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Abstract

Using plant-level data, I show that the dispersion of total factor productivity in U.S.
durable manufacturing is greater in recessions than in booms. This cyclical property of
productivity dispersion is much less pronounced in non-durable manufacturing. In durables, this
phenomenon primarily reflects a relatively higher share of unproductive firms in a recession. In
order to interpret these findings, I construct a business cycle model where production in durables
requires a fixed input. In a boom, when the market price of this fixed input is high, only more
productive firms enter and only more productive incumbents survive, which results in a more
compressed productivity distribution. The resulting higher average productivity in durables
endogenously translates into a lower average relative price of durables. Additionally, my model
is consistent with the following business cycle facts: procyclical entry, procyclical aggregate
total factor productivity, more procyclicality in durable than non-durable output, procyclical
employment and countercyclicality in the relative price of durables and the cross section of stock
returns.
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1 Introduction

This paper investigates the cyclical properties of productivity dispersion across plants in the
U.S. manufacturing sector. From a business cycle perspective, changes in cross-sectional pro-
ductivity dispersion are relevant because they determine the dynamics of aggregate total factor
productivity, a central object of interest in business cycles.

Although some theories of aggregate fluctuations address productivity dispersion, it is not
obvious how dispersion moves over the business cycle. One set of models emphasises the process
of Schumpeterian “creative destruction” and predicts that productivity dispersion is positively
correlated with output. In a recession, when demand is low, unproductive plants exit and are
eventually replaced by highly productive plants.1 On the other hand, an environment where
plants compete over common resources – as developed in Melitz (2003) for international trade
– has the potential to deliver the opposite result. In a boom, increased demand for production
factors raises factor prices. Only more productive plants can afford to pay the higher factor
costs, while unproductive plants exit. In a recession, higher productivity dispersion persists in
the face of weak competition.2 In the context of the latter mechanism, recessions are “sullying,”
while they are “cleansing” in the context of Schumpeterian creative destruction.

The existing literature has provided little empirical evidence on cyclical properties of the
productivity distribution, and it is so far not clear whether recessions are cleansing or sullying.3

The goal of this paper is to address this question. In doing so, I assess the relative importance of
cost and demand factors that have a countervailing impact on dispersion as highlighted above.

Using confidential Census data, I estimate plant-level productivity in the U.S. manufacturing
sector from 1972-2005. My empirical work establishes three main results: First, cross-sectional
productivity dispersion is countercyclical; i.e., the distribution of plant-level productivity is more
spread-out in a recession than in a boom. Second, the bottom quantiles of the productivity
distribution are more cyclical than the top quantiles. In other words, the countercyclicality
of productivity dispersion is mostly due to changes at the bottom end of the productivity

1Caballero and Hammour (1994, 1996) formalised the notion of cleansing in a business cycle context which
goes back to Schumpeter (1939) and appears in a large number of models, among others Mortensen and Pissarides
(1994); Campbell (1998); Gomes, Greenwood, and Rebelo (2001); Lentz and Mortensen (2008).

2Examples of this strand of research are Davis and Haltiwanger (1990, 1992, 1999); Melitz (2003); Ghironi
and Melitz (2005); Eisfeldt and Rampini (2006, 2008); Melitz and Ottaviano (2008). The same countercyclical
dispersion is consistent with models of reallocation if one accounts for a changing plant size. Production factors
are shifted from unproductive to productive plants in a boom, which compresses the productivity dispersion.

3Bachmann and Bayer (2009b) have documented a countercyclical dispersion in productivity growth rates for
German firm-level data. Eisfeldt and Rampini (2006) have established a similar result using data on publicly
traded firms covered in Compustat. Contrary to them, I examine the dispersion of productivity levels rather
than growth rates.

A number of studies have looked at the productivity dispersion in one or repeated cross sections (see for example
Baily, Hulten, and Campbell (1992); Bartelsmann and Doms (2000); Syverson (2004) for TFP dispersion in the
U.S. Hsieh and Klenow (2009); Moll (2009); Song, Storesletten, and Zilibotti (2011) compare the productivity
dispersion in developing and emerging economies to the one in the U.S.).
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distribution. Third, the countercyclical pattern of productivity dispersion is more pronounced
in durable goods industries than in non-durable goods industries. These results were obtained by
estimating productivity using the methodology proposed by Levinsohn and Petrin (2003), but
they are robust to using alternative methods to infer total factor productivity. The cyclicality
results also hold for several dispersion measures such as the cross-sectional variance, inter-
quartile or inter-decile range.

Schumpeterian models typically consider only variation in demand, which generates pro-
cyclical productivity dispersion. In a boom, when demand is high, unproductive plants survive
more easily and vice versa in a recession. At face value, such models are at odds with my
empirical finding of a countercyclical dispersion. To overcome this inconsistency, I introduce a
cost channel into an environment that, without the cost channel, would lead to cleansing in a
recession. When plants compete over common resources, such an environment leads to higher
cost in a boom, which could make it harder for unproductive firms to survive.

I build a model along the lines of Ghironi and Melitz (2005) in which business cycles are
driven by aggregate shocks as in Caballero and Hammour (1994). Plants differ in their pro-
ductivity and are active in two sectors (durables and non-durables). Production in the durable
sector requires a fixed input such as overhead labour or organisational capital. The costs for
this fixed input are a crucial determinant of plant profitability. As a result, only plants above
a certain productivity cutoff will make non-negative profits and be active in durables. This
productivity cutoff, which regulates productivity dispersion, depends positively on the price of
fixed inputs. Since fixed inputs in durables are a key feature of my model, I provide empirical
evidence for them. Higher fixed inputs in durables than in non-durables will show up in a pro-
duction function estimation as higher returns to scale. I estimate returns to scale on the plant
level and find that they are increasing in durable goods industries, while in non-durable goods
industries they are constant.4 This finding lends support to my assumption of overall constant
returns to scale and fixed factors merely in durables. This approach attempts to provide a
unified theoretical explanation of both the micro-level dispersion results as well as the typical
macroeconomic dynamics.

I use my model to study the dynamics of productivity dispersion in booms and recessions.
I conceptualise aggregate fluctuations as shocks to household preferences that raise aggregate
demand. Consider a plant with productivity exactly equal to the cutoff productivity. An
increase in demand increases profits. At first sight, additional profits benefit the plant at the
cutoff. On the other hand, higher profits increase entry into the economy. A larger number
of plants raises aggregate demand for production factors. In particular, the price of the fixed
factor will rise. This hurts the plant at the cutoff, because it may no longer be able to cover the

4This difference in returns to scale estimated on the plant level confirms the findings of Burnside (1996) and
Harrison (2003) who estimated returns to scale on the industry level.
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costs for the fixed factor. If that is the case, this plant will no longer be active in durables and
the productivity cutoff will be higher, resulting in a more compressed productivity distribution
in a boom. My mechanism for cleansing in booms is a variant of what Lucas (1978) developed in
a growth setting: As the economy grows, fixed entrepreneurial inputs become more expensive,
so that the least productive units exit.

My model is hence capable of replicating the three main empirical findings: The changing
truncation makes the dispersion countercyclical (Result #1), it operates at the bottom end of
the distribution (Result #2) and predominantly in durable goods industries (Result #3). The
crucial feature to deliver the above results is the procyclical price of the fixed factor. In reality,
there exist a wide array of fixed input factors such as managerial labour, organisational capital,
supply chains or technical know-how. In this paper, I model the fixed factor as managerial
labour input and present empirical evidence for its procyclicality.

Although the model was constructed with the objective of understanding the business cycle
properties of productivity dispersion, it has many other implications which provide additional
support for the model. For example, the productivity cutoff, and hence average productivity
in durables, is procyclical, which results in a countercyclical average relative price of durables.
The countercyclicality in the price of durables has been widely noted, and my model appears
to provide a novel explanation for that phenomenon.5 This explanation rests on endogenous
selection of more profitable plants into durables in a boom. In addition, the model endogenously
predicts that aggregate TFP is procyclical although the source of fluctuations in my model is
not disturbances to aggregate total factor productivity. This happens because the underlying
productivity dispersion is truncated at the bottom in a boom.6 The model is also consistent
with procyclical employment and firm entry. Lastly, the truncation also implies that the cross-
sectional distribution of rates of return for firms active in durables is more compressed in a
boom. This conforms well with the finance literature that finds cross section of stock market
returns to be countercyclical, see for example Heaton and Lucas (1996); Storesletten, Telmer,
and Yaron (2004).

The paper is organised as follows: Section 2 describes the data, the econometric strategy
and documents the empirical findings. The empirical patterns define the puzzle that cannot be

5There has been a long and heated debate about different explanations for this fact. Probably the most
relevant strand of research in this area is the investment-specific technological change literature. An alternative
strand of research puts increasing returns to scale at the heart of a countercyclical relative price of durables.
See for example Murphy, Shleifer, and Vishny (1989); Benhabib and Farmer (1994, 1996); Hall (1990); Caballero
and Lyons (1992); Bartelsmann, Caballero, and Lyons (1994); Harrison (2003). Greenwood, Hercowitz, and
Krusell (1997, 2000) have proposed exogenous fluctuations in investment-specific technologies to explain both
a countercyclical relative price of durables and fluctuations in macroeconomic aggregates. Fisher (2006) and
Justiniano and Primiceri (2008) find that a large share of the volatility reduction of macro aggregates is due to
a reduction in volatility of investment-specific disturbances.

6This implication appears in a number of models featuring productive heterogeneity on the micro level, see
for example Lagos (2006); Hsieh and Klenow (2009); Moll (2009).
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explained in existing models with aggregate disturbances. This is the theoretical challenge that
is to be explained in Section 3 which lays out the model. The goal of the model is to provide a
unified theoretical explanation of both the micro-level dispersion results as well as the typical
macroeconomic dynamics. Section 4 concludes.

2 The empirics of productivity dispersion

2.1 Data

I use confidential establishment-level7 manufacturing data from the Census Bureau which com-
prise the Annual Survey of Manufactures (ASM), the Census of Manufactures (CMF), the
Plant Capacity Utilization Survey (PCU), the Longitudinal Business Database (LBD) and
the COMPUSTAT-SSEL bridge. These data are supplanted by industry-level data from sev-
eral publicly available sources: price deflators from the NBER-CES Manufacturing Indus-
try Database (NBER-CES)8, the Capital Tables published by the Bureau of Labor Statistics
(BLS)9, the Fixed Asset Tables published by the Bureau of Economic Analysis (BEA)10 and
the Industrial Production and Capacity Utilization published by the Federal Reserve Board of
Governors (IPCU)11. Unless otherwise noted, all datasets are at annual frequency.

The Census data are mainly the Census of Manufactures (CMF) and the Annual Survey of
Manufactures (ASM). Combined, they span the period 1972-2007 (due to data limitations with
price deflators only observations up to and including 2005 can be used) and contain information
on establishment-level inputs and outputs. These data have been used before in a number of
studies (see for example Baily, Hulten, and Campbell (1992); Ábrahám and White (2006);
Hsieh and Klenow (2009); Petrin, Reiter, and White (2011)). Previous research has typically
focused on estimating returns to scale, the persistence of productivity or aggregate productivity
growth in one or repeated cross sections. Petrin, Reiter, and White (2011) use the estimator
developed by Levinsohn and Petrin (2003) to decompose aggregate TFP growth into terms
reflecting technical efficiency and reallocation as proposed by Levinsohn and Petrin (2010). To
my knowledge, the present paper is the first attempt to analyse the empirical productivity
distribution in U.S. manufacturing at annual frequency and to document the cyclical properties
over the horizon 1972-2005. With this longitudinal perspective, I can assess the empirical

7Census defines an establishment as a business location whose primary activity is production. In manufac-
turing, this can usually be thought of as a production plant.

8The NBER-CES Manufacturing Industry Database is a joint program of the National Bureau of Economic
Research and the Census Bureau; http://www.nber.org/nberces/.

91987-2008 Capital Data for Manufacturing Industries http://www.bls.gov/mfp/mprdload.htm.
10Tables 3.1S, 3.1E, 3.3S, 3.3E, 3.7S, 3.7E, 3.8S and 3.8E at

http://www.bea.gov/national/FA2004/SelectTable.asp.
11Industrial Production and Capacity Utilization – G.17; dataset compiled by the Federal Reserve;

http://www.federalreserve.gov/datadownload/Build.aspx?rel=G17.
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validity of different theories of business cycle mechanisms and models of entry and exit using
their implications for higher-order moments of productivity.

In addition to this new research interest, the data that are used in the present study span
not only a longer period, but are also substantially improved (as described in detail in Appendix
A) over the versions used in the above-cited research. Several datasets were combined with the
ASM/CMF: The LBD covers the entire universe of plants in the U.S. economy since 1976. The
primary interest is to combine it with the ASM/CMF in order to get reliable information about
plant birth and death. The COMPUSTAT-SSEL bridge carries the information if a firm is also
listed in the COMPUSTAT dataset, i.e., if it is publicly traded or not. This will help to test
implications where access to financing plays an important role.

The ASM/CMF exhibits unparalleled detail on the plant level and is an excellent source to
assess the cross-sectional productivity dispersion and how it evolves over time. This level of
detail, however, comes at some cost. Ideally, one would want to analyse a balanced panel that
reflects the entire universe or is at least a random sample of the population of manufacturing
plants. The CMF/ASM dataset, however, is censored in several ways: In “Census years” (years
ending in 2 and 7), the dataset covers the entire universe of manufacturing establishments that
are active in that year.12 In “ASM years” (all other years), the data cover only a subset of the
universe of manufacturing firms that is not a random sample. Large establishments above a
certain employee or asset value threshold are sampled with certainty, smaller establishments
are selected with a certain probabiliy p < 1. Census chooses the sampling probability such that
the inverse reflects the sampling weight, i.e., the number of establishments that the sampled
observations is representative for. Using these weights, one can roughly replicate aggregate
output and employment from existing plant-level observations at annual frequency.

The goal is to obtain a panel where results about the productivity dispersion are not driven
by changes in the sampling design. In the baseline specification, I therefore drop all plants from
the CMF that are not part of the ASM sample.13 Although this procedure underrepresents
small establishments, it maintains longitudinal consistency. Also, the number of observations
that remain in my sample is still very large: About 60k annual observations sum to about 1.8m
data points that stand for the lion’s share in aggregate activity.

Alternatively, one could also analyse the productivity dispersion of the observations weighted
by the Census-provided sampling weight rather than restricting the analysis to the consistent
ASM sample. Although it may provide a robustness check, this approach makes the some strong
assumptions. Namely, it requires that small establishment that were not sampled in the ASM,
do in fact not only share similar size of assets, employment and output, but also the same TFP
with those establishments that were sampled. In future work, I plan to check this property.

12Establishments with less than three employees, so-called “AR establishments,” are imputed by Census based
on administrative records from IRS; those observations are dropped.

13Those observations are identified by ET = 0.
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Lastly, Census rotates the sample of small establishments that are included in the ASM
sample quinquennially in years ending in 4 and 9. This matters a lot if one is interested in
the evolution of dispersion of TFP growth rates rather than TFP levels.14 The TFP growth
rate of many small establishments in years 4 and 9 cannot be computed because they were not
in the ASM sample in the preceding year. I will also analyse the dispersion of TFP growth
rates below. In order to exclude spurious results that stem from sample rotation, I analysed
the dispersion-GDP relationship once containing all years and once dropping all rotation years.
This robustness check is conducted in Section 2.3.2.

2.2 Productivity dispersion

2.2.1 Constructing the dispersion measure

Studying cross-sectional productivity dispersion requires plant-level productivity estimates.
This can be assessed by estimating a production function. This research has a long-standing
tradition in the estimation of returns to scale. This paper follows the vast strand of previous
research and assumes a Cobb-Douglas15 gross output production function on the plant level:

yijt = aijt + βkkijt + βllijt + βmmijt + βeeijt (1)

where y denotes the log of production, a total factor productivity and k, l, m and e are logged
real inputs of capital, hours worked, material use and energy use, respectively. βk, βl , βm and
βe are production function elasticities. The subscript index t denotes time, i the plant which
belongs to industry j. Unless otherwise noted, industry denotes one of the 473 6-digit NAICS
industries in the manufacturing sector. The estimation of aijt will be described below.

The preferred specification is gross output rather than valued added. Basu and Fernald
(1995, 1997) have shown that the value added specification leads to an upward bias of production
elasticity estimates if factor markets are imperfect. This upward bias that is not present in
the gross output specification. Lastly, note that both capital and energy are included in the
production function. As pointed out by Burnside, Eichenbaum, and Rebelo (1995), the capital
stock per se is not productive. Rather, it requires energy (fuels or electricity) to be utilised in
production. Hence, I use some form of energy to proxy for capital services. This step will play
a key role in the estimation describe below. The plant-level productivity has to be corrected
in several ways. First, it needs to be detrended, second, recentered at zero, thirdly scaled by
the long-run variance. These normalisation steps warrant more explanation. First, industries
may well have different long-run productivity growth. As a result, industries that diverge more

14This is also a problem if one estimates TFP in a way that requires lagged variables.
15Lee and Nguyen (2002) have estimated a translog production function for some industries without many

differences in estimated return to scale.
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Figure 1: Industry differences in productivity dispersion

Recentering and scaling of industry productivity dispersion makes dispersion industries compa-
rable among each other and over time.
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and more form the average growth trend are more and more important in determining the
cross-sectional dispersion. To correct for that, I fit a simple econometric model with a linear
trend. This trend is allowed to differ across industries:

aijt = gjt+ zijt (2)

The resulting term zijt still needs to be corrected in more ways to obtain a proper cross-sectional
dispersion measure Dispt:

Dispt ≡ Et

[
V arjt

(
zijt − zj
σj

)]
(3)

As Figure 1 (a) illustrates, different industries may have a different average level of productivity.
Changes in the overall cross-sectional dispersion could hence be driven by changes in “outlier”
industries. This can be corrected by subtracting the long-run industry mean, zj . The effect of
this step is illustrated in Figure 1 (b).

Finally, it is well-known that the within industry productivity dispersion varies greatly.
Syverson (2004) reports that in a cross section the within-industry dispersion varies greatly
across industries. As a consequence, I scale each industry by its standard deviation σj . This
scaling step is illustrated in Figure 1 (c). Note that the industry mean and standard deviation
used in steps 2 and 3 are not dependent on time t. Otherwise, any time variation in dispersion
would be lost.

2.2.2 The Levinsohn-Petrin estimator

How can aijt be estimated? Naturally, production inputs, kt, lt,mt and et, will be positively
correlated with plant productivity, at. An OLS estimation will then result in biased estimates
of both production elasticities βk, βl, βm and βe and productivity at. Previous research that
estimated returns to scale on the industry16 rather than the plant level had to grapple with
the same problem. One way this literature overcame the endogeneity problem was to obtain
demand instruments that are not correlated with productivity.17 This approach is feasible if one
estimates returns to scale using aggregate or industry level data. Running (1) on the plant level,
however, would require plant-level instruments, otherwise a lot of plant-specific information in
the data would be lost. This information loss would hurt the endeavour of assessing plant-
level productivity. Alternatively, one could assume constant returns to scale and perfectly

16See among others Hall (1990); Caballero and Lyons (1992); Bartelsmann, Caballero, and Lyons (1994);
Burnside, Eichenbaum, and Rebelo (1995); Basu and Fernald (1995, 1997); Harrison (2003).

17Hall (1990) has proposed the oil price, military spending and the political party of the president as instru-
ments. Burnside, Eichenbaum, and Rebelo (1995) have extended this set for a measure of monetary policy
shocks.
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competitive factor markets. Under these assumptions, the production elasticities are readily
approximated by the cost shares of each production factor. This approach is easily implemented
and therefore very popular in the literature (see for example Ábrahám and White (2006); Castro,
Clementi, and Lee (2009); Lee and Mukoyama (2008)). This approach is implemented as a
robustness check in Section B.3. It has the downside to impose constant returns to scale, so it
is not informative about fixed factors in production. Fixed factors, however, play an important
role in several theoretical models that feature productivity dispersion and a survival cutoff.

For that reason, I turn to the structural estimation technique developed by Levinsohn and
Petrin (2003), henceforth LP. A detailed description of the procedure can be found in Appendix
B.1. At this point, I will merely give a concise description. The authors assume the same
production function as in equation (1) including energy et and kt as the capital stock (rather
capital services). It is (adopting their notation and omitting industry subscripts):

yit = ωit + ηit + βllit + βkkit + βmmit + βeeit (1’)

The firm productivity term is decomposed into a portion that the plant observes, ωit. The
authors assume that ωit has a first-order Markov structure. ηit on the other hand is not observed
by the plant and hence does not influence contemporaneous decision rules. The capital stock
in period t is assumed to be fixed. The plant’s state vector is hence (kit, ωit, Pt). Pt denotes
the vector of firm input prices. The key step in the LP technique is to utilise the information
that input demand is generally a function of productivity (and the other state variables). This
input demand function can be inverted to obtain a (non-parametric) function of productivity
in terms of the state and firm observed inputs. This can be plugged into (1’) and estimated
semi-parametrically.

2.2.3 Results – Returns to scale

The dispersion estimates about productivity are the main interest of this paper. They result
from a production function estimation and I will display these results. Be reminded that
I measure labour as hours worked, materials as the real value of materials used, capital as a
quality-adjusted constant-dollar valued assets and energy as electricity. I do not find systematic
differences separating hours worked into white collar vs. blue collar workers. Also, there are no
significant changes when separating out the capital stock into structures and equipment. As an
alternative to electricity, I also used overall energy expenditures (including fuels), but this, too,
does not change the results significantly. I use the above-described LP procedure to estimate
equation (1’) separately for durable and non-durable industries. There has been a large body of
research suggesting differences in the technology between those two sectors. Therefore, it makes
sense to estimate returns to scale and plant-level productivity separately for durables and non-
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durables. Table 1 displays the results of this regression in durables goods industries (NAICS
321, 327-339), Table 2 the analogous results for non-durables (NAICS 311-316, 322-326).

Table 1: Returns to scale – Durables

Coefficient Estimate Std. Err. 95% Confidence Interval
Hours Worked 0.3415 0.0015 0.3385 0.3444
Materials 0.5055 0.0023 0.5009 0.5101
Capital 0.0321 0.0003 0.0313 0.0328
Electricity 0.1747 0.0033 0.1682 0.1814
Returns to scale 1.055 0.0043
Wald test of constant returns to scale: χ2 = 200.37 (p = 0.0000).

Panel comprises 781,004 establishments in durable industries 1972-2005. Durable goods indus-
tries defined as those with NAICS 321 and 327-339.

Table 2: Returns to scale – Non-durables

Coefficient Estimate Std. Err. 95% Confidence Interval
Hours Worked 0.2702 0.0003 0.2697 0.2707
Materials 0.4825 0.0020 0.4796 0.4874
Capital 0.0479 0.0010 0.0459 0.0499
Electricity 0.2019 0.0094 0.1833 0.2205
Returns to scale 1.0025 0.0097

Wald test of constant returns to scale: χ2 = 0.09 (p = 0.7692).

Panel comprises 959,688 establishments in non-durable industries 1972-2005. Non-durable
goods industries defined as those with NAICS 311-316 and 312-327.

The coefficients on the input factors are consistent with previous estimates on the industry-
level. They are also close to the empirically observed cost shares.18 Remarkably, the coefficient
on the capital stock is extremely small while the coefficient on energy is 0.17 in durables and
0.2 in non-durables. This shows that the capital stock per se is not productive and energy
picks up the effects of the utilised capital stock. this result confirms the findings of Burnside,
Eichenbaum, and Rebelo (1995) who claim that electricity accurately measures capital services.
Taken together, the coefficients of capital and electricity add up to a value that is close to the
empirically observed cost share of capital.

Returns to scale in non-durables are constant. The production function coefficients add up
to unity. A Wald test of the null hypothesis of constant returns cannot be rejected. This is

18As an alternative an robustness check, I infer productivity by subtracting cost-weighted inputs from output.
These results are displayed in Appendix B.3.
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in line with previous research by Basu and Fernald (1995); Burnside, Eichenbaum, and Rebelo
(1995); Harrison (2003) who also find constant returns to scale in non-durable industries.

The production function regression in durable goods industries look mostly similar to the
results in non-durables with the exception of returns to scale being increasing. The production
function coefficients add up to 1.055. This is only slightly above unity, but a Wald test can
reject the null hypothesis of constant returns to scale at the 5% level. This finding will play an
important role in explaining differences in the cyclicality of productivity dispersion below. The
results of slightly increasing returns to scale are consistent with a fixed factor of production and
otherwise constant returns to scale. The estimation procedure above did not explicitly take into
account a fixed factor (that may be firm- or industry specific). If the true production function
in durable goods industries is constant-returns to scale and there is a fixed production factor,
then the estimated returns to scale will be increasing. Example of fixed factors of production
can be overhead labour or capital such as managers or capital structures.

Note that my results do not claim that fixed factors of production are absent in non-durable
goods industries. Higher estimated returns to scale in durables are consistent with the view that
fixed factors of production are more prevalent in durables than in non-durable goods industries.
Related research has found evidence supporting this result. Eisfeldt and Papanikolaou (2010)
find that levels of organisational capital or intangible assets such as know-how or supply chain
networks tend to be more prevalent in durable goods industries.

2.2.4 Results – Cross-sectional productivity dispersion

Plant-level total factor productivity is jointly estimated with returns to scale in the above
procedure. It corresponds to ωt in equation (1’). I obtain this residual and detrend it as
described in the previous section. The resulting object corresponds to the variable called zijt
above. This detrended productivity is now recentered and scaled by the industry mean and
standard deviation. Finally, I consider dispersion changes at business cycle frequency by HP-
filtering the time series.19 I now take the cross-sectional variance within each industry and
average across all non-durable industries. This gives the dispersion measure in non-durables
(for durables analogously) as outlined above:

Dispt ≡ Et

[
V arjt

(
zijt − zj
σj

)]
(3)

The two time series of the dispersion measures Dispt in durables and non-durables are displayed
in Figure 2.

As Figure 2 shows, the cross-sectional dispersion varies over time. Casual observation of the
19Appendix B.2 discusses the long-run trend in dispersion.
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Figure 2: Time series of GDP growth rate and Dispersion

Time series plot of the annual growth rate of real GDP and of Disp, the dispersion measure
defined in equation (3). Left panel displays non-durables, right panel displays durables, shaded
bars denote NBER recessions. The Disp measure has been demeaned for better visibility.

graph reveals that dispersion has some peaks that coincide with recessions as defined by the
NBER. This seems especially to be true for the early recessions in the sample: 1974, 1980, 1982
and – with some qualifications – 1991. There is an interesting rise in dispersion starting after
this recession in both durables and non-durables. This secular rise starts in the early 1990’s
and the dispersion measure almost doubles by the end of the sample in 2005. This looks like an
interesting fact for future research, but in the context of this paper I shall not devote further
attention to it. The spikes in dispersion are clearly stronger in durables, displayed in the right
panel on Figure 2.

Result 1: The productivity dispersion is countercyclial

The casual observation of the dispersion spiking in recessions warrants more formal evidence.
I will correlate the dispersion measure with several output measures: the growth rate of real
GDP, HP-filtered residuals and the number of recessionary months/year as determined by the
NBER. As mentioned above, the dispersion rises secularly starting in the early 1990’s. For
that reason, I HP-filter the Disp measure. This takes out the (non-linear) trend.20 As Table
3 shows, all three measures of aggregate fluctuations are negatively correlated with dispersion

20The resulting HP-filtered time series looks almost identical for the first part of the sample until the early
1990’s. To make sure that my results are not driven by this HP filtering of dispersion, I also correlated the
unfiltered time series with the annual growth rate of GDP. The results are similar albeit slightly weaker in
durables. The contemporaneous cross correlation is still -0.21 (0.092), which means that this correlation is
significantly different from zero at the 95% level.
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contemporaneously and at least with a one-year lag. The negative contemporaneous correlation
is statistically significant at the 95% level for all measures. I prefer to correlate dispersion with
the growth rate of real GDP because it is a fairly theory-free measure that is not subject to the
specific assumptions about some filtering technique or the definition of the business cycle dating
committee. Unless otherwise noted, I will therefore focus on GDP growth in the following.

Table 3: Cross-correlations of dispersion and output measures

Lead/Lag Correlation of dispersion in Durables with ...
GDP growth GDP (HP) No. boom months/year (NBER)

-2 0.139 0.232 0.102
-1 0.179 0.353 -0.034
0 -0.420 -0.528 -0.361
1 -0.327 -0.121 -0.278
2 -0.119 0.179 -0.249

Result 2: The dispersion in durables is stronger then in non-durables

The results of the correlations between GDP and dispersion in the two sectors is displayed in in
Table 4 and Figure 3. As we can easily see from those graphs, the productivity dispersion in more
countercyclial in durables than in non-durables. The estimated contemporaneous correlation is
-0.42 with a standard error of 0.12. This makes the result significant at the 95% level. This
negative correlation continues with a one-year lag suggesting that one year into the recession
the dispersion is still above its average level. The correlation is slightly less negative and the
error bands wider, but the negative correlation is still significantly different from zero at the
95% level.

Table 4: Cross-correlations of dispersion in Non-Durables and Durables

Lead/Lag Correlation of GDP growth with dispersion in ...
Non-durables Durables

-2 0.257 0.139
-1 0.137 0.179
0 -0.172 -0.420
1 -0.194 -0.327
2 0.044 -0.119

In non-durables goods industries, the overall cyclicality pattern is similar. It is slightly
countercyclical contemporaneously as well as with a one-year lag. It is not as strong, however,
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Figure 3: Cyclicality of Dispersion in Non-Durables (left) and Durables (right)

Correlograms display the correlation between the growth rate of real GDP and the dispersion
measure defined in equation (3): Corr(GDPt, Dispt+k); dashed lines denote 95% confidence
interval; confidence region computed using GMM.

as in durables. The correlation is -0.17 for contemporaneous correlation and -0.19 for a one-
year lag. The standard error bands are much wider than in the durable goods industries. In
particular, they are so wide that it is impossible to reject the null hypothesis of no correlation
at the 95% level or even the 90% level. This probably weighs more importantly: While the
dispersion dynamics in durables are significantly countercyclical, the dynamics of dispersion
in non-durables are not. This is the second key result of the empirical work on productivity
dispersion.

Note that durable and non-durable goods industries were different along another dimen-
sion. The estimated returns to scale were higher in durables then in non-durables suggesting
unobserved fixed factors are higher in durables than in non-durables. In the model section
below, we shall see how to explore this combination of empirical facts. These two empirical
findings related to differences between durables and non-durables are interesting complements
to the literature on investment-specific fluctuations. Greenwood, Hercowitz, and Krusell (1997,
2000) claim that a large share of aggregate fluctuations are driven by technology shocks spe-
cific to the marginal efficiency of new investment, i.e., to goods produced by durables goods
manufacturers. In the model section below, we will explore these relationships to the theory of
investment-specific fluctuations further.

Result 3: Bottom quantiles drive the dispersion dynamics

As shown above, the productivity distribution as a whole is negatively correlated with GDP.
This result means that the distribution is more dispersed in a recession. This pattern could
be explained by the overall distribution fanning out as conjectured by Davis and Haltiwanger
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Figure 4: Behaviour of Quantiles over NBER recessions

Each panel displays the average behaviour of the indicated quantile over NBER recessions. The
graphs are obtained by cutting out a subsample (a “worm”) of the time series that starts one
year before the onset of a NBER recession and lasts until years after the onset of a recession.
Solid lines denote the mean of each recession worm, dashed lines are the standard deviation
over the five recessions.

(1990). Alternatively, this countercyclicality is consistent with most movements happening at
the top of the distribution (as in Gabaix (forthcoming)) or at the bottom of the distribution
(as in Ghironi and Melitz (2005)). To that end, I look at the correlation of individual quantiles
with the business cycle. Figure 4 paints a fairly clear picture. The bottom quantiles in the
productivity distribution are more cyclical than the top quantiles. In particular, they go down
in a recession. This means that in a recession the unproductive surviving plants tend to be
less efficient in recessions than in booms. The most productive plants in the cross section, in
contrast, barely change their productivity over the business cycle. The strong dynamics at the
bottom end of the productivity distribution are consistent with the view that a truncation is
active here. Such a truncation has been proposed in a number of models: see Caballero and
Hammour (1994); Melitz (2003); Melitz and Ottaviano (2008) just to name a few. The evidence
that lower quantiles are procyclical suggests that this truncation is higher in a boom than in a
recession. This result is inconsistent with the view proposed in Caballero and Hammour (1994)
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that first, the productivity dispersion is procyclical and that, second, the truncation should be
higher in a recession. The latter implies that the lower quantiles are countercyclical rather than
procyclical.

Above, I have mentioned the relationship of my empirical results to the literature on
investment-specific fluctuations. This research does not only lay the source for a large share of
fluctuations in the durable goods sector. It also attributes a significant share in the volatility
reduction in macroeconomic aggregates to fluctuations in that sector. This has been proposed in
a number of papers: Stock and Watson (2002); Fisher (2006); Justiniano and Primiceri (2008);
Sargent, Williams, and Zha (2006) to cite a few. This motivates me to look for a structural
breaks in the cyclicality of dispersion in durables. There is some debate in the above-cited
papers about the timing of this structural break. Some estimates revolve around 1980, other
around 1984. I follow the latter approach and split my sample in 1984.
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Figure 5: Cyclicality of Dispersion in Durables over Time

Figure 5 displays the cyclicality in the full sample and the subsamples before and after 1985.
Clearly, there is a structural break in the cyclicality of dispersion. It is markedly countercyclial
before 1984 and slightly countercyclical after 1984. This result is interesting in its own right.
In addition to that, it provides a nice micro foundation to previous research that attributes a
large share in the volatility reduction on fluctuations in aggregate TFP in the durable goods
sector. Standard business cycle models feature only aggregate TFP, which – in reality – depends
on the underlying TFP distribution. A changing distribution will impact aggregate TFP. If
the underlying distribution becomes acyclical in the mid 1980’s, this would imply in most
standard models that (measured) aggregate TFP becomes acyclical. This implication makes
it plausible to think about the volatility reduction in TFP in durables as being caused by the
underlying productivity dispersion rather than exogenous aggregate TFP fluctuations. This
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result is certainly an interesting curiosity, which I plan to pick up again in future research.

2.2.5 Results: Dispersion in TFP growth rates

The main focus of this project is the dispersion of productivity levels. A related strand of
research has worked on the cross-sectional dispersion of the productivity growth rate. Bachmann
and Bayer (2009b,a) have recently established that in German data the cross sectional dispersion
of growth rates of firm-level Solow residuals is countercyclical. A similar result was established
by Eisfeldt and Rampini (2006) for Compustat firms. It would be interesting to see if similar
results are present in the ASM dataset. This dataset has the advantage over Eisfeldt and
Rampini (2006) that it is not confined to publicly traded firms of the Compustat sample.
Publicly traded firms make up only a very small fraction of the ASM sample. On the other
hand, I can only look at plants in the manufacturing sector. Therefore, my ASM data are also
somewhat more limited than those by Bachmann and Bayer (2009b,a) who look at units across
the economy. Following these authors, I construct the dispersion measure as21

Disp = V art(zit − zit−1).

The resulting time series and correlogram are displayed in Figure 6.
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Figure 6: Dispersion of TFP Growth Rates

21I still detrended plant productivity before computing the growth rates and the variance. Note that I omitted
the recentering and scaling exercises across industries. Looking the dispersion of growth rates should not be
affected at all by differences in long-run industry location and spread.
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2.3 Robustnes checks

2.3.1 Price dispersion

The analysis in this paper is hampered by some data limitations that have to be addressed.
Most pressingly is a common measurement problem of inputs and outputs. Production y,
capital k, materials m and fuels (but not electricity) are measured in nominal values that are
then deflated by some price deflator. These deflators are different for each of the variables and
available on the 6-digit NAICS industry level for output, materials and fuels, on the 3-digit
NAICS level for capital. Although this is already a fairly fine level, price dispersion among
firms within each industry could cause a measurement problem that confounds the estimates of
plant-level productivity. The productivity measure I consider is hence “revenue productivity”
as in Foster, Haltiwanger, and Syverson (2008); Hsieh and Klenow (2009). For the analysis of
plant survival over the business cycle, revenue productivity looks almost like the more relevant
measure to look at because whether a plant survives depends more on its profits rather than
physical productivity.22

In the following, I will abstract from price dispersion in inputs. This is equivalent to as-
suming that these inputs are homogeneous across firms. If one thinks about standardisation of
material inputs or energy, then this assumption does not seem too unrealistic. Output price
dispersion might pose a more serious problem. Let pi be the firm specific price and p the
(industry-wide) price deflator used to transform nominal into real production. Omitting time
subscripts and the η component of firm productivity I rewrite the production function as

yi = ωi + βkki + βlli + βeei + βmmi

⇔ pi − p+ yi =
TFPQi︷︸︸︷
ωi + (pi − p)︸ ︷︷ ︸

TFPRi

+ βkki + βlli + βeei + βmmi

The object of interest is ωi, but as the above transformation illustrates within-industry price
dispersion, pi − p, confounds our inference on ωi. What we measure in reality, is “revenue
productivity,” TFPRi, rather than physical productivity TFPQi (terms are borrowed from
Foster, Haltiwanger, and Syverson (2008)). As a consequence, variance in measured TFPRi is
composed of variance in physical productivity and prices:

V (TFPRi) = V (TFPQi) + V (pi) + 2Cov(pi, ωi)

What is known about these terms? Evidence on a large scale is not available, but Foster,
22Note that within industry price dispersion only becomes a problem when price dispersion changes over the

business cycle. The mere existence of unaccounted price dispersion does not alter the cyclical properties of
measured productivity dispersion.
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Haltiwanger, and Syverson (2008) have used a small subsample of industries in a repeated
cross section in the Census of Manufactures where firm-level prices are available. They find
that in a cross section physical productivity is more dispersed than revenue productivity, i.e.
V (TFPRi) < V (TFPQi)

23. This implies that the term 2Cov(pi, ωi) must be very negative
and larger in absolute value than V (pi). If this covariance is negative, unproductive firms tend
to charge higher prices than productive firms. They apparently have some market power to
price differentiate. When is this pricing power particularly high? The literature on mark-
ups (Jaimovich (2007)) and market power (Balasubramanian and Sivadasan (2009)) suggest
that recessions are times of more pricing power. This means that in a recession the term
2Cov(ωi, pi) should be even more negative than in a boom. This should bias TFPR downward
in a recession. On the other hand, V (pi) will be higher if pricing power increases and prices
become more dispersed. So I cannot make a definitive statement about which of the two terms
dominates. I showed above, however, that the covariance term must be larger than than the
variance term. Taking this as suggestive evidence implies that my estimates of the cyclicality
of productivity dispersion should be a lower bound on the true productivity dispersion.

2.3.2 Rotation of ASM sample

The data for this work consist of the ASM datasets in non-Census years and the ASM portion of
the Census of Manufactures in Census years. While this panel is longitudinally consistent and
has a large number of observations, it is subject to the sampling rules developed by Census.
In particular, Census rotates the ASM panel of plants every five years in years ending in 4
and 9.24 I am worried that the firms entering the sample in one of those sample rotations
could be systematically different in their productivity. If that is the case, then we should see
systematics changes in those rotation years. The previous results suggest, this is not the case.
To be safe, I will drop these rotation years and check if the negative correlation between GDP
growth and dispersion persists. Dropping the rotation years leads to a correlation coefficient of
−0.403(0.151). This coefficient is still significantly negative in the same ballpark as the main
result (Corr(GDP,Dispt) = −0.420). Therefore, I conclude that the main result is not biased
by the sample of rotation in the ASM.

23A similar point was made in Hsieh and Klenow (2009). They build a model where firms everywhere have
identical technology (production function coefficients that sum up to 1), but inputs are distorted by firm-specific
“wedges.” In their structural model, physical technology can be identified from the distribution of these wedges.
They compare their measure of physical productivity and revenue productivity to find that the former is about
twice as dispersed as the latter.

24In the years between, Census tries to merely adjust the same in a way to account for entry and exit. Census
attempts to keep the age distribution of plants constant.
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3 The Model

We saw in the previous section that the cross-sectional productivity dispersion is countercyclical,
that most dynamics result from the bottom end of the distribution and that the countercycli-
cality is stronger in durables. The standard cleansing of recessions view has trouble addressing
the first two facts. The goal of this theoretical section is to develop a business cycle model that
is consistent with the empirical findings on the micro level. In contrast to previous research, I
will not assume idiosyncratic shocks, but merely rely on aggregate shocks to drive my business
cycle model.25 Given the importance of dynamics at the bottom of the distribution, my model
will feature a fixed factor of production as in Melitz (2003); Ghironi and Melitz (2005) which
will give rise to a truncation of the productivity distribution from below. The presence of a
fixed factor is supported by the finding of higher returns to scale in durables. This suggests
the presence of a fixed factor in precisely that subsector of manufacturing whose productivity
dispersion is most cyclical.

The model features endogenous entry in the economy (exit is random) and firm-level hetero-
geneity in productivity. The inclusion of two sectors – durables and non-durables – is motivated
by the empirical differences between those sectors in terms of returns to scale and dispersion
cyclicality.

3.1 Final goods producers

There is a non-durable and a durable goods sector, denoted by n and d respectively, that each
produce a homogeneous final good by assembling heterogeneous varieties:

Y n
t =

[∫
i∈Ω

y
σ−1

σ
it di

] σ
σ−1

σ > 1

Y d
t =

[∫
i∈Ω∗

y
%−1

%

it di

] %
%−1

% > 1

where Ω is the set of varieties used in Sector n and Ω∗ that of varieties in Sector d. We will
later see that Ω∗ ⊂ Ω. The elasticity of substitution between varieties in the two sectors is
allowed to differ. Relaxing the assumption of an identical elasticity of substitution in both
sectors allows for the possibility that intermediate firms can price discriminate between final
customers. The residual demand curve for each variety in both sectors is identical except for

25Models that are driven by idiosyncratic productivity shocks are Gabaix (forthcoming); Christiano, Motto,
and Rostagno (2009); Christiano, Trabandt, and Walentin (2010); Bloom, Floetotto, and Jaimovich (2009);
Bachmann and Bayer (2009b,a).
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the different elasticity of substitution

pit = Pnt

(
Y n
t

yit

) 1
σ

pit = P dt

(
Y d
t

yit

) 1
%

.

Therefore, the price indices in both sectors can be expressed as

Pnt =
[∫

(pnit)
1−σdi

] 1
1−σ

P̃ dt =
[∫

(pdit)
1−%di

] 1
1−%

.

It is important to keep track of the two different prices because the relative price of durables,
P̃ d

t
Pn

t
, will change when economic conditions change.

3.2 Intermediate goods producers

There is a continuum of monopolistic intermediate goods producers, each of which produces a
particular variety i, i ∈ [0, 1]. For reasons of simplicity they just employ labour.26 Apart from
producing different varieties, each firm is endowed with an idiosyncratic productivity draw,
denoted by zi, upon birth which it keeps for the rest of its existence. Every firm hires labour lit
to produce output which it can sell either in Sector n or in both Sectors n and d. The specific
characteristic of the durable goods sector is a fixed factor in production. A firm has to pay a
cost cf if it wants to sell its goods there as well. This fixed costs can be interpreted as overhead
expenditures for advertising, management or R&D. The fixed factor in durables is consistent
with my empirical finding that returns to scale are higher in durables. This finding is consistent
with the results of previous research (see for example Burnside (1996); Harrison (2003)). Note
that this result should be interpreted as a difference in fixed factors rather than fixed factors
being absent from non-durables. Higher returns to scale in durables then suggest higher fixed
factors in durables. Since I am only interested in differences in returns to scale between the two
sectors, I keep returns to scale constant in Sector n and add the fixed factor in Sector d which
make Sector d look like increasing returns to scale. The production functions for either sector

26This simplifying assumption could be relaxed at the expense of expositional clarity. It wouldn’t change the
qualitative results, however.
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are

ynit = zitlit

ydit = zit(lit − cf )

Firms take nominal wages, Wt, and their demand curve as given. Profit-maximising behaviour
leads to the familiar pricing rule

pnit =
σ

σ − 1
Wt

zit

pdit =
%

%− 1
Wt

zit
.

I define the real wage as the nominal wage in terms of the non-durable output good: wt ≡Wt/P
n
t

and let the relative price of durables be P dt ≡ P̃ dt /P
n
t . From now on we express every variable

in terms of output n, for example profits are πdt = πd nom
t /Pnt . Using the profit-maximising

pricing rule we can derive firm output, labour demand and profits in both sectors in terms of
wages and aggregate sector sales. Firm profits in the non-durable sector are always positive
because firms charge a mark-up over marginal cost and there are no fixed cost. In durables, in
contrast the presence of the fixed factor implies fixed cost and thus potentially negative profits.
The profit function in durables is:

πdit(zit) =
1
%

(
%− 1
%

zit
wt

)%−1 (
P dt

)%
Y d
t − wtcf

The productivity cutoff The fixed cost preclude very inefficient firms to produce for Sector
d, i.e., there is a productivity level z∗t such that profits from producing for Sector d with
productivity z∗t are zero. Solving the above profit function for this cutoff yields

z∗t =
1

%− 1

[(
%
wt
P dt

)% cf
Y d
t

] 1
%−1

(4)

Equation (4) is a key relationship as it regulates the equilibrium distribution of productivity
and therefore deserves some discussion. Although there are still endogenous variables contained
in this expression, it is instructive to take a close look at it. Unproductive firms with a low z

can more easily survive in this environment if the value of their sales is high (high Y d
t or high

P dt ). Conversely, a downturn poses harsher conditions for unproductive firms that may have
to exit. This aspect reflects the view that recessions are weeding out unproductive firms – the
“cleansing effect of recessions” (Caballero and Hammour (1994)). Because the cleansing effect
emerges due to changes in aggregate demand (to be precise, the value of aggregate demand), I
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label this channel the “demand channel.”
There is a second channel that I label the “cost channel” which has the opposite effect on

the productivity cutoff. If the costs for the fixed factor, wt, are high, it is fairly costly for a firm
to operate profitably regardless of its production level. It must hence be productive enough to
have a relatively low price and thus attract enough demand to make profits at all. Since real
wages are procyclical, a downturn may hence be associated with a decrease in the productivity
cutoff. In the same way as the cleansing effect operates through the demand channel, there
is a “permissive effect of recessions” which operates thourhg the cost channel. A decrease in
the real wage is permissive in that it allows inefficient firms to stay in the economy. Note that
while the cleansing effects of recession literature emphasised the importance of demand, I also
consider cost factors in firm survival. It is unclear ex ante, whether the cleansing effect via the
demand channel or the permissive effect of recessions via the cost channel would dominate. This
depends on the response of real wages to aggregate output and the elasticity of substitution %.
The strength of the cost channel is increasing in the elasticity of substitution %. The higher %,
the more easily single varieties are substituted against other ones and the lower the mark-up of
single firms. In that case, small changes in the real wage have a strong impact on the survival
of unproductive firms and the cost channel dominates the demand channel. Higher wages in a
boom will then lead to a higher cutoff and a more compressed productivity dispersion.

If single varieties are bad substitutes, however, unproductive firms can more easily survive
an increase in real wages. This is because bad substitutability leads to higher mark-ups which
in turn allows unproductive firms to pass through the higher wages to final producers. Then
the demand channel will dominate the cost channel. Higher aggregate demand in a boom will
then lead to a lower cutoff and a more spread-out productivity dispersion.

How cyclical are the cost of fixed factors? One criticism against the importance of the
permissive effect could be that wages are generally believed to be very sticky. This would greatly
dampen the permissive effect. One needs to take a close look at the wage in expression (4): it
is the cost of the fixed labour input. This fixed labour input can be thought of a place holder
for several fixed factors such as managers and rents for structures among others. I focus on
the interpretation as a manager. The cyclical behaviour of the cost for this fixed factor is very
different than the cost for normal production labour input. To get empirical evidence for this
claim, I turn to data on managerial compensation and analyse the cyclicality of their income.
The data come from ExecuComp, a database that covers the top executive pay in a large cross
section of firms. Their real income growth rate is computed and correlated with the business
cycle in Figure 7.

If they behaved like normal production worker wages, one would expect the managerial
wages to be mostly acyclical. Figures 7 paints a different picture. All components of manage-
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Table 5: Components of executive compensation

Compensation Component Average Share Volatility
(over time)

Base Pay 15.28% 0.094
Stock Options – exercised 19.39% 0.328
Stock Options – unexercised 65.32% 0.282
Total Earnings 100.00% 0.105

Components of executive compensation are the average share of each component in aggregate
earnings. Volatility of each component is the standard deviation over time of HP filtered
residuals of aggregate earnings in each category.
Data come from the Compustat – Execucomp (Annual Compensation) database, a panel of
top executives in 3,200 firms 1992-2009. Each component of nominal earnings was deflated
using the consumer price index to obtain real earnings. Total Earnings (TDC1) comprises Base
Pay (SALARY), the value of exercised stock options (OPT_EXER_VAL) and the value of exercisable
stock options that were not exercised (OPT_UNEX_EXER_EST_VAL).

−2 −1 0 1 2
−1

−0.5

0

0.5

1

k

Total Earnings

−2 −1 0 1 2
−1

−0.5

0

0.5

1

k

Base Pay

−2 −1 0 1 2
−1

−0.5

0

0.5

1

k

Stock Options − exercised

−2 −1 0 1 2
−1

−0.5

0

0.5

1

k

Stock options − unexercised

Figure 7: Cyclicality of Executive Compensation

Correlogram of different portions of executive compensation: Corr(GDP t, wt+k), dashed lines
denote 95% confidence intervals constructed as describe in Figure 3. Correlated data are HP
filtered residuals of GDP and the aggregate real earnings.
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rial compensation – be it base salary, payment in shares or stock options – are pronouncedly
procyclical.

3.3 Aggregation and averages

In order to close the model, I need to aggregate firm-level production and employment to the
economy-wide level. I can use the above-listed expressions for optimal firm production and
employment and use the aggregate production function to obtain aggregate output in both
sectors. Keep in mind that I can integrate over all varieties i or over all productivity levels z.
If I do the latter, I have to take into account that there is a certain measure of firms active in
the economy which is defined as Nt. This measure varies with entry and exit (described below),
but in period t it is a state variable. Let the average productivity levels be

zn =

[∫ zH

zL

zσ−1dF (z)

] 1
σ−1

zdt =

[
1

1− F (z∗t )

∫ zH

z∗t

z%−1dF (z)

] 1
%−1

Then we can aggregate intermediate output
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Note that the last expression shows that the wage is a state variable because zn is fixed and Nt

is a state variable. The wage will change as more firms enter the economy. The fact that wages
are completely determined by labour demand only follows from the firm production technology
which has constant returns to scale and uses labour only.

As in Melitz (2003) the present economy with heterogeneous firms is isomorphic to one with
a measure of Nt representative firms producing with exactly that “average” productivity level
zn. This average productivity does not change because the underlying productivity distribution
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does not change over time and any firm will be producing in equilibrium. Accordingly, there
is a similar expression of aggregate productivity in Sector d with the only difference that the
relevant cutoff is z∗t rather than zL. Up to truncation the productivity distribution of firms
active in sector d is the same as in Sector n, a feature which shall be explained in greater detail
below.

If I parametrise the productivity distribution as bounded Pareto with shape parameter k
on support [zL,∞), then these expressions have a convenient closed-form solution

zn =
(

k

k + 1− σ

) 1
σ−1

zL (5)

zdt =
(

k

k + 1− %

) 1
%−1

z∗t (6)

1− F (z∗t ) =
Nd
t

Nt

=
(
zL
z∗t

)k
=
(
zL
zdt

)k ( k

k + 1− %

) k
%−1

(7)

Note that zdt depends on t via z∗t which may fluctuate over time with economy-wide wages
and durable output and prices as equation (4) shows. I defined Nt as the measure of all active
firms in the economy (which is also the measure of firms active in Sector n). Let Nd

t be the
measure of the subset of all firms also active in Sector d. I can now express all equilibrium
quantities as averages of the “representative firm” in the economy (that has productivity zn

or zdt respectively) times the measure of active firms, Nt and Nd
t , respectively. These average

prices, quantities and profits are

Pnt ≡ 1 = N
1

1−σ pnt (z
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σ
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wt
zn
N
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1−σ (8)
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26



πnt (zn) =
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Y d
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The relative average price of durables deserves some more attention:

pdt
pnt

=
%

%− 1
σ − 1
σ

zn

zdt

As I can see, the relative price of durables, pdt (z
d
t )/p

n
t (z

n), varies over time with entry/exit and
with the productivity cutoff z∗t . The cutoff moving up leads to more efficient firms in durables
on average. Equivalently, when the cutoff is high, the marginal cost in durables are lower.
Because firms charge a price which is constant markup over marginal cost, and their marginal
cost are lower on average, their price will be lower as well.

3.4 Firm entry and exit

For tractability reasons, firms in the durables goods sector are also active in non-durables. One
may think of Sector n to also include services firms typically provide along with their products.
A firm that sells cars typically also generates revenue from servicing these cars and selling spare
parts. It is plausible to assume that service-related revenues are not as cyclical as car sales
themselves. Keep in mind that a firm can always serve both markets if it elects so.

As in Melitz (2003), active firms die randomly at rate ζ (death shock). This is of course
a strong assumption that might be related to my statements about productivity. I maintain
this assumption, however, because it keeps the analysis tractable. Recent empirical research
on firm entry and exit by Lee and Mukoyama (2008) have established that firm exit rates are
fairly acyclical (contrary to firm entry rates which are strongly procyclical). This lends support
to the assumption of an acyclical exit rate. Given this death rate, the probability of survival
until period T from today is (1− ζ)T .

New firms enter if the expected net present value of profits are larger than a sunk entry
cost. Sunk entry cost are denoted in units of labour ce and receive the same wage as labour
employed in production or as a fixed input. A firm makes profits every period after entry until
it dies exogenously. Let vt denote the expected pre-entry net present value (in utils – because
firms are owned by households) of the profit stream. This can be written as

vt = Et

[ ∞∑
τ=1

βτ
λt+τ
λt

(1− ζ)τπt+τ

]

where β is the household discount factor, λt the Lagrange multiplier on the household budget
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constraint and πt average firm profits. βτ
λt+τ

λt
is the stochastic discount factor. It denominates

the period t marginal utility a household has from obtaining one unit good in period t + τ .
(1 − ζ)τ denotes the probability of firm survival until period t + τ . In any period, entry will
occur until the expected profits are low enough to make the free entry condition hold.

vt = cewt (16)

3.5 Households

The representative household has preferences over two goods, consumption, Ct, and services
from durable goods, as well as leisure. I assume that utility from durable goods is simply a
linear function in the stock of durables: ηDt. It is assumed that durables evolve according to
the following law of motion

Dt+1 = (1− δ)Dt + It.

He offers his labour in a competitive labour market and earns wage rate wt. In addition to
his labour income, he receives repayment and interest from bond holdings he invested in last
period, (1+rt)Bt and holds shares in intermediate firms, stNt that entitle him to current-period
profits πt. Note that profits that go into the household budget constraint are the flow profits
per share equity:

πt = πnt +
Nd
t

Nt

πdt (17)

The household problem is hence to maximise

max
Ct,Dt+1,Lt,st+1

U =
∑
t

βt

[[
Cαt (ηDt)

γ(1− φtLt)
ψ
]1−θ

1− θ

]
s.t. (1 + τ ct )Ct + P dt (1 + τ It )

[
Dt+1 − (1− δ)Dt

]
+ vtst+1

(
Nt +NE

t

)
≤ wtLt + (vt + πt)stNt + Tt

The household has to pay consumption and capital goods taxes, τ ct and τ It , respectively. The
government uses tax revenues to redistribute them back to hosueholds as lump-sum.

Tt = τ ct Ct + τ itP
d
t It (18)

These distortionary taxes are redistributed by the government lump-sum: Tt. How the tax
rates are set will be explained momentarily.

The household is endowed with a unit measure of time and Lt is hours worked, β is his
discount factor and θ, the inverse of intertemporal elasticity of substitution. φt denotes an
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intratemporal preference shock regulating the trade off between consumption and leisure. I
assume that φt is small enough so that the optimal labor supply is still interior on the unit
interval. Bt+1 and st+1 are bond and equity holdings, respectively, at the beginning of period
t + 1. vt is the value of equity and πt is the per-period flow profit the households receives
from holding equity (dividends). It is assumed that the household portfolio is perfectly di-
versified across firms, so all idiosyncratic risk (death shock, productivity draw of entrants)
washes out. Let λt be the Lagrange multiplier on on the household’s budget constraint and let
Xt ≡

[
Cαt (ηDt)

γ(1− φtLt)
ψ
]
, then the first-order conditions are

α

Ct
X1−θ
t = λt(1 + τ ct ) (19)

λtP
d
t (1 + τ It ) = βλt+1(1 + τ It+1)P

d
t+1(1− δ) + βX1−θ

t+1

γ

Dt+1

(20)

X1−θ
t

ψφt
(1− φtLt)

= λtwt (21)

λtvt(Nt +NE
t ) = βλt+1(vt+1 + πt+1)Nt+1

λtvt = β(1− ζ)λt+1(vt+1 + πt+1) (22)

Keep in mind that the timing assumptions about firm entry and death imply that

Nt+1 = (1− ζ)(Nt +NE
t ). (23)

The death shock hits at the end of period t; it hits all incumbent firms, Nt, and all firms that
just entered in t and planned to take up production in period t+ 1.

3.6 Equilibrium

Determinacy The model may have multiple equilibria. This feature arises from the en-
dogenous selection of firms into durable goods production. To illustrate the possibility of
multiplicity, consider the following scenario near a deterministic steady state: In the absence
of shocks, households think about increasing their demand for durables today, It increases, and
reducing it tomorrow, It+1 falls. If the equilibrium was unique, such a strategy would lead to
an increase in marginal utility of consumption today (λt) and decrease of marginal utility from
both consumption and durables tomorrow (λt+1, u

′(Dt+1)) and equation (20) would not hold.
In particular, increasing demand for durables would increase the price of them today (higher
P dt ) and lower demand tomorrow would decrease the relative price of durables (lower P dt+1),
thus violating equation (20) even more. In the present context, the scenario just described is
feasible without violating any equilibrium conditions. Additional demand for durables today
triggers firm entry. This in turn increases labour demand and hence the wage, which is the
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main component of the productivity cutoff (4). If the cutoff increases, average productivity
increases and the relative price of durables falls thus justifying the initial beliefs of households.
The key feature of this model is that an increase in demand for durables can lead to a lower
relative price of durables.

This little example shows how beliefs can become self-fulfilling. This is an interesting feature
of the model as it allows for endogenous fluctuations. Two factors can mitigate this decrease in
the relative price and keep the equilibrium in the model economy determinate: a low intertem-
poral elasticity of substitution (high θ) and taxes on investment goods that increase when
demand is high (high τ It ).27 The multiplicity feature of this model context is subject of ongoing
research. In the present paper, I focus on a unique equilibrium in the model. θ is calibrated
to economically plausible values consistent with other research. The taxes are allowed to be a
function of economic activity:

τ ct = τ c + xccCt + xLc Lt

τ it = τ i + xiiIt + xLi Lt

Tax rates in the current period, τ ct and τ it are a function of the long-run average tax rate, τ c

and τ I , and the levels of consumption and investment. We can think of the fact that taxes are
dependent on current economic activity as as implicit policy maker that attempts to design tax
policy according to economic conditions. If x•• > 0 this corresponds to countercyclical fiscal
policy. This “countercyclical fiscal policy” does not seem implausible. Relaxing this assumption
and analysing endogenous fluctuations in the context of this model is subject of future research.

Labour market Aggregate labour demand is key as shocks to aggregate demand drive labour
demand which in turn drives the wage and therefore fixed cost. Aggregate labour demand is

Lt = Ntl(z
n) +Nd

t l(z
d
t ) +NE

t ce (24)

Equation (24) denotes aggregate labour demand while equation (21) determines aggregate
labour supply. Both taken together determine equilibrium.

Goods market There are two goods, durables and non-durables that are each produced by
the final goods producer in each sector and purchased by households:

Y n
t = Ct (25)

Y d
t = It = Dt+1 − (1− δ)Dt (26)

27This approach is chosen in Christiano and Harrison (1999).
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Resource Constraint This is basically the budget constraint reformulated

wtLt +Ntπt +Ntvt = Ct + P dt
[
Dt+1 − (1− δ)Dt

]
+ (Nt +NE

t )vt (27)

General equilibrium The equilibrium consists of a set of endogenous variables

z∗t , z
d
t , P

d
t , Y

n
t , Y

d
t , y

n
t , y

d
t , l

n
t , l

d
t , π

n
t , π

d
t , πt, Nt, N

E
t , N

d
t , vt, Ct, It, λt, Lt, wt

that satisfies firm and household optimality as well as feasibility as prescribed by equations (4),
(6)-(27).

Shock and Calibration At present, the model is driven by one shock in the household sector
that evolves over time as follows (in logs)

φt = (1− ρφ)φ+ ρφφt−1 + εφt

where φ is the steady state value, ρφ the autocorrelation and the disturbances is independent
and distributed normally as

εφt ∼ N (0, σφ).

Table 6 displays the parameters chosen for calibration. The productivity distribution is
parametrised as a Pareto with lower bound zL = 1 and shape parameter k. The shape parameter
is the smallest admissible value that satisfies the condition k > σ−1 and k > %−1. Recall that
these conditions are necessary if we want to restrict attention to positive equilibrium quantities
and prices. In accordance with the literature on mark-ups σ and % are chosen to equal 5.4
and 3.5 respectively which gives the smallest possible value for k as 4.5. The rate of death
shock, ζ, is chosen to match the exit rate in my sample. The fixed input factor cf is chosen to
match the observed steady state returns to scale in the durable goods sector. The depreciation
rate in consumer durables, δ, is set to 0.085 to match an annual depreciation rate of 30% as
common for consumer durables. The discount rate β = 0.9925 reflects an annual real interest
rate of about 3%. The intertemporal elasticity of substitution θ = 1.5 is chosen to accord with
empirical studies. The utility weight on consumption, α, is set equal to 0.66 in order to match
expenditure shares for consumption goods.

31



Table 6: Calibration

Parameter Symbol Value
Pareto Distribution: Shape k 4.5
Pareto Distribution: Lower bound zL 1
Rate of death shock ζ 0.05
EOS non-durables σ 5.4
EOS durables % 3.5
Sunk entry cost ce 5
Fixed Cost in Durables cf 0.1
Deprecitation rate durables δ 0.085
Discount Factor β 0.9925
Inv. intertemporal EOS θ 1.5
Utility weight non-durables α 0.66
Utility weight durables γ 1− α
Utility weight leisure ψ 0.7
Mean consumption tax rate τ c 0.1
Mean investment tax rate τ i 0.2
Inv. Tax dependence on I xii 2.5
Inv. Tax dependence on L xLi 0.5
Mean demand shock φ 1
Autocorrelation demand shock ρφ 0.8
Std. Dev. demand shock σφ 1

3.7 Dynamics of the economy

How does the economy respond to a shock to φ? This shock originally shifts the labour supply
schedule and also change the consumption plan. In that way, we can think about it as a shock
that alters aggregate demand. I shall first describe the initial adjustment on impact and the
dynamic response. The outward shift in labour supply increases employment while leaving the
wage initially unaffected. This is rather unusual and it is a consequence of firm technology. It is
linear homogeneous in labour, so that the marginal product of labour is independent of the level
of labour. The increased employment leads to higher labour income which immediately raises
demand for consumption and investment goods. With a constant wage this raises profits. In
light of higher profits, new firms enter up to the point that the free entry condition equation (16)
holds. The new equilibrium right after the impact of the shock involves higher employment,
output, consumption, investment and more entrants (that will not be active until the next
period).

In the periods after the shock, new firm entry continues, but it gradually converges back to
its steady state level. This is illustrated in panel (3,2) of Figure 8. The additional entry leads
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Figure 8: Impulse Response Function of an aggregate demand shock to φ
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to a hump-shaped rise in the mass of incumbent firms panel (3,1) which in turn increases labour
demand in a similar fashion – see panel (2,1). Because aggregate labour demand increases, so
do real wages, displayed in panel (2,2).28 Real wages are a key factor in the productivity cutoff.
As the cutoff rises, see panel (1,1), the productivity distribution in durables becomes more
compressed, thus leading to negative co-movement between output and productivity dispersion.
This is the key result of the theoretical part of the model: It is possible to reconcile a boom
with a more compressed productivity dispersion. This happens although the model in principle
does allow for cleansing. A second consequence of a rising productivity cutoff is that the
average productivity in durables increases. This lowers the average marginal cost and thus
the average relative price of durables which is displayed in panel (1,2). This feature is a nice
complement to the literature on investemnt-specific technological change which has to rely on
exogenous technology shocks in the durable goods sector. In this model, the relative price of
durables fluctuates endogenously due to the selection along a rising productivity cutoff in a
boom. Lastly, both consumption and durables purchases increase, see panels (4,1) and (4,2).
Households dispose over a higher income, so they increase their demand for goods overall. As
panel (4,2) illustrates, this rise is stronger in durables purchases which is partly due to the
relative price of durables declining.

4 Conclusion

This paper established the dynamics of the empirical productivity distribution over the business
cycle. Among U.S. manufacturing plants, this dispersion is higher in a recession than in a boom.
The dispersion appears to be more negatively correlated with the business cycle in durable goods
industries relative ot non-durable goods industries. Lastly, I found the dynamics to be driven
predominantly by changes in the lower quantiles. This evidence can be interpreted as a changing
truncation at the bottom end of the productivity distribution in durables.

This countercyclical productivity dispersion is at odds with conventional cleansing models of
the business cycle which posit a procyclical productivity dispersion. In order to reconcile these
models with the empirical findings, I built a business cycle model along the lines of Ghironi
and Melitz (2005). In my model, a shock that originates in the household sector and changes
aggregate demand is consistent with a countercyclical productivity dispersion. In addition to
that, this shock is also consistent with the typical macroeconomic business cycle acts such as
procyclical consumption, investment, wages and employment.

I will direct future research at introducing more shocks into the model. It is plausible to
assume that some shocks deliver the empirically observed outcome and others do not. Which

28Note that wages also increase because of additional entry into the economy and a higher mass of firms
paying the fixed cost to produce in durables. This is merely reinforcing the effect of additional labour demand
in production.
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are these and what is their distinct criterion? A second possible extension is to focus on a
micro-founded theory of investment-specific fluctuations. The endogenous selection of firms
into durables on a productivity threshold is an interesting mechanism that can contribute to
the research programme on investment-specific technical change. Furthermore, this avenue will
also open the possibility to look into endogenous fluctuations that arise from indeterminacy.
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Appendix

A Census Manufacturing Data

A.1 General Description

The data used in this project are compiled by the U.S. Census Bureau and comprise the Census
of Manufactures (CMF), the Annual Survey of Manufactures (ASM) and the Plant Capacity
Utilization Survey (PCU). Additional data come from the NBER-CES productivity database,
the Federal Reserve Board of Governors (data on capacity utilization), the Bureau of Economic
Analysis (BEA; data on capital stocks and investment prices), the Bureau of Labor Statistics
(BLS; data on depreciation rates and inventory price deflators). The Compustat-SSEL bridge
(CPST-SSEL) is used to determine which establishments are publicly traded (are covered in
Compustat).

The main data sources are the CMF/ASM. They are both mail-back surveys and cover the
U.S. manufacturing sector (NAICS 31-33) on the establishment level where establishment is
defined as any distinct unit of a manufacturing firm where the predominant activity is produc-
tion. Purely administrative establishments are hence excluded. Each establishment carries the
Permanent Plant Number (PPN), a unique establishment identifier that does not change in case
of ownership change or temporary plant shutdown. If an establishment dies permanently, the
PPN is not reassigned to a new-born establishment. Since 2002, the PPN is superseded by the
Survey Unit ID (SURVU ID). This more recent identifier was carefully mapped to the PPN using
LEGPPN and LBDNUM or assigned a new PPN if an establishment was born after 2002. Establish-
ments that belong to the same legal firm carry the same firm identifier FIRMID. Firms are called
multi-unit firms (MUF) if they operate more than one establishment, single-unit firm (SUF) if
they operate merely one.

The Census of Manufactures is conducted at quinquennial frequency (years ending in 2 and
7) and covers all existing 300-350k establishments in the manufacturing sector. The ASM is
conducted in non-Census years for about 50-60k establishments taken from the “mail stratum”
of the manufacturing sector. The “non-mail stratum” generally consists of small establishments
that together make up a very small fraction of activity; their chance to be selected in to the ASM
panel is zero. I drop all observations from the non-mail stratum (denotedby ET = 0) because
this is the only way to obtain a consistent panel over time where the number of (weighted)
observations is not driven by the sampling constraints of Census. Of the mail stratum, the
ASM covers all “large” establishments with certainty and a selection of “small” establishments.
The criteria for an establishment to qualify as large are cutoffs changed over time. In principle,
these are cutoffs in terms of asset size, employment or industry share and. For all establishments
in the ASM, Census provides frequency weights which are the inverse of the sampling probability
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and can be used to replicate the underlying population where the sampled small establishments
are representative of the establishments not sampled in the ASM. Every five years (years ending
in 4 and 9) Census updates its small establishment sample according to the preceding Census
to accurately reflect the underlying age and size population. Census attempts to sample the
same small establishments in consecutive years until the next sample update.

The data carry a wide array of variables only some of which are of interest for this project.
These are data on sales, inventories, employment and hours, capital stocks and investment,
intermediates and energy. The following sections describe how observed variables are used to
construct measures needed for the estimation.

A.2 Measurement of real production

The object of interest is a real measure of goods produced (Q). It consists of goods that are
produced and sold in the same year (PS) and produced goods that are stored in either of
two inventories: finished-goods inventory investment (FIIreal) and work-in-progress inventory
investment (WIIreal).

Q = PS + FIIreal + WIIreal

The first term (PS) comprises receipts from goods produced and sold in the same period.
Census collects information about some components of this term (such as product value of
shipments, receipts for contract work), but their quality is not consistently reliable throughout
the entire sample. Fortunately, total value of shipments (TVS) is considered by Census to be of
superior quality. We can use this variable to infer PS as shown in Figure 9.

PS =
VPS

PISHIP
=

TVS− VIS

PISHIP

where VPS is the nominal value of product shipments, PISHIP is a price deflator on the
4-digit (SIC) industry level from the NBER-CES Manufacturing Productivity Database and
VIS is value of inventory sales. The last variable is not directly observed but will conveniently
cancel out as explained below.

The second term, FIIreal, can be constructed from nominal finished goods inventory invest-
ment which in turn can be constructed from the accounting identity:
FIE = FIB + FII + (CR− VIS) PIFI

PISHIP
. This expression contrasts with previous work and deserves

more explanation. FIB and FIE denote the nominal value of finished goods inventory at the
beginning and end of the period. FII is the value of produced goods that go into finished-goods
inventories rather than being sold on the market in the same period. Note that FII is non-
negative, because finished goods never flow back from the inventory to production. The last
inflow into the finished goods inventory are resales (CR), finished goods purchased from other

42



Figure 9: ASM flowchart; all variables are nominal except hours worked (TH) and the capital
stocks of structures (KST) and equipment (KEQ).

establishments that are resold without further changes or additions. Inventories that are sold
in the current period are denoted by VIS. We do not observe VIS directly (though this shall
not be a problem); we only know the portion of VIS that are resales (VR).29

Resales (CR) and inventory sales (VIS) are traded in the goods market at the market price
(PISHIP), while inventory stocks (FIB and FIE) and inventory investment (FII) are valued with
a price index for finished-goods inventories (PIFI). This is why the former three variables have
to be adjusted for that. Empirically, PIFI is much more volatile than PISHIP and also exhibits
a slightly different trend growth rate30, so this difference might matter when one computes
finished inventory investment:

29Note that resales (CR and VR) are already finished goods, so they will not enter the materials inventory and
eventually put through the production process, as was assumed by other researchers. In fact, counting them as
material inputs would lead to biased results of production elasticities and productivity.

30This is because inventories are typically older goods of lower quality than those produced in the current
period. Quality-adjusted price indices for inventories exhibit hence a higher growth rate than shipment price
indices of the same product.
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FIIreal =
FIE− FIB

PIFI
− CR− VIS

PISHIP

I assume that both FIB and FIE are nominal stocks of inventories that are valued with
the inventory price deflator from period t, which is supported by the fact that in many cases
FIEt−1 6= FIBt. Census sends establishments the ASM/CMF forms at the beginning of the
period with end-of-year inventory stock pre-printed in the FIB cell. Establishments are allowed,
however, to make changes; this is how last year’s end-of-year inventories may differ from this
year’s beginning-of-year inventories.

The third term, WIIreal, can be constructed from the accounting identity: WIE = WIB + WII

where, contrary to above, WII R 0. No work-in-progress inventories are traded in markets, so
terms merely have to be deflated by the price index for work-in-progress inventories (PIWI):

WIIreal =
WIE− WIB

PIWI

Putting all three terms together yields:

Q = PS + FIIreal + WIIreal

=
TVS− VIS

PISHIP
+

FIE− FIB

PIFI
− CR− VIS

PISHIP
+

WIE− WIB

PIWI

Q =
TVS− CR

PISHIP
+

FIE− FIB

PIFI
+

WIE− WIB

PIWI
(28)

All of these variables are directly observed in the ASM/CMF except for the price deflators,
which are obviously not available on the establishment level. I approximate PISHIP by the 4
digit-level industry price index for shipments from the NBER-CES Manufacturing Productivity
Database; PIFI and PIWI are ideally industry-level price index for inventory investment (finished
goods and work-in-progress goods respectively). BEA does produce inventory price deflators
adjusted for quality on the industry level and separately for both finished and unfinished goods,
but unfortunately, these are not publicly available, only to BEA sworn status researchers.31

BLS published an inventory price deflator on the industry level, but this one contains a mix
of finished goods, unfinished goods and materials inventories, so it merely looks like a crude
measure. For that reason, I have to fall back to use shipment price deflators instead of inventory
price deflators. Future researchers that have access to industry-wide deflators for inventories
by type can easily combine them with the existing data and produce more accurate measures
of output. While the present procedure is as good as one can possibly do to correct for prices,
this can lead to inefficient estimates and possibly to further problems estimating total factor
productivity, which will be discussed below.32

31Census researchers that have special sworn status are not entitled to obtain the data either.
32At this point, I am following the large productivity literature and estimate revenue factor productivity (TFPR
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The construction of the ouptut variable improves on previous research in two ways: First,
some work has ignored the role of inventories when constructing output variables (exceptions are
Hyowook Chiang’s measure or Petrin, Reiter, and White (2011)). This seems problematic since
inventory investment is known to fluctuate a lot; for example, it has a much higher volatility than
investment in new capital (see Christiano (1988)). Second, in contrast to previous researchers,
I classify resales (CR) as finished goods rather than a materials. Classifying cost of resales
as a material input used in production and not correcting the output measure by the value of
resales (VR) seems misplaced: By definition, resales are products that are bought and then resold
without any change to the product. They are therefore not going through the production process
and provide no information about the firm’s productivity as a producer of goods. Even worse,
a researcher running a production function regression to study productivity will obtain biased
estimates of production elasticities and as a consequence also biased estimates of productivity.
Counting CR as material input and not correcting the output measure will bias the coefficient
estimate of materials towards 1 (i.e upwards) and it will also bias all other coefficient estimates
(downward). Even small values of resales (CR is on average 5% of overall materials purchases)
bias the estimates significantly.33

A.3 Measurement of labor input

The ideal measure is hours worked of all workers. The ASM/CMF only carries information
on plant hours worked (PH), which covers only production workers, so hours of non-production
workers have to be imputed. In addition to the number of total employees (TE), production
workers (PW) and production worker hours (PH), the ASM/CMF carries information about wage
payments for all employees (SW) and production workers (WW), which contain some information
about the hours worked if one has an idea about the level of wages. Wages and salaries can be
exploited to construct a more accurate measure of total hours worked. Let WP and WNP denote
the average wages for production and non-production workers, respectively. Then, total hours
(TH) can be expressed as the sum of production worker hours (PH) and non-production worker
hours (NPH):

TH = PH + NPH = PH +
SW− WW

WNP
.

Wages for production workers can be computed as WP = WW
PH

. Unfortunately, wages of non-
production workers are not observed in the ASM/CMF. I assume that the wages for non-
production workers (WNP) are 150% of those for production workers (WP): WNP = 1.5× WW

PH
.34

in Foster, Haltiwanger, and Syverson (2008) or Hsieh and Klenow (2009)).
33As a check on the strength of this bias I simulated 1000 observations of the following technology: Y = KaMb

with a = 0.1 and b = 0.45. Estimating a and b using Y = Y +CR and M = M +CR instead yields the following
estimates â ≈ 0.05 and b̂ ≈ 0.52 even when CR = 0.05M . This bias obviously becomes stronger the larger CR.

34A very proper way would be to utilise external information from the Current Population Survey to construct
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Total hours under this assumption can be calculated as:

TH = PH + NPH

= PH +
SW− WW

WNP

= PH +
SW− WW

1.5× WP

TH = PH
SW + 0.5× WW

1.5× WW
(29)

Total hours worked can be constructed in this way for about 97.6% of all observations. The
remaining observations do not have information on either of PH, SW or WW. In that case, I set
TH = 2× TE (50 weeks of 40 hrs/week each).

There is not a major improvement in the construction of the hours worked variable over
previous research. If I do get the CPS data in then the imputation of non-production worker
hours would be a substantial improvement.

A.4 Measurement of capital input

Capital input (or capital services) in production, K̃t, are determined by both the existing
productive capital stock available to the firm, Kt, and the utilisation at which this stock is
run, ut. The latter is a percentage, so the object of interest, capital services are defined as the
product of stock and utilisation:

K̃t ≡ utKt. (30)

First, I shall describe how I measure the capital stock that is available to the firm for production,
then the utilisation of the capital stock.

annual industry-region-specific average wages for both production workers and non-production workers, which
gives an industry-region-year-specific ratio of the two average wages: a = WNP

WP
. Then, total hours can be computed

on the establishment level as:

TH = PH +
SW− WW

WNP
= PH +

SW− WW

a× WP
= PH

SW + (a− 1)× WW

a× WW
.

ALTERNATIVE:
One could get data on hours worked per employee in both production and non-production: HRSPW and HRSNPW.

These data should be available on an industry-region level in the CPS. Then, total hours can be computed as
TH = HRSPW × PW + HRSNPW × NPW The disadvantage of this approach is that it implicitly assumes that all workers
within an industry work the same amount of hours. Overtime work is not accounted for. As outlined above,
wage payments on the other hand, do contain information about establishment-level overtime (and possibly
part-time). Therefore, this approach based on industry-wide hours worked per employee would forgo all the
information about hours worked contained in wage payments.
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A.4.1 Capital stocks

The capital stock is – ideally – the replacement value of fixed assets in constant dollars. In
the absence of frictions, this is the value another firm would be willing to pay to acquire and
operate this capital stock itself. In this sense, the replacement value should be an accurate
measure of the productivity of the capital stock. Below, I will describe how I infer the closest
approximation possible to this constant-dollars replacement value.

The ASM/CMF contains the following information related to capital:

• beginning-of-year and end-of-year total assets (TAB and TAE)

– annually 1972-1988; in those years total assets are also separated into buildings
(structures) and machinery (equipment): BAB, BAE, MAB and MAE

– quinquennially 1992-2007,

• nominal investment expenditures for buildings (NB) and machinery (NM) for all years; in
1977-1996 investment expenditures are separated into investment in new and used capital:
NB, UB, NM and UM,

• nominal building and machinery retirements (1977-1988, 1992): BRT and MRT,

• nominal building and machinery depreciation (1977-1988, 1992): BD and MD,

• nominal cost of rented building and machinery (1977-1988, 1992): BR and MR.

Investment, retirement and depreciation of assets are measured in period-t dollars. Assets
stocks (TAB, TAE, BAB, BAE, MAB, MAE), however, are somehow resembling book values rather
than resale values. To obtain constant-dollar market values I perform three steps:

1. Transformation of reported values into book values,

2. Transformation of book values into period-t market values,

3. Transformation of period-t market values into constant-dollar values.

Transformation into book values The questionnaire of the ASM/CMF asks to list as asset
stock values “the original cost of today’s assets when they were purchased” in the past. It is
not clear from the information given in the documentation whether or not this value takes
(physical35) depreciation into account or not. If respondents answered the question literally,
then it does not include depreciation and is not exactly a book value. If it does, then the

35It is important to consider physical depreciation rather than depreciation on the books. The latter is an
accounting measure and does not necessarily reflect the accurate loss of productive capability of structures or
equipment. An establishment might use a machine in production that is already entirely written off on the books.
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reported data really are book values. I tried imputing the capital stock both ways. When I
aggregate my capital stock measure and compare it to BEA’s industry-wide capital stock the
level of my capital stock is slightly too high while the trend compares well to the BEA capital
stock, so my level is off by a constant factor. This level gap is much smaller when I correct
the initial values for depreciation.36 This suggests, that some respondents took the question
literally and reported as asset values the initial expenditures unaccounted for by depreciation,
others did take depreciation into account. Multiplying the reported capital stock values by
(1− δ) transforms the observations into book values that will yiel an aggregate time series that
precisely matches the trend growth and roughly matches the absolute level.

Transformation into market values Transforming book values into market values requires
(a) knowledge about the vintage structure of each establishment and (b) knowledge about the
productivity of each vintage. This cannot be determined on the establishment level because we
just know the dollar amount of investment but hardly the quality of the purchased capital.37

The quality of the vintage, however, is crucial to determine the replacement value.
Due to the paucity of information on the establishment level, I turn to industry-level capital

stock data published by the Bureau of Economic Analysis (BEA).38 BEA publishes historical-
cost, current-cost and real-cost estimates of capital stocks of 3-digit NAICS (2-digit SIC) in-
dustries that can help turn the ASM book values into real market values. For a single asset
type, these end-of-year estimates39 are defined as follows:

HCt =
∑
τ=0

(
1− δ

2

)
(1− δ)τIt−τ

CCt = Pt
∑
τ=0

(
1− δ

2

)
(1− δ)τ

It−τ
Pt−τ

RCt =
∑
τ=0

(
1− δ

2

)
(1− δ)τ

It−τ
Pt−τ

where τ is the vintage (purchased τ periods before period t), δ is the depreciation rate, and
It are nominal investment expenditures in period t. The term

(
1− δ

2

)
appears because BEA

assumes that new capital is put into place in the middle of the period. Note how the historical-
36Multiplying the reported initial measure by (1 − δ) implicitly assumes that capital stocks are one year old.

An alternative, more refined method would be to construct the average age, T̃ , of an establishment’s capital stock

from past investment expenditures and multiply the reported capital stock value by (1 − δ)T̃ . The former way
(assuming average age of one year) yields aggregate capital stocks that are slightly too high, an approximation
of the latter way (assuming average age as reported by BEA, which is about 22 years for structures and 6 years
for equipment capital) yields aggregate capital stocks that are distinctly too low.

37As mentioned above, investment in new and used capital goods are reported in the data only for a subsample.
38Tables 3.1E, 3.1S, 3.2E, 3.2S, 3.3E and 3.3S of BEA’s Fixed Asset Tables; downloaded from

http://www.bea.gov/national/FA2004/SelectTable.asp.
39Because I use beginning-of-year capital stocks BEA’s data are rolled forward one year.
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cost capital stock is the industry analogue to the establishment book value. The current-dollar
value, in contrast, is the nominal value of the capital stock in year-t dollars where expenditures
for every vintage have been deflated by the corresponding period price index and then reinflated
by the current-period price index (hence the name). In this way, the CCt measure denotes the
value of the capital stock as if it had been purchased at the end of the previous period. I assume
that all establishments within an industry have a similar ratio of current-dollar market values
to book values. Then I can use the ratio of CCt

HCt
to determine the period-t market value of an

establishment’s capital stock.

Transformation into constant dollars This is then easily expressed in constant dollars by
deflating the resulting measure by an investment price deflator.40 Investment price deflators
are published by the Bureau of Labor Statistics (BLS) and the Bureau of Economic Analysis
(BEA) on the 3-digit NAICS industry level and on the 4-digit industry level as underlying
table to the NBER Manufacturing Database.41 I choose the BEA deflators because they were
revised recently (in 2009), which matters a lot for capital goods (esp. equipment).42 All three
transformation steps (reported to book value, book value to market value and period-t to
constant-dollars transformation) combined give us the replacement value of an establishment’s
capital stock in constant dollars as:

Kst
t = BABt(1− δst)

CCstt
HCstt

1
P stt

(31)

and analoguously for equipment capital. This procedure is accurate if all establishments in
an industry exhibit the same profile across asset types and have the same vintage structure
over time. This is obviously a strong assumption which is likely to be violated and lead to
establishment-level measurement error.

For the years 1972-1988, I observe the capital stock annually and could compute the capital
stocks in the above-mentioned way. Alternatively, I could iterate the capital stock every period

40Note that this is an investment price deflator rather than a capital price deflator because the capital stock
is now expressed as if it had been an investment at the end of last period.

41The investment price deflator could also be obtained from BEA by dividing CC/RC, but BEA warns re-
searchers that the latter measure is not very reliable for years reaching far back. For that reason, I make use of
the price indices published by BLS.

42I also tried the NBER and BLS deflators; the former do almost as good a job as the BEA deflators when one
aggregates the establishment-level data and compares them to publicly available industry aggregates of capital
stocks by type. BLS deflators cannot generate aggregates that resemble publicly available aggregates as well,
which is mostly due to their price indices being only revised for the last 20 years. Once NBER deflators are
updated in the future, they might be a superior measure as they go down to the 4-digit NAICS industry level.
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using the perpetual inventory method:

Kst
t+1 = (1− δstt )Kst

t + Istt (32)

where Kst
t is the stock of structure capital observed at the beginning of the period, Istt = NBt

P st
t

is real structure investment (nominal new and used43 investment expenditures divided by an
investment price index) and δt is a depreciation rate, published by BLS on the 3-digit NAICS
industry level in period t. The former way of directly deflating the capital stock every period
has the advantage of following the establishment-level information very closely. The latter
perpetual inventory method shows exactly how the existing capital stock came about and follows
a common procedure (see for example Becker, Haltiwanger, Jarmin, Klimek, and Wilson (2004)).
I tried both alternatives and for equipment capital there is hardly any difference which supports
the consistency of our above deflation technique. The procedure to directly deflate the capital
stock every period underestimates structure capital compared to aggregate data on structures
from BEA. Over the course of 20 years (1972-1992) the aggregate structure capital stock grows
only at an annual rate of 0.15% which translates into a share of structures in total assets of 33.5%
(while it should be about 45%). This implies that my interpretation of the structures measure
in the CMF/ASM is flawed, which casts some doubt on the initialisation procedure as shown in
equation. Therefore, I am sceptical of resetting the capital stock back to the value implied by
equation (31) every time I observe it for continuing establishments. The perpetual inventory
method, in contrast, does a good job at generating data that – aggregated to the industry level
– resemble outside sources in terms of long-run growth. For this reason, I choose the perpetual
inventory method and use the asset stock data observed every year to merely adjust the level
of the implied total capital stock (keeping the asset split implied by the perpetual inventory
method). I only use equation (31) to impute structures and equipment stocks directly when I
observe an establishment for the first time.

From 1988 on, asset stock values, retirement and depreciation data are no longer observed.
So I have to iterate and face the question of resetting or continuing the perpetual inventory
method every five years. For the same reason as above, I proceed with the perpetual inventory
method and merely adjust the implied book value of the imputed capital stocks by the book
value (accounted for by depreciation) that is observed in the Census years. This procedure
can be applied to both buildings (structures) and machinery (equipment) separately as the
ASM/CMF contains investment data about both types.

43Census collected investment expenditures separately for new and used investment 1977-1996; in those years I
sum the two groups and that in others years reported investment comprises both expenditures for new and used
investment.
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Improvements in the measurement of the capital stock: The capital stock measures
differ from previous work about imputing capital stocks in the ASM. This is different because
previous work omitted the second deflation step (period-t market values to constant-dollars
market values) and because deflators used in that work have been revised repeatedly. As a
consequence, the old capital stock measures were too small at the beginning and too large at
the end of the sample (as Figure 10 shows). Because the second deflation was omitted, the
capital stock is a nominal value rather than a real one. It is not surprising in this light that the
capital stock in the old sample is growing at an annual rate of 4.9% (structures - !) and 5.6%
(equipment) respectively. This barely squares with industry-wide aggregates where the capital
stock grows at 1.3% and 2.5% (structures and equipment resp.). My measures end up at 1.3%
and 2.7% which looks pretty close to the data published by BEA. This will have some important
implication for researchers that used/are using his data. In my assessment of long- and short-
run productivity the nominal trend picks up a lot of the upward trend in production. Second,
because the investment price deflators are industry-specific, this essentially introduces industry
dummies into a regression analysis. The former will put an upward bias to the coefficient on
capital while the former will pick up industry-specifics that are not necessarily rooted in the
capital stock.
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Figure 10: Capital stocks of the U.S. manufacturing sector published by BEA (blue circles), ag-
gregating the old (red squares) and my refined (green stars) capital stock data in the CMF/ASM.
CMF data for 2007 are still preliminary.

In a similar vein, I find that the old investment measure for equipment is off the benchmark

51



1972 1977 1982 1987 1992 1997 2002 2007
0

0.5

1

1.5
Stock of Structures (log), 1972=0

 

 
BEA
ASM (old)
ASM (new)

1972 1977 1982 1987 1992 1997 2002 2007
0

0.5

1

1.5
Stock of Equipment (log), 1972=0

Figure 11: Capital stocks of the U.S. manufacturing sector published by BEA (blue circles), ag-
gregating the old (red squares) and my refined (green stars) capital stock data in the CMF/ASM.
CMF data for 2007 are still preliminary. Normalised to 0 in 1972. Clearly visible that the trend
growth is off in the old ASM capital measures.

as well, while structure investment comes fairly close. For this I have no other explanation than
that the price indices for investment were revised very often. All this is documented in the
figures in the appendix.

In many years, (esp. 1972-1976) beginning-of-year capital stocks are not or only partially
measured. I can use the end-of-year capital stock from the previous year as far as that is
available. This usually leads to some hundreds replacements per year, but it is very prevalent
in 1973 (24k) and 1982 (9k). In all years subsequent to a Census year and after 1988 (when
annual measurement of BAB and MAB stops), we can naturally impute the beginning-of-year
capital stock in this way for almost all observations (50-60k observations).

A.4.2 Accounting for capacity utilisation

In addition to the capital stock available to the establishment, we need to know the utilisation
of this capital stock to determine the capital services going into production. As pointed out
in previous research (see for example Jorgenson and Griliches (1967); Basu (1996); Burnside,
Eichenbaum, and Rebelo (1995)), failure to control for capacity utilisation will bias TFP to
be more procyclical than it actually is because measured TFP merely reflects unmeasured
(procyclical) capacity utilisation. If capacity utilisation rates become more heterogeneous in
a downturn, then measured dispersion in TFP would just be a figment of specification error.
Burnside, Eichenbaum, and Rebelo (1995) have suggested to use electricity or energy instead of
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capital. The idea in that paper is that energy/electricity is predominantly used to power capital,
so variations in energy used will be a good approximation for capacity utilisation. Using energy
instead of capital stocks may have the advantage that one measures actual capital services, but,
on the other hand, this approach assumes constant energy efficiency. Without further knowledge
of the capital stock’s energy efficiency one cannot distinguish highly energy efficienct machines
running at high capacity of low energy efficiency machines running at low capacity. The capital
services supplied by the former are higher for two reasons: more energy-efficienct machines
are presumable newer, so their productivity is likely to be much higher. Second, these more
productive machines are running at full capacity. For those reasons, I gladly make use of the
directly observed capacity utilistion measure from the Plant Capacity Utilisation Survey (PCU).
The PCU is a subset of the ASM/CMF and collects explicit information on the utilisation of
an establishment’s existing capacities. This allows me to construct an explicit capital services
measure and omit the energy/electricity inputs that are implicit in the utilisation rates.

Utilisation rates in the PCU are only observed for a small subsample of the data in the
ASM/CMF (for about 280k of 4m observations total). I therefore use the data in the PCU to
compute industry-wide utilisation rates and use them as a proxy for the other establishments.
The idea is that increased demand for a certain good makes most establishments in this industry
run at higher capacity.44 This works for all years after 1974 when the PCU started. For 1972/73,
I use utilization rates computed by the Federal Reserve Board45.

So far, I have outlined how to compute the utilised replacement value in constant dollars of
the capital stock the firm owns. In addition to its on capital stock, an establishment may rent
capital to produce. It would be ideal to deduce the real amount of rented capital and include
it into the capital measure. Due to data limitations, I have to omit this step: Rented capital is
only reported in the years until 1988 and rental payments are hard to transfer into units that
correspond to the constant-dollar measure used for the establishment’s own capital stock.

A.5 Measurement of materials input

Materials are purchased on the market (materials&parts, CP, contract work, CW) or come from
the materials inventory and are then used in production. Measurement is complicated by the
fact that materials inventories (MIB and MIE) comprise both materials and fuels. Therefore, I
have to make an assumption about how much of changes in material inventories are driven by
changes in fuel inventory. I assume that all changes in materials inventory are due to changes in
materials, while the stock of fuels stays constant. Given the fact that several fuels are storable

44Of course, this is not true if even within an industry products are imperfect substitutes due to transportation
or branding.

45Industrial Production and Capacity Utilization – G.17; compiled by the Federal Reserve; downloaded at
http://www.federalreserve.gov/datadownload/Build.aspx?rel=G17.
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only at high cost (e.g., natural gas) this seems like a reasonable assumption. Then, I can express
the value of materials used in the production process (VM) through the inventory identity

MIE = MIB + (CP + CW− VM)× PIMI

PIMAT

⇔ M ≡ VM

PIMI
=

MIB− MIE

PIMI
+

CP + CW

PIMAT
. (33)

As with goods inventories above, inflows into materials inventories have to be deflated by
market prices (PIMAT), while materials stocks have to be deflated by inventory prices (PIMI).
The former comes from the NBER productivity database, the latter could in part be obtained on
the industry level from BLS’s multifactor productivity tables. As with goods inventory deflators
above, these are only available since 1987 and for the same reasons as above I approximate PIMI
with PIMAT.

A.6 Measurement of energy input

I use several measures of energy inputs: electricity, fuels and a combination of them.

A.6.1 Electricity

Electricity used in the production process (EL) is easily measured. It consists of the quantity of
purchased electricity (PE) and the difference between generated and sold electricity (GE− SE).
Since electricity is hardly storable, we do not have to worry about something like an electricity
inventory:

EL = PE + GE− SE. (34)

For later purposes, it makes sense to impute a price for electricity the establishment pays:
PIEL = EE

PE
. N.B.: If GE = 0, then the fuel used for electricity generation (VFEL) is zero as well.

A.6.2 Fuels

Fuels used in production (nominally expressed as VF) can come from fuel purchases (CF) or
from the materials/fuels inventory. As outlined above, I assume that any change in materials
inventory (MIE− MIB) is due to materials only and that the fuel stock in the inventory stays
constant. Then, fuel purchases can be used in the production process (oil used to produce
plastics) or for electricity generation (oil burned in an electricity generator). The latter quantity
is not observed, but must be zero for the vast majority of observations that do not produce
any electricity; for those observations VF = CF. If this is not the case, then I assume that
generated electricity is produced with a linear technology. In particular, I assume that 1$
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of fuel expenditures can be converted into electricity that could be sold for 1$ (taking into
account overhead etc). The idea is that a firm will only find it profitable to produce its own
electricity rather than purchasing it when the price of fuel (contained in VFEL) relative that
of electricity is not too high and that it can relatively easily substitute among different fuels.
GE = VFEL

PIEL
⇔ VFEL = GE× EE

PE
. Fuel used in production (F) equals the value of fuels (VF) deflated

by the energy price index PIEN,

VF = CF− VFEL

VF = CF− GE× EE

PE

F ≡ VF

PIEN
=

CF− GE× EE
PE

PIEN
(35)

where I assume that the price for fuels equals PIEN, the price deflator for overall energy from
the NBER-CES database.

A.6.3 Total energy

Again, I assume that fuels inventory (recorded as part of materials inventory in the ASM/CMF)
is unchanged. This means that all fuel purchases are immediately consumed in the production
process or in the generation of electricity. Total energy expenditures (VE) comprise those for
fuels (CF) and electricity (EE); the nominal value is:

VE = CF + EE

E ≡ VEN

PIEN
=

CF + EE

PIEN
(36)

where I use PIEN, the industry-specific energy price deflator from the NBER-CES productivity
database, to obtain real energy input, E.

55



A.7 Construction of cost shares

The baseline estimation described in Appendix B.3 requires knowing the cost shares of factor
inputs. They are constructed as follows

cL =
SW

TC

cK =
rK

TC

cM =
VM

TC
=

CP + CW + MIB− MIE

TC

cE =
VE

TC
=

CF + EE

TC

TC = SW + rK + VM + VE.

Note that all variables are expressed in period-t nominal costs. All of these variables except r
and K are observed in the original dataset. K is the real capital stock (in year-2000 dollars)
constructed as described in Appendix A.4, rt denotes the nominal rental rate (year-t dollars
rent paid per one year-2000 dollar worth of capital). Multiplying this rental rate, rt, by the
real capital stock, Kt, gives the nominal period-t capital cost of financing the stock in period
t. This makes it accord with the other nominal values. The rental rate is constructed from
the BLS Capital Tables by dividing corporate capital income (Table 3a) by the real capital
stock (Table 4a). The latter variable is expressed in constant (year-2000 dollar), while the
former is expressed in current-period dollars, so rK are the capital cost expressed in period-t
dollars. Note that capital cost merely includes rent and depreciation, not utilisation cost which
is captured in the energy cost share.46

B Empirics

B.1 The Levinsohn-Petrin estimator

This section describes the estimator by Levinsohn and Petrin (2003) in more detail. Recall the
assumed production function from equation (1):

yit = ωit + ηit + βllit + βkkit + βmmit + βeeit (1’)

The firm productivity term is decomposed into a portion that the plant observes, ωit. The
authors assume that ωit has a first-order Markov structure. ηit on the other hand is not observed
by the plant and hence does not influence contemporaneous decision rules. The capital stock
in period t is assumed to be fixed. The plant’s state vector is hence (kit, ωit, Pt). Pt denotes

46This obviously assumes that depreciation is not influenced by utilisation.
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the vector of firm input prices. I assume they are the same across firms and firms take them
as given. The other production inputs, labour lit, materials mit and energy, denoted by eit,
are chosen in period t after the productivity is observed. This means that those inputs are a
function in the state vector, in particular:

eit = ft(ωit, kit) (37)

Note that Pt appears implicitly in that the functions are time-dependent. LP assume that the
function ft(·) it is strongly monotone. This assumption allows us to invert the function and
express plant-level productivity as

ωit = gt(kit, eit) (38)

which can be plugged into (1’). I combine the capital, material and energy inputs with the
inverted expression to define a new expression

φt = βkkit + βmmit + βeeit + gt(kit, eit) (39)

Of course, I have to make an assumption about φt(·) and LP propose to estimate it non-
parametrically as a third-order polynomial. Note that introducing the information contained
in energy consumption implicitly accounts for capacity utilsation. It is similar in spirit to
Burnside, Eichenbaum, and Rebelo (1995) who propose to replace capital in production function
regressions with electricity.

The estimation procedure happens in two steps. First, regress output on labour and the
third-order polynomial expansion of kit, mit and eit:

yit = βllit + φt(kit,mit, eit) + ηit (40)

and obtain β̂l, φ̂t. The latter is a complicated expression in its arguments

φ̂(t) = γ̂0(t) +
3∑
p=0

3−p∑
q=0

3−p−q∑
t=0

γ̂pqr(t) k
p
i (t) m

q
i (t) e

r
i (t)

The coefficients on the capital stock, βk, materials, βm, and energy βe can be teased out of
φ̂ using the assumption that ω is first-order Markov. First, I express ω as function of φ̂t and
arbitrary production coefficients on capital, materials and energy:

ωit(b
k, bm, be) = φ̂t − bkkit − bmmit − beeit (41)
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Given the first-order Markov assumption of productivity, this expression can be used to estimate
a forecast E[ωt|ωt−1]

ω̂it(b
k, bm, be) = δ0 + δ1ωit−1(b

k, bm, be) + δ2

[
ωit−1(b

k, bm, be)
]2

+ δ3

[
ωit−1(b

k, bm, be)
]3

(42)

Keep in mind that this is still a function in (bk, bm, be). The productivity forecast error is
defined as

ξit ≡ ωit − Et−1[ωit|ωit−1] = ωit − ω̂it

The last step is to exploit the fact that the sum of the forecast error ξit and the unobserved part
of productivity, ηit, are orthogonal to yesterday’s variable inputs lit−1,mit−1, eit−1 and today’s
capital stock kit. Let

ζ̂it(b
k, bm, be) ≡ ηit + ξit (43)

= yit − β̂llit − bkkit − bmmit − beeit − ω̂it(b
k, bm, be) (44)

Then I can express the moment conditions as

E [ζit, kit] = 0

E
[
ζit,mit−1

]
= 0

E
[
ζit, eit−1

]
= 0

E
[
ζit, lit−1

]
= 0

The first three conditions are sufficient to identify βk, βm and βe, the last conditions (or even
more lags) can be added for efficiency. The parameters can then be estimated using GMM

[β̂k, β̂m, β̂e] = argmin
bk,bm,be

∑
h

∑
t

[
ζ̂t(b

k, bm, be)× Zth

]2
(45)

where Zith = [kit,mit−1, eit−1, lit−1] and possibly more lags if we wish.

B.2 Long-run changes in productivity dispersion

Figure 12 displays the time series of productivity dispersion before HP-filtering. Quite remark-
ably, the long-run pattern of productivity dispersion in both durables and non-durables goods
industries changes over time. It is constant until the late 1980’s, from then on dispersion ex-
hibits a secular upward trend. Within the last 15 years of the sample dispersion more than
doubles. Similar long-run changes have been noted in Beaudry, Caglayan, and Schiantarelli
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(2001). They examine the dispersion of firm-level profit rates in the UK and find a U-shaped
pattern. They explain the long-run changes with learning in the face of macro uncertainty
due to policy changes. The same macro-level uncertainty and learning could drive productivity
dispersion in the U.S, but my sample is missing the downward-sloping part of the U shape.
This is not too surprising because my sample starts later than the UK panel these authors are
using.
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Figure 12: Trends and Cycles in Dispersion

B.3 Robustness: Cost Shares

The structural estimator proposed by Levinsohn and Petrin (2003) is attractive for it permits
estimation of plant-level productivity while solving the endogeneity problem. It is, however,
subject to some assumptions about timing of input choices and strong monotonicity of inputs in
productivity ω. These assumptions look fairly weak, but I want to make sure that they are not
responsible for driving my results. This estimator has also been criticised by Ackerberg, Caves,
and Frazer (2006). They claim that LP (and to a lesser extent a similar method proposed by
Olley and Pakes (1996)) suffers from a collinearity problem that casts doubt on identification.
An easy alternative is to assume constant returns to scale and competitive factor markets. These
assumptions look reasonable given that I found close to constant returns to scale in Section 2.
They are also in line hat many other people have found empirically, see for example Burnside,
Eichenbaum, and Rebelo (1995); Burnside (1996); Basu and Fernald (1997) for industry-level
evidence and Lee and Nguyen (2002) for plant-level evidence in the clothing industry.
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Under these assumptions, production elasticities can be approximated with cost shares.47

The production function can be rewritten as follows

yijt = aijt + βkkijt + βllijt + βmmijt + βeeijt

= aijt + ckjkijt + cljlijt + cmj mijt + cejeijt

where I assume that cost shares are industry specific and constant over time. As above, we still
need to detrend aijt, recenter and scale the residula zijt.

B.3.1 Solow residuals – cross-sectional dispersion

In the following, we shall take a look at the dispersion in TFP levels. This is more interesting
as a higher variance in TFP levels means not only that firms simply become more risky, but
has implications for aggregate TFP as well. Changes in the dispersion of TFP levels also has
implications in models of frictions and lending as in Christiano, Motto, and Rostagno (2009);
Christiano, Trabandt, and Walentin (2010). Firms will have more trouble getting credit if they
are more risky in the sense that their TFP will be drawn from a more spread-out distribution.

In contrast to looking at the dispersion of TFP growth rates, analysing TFP levels is not as
straight-forward. The distribution of TFP levels is likely to differ substantially across industries
in terms of the central and higher moments. Changes in the industry-level TFP dispersion might
hence not be observed by just looking at the entire cross section, a problem that did not appear
in the cross-sectional dispersion of growth rates. For that reason, I will have to look at cross-
sectional dispersion within industries. The definition of industry should be narrow enough to
overcome this between industry heterogeneity as far as possible. 6-digit NAICS level industries
are feasible in my data and should be reasonably narrow. Still, some of the remaining within-
industry level heterogeneity might be driven by differences in the type of products rather than
productivity. I am aware of this limitation, but the limitation of data do not permit a more
in-depth analysis.

To make dispersion comparable across industries and over time, I will recenter the logged
TFP distribution in each industry at the industry-specific median, denoted zj , and normalise
it by the industry-specific standard deviation, σj . This will make the TFP distribution of each
industry look similar on average but will bear out the time variation in the dispersion I am
looking for. The statistic of interest is hence

Dispjt =
zijt − zj
σj

47Firms FOC dictate that factor prices are equal to marginal products w = ∂Y/∂L = αY/L. Labour costs
are then αY and similarly for the other inputs. If all production elasticities sum to unity, then the cost share is
cL = wL/Cost = αY/[(α + β + γ + δ)Y ] = α.
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To make statements about the dynamics of the economy-wide distribution, I take the averages
across industries at each point in time:

Dispt = Et
[
Dispjt

]
Manufacturing
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Figure 13: Productivity Dispersion of TFP levels

Plant-level productivity inferred by subtracting cost-share weighted inputs from output. Cross-
sectional dispersion of plant-level productivity constructed as described in Section 2.2.1. Left
panel displays time series, right panel correlogram with GDP growth: Corr(Ŷt, V ar(zit+k))

B.3.2 Solow residuals – the behviour of cross-sectional quantiles

As shown above, the productivity distribution as a whole is negatively correlated with GDP.
Like in the main empirical section, I want to analyse the dynamics of different quantiles in
the productivity distribution. Figure 14 displays the correlations of these quantiles with GDP.
Again, it appears the lower quantiles in the distribution are positively correlated with the busi-
ness cycle, while the upper quantiles are mostly acyclical. The 75th percentile looks moderately
procyclical, but the estimated correlation coefficient is no significantly different from 0. The
overall picture that emerges is that not only the dispersion of technology growth rates is coun-
tercyclical, but also the dispersion of levels. This dispersion in TFP levels, in turn, appears to
be driven mostly by the lower quantiles in the distribution. In a recession, the productivity of
some firms maybe fall, but they nevertheless manage to survive in a boom. This is a surprising
result and is at variance with the cleansing effect of recessions literature. Therefore I conclude
that, that some other driving force must be active in reality that counteracts the driving forces
present in the cleansing effect models.

As the correlograms show, the lower quantiles are procyclical, i.e., in a recession they de-
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Figure 14: Corr(GDPt, PX(zit+k))

crease. This seems evidence for truncation at the lower end of the productivity distribution. It
is surprising, that this cutoff appears to be higher in a boom.

B.3.3 The cross-sectional dispersion of Solow residual growth rates

Figure 15 displays the cross-sectional variance of TFP growth rates in the baseline specification.
As is clear from the visual inspection of Figure 15, the dispersion looks distinctly countercyclial.
The estimated correlation coefficient between the cross-sectional variance and HP-filtered GDP
is -0.38 with a standard error48 of 0.11, which means the correlation is significantly different
from 0.

Do outliers drive the countercyclicality? Could this countercyclicality be driven by a few
extreme outliers while the rest of the TFP distribution remains unchanged over the business
cycle? Figure 16 displays the correlation of GDP and several dispersion measures: the variance,
the inter-quartile range and the inter-decile range. All three measures are countercyclical which
reject the notion that just some outliers in the tail of the distribution are driving the result.
This also suggests that the entire distribution is fanning out as GDP decreases.

48For a construction of error bands see comments of Figure 16.
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Figure 15: Productivity Dispersion of TFP growth

Plant-level productivity inferred by subtracting cost-share weighted inputs from output. Cross-
sectional dispersion of plant-level productivity growth is an variance of unweighted observations.
Left panel displays time series, right panel correlogram with GDP growth: Corr(Ŷt, V ar(ẑit+k))
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Figure 16: Corr(GDPt, Dispt+k (ẑit)) – dashed lines 95% error bands
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C Detailed solution to the model

First-order conditions

Pnt ≡ 1 =
σ

σ − 1
wt
zn
N

1
1−σ

t (Pricing ND Sector)

P dt =
%

%− 1
wt
zdt

(Nd
t )

1
1−% (Pricing D Sector)

πt = πnt +
Nd
t

Nt

πdt (Avge profits)

πnt (zn) =
1
σ

(
σ − 1
σ

zn

wt

)σ−1

Ct (Avge profits in n)

πdt (z
d
t ) = wtcf

%− 1
k + 1− %

(Avge profits in d)

Lt = Ntl
n
t +Nd

t l
d
t +NE

t ce (Aggr labour demand)

lnt (z
n) =

(
σ − 1
σ

1
wt

)σ
(zn)σ−1Ct (labour demand n)

ldt (z
d
t , cf ) = cf

[
(%− 1)k
k + 1− %

+ 1
]

(labour demand d)

Nd
t

Nt

=
(
zL
zdt

)k ( k

k + 1− %

) k
%−1

(Share of firms in D sector)

Nt+1 = (1− ζ)(Nt +NE
t ). (Dynamics of no. firms)

vt = cewt (Free entry)
α

Ct
X1−θ
t = λt(1 + τ ct ) (HH FOC: Cons ND)

λtP
d
t (1 + τ It ) = β

[
γ

Dt+1

X1−θ
t + λt+1P

d
t+1(1 + τ It+1)(1− δ)

]
(HH FOC: Inv durables)

ψφt
1− φtLt

X1−θ
t = λtwt (HH FOC: Intratemp Euler)

λtvt = βEt
[
(1− ζ)λt+1(vt+1 + πt+1)

]
(HH FOC: Intertemp Euler Equity)

wtLt + πtNt = Ct + P dt
[
Dt+1 − (1− δ)Dt

]
+ vtN

E
t (Budget constraint)

Endogenous variables:

zdt , P
d
t , πt, π

n
t , π

d
t , Nt+1, N

E
t , N

d
t , vt, Ct, Dt+1, λt, Lt, l

n
t , l

d
t , wt
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Log-linearised

ŵt =
1

σ − 1
N̂t (46)

P̂ dt − ŵt + ẑ
d
t +

1
%− 1

N̂d
t = 0 (47)

−π̂t + π̂nt

(
1− πdN

d

Nπ

)
+
[
N̂d
t + π̂dt

] πdNd

Nπ
= N̂t

πdN
d

Nπ
(48)

π̂nt − (1− σ)ŵt − Ĉt = 0 (49)

π̂dt − ŵt = 0 (50)

l̂nt
Nl

n

L
+ N̂d

t

(
1− Nl

n

L

)
+ N̂E

t

ceN
E

L
− L̂t = −N̂t

Nl
n

L
(51)

l̂nt + σŵt − Ĉt = 0 (52)

l̂dt = 0 (53)

N̂d
t + kẑ

d
t = N̂t (54)

N̂t+1 − δN̂E
t = (1− δ)N̂t (55)

v̂t − ŵt = 0 (56)

ξ̂t + (1− θ)X̂t − Ĉt − λ̂t − τ̂ ct
τ c

1 + τ c
= 0 (57)[

ρξ ξ̂t + (1− θ)X̂t − D̂t+1

]
[1− β(1− δ)] + ...

...

[
λ̂t+1 + P̂ dt+1 + τ̂t+1

τ i

1 + τ i

]
β(1− δ)− λ̂t − (1− ρb)b̂t − P̂ dt − τ̂ it

τ i

1 + τ i
= 0 (58)

φ̂t
1

1− φL
+ (1− θ)X̂t + ξ̂t + L̂t

φL

1− φL
− λ̂t − ŵt = 0 (59)

(1− ρb)b̂t + λ̂t + v̂t − λ̂t+1 − v̂t+1

v

v + π
− π̂t+1

π

v + π
= 0 (60)

−ŵt
wL

wL+Nπ
− L̂t

wL

wL+Nπ
− π̂t

Nπ

wl +Nπ
+ Ĉt

C

wl +Nπ
+ P̂ dt

δDP
d

wl +Nπ

+D̂t+1

DP
d

wl +Nπ
+ N̂E

t

δvN

(1− δ)(wl +Nπ)
+ v̂t

δvN

(1− δ)(wl +Nπ)
= N̂t

Nπ

wl +Nπ
+ D̂t

(1− δ)DP d

wl +Nπ
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