any-pollutant 

specification is -2.3 percent.  In the pollutant-specific specifications, the estimates for TSPs and 

SO2 are the same as their benchmark counterparts to the nearest tenth of a percent, while the 

ozone effect is only one-tenth of a percent difference.  The only substantial change from the 10-

percent-cutoff estimates, in fact, is for CO, where the formerly positive and significant effect on 

the order of 1.5 to 2 percent is now a small and insignificant 0.2 percent.  This result suggests 

that the positive TFP effects associated with nonattainment in this pollutant are likely to be 

concentrated in petroleum refining (accounting for 11.8 percent of CO emissions), which is the 

only industry dropped from the set of dirty plants with the higher cutoff.  Overall, little except 

this CO effect changes when we impose a stricter cutoff threshold to define heavy-emitter 

industry groups.  This further bolsters the notion that the marginal dirty plants—at least in terms 

of those expecting to see productivity effects—are those in industries accounting for less than 10 
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percent of industrial sector emissions of particular pollutants. 

 

Allowing Industry-Specific Productivity Effects. Our specification imposes that all industry 

groups that are heavy emitters of a particular pollutant experience the same productivity impact 

of a nonattainment designation.  We can loosen this constraint and allow each of the high-

emissions industry groups to experience their own productivity effect.  To do so, instead of 

defining a set of indicator variables I[pollindip] for all industry groups that are heavy emitters of 

a particular pollutant, we use specific industry-group-pollutant indicators.  If an industry group is 

an emitter of more than one pollutant, we include a separate indicator for each pollutant.  So, for 

example, the Nonferrous Metals industry group has separate indicators as a SO2 and CO polluter.  

There are 15 industry-pollutant indicators in all. 

 The results are in Table 6.  In addition to the industry-pollutant-specific estimates of 

nonattainment’s productivity impacts, the table reports test statistics and associated p-values for 

F-tests of the hypothesis that all industry groups that emit the same pollutant experience equal 

productivity effects.  (This is imposed by design in the benchmark specification.)  The results 

indicate that we cannot reject equality at the five percent level for TSPs, SO2, and CO, though 

the latter two have p-values of 0.08 and 0.10, respectively.  Ozone effects appear to be 

heterogeneous, however.  In particular, organic chemicals producers see enormous negative 

productivity impacts of nonattainment.  Another industry-specific result of note is that the only 

significantly positive effect of CO nonattainment is seen in refining.  This result is consistent 

with our earlier finding that the positive effect of CO went away when we used a higher 

threshold for dirty CO plants that excluded refiners. 
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VI. Reasons Why Our Estimates May Understate Regulation’s True Effects on TFP 

 The estimates above are likely to understate the magnitude of productivity losses 

resulting from nonattainment designations for three main reasons.  First, we identify the impact 

on high-emissions-industry plants’ TFP levels using nearby low-emissions plants as the 

counterfactual.  This allows us to control for local shocks to economic activity that might 

confound the nonattainment designations.  But inasmuch as these plants are also impacted by the 

regulations (recall that “clean” is a relative term—some such plants are also emitters of CAAA 

pollutants, though at lower levels than our “dirty” plants), this strategy would bias the estimated 

impact of nonattainment status toward zero.  Put succinctly, we can measure the relative TFP 

effects of nonattainment between plants that are more and less likely to be subject to EPA 

abatement mandates, but we cannot measure any TFP impact that is common across all plants. 

 Second, we, like almost all users of plant- or firm-level production data, must use 

revenue (deflated to some base year using an industry-level price index) to measure plant output 

in our TFP measures.  This is a result of limited data: plant- or firm-level price information is not 

available in the ASM, or almost any other similar data sets.  The use of revenue-based TFP 

measures means any price differences across plants in an industry will therefore be measured as 

output and productivity variation.  The problem this creates in our context is that abatement 

actions that reduce TFP may raise marginal costs, so plants with market power facing abatement 

mandates will expectedly increase their prices when they suffer efficiency reductions.  Revenue-

based TFP measures will therefore conflate regulation’s negative impact on technical efficiency 

with the positive price change, resulting in an understatement of the true technical efficiency 

(and output quantity) loss. 

The third source of bias is due to endogenous selection of which plants survive a CAAA 
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non-attainment designation.  All else equal, plants experiencing the largest negative productivity 

shocks from nonattainment are the most likely to cease operating and exit.  Our sample of 

survivors experienced productivity drops that were likely to be smaller on average than those 

across all plants.  Our estimates will not reflect the most negative productivity innovations 

experienced due to nonattainment. 

 While there is little we can do to quantify the impact of our inability to measure any TFP 

effects that are common across both “clean” and “dirty” plants, the data do allow us to obtain 

some sense of the degree of understatement caused by the price measurement and survivor bias 

problems.  We discuss this in detail in this section. 

 

A. Understatement Due to Price Variation 

 The price-as-output measurement problem is a result of plant-level price data being 

unavailable.  For a few industries, however, the Census of Manufactures does collect plant-level 

output data in both revenue and physical quantity terms.  We can use this quantity data to 

directly measure plants’ physical TFP levels (the number of physical units of output they 

produce per unit input), letting us bypass the price-as-output measurement problem altogether.  

Moreover, the same data allows us to compute plants’ average unit prices and see how these vary 

with nonattainment status. 

 While physical quantity data are available for several industries in the CM, we focus here 

on ready-mixed concrete (SIC 3273).  The industry has several features that lend itself to 

accurate measurement of quantity-based TFP.  Ready-mixed concrete is a physically 

homogeneous product, so the output quantities (measured in thousands of cubic yards) of the 

plants in our sample are comparable across plants.  One can imagine the conceptual difficulties 
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of comparing quantity productivity in an industry with highly differentiated products—say in 

units of airplanes, where some industry plants make commercial jets and others that make gliders 

for hobbyists.  Also, the industry’s combination of high transport costs and ubiquity mean there 

are many ready-mixed plants spread throughout the country.  This affords a greater amount of 

data variation with which to measure price effects.19  Finally, ready-mixed plants are highly 

specialized; on average, well over 90 percent of their revenue comes from sales of ready-mixed 

concrete as opposed to other products like concrete block or pipe.  Specialization is important 

because the physical output data in the CM are collected at the product level (by seven-digit SIC 

classification), while inputs are only measured at the plant level.  Allocating a plant’s inputs to 

specific products, a necessary step when computing physical TFP, involves some measurement 

error that shrinks as the output in question accounts for a larger share of plant revenues.20 

 To gauge how nonattainment designations impact plant prices and technical efficiency 

levels, we estimate regressions similar to our benchmark specification using data only from 

ready-mixed concrete plants.  Rather than just looking at plants’ (revenue-based) TFP, however, 

we also estimate specifications with plants’ quantity-based TFP levels and their (logged) unit 

prices as dependent variables.  Estimating a specification with revenue-based TFP offers a 

comparison to the benchmark results.  Also, because it equals the sum of the other two dependent 

variables by construction, we can use the three regressions to decompose the estimated 

regulation-induced revenue TFP change into the components driven by quantity TFP and 

prices.21 

                                                 
19 There are roughly 5000 plants in any given year of the CM, 3000 of which we have physical quantity data for.  
Adding across the CMs spanning our sample, we have over 12,000 observations of quantity-based TFP and prices. 
20 Foster, Haltiwanger, and Syverson (2008) discuss these quantity-based TFP measurement issues in greater detail.  
Syverson (2008) offers a general discussion of the economics of the ready-mixed concrete industry. 
21 TFPrev = TFPq + ln(p) because ln(revenue) = ln(q) + ln(p) and the input terms in both TFP measures are the same.  
The revenue-based productivity measure used in our full sample also includes typically minor contributions from 
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 There are a few other differences between these regressions and the benchmark 

specifications.  We now define I[nocaaacpt] as equal to one if county c is declared in year t to be 

in nonattainment with standards for either Ozone, TSPs, or SO2—the three pollutants for which 

ready-mixed concrete’s industry group is a heavy emitter.  Thus we focus on nonattainment 

designations that should specifically affect ready-mixed plants.  Also, because only ready-mixed 

concrete plants are in the sample, the industry indicator I[pollindip] is not separately identified 

from the constant.  The specification measures nonattainment effects by comparing TFP levels 

and prices of ready-mixed plants in nonattaining counties to those in attaining counties.  We still 

include division-by-ASM-panel and plant-level fixed effects in the specification, however.22 

 The results, shown in Table 7, are interesting.  The revenue TFP impact of nonattainment 

in column (1) is small, at -0.6 percent, and statistically insignificant.  Ready-mixed concrete 

plants do not appear to suffer (revenue) TFP hits from regulatory action, unlike the broader 

sample.  The result in column (2), which relates concrete plants’ prices to nonattainment status, 

offers an explanation for this.  As we speculated, plants’ prices do rise when their county is 

declared in nonattainment: on average, a statistically significant 2.7 percent.  The effect on 

plants’ quantity-based TFP (cubic yards per unit input) is in column (3).  This equals, as it must 

by construction, the revenue-based TFP effect minus the price effect.  While the estimated effect 

of -3.3 percent is insignificant (it has p-value of 0.111) due to the imprecision of the revenue-

based TFP estimates, it implies as a point estimate a considerably larger effect of nonattainment 

on productivity than does the revenue-based TFP estimate.  (It is obviously also significantly 

                                                                                                                                                             
inventory accumulations and occasionally other typically small revenue sources such as contract work.  In this 
section, we only use revenue from the plants’ ready-mixed concrete sales to ensure that the identity holds. 
22 Here, because we only have data from the quinennial CMs, division-by-ASM-period fixed effects are equivalent 
to division-by-CM fixed effects.  The two-digit-SIC-by-period fixed effects of the benchmark specification aren’t 
separately identified here because the sample contains exclusively concrete plants.  Note that year effects are 
identified as part of the division-by-ASM-panel set of fixed effects. 
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different from it.) 

 So we see that while there is evidence that ready-mixed concrete plants do in fact suffer a 

decline in efficiency related to a nonattainment designation—or equivalently, suffer output losses 

given their input choices—this is masked in revenue-based productivity measures because the 

costs associated with nonattainment lead the plants to raise prices.  As such the productivity 

effects estimated using revenue-based TFP measures are positively biased estimates of 

nonattainment’s true impact on plants’ technical efficiencies and output. 

 This concrete case study offers a vivid exhibit of the sort of understatement of true 

productivity effects we are concerned about.  If a similar-sized effect (i.e., an additional 

productivity drop of around 2.7 percent) operates in the larger sample, the true effects of 

nonattainment designation—which we estimate to be -2.6 percent in revenue-based measures—

could be over twice as large.  We are reluctant to extrapolate this much from a single-industry 

case study, however. 

 Helpfully, another data source does offer a way to make broader-scoped estimates of the 

price measurement problem.  The NBER-CES Manufacturing Industry Database contains annual 

price indices and industry-level TFP measures (logged total industry output minus a weighted 

sum of logged total industry inputs) for a panel of 459 four-digit SIC manufacturing industries 

from 1958 to 2005.23  We can use this data to compare price growth to productivity growth at the 

industry level, getting a feel for what fraction of productivity improvements (declines) are passed 

on as lower (higher) prices. 

 We regressed industry price growth on industry TFP growth.  We also included industry 

fixed effects so as to compare price and TFP growth within industries, though the results were 
                                                 
23 The data available on the NBER website span 1958 to 1997; a recent “beta” version of an extension extended this 
to 2005.  We use the four-factor TFP measures in the NBER database to be consistent with the definition of our 
plant-level TFP indexes, though similar results were found using the five-factor TFP measures. 
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very similar when including cross-industry variation as well.  The coefficient on the change in 

industry TFP is -0.349 (s.e. = 0.014).  That is, for every one-percent increase (decrease) in 

average TFP in an industry, average industry price falls (rises) by roughly 0.35 percent.  Note 

that industry-level TFP measures are not subject to the price measurement problem because 

industry-level deflators are available, so industry TFP changes should reflect quantity changes. 

 If we extend the findings from this regression to our results, it implies that for each one-

percent increase in costs driven by productivity losses, firms raise prices by 0.35 percent.  For 

our average estimated effect of nonattainment on revenue-based TFP of roughly 2.6 percent, the 

implied impact on true technical efficiency is then actually 2.6/(0.65) = 4.0 percent.24  The lost 

output due to nonattainment designation could therefore be more like $12.2 billion annually (in 

1987 dollars) than what is implied by our benchmark results above. 

  

B. Understatement Due to Survivorship Bias 

Our estimated TFP effects are conditional on survival.  But plants experiencing the 

largest negative productivity shocks from non-attainment are the most likely to cease operations 

and exit the data.  This implies that our estimates will understate the true TFP impact of 

nonattainment.  We estimate the size of this understatement in this section. 

 A standard approach to address this sort of selection issue is to include a Heckman (1979) 

style correction term (estimated in a first-stage survival regression) in the second-stage 

regressions estimating the TFP effects of interest.  However, our specifications include plant-

level fixed effects, and the average panel length in our sample is rather short (6.2 years).  We 

therefore face a potentially severe incidental parameters problem in the first-stage survival 

                                                 
24 Recall TFPrev = TFPq + ln(p), so ΔTFPrev = ΔTFPq + Δln(p).  If, as we estimate, Δln(p) = -0.35*ΔTFPq, then 
ΔTFPrev = ΔTFPq – 0.35*ΔTFPq, or equivalently ΔTFPq = ΔTFPrev/0.65. 
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equation.  In addition, we face many practical boundaries in estimating a nonlinear survival 

specification with over one million observations and 200,000 plant fixed effects. 

We take an alternate approach based on logic similar to that of the traditional approaches 

but that is feasible to implement.  Namely, we use observed plant exit rates and the distribution 

of TFP innovations among surviving plants to infer the unobservable in which we are interested: 

the distribution of TFP innovations among exiting plants (and by implication, the average TFP 

innovation among all plants, survivors and exiters both).  The difference between the conditional 

(on plant survival) and unconditional average TFP innovations is the correction we need to apply 

to our selection-biased estimates to get the true TFP impact of nonattainment. 

Our methodology is based on the notion that the distribution of TFP innovations among 

surviving plants is a truncation of the unconditional distribution.  The truncation point is the 

critical TFP innovation such that plants suffering more negative TFP innovations (i.e., larger 

TFP drops) exit, as their present value from operating falls below their scrap value.  While we do 

not know the shape of the TFP innovation distribution below the threshold (these were, after all, 

the innovations experienced by plants that exited the data), we do know the exit rate.  If we 

assume the exiters all had worse TFP innovations than the survivors, we can infer enough about 

the shape of the unconditional distribution to measure the difference between the averages of the 

survivorship-biased TFP innovation distribution and the unconditional distribution. 

Note, though, that this threshold TFP innovation is conditional on the plant’s TFP level.  

Profitability depends on a business’s productivity level, not its innovation.25  There is an inverse 

relationship between a plant’s TFP level and the TFP drop necessary to force it to exit.  Simply 

put, higher-TFP plants have further to fall before they become unprofitable.  While the same 

                                                 
25 See Jovanovic (1982), Hopenhayn (1992), Melitz (2003), and Asplund and Nocke (2006) for models that predict a 
negative relationship between productivity and survival and a threshold productivity level that determines exit. 
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estimation issues discussed above prevent us from adjusting for computing this threshold TFP 

innovation plant-by-plant, we can make a discrete approximation.  If we cut the plant TFP level 

distribution into contiguous sections of sufficiently small size, all plants in each section will have 

roughly the same cutoff productivity innovation value.  We can then compute the selection 

correction section-by-section, and average over these to find the correction for the entire sample. 

Our two approaches differ in the measure of central tendency from which we calculate 

the selection correction, and the assumptions about the unobserved TFP innovations necessary to 

make this calculation.  One method focuses on means.  It assumes the observed TFP innovations 

among survivors are from a normal distribution that is left-truncated at the critical threshold 

productivity innovation.  We observe the mean and standard deviation of this truncated 

distribution as well as its truncation point.  Because we also know what fraction of plants exit—

the share of the unconditional distribution that is truncated—we can use standard formulas to 

compute the implied unconditional mean TFP innovation.  The difference between the 

unconditional and (observed) conditional means is our estimated selection correction. 

The second approach focuses on the difference in the conditional and unconditional 

medians.  Suppose, as with the mean-based approach above, that exiting plants had TFP 

innovations in the truncated part of the distribution.  If the exit rate (the fraction of plants that 

exit) is x, then the median of the unconditional distribution is simply the (50 – x)th quantile of the 

conditional distribution.  For example, if 6 percent of plants exit, the difference between the 50th 

and 44th percentiles of TFP innovations among survivors is the difference in the medians of the 

conditional and unconditional distributions.  While this method involves a compromise in that 

we approximate a correction in means using medians instead, it requires a weaker assumption 

about the location of the exiting plants in the distribution of TFP innovations than the truncated 



 36

normal approach above.  The exiting plants’ TFP innovations do not have to all be more negative 

than the lowest observed innovation among survivors.  The difference between the conditional 

and unconditional medians will be the same as long as all exiters have innovations below the 

adjusted (unconditional) median.  This is possible as long as fewer than 25 percent of plants exit, 

which easily holds true in our data. 

We describe in the appendix the algorithm to calculate these corrections.  Table 8 shows 

the results.  We first report in panel A the average exit rates for deciles of the within-industry 

TFP distributions.  As expected, the lowest-productivity plants are most likely to exit, and 

average exit rates tend to decline as TFP levels rise.  On average, 9.2 percent of the plants in the 

lowest decile of their industry’s TFP distribution will exit in a given year, almost three times the 

rate among the other deciles.  The inverse relationship between TFP levels generally holds across 

the higher deciles, though not monotonically and exit rates are considerably lower than among 

the least productive plants. 

 Panel B of Table 8 shows the calculated selection corrections for each pollutant.  The 

means-based corrections are similar across pollutants, with values ranging from -2.0 to -2.3 

percent.  This would imply that our “any-pollutant” estimate above of an average TFP decline, 

conditional on survival, of 2.6 percent, captures only about half of the true productivity change 

due to CAAA nonattainment.  The understatements, in terms of percentage magnitudes, are even 

larger for the TSP- and SO2-specific estimates, and the selection-corrected CO effect would 

essentially be zero.  (These numbers do not include the price mismeasurement correction 

calculated above.)  However, the truncated-normal assumption used to derive these corrections is 

somewhat extreme; it requires that all TFP innovations for a decile’s exiting plants are more 

negative than the smallest observed among the survivors.  Given the myriad factors other than 
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TFP that potentially affect exit, this is unlikely.  Hence we view this set of corrections as an 

upper bound on the magnitude of the selection correction. 

We favor instead the median-based corrections, which use a more conservative 

assumption about the nature of the unobserved TFP innovations among plants that exited.  The 

implied selection corrections are in fact smaller in magnitude, on the order of -0.7 percent.  This 

value implies that survivorship bias causes our composite pollutant benchmark estimate to 

understate nonattainment designations’ effect on (revenue-based) TFP by over 20 percent (i.e., 

the estimated conditional change is -2.6 percent, but the unconditional change is -3.3 percent).  

The pollutant-specific estimates are similarly impacted. 

 

VII. Discussion and Conclusions 

While there is some variability across the empirical results from different specifications, 

consistent patterns do emerge from our estimates. 

Among surviving polluting plants, the nonattainment designation is associated with a 

roughly 2.6 percent decline in total factor productivity.  The regulations governing ozone have 

particularly measurable effects on productivity, though effects are also seen among emitters of 

TSPs and SO2.  Carbon monoxide nonattainment, on the other hand, appears to increase 

measured TFP, though this appears to be concentrated among refineries.  Dynamics matter 

somewhat; two consecutive years of nonattainment results in slightly larger productivity drops 

than the contemporaneous effect.  These results are robust to a number of alternative samples and 

specifications.  Overall, the productivity losses among surviving plants in nonattainment counties 
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correspond to annual lost output on the order of $8 billion in 1987 dollars ($12.9 billion in 2009 

dollars).26 

However, this estimate is likely to understate lost output for three reasons discussed in 

the previous section.  If we apply our estimated corrections for two of the sources of 

understatement—price mismeasurement and survivorship bias—the implied losses are larger.  

We calculate that survivorship bias results in an understatement of the revenue-based TFP loss of 

about 0.7 percent, so the total average effect is a roughly 3.3 percent drop.  Further, our inability 

to account for cost-driven price increases imply that the impact on plants’ quantity produced is 

on the order of 54 percent higher than the revenue-based TFP impact (1/0.65 = 1.538).  Applying 

this additional correction implies a total TFP loss for dirty manufacturing plants in nonattaining 

counties of 4.8 percent.  This corresponds to annual lost output in the manufacturing sector of 

about $14.7 billion in 1987 dollars ($24.4 billion in 2009 dollars). 

These results offer what is, to our knowledge, one of the most comprehensive 

accountings of the economic costs of air quality regulations, and the U.S. Clean Air Act 

Amendments in particular.  These can be compared to estimates of the regulation’s economic 

benefits (e.g., Chay and Greenstone (2003 and 2005), Sieg et al. (2004), and Tra (2010)) to guide 

future policy decisions.  They also speak to the debates regarding the interactions between 

sustainable development, environmental regulation, the scale and location of domestic 

manufacturing activity, and national competitiveness.  The geographic nature of these particular 

regulations also holds implications for firms’ optimal spatial production allocations, influencing 

the nature and direction of their expansion and contractions.  Finally, we see similar approaches 

as a fruitful path for measuring the costs associated with other environmental regulations, and 

                                                 
26 The annual producer price index for “Total Manufacturing Industries” as reported by the Bureau of Labor 
Statistics is 100.9 for 1987 and 167.1 for 2009, implying nominal price growth of 65.6 percent over the period. 
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expect that future work along these lines will offer further insight into optimal environmental 

policy. 

 

 

 

 



 

Appendix 
 
 
A. Construction of Total Factor Productivity Index 
 
We describe here details on the construction of our production variables. 
 
Output.  Plant output is its inventory-adjusted total value of shipments, deflated to 1987 dollars using industry-
specific price indexes from the NBER Productivity Database. 
 
Labor Hours.  Production worker hours are reported directly in the Annual Survey of Manufactures (ASM) and 
Census of Manufactures (CM) microdata.  To get total plant hours, we multiply this value by the plant’s ratio of 
total salaries and wages to production worker wages.  This, in essence, imputes the hours of non-production workers 
by assuming that average non-production worker hours equal average production worker hours within plants. 
 
Real Materials and Energy Use.  Materials and energy inputs are plants’ expenditures on each, as reported in the 
ASM or CM, divided by their respective industry-level deflators from the National Bureau of Economic Research 
Productivity Database. 
 
Capital.  We construct capital stocks using the perpetual inventory method.  Initial-year capital stocks are 
constructed by deflating plants’ reported book values of capital by the book-to-real value ratio for the corresponding 
three-digit industry (the industry-level equipment and structures ratios are from published Bureau of Economic 
Analysis data).  Thereafter, plants’ reported investments (deflated by industry-specific investment goods price 
indices) are added to the capital stock, and depreciation (using industry-specific rates from the BEA) is subtracted.  
This process is repeated for every year the plant is in existence to get a capital stock series.  For the 1988-1993 ASM 
panel, initial capital stocks could not be constructed for new plants because Census stopped collecting book values 
in the ASM.  We instead use reported stocks from the 1992 CM, which did collect plants’ book values of capital 
stocks, and work backwards using reported investments and imputed depreciation as described above.  For our 
sample of ready-mixed concrete plants from the CM, we simply use the deflated values of plants’ reported book 
values of capital.  Capital is unavailable after 1993. 
 
Total Factor Productivity.  Plant TFP is its logged output minus a weighted sum of its logged labor, capital, 
materials, and energy inputs.  That is, 

 
where the weights j are the input elasticities of input j{l, k, m, e}.  Output is the plant’s inventory-adjusted total 
value of shipments deflated to 1987 dollars.  Inputs are plant-specific but the input elastiticies are measured using 
industry-level input cost shares.  These cost shares are computed using reported industry-level labor, materials, and 
energy expenditures from the NBER Productivity Database.  Capital expenditures are the reported plant’s capital 
stocks multiplied by their respective BLS capital rental rates in the corresponding two-digit industry.27 
 

 
 
  

                                                 
27 Capital rental rates are from unpublished data constructed by the Bureau of Labor Statistics for use in computing 
their Multifactor Productivity series.  Formulas, related methodology, and data sources are described in U.S. Bureau 
of Labor Statistics (1983) and Harper, Berndt, and Wood (1989). 



 

B. Estimating the Selection Corrections 
 

We compute our estimated selection corrections described in Section VI.B using the following algorithm. 
 

1. Estimate the TFP innovations for all plants in our sample that survive to the next year by regressing leads of 
these plants’ TFP levels on our array of fixed effects from the benchmark specification.  Because this array 
includes plant fixed effects, the predicted values from this regression are the surviving plants’ TFP innovations. 

 
2. Divide all plants in a given four-digit-industry-year cell, both those that will survive to the next year and those 

that will cease operating, into deciles by their TFP level.  Doing this separately by industry-year controls for the 
many variations in the other forces that drive exit rates across industries and time.  These deciles are the 
sections described above that ensure all plants within them have roughly the same threshold productivity 
innovation for exit. 

 
3. Compute the exit rate for the decile, which is simply the fraction of plants that exit by the following year. 

 
4. Using the estimated TFP innovations for survivors, the categorization of survivors into deciles, and the 

corresponding decile-specific exit rates, compute the implied differences in means and medians of the 
conditional and unconditional TFP innovation distributions as described in the main text.  Compute these 
differences for every decile. 

 
5. Compute the real-revenue-weighted average of these decile-industry-year specific TFP corrections to obtain the 

implied unconditional TFP innovation for the entire sample. 
 

6. Do this entire process separately for plants subject to nonattainment ratings for each pollutant, so the 
adjustments are pollution-specific, just like the TFP effect estimates are. 
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Table 1. Polluting Industry Groups and Their Pollutants 
 
 

Industry (applicable SIC codes) Pollutant 
Pulp and paper (2611–31) CO/O3/SO2/TSPs 
Organic chemicals (2861–69) O3 
Petroleum refining (2911) CO/O3/SO2 
Rubber and miscellaneous plastic products (30) O3 
Stone, clay, glass, and concrete (32) O3/SO2/TSPs 
Iron and steel (3312–25, 3321–2) CO 
Nonferrous metals (333–34) CO/SO2 
 
Notes: This table, based on information in Greenstone (2002), shows industries that are classified as heavy emitters 
of one or more of the four primary pollutants the CAAA covers, and which pollutant(s) they emit.  We consider all 
plants in these industries to be heavy emitters and subject to CAAA abatement mandates if their county is declared 
in nonattainment. 
 
 



 

Table 2. Annual Changes in Attainment Status 
 
 
A. Any Pollutant 

  Current Nonattainment 
  No Yes 

Lagged Nonattainment 
No 81.2% 1.9 
Yes 1.5 15.3 

 
 
B. O3 

  Current Nonattainment 
  No Yes 

Lagged Nonattainment 
No 86.3 1.2 
Yes 0.9 11.5 

 
 
C. TSPs 

  Current Nonattainment 
  No Yes 

Lagged Nonattainment 
No 93.5 1.1 
Yes 0.9 4.5 

 
 
D. SO2 

  Current Nonattainment 
  No Yes 

Lagged Nonattainment 
No 98.3 0.2 
Yes 0.2 1.3 

 
 
E. CO 

CO  Current Nonattainment 
  No Yes 

Lagged Nonattainment 
No 96.1 0.4 
Yes 0.3 3.2 

 
Notes: This table shows the distribution from 1972-2000 of counties’ lagged and current nonattainment status.  The 
reported numbers are fractions of 94,230 county-years in the respective category. 



 

Table 3: TFP Effects of Nonattainment, Core Specifications 
 

Pollutant [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] 
Any -0.042** 

(0.004) 
 -0.024** 

(0.003) 
 -0.023** 

(0.003) 
 -0.036** 

(0.007) 
 -0.026** 

(0.006) 
 -0.044** 

(0.007) 
 

O3  -0.036** 
(0.006) 

 -0.018** 
(0.004) 

 -0.017** 
(0.004) 

 -0.045** 
(0.008) 

 -0.022** 
(0.007) 

 -0.057** 
(0.008) 

TSPs  0.009* 
(0.005) 

 0.010** 
(0.004) 

 0.009** 
(0.004) 

 -0.016 
(0.008) 

 -0.013* 
(0.007) 

 -0.011 
(0.008) 

SO2  -0.016* 
(0.009) 

 0.000 
(0.006) 

 -0.002 
(0.006) 

 -0.029** 
(0.012) 

 -0.016 
(0.010) 

 -0.021* 
(0.011) 

CO  -0.019** 
(0.007) 

 -0.021** 
(0.005) 

 -0.024** 
(0.005) 

 0.029** 
(0.011) 

 0.017* 
(0.009) 

 0.022** 
(0.010) 

             
Industry (4- 

digit) 
X X           

Industry (4- 
digit) x year 

  X X X X       

Geo division 
x period 

    X X X X X X   

Industry (2- 
digit) x 
period 

        X X   

Geo division 
x year 

          X X 

Industry (2- 
digit) x year 

          X X 

Plant       X X X X X X 
R2 0.766 0.766 0.800 0.800 0.800 0.800 0.882 0.883 0.887 0.887 0.887 0.887 

 
Notes: This table shows the results of regressing plants’ TFP levels on pollution attainment indicators, polluting industry indicators, and their interaction, along 
with fixed effects at the two-digit-SIC-by-ASM-panel, Census-division-by-ASM-panel, and plant levels.  The values in the table are the coefficients and standard 
errors of the estimates of the interaction of pollution attainment and polluting industry indicators.  Observations weighted by the product of real output and ASM 
weight as to be representative of effects on aggregate manufacturing activity.  Standard errors are clustered by county-year.  An asterisk denotes significance at 
the ten percent level; two asterisks denote significance at the five percent level.  N = 1,184,482. 
 



 

Table 4: TFP Effects of Nonattainment—Dynamic Specifications 
 
 

 Lags of Attainment in Specification 

Pollutant 0a 0b 1a 1b 2a 2b 

Any -0.026** 
(0.006) 

 -0.026** 
(0.0075) 

 -0.031** 
(0.009) 

 

O3  -0.022** 
(0.007) 

 -0.020** 
(0.008) 

 -0.013 
(0.009) 

TSPs  -0.013* 
(0.007) 

 -0.019* 
(0.009) 

 -0.019* 
(0.011) 

SO2  -0.016 
(0.010) 

 -0.019 
(0.012) 

 -0.029* 
(0.015) 

CO  0.017* 
(0.009) 

 0.019* 
(0.012) 

 0.009 
(0.014) 

N 1,184,482 1,184,482 983,294 983,294 800,312 800,312 

R2 0.887 0.887 0.893 0.894 0.898 0.898 

 
Notes: This table shows the results of estimating specifications similar to our benchmark, except various lags of the 
pollution attainment indicators and their interaction with polluting industry indicators.  The values in the table are 
the sum of the current and lagged interaction coefficients.  Results for specifications including no (copied from 
Table 3), one, and two lags are reported.  Observations weighted by the product of real output and ASM weight.  
Standard errors are clustered by county-year. An asterisk denotes significance at the ten percent level; two asterisks 
denote significance at the five percent level. 
 
 



 

Table 5: TFP Effects of Nonattainment—Robustness Checks 
 
 

 Excluding industry switchers 7 percent cutoff for “heavy” polluters 12 percent cutoff for “heavy” polluters

Pollutant [1] [2] [3] [4] [5] [6] 

Any -0.016** 
(0.007) 

 -0.021** 
(0.004) 

 -0.023** 
(0.007) 

 

O3  -0.011 
(0.009) 

 -0.017** 
(0.006) 

 -0.021** 
(0.008) 

TSPs  -0.027** 
(0.008) 

 0.000 
(0.007) 

 0.013* 
(0.007) 

SO2  0.022** 
(0.011) 

 -0.007 
(0.009) 

 -0.016 
(0.010) 

CO  0.023** 
(0.010) 

 0.018* 
(0.009) 

 0.002 
(0.012) 

N 806,700 806,700 1,184,842 1,184,842 1,184,842 1,184,842 

R2 0.910 0.910 0.887 0.888 0.887 0.887 

 
Notes: This table shows the results of estimating specifications similar to our benchmark, except with changes in sample or variable definitions.  Columns 1 and 
2 exclude from the sample any plants that change four-digit-SIC industries during the sample.  Columns 3 and 4 define heavy polluting plants as those in industry 
groups that account for at least seven percent of industrial emissions of one of our four pollutants, rather than the ten percent cutoff in our benchmark sample.  
Columns 5 and 6 use a more stringent 12 percent cutoff to define heavy polluters.  Observations weighted by the product of real output and ASM weight.  
Standard errors are clustered by county-year.  An asterisk denotes significance at the ten percent level; two asterisks denote significance at the five percent level. 
 
 



 

Table 6: TFP Effects of Nonattainment—Industry-Specific Effects 
 

Pollutant-Industry Estimated Effect  
F-test for H0 that pollution nonattainment 
effects are equal across industry groups 

Pulp and paper/O3 0.052** 
0.010) 

 

O3 F-statistic: 30.6 
O3 p-value: 0.000 

Organic chemicals/O3 -0.167** 
(0.019) 

 

Petroleum refining/O3 0.006 
(0.013) 

 

Rubber/O3 -0.022** 
(0.008) 

 

Stone, clay, glass/O3 0.013* 
(0.007) 

 

Pulp and paper/TSPs -0.024* 
(0.012) 

 
TSP F-statistic: 0.310 
TSP p-value: 0.579 Stone, clay, glass/TSPs -0.016** 

(0.008) 
 

Pulp and paper/SO2 0.026 
(0.020) 

 

SO2 F-statistic: 2.09 
SO2 p-value: 0.099 

Petroleum refining/SO2 -0.027* 
(0.014) 

 

Stone, clay, glass/SO2 -0.006 
(0.013) 

 

Nonferrous metals/SO2 -0.039 
(0.029) 

 

Pulp and paper/CO 0.012 
(0.016) 

 

CO F-statistic: 2.25 
CO p-value: 0.080 

Petroleum refining/CO 0.028** 
(0.014) 

 

Iron and steel/CO 0.007 
(0.014) 

 

Nonferrous metals/CO -0.058* 
(0.031) 

 

N 1,184,482   
R2 0.888   

 
Notes: This table shows the results of estimating a specification similar to our benchmark, except breaking out 
pollution-specific nonattainment effects by specific industry group rather than pooling all heavy emitters of a 
particular pollutant together.  Observations weighted by the product of real output and ASM weight.  Standard errors 
are clustered by county-year. An asterisk denotes significance at the ten percent level; two asterisks denote 
significance at the five percent level.  The table also reports the results of an F-test for equality of effects across all 
industry groups that emit a particular pollutant. 
  



 

Table 7: TFP and Price Effects of Nonattainment, Ready-Mixed Concrete Plants 
 
 

 Dependent Variable 

Pollutant Revenue TFP ln(price) Physical Quantity TFP

Nonattainment in O3, 
TSPs, and/or SO2 

-0.006 
(0.019) 

0.027** 
(0.010) 

-0.033 
(0.021) 

R2 0.635 0.660 0.649 

 
Notes: This table shows the results of estimating specifications similar to our benchmark, except using three 
different dependent variables (a plant’s revenue-based TFP, our benchmark dependent variable; its quantity-based 
TFP, and its logged average price), and only including ready-mixed concrete plants from the Census of 
Manufactures.  Additionally, nonattainment is defined as a nonattainment designation in one or more of the three 
pollutants for which concrete plants are considered heavy emitters: O3, TSPs, and SO2.  The three dependent 
variables are linked by the following identity: revenue TFP ≡ quantity TFP + ln(price).  Observations weighted by 
the product of real output and ASM weight.  Standard errors are clustered by county-year. An asterisk denotes 
significance at the ten percent level; two asterisks denote significance at the five percent level. 
 
  



 

Table 8: Selection Corrections 
 
 
A. Exit Rates by TFP Decile for Plants Facing Nonattainment Designation  
 

Decile Average Exit Rate (percent) 

1st (lowest) 9.15 

2nd 3.85 

3rd 3.25 

4th 2.93 

5th 2.63 

6th 3.11 

7th 2.77 

8th 2.91 

9th 2.63 

10th 3.67 
 
Notes: This panel shows the average exit rates (the percent of plants that cease operations in the following year) by 
the plant’s decile within its four-digit-SIC-industry’s TFP distribution. 
 
 
B. Selection Correction Factors (I.e., Additional TFP Change from Nonattainment Designation) 
 

Pollutant Average exit rate Mean-based method Median-based method 

Any 3.68 -0.022 -0.007 

O3 3.65 -0.021 -0.007 

TSPs 4.05 -0.023 -0.008 

SO2 3.73 -0.020 -0.007 

CO 3.60 -0.022 -0.008 

 
Notes: This table shows our calculated survivorship-bias corrections to our benchmark estimates of nonattainment’s 
TFP effects.  These corrections should be added to the estimates obtained above from only surviving plants.  See the 
text for details of the calculations. 
 


