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Abstract 
 
 

   
 Universities, often situated at the center of innovative clusters, are believed to be 
important drivers of local economic growth. This paper identifies the extent to which U.S. 
universities stimulate nearby economic activity using the interaction of a national shock to the 
spread of innovation from universities - the Bayh-Dole Act of 1980 - with pre-determined 
variation both within a university in academic strengths and across universities in federal 
research funding. Using longitudinal establishment-level data from the Census, I find that long-
run employment and payroll per worker around universities rise particularly rapidly after Bayh-
Dole in industries more closely related to local university innovative strengths. The impact of 
university innovation increases with geographic proximity to the university. Counties 
surrounding universities that received more pre-Bayh-Dole federal funding - particularly from 
the Department of Defense and the National Institutes of Health - experienced faster employment 
growth after the law. Entering establishments - in particular multi-unit firm expansions - over the 
period from 1977 to 1997 were especially important in generating long-run employment growth, 
while incumbents experienced modest declines, consistent with creative destruction. Suggestive 
of their complementarities with universities, large establishments contributed more substantially 
to the total 20-year growth effect than did small establishments. 
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I. Introduction

What is the e¤ect of universities on neighboring industry? Many of the most innovative and en-

trepreneurial places in the United States cluster around research universities, such as Silicon Valley

around Stanford and Boston�s Route 128 corridor around Harvard Medical School and MIT. Such

agglomeration of industrial activity may arise for a number of reasons, including shared inputs, local

natural advantages, skilled labor pooling, and, importantly, knowledge spillovers (Marshall (1890);

Krugman (1991)). Proximity facilitates increased interaction between people and speedy �ow of

ideas, compounding the positive externalities of knowledge production and encouraging locally con-

centrated growth (Jacobs (1969) ; Lucas (1988)). Universities and research hospitals �important

generators of new ideas and relatively disposed towards openness in discovery �are thus natural

suspects as contributors to the local economy (Ja¤e (1989); Furman and MacGarvie (2007)). But

feedback e¤ects from business activity and common underlying factors a¤ecting both universities

and industry make universities� in�uence di¢ cult to measure. This paper uses a new strategy

based on universities�technological strengths and a change in federal policy to identify e¤ects of

universities on the growth of neighboring industry.

Before 1980, universities lacked strong incentives to commercialize research; the federal gov-

ernment held rights to all intellectual property produced by universities in the course of federally

funded research.1 But the December 1980 passage of the Bayh-Dole Act gave universities prop-

erty rights to innovations developed under federal funding, and with these strong new incentives

it opened a sea of patenting and licensing activity from universities as they developed infrastruc-

ture for technology transfer that they previously lacked (Henderson, Ja¤e, and Trajtenberg (1998);

Sampat et. al. (2003); AUTM Licensing Activity Survey).2 That this legal change fundamen-

tally increased universities�connection to industry and induced greater spread of innovation from

universities will help to identify their local e¤ects. 3

1Of course, some universities, especially public and land grant, were more practically oriented long before Bayh-
Dole (Mowery et. al. 2004; Sampat 2006; Goldin and Katz 2008). Because they were so heavily funded by the
states, they always faced incentives to be responsible to local industry. Even these institutions, however, tended to
keep their commercial arms divorced from the university, administering patents through research foundations (like
Wisconsin Alumni Research Foundation) or third parties such as the Research Corporation.

2New Congressional endorsement of the value of these activities to the economy may have also been important in
changing the anti-commercialization sentiment harbored in many universities.

3There is some dispute over the degree to which Bayh-Dole altered research and commercialization practices
in universities. Mowery and Ziedonis (2000) and Mowery et. al. (2001) �nd in case studies of three uni-
versities that Bayh-Dole had little impact on the content of research but substantial impact on marketing ef-

1



My strategy interacts the law change with cross-sectional variation in the extent to which

industries bene�t from nearby university innovation. Because universities produce more innovation

�as measured by patents � in some technological areas than in others, I am able to identify the

industries surrounding each university that are most likely to bene�t from this increased spread of

innovation. The industry intensities provide variation both within university, between industries,

and between universities due to their di¤erent industrial mixes. This type of variation has the

advantage that I can hold a geographical location �xed and identify an e¤ect o¤ of cross-industry

di¤erences in the intensity of �eld-speci�c innovation from the nearby university. I am further able

to address the concern that universities may simply innovate in the nation�s most quickly growing

industries, such as biotech in the late 1980s and early 1990s, by controlling for nationwide changes

in industry performance.

A natural additional test stems from the fact that, because Bayh-Dole a¤ected federally funded

inventions, universities receiving more federal funding before the law was passed were e¤ectively

more "treated" by the change: they had a larger a¤ected research base from which the local economy

could now bene�t. I thus test whether areas grew di¤erentially depending on the amount of federal

research funding their local universities attracted in the several years before the Act was passed. I

use detailed information on federal funding by agency and university to measure whether this e¤ect

holds for technological areas that might be especially closely tied to industry, such as those funded

by the Department of Defense and the National Institutes of Health.

The Census Bureau�s Longitudinal Business Database (LBD) enables me to measure outcomes

for detailed industries at a high level of geographic speci�city from 1977 to 1997. The detail of

the data permits tight connections between university strengths and related industry employment,

payroll, and establishment dynamics. Spanning twenty years, the data cover the passing of the

Bayh-Dole Act and facilitate measurement of its long-run e¤ects. This long horizon is crucial

for understanding the substantial shift, marked by this policy change, in the relationship between

research universities and their industrial neighbors.

I �nd that employment, payroll, and average wages grow di¤erentially faster after the Bayh-

forts. More comprehensive patent data indicate a substantial increase in university patenting after Bayh-Dole
(Henderson, Ja¤e, and Trajtenberg (1998); Sampat et. al. (2003)), though this increase may re�ect higher produc-
tion of innovation, increased attention to commercialization of innovation, or both. By showing di¤erential industry
growth around universities after the law relative to before, my results shed light on the impact of the change brought
by Bayh-Dole.
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Dole Act in industries more closely related to the technological strengths of nearby universities.

The magnitudes �31 employees and $1.5 million in payroll per county-industry after Bayh-Dole for

a standard deviation increase in industry intensity, or 13 employees and $665 thousand in payroll

per e¤ective patent � are considerable and grow with geographical proximity to the university,

supporting the importance of spatial relationships in the spread of knowledge. Areas surrounding

universities that received more federal research funding before the law was passed grow faster after

the law than do others; the e¤ect is particularly large for DOD and NIH funding.

Isolating the e¤ects of university innovation on local industry is a fundamentally di¢ cult

task because universities have developed together with their local economies over time, in�uencing

each other and each being in�uenced by similar area fundamentals. University and industrial

activity are thus naturally correlated: communications technologies, for example, developed in

�rms like Federal Telegraph in the nascent Silicon Valley just as they were developing in Stanford

University laboratories. Use of a national external shock to this system, like Bayh-Dole, and in

particular one whose theoretical impact di¤ers across geographical and technological areas, brings

new identi�cation to this long-standing measurement problem.4 This strategy assumes that the

industries and places I measure to grow the fastest after Bayh-Dole weren�t already on faster growth

trajectories, for reasons other than university research, before the law. It is possible, however, that

there were pre-existing industry growth trends that continued after Bayh-Dole and explain my

e¤ect; these cannot be measured in the LBD data because they do not stretch back far enough.5

Having shown signi�cant employment and payroll growth e¤ects, I investigate potential mech-

anisms by asking which types of establishments �entrant versus incumbent, large versus small �are

most complementary with university innovation in producing employment growth. Do universities

generate growth via entrepreneurs or existing powerhouses?

4Previous research has investigated the e¤ects of university spending, as opposed to innovation, on growth. For
example, Aghion et. al. (2009) use political instruments to identify the e¤ects of state university spending on growth.
Kantor and Whalley (2010) use changes in endowment spending to measure e¤ects of university activity on local labor
income. Other work by Adams (1990) measures how much productivity growth nationwide can be accounted for
by stocks of knowledge stored in academic publications and �nds lagged growth within scienti�c areas. Ja¤e (1989)
�nds that corporate patenting in a state is related to local university research spending, controlling for industry R&D
spending. Saha and Weinberg (2010) discuss, more generally, the challenges inherent in estimating the economic
bene�ts of science.

5Data on subsets of my sample do exist far enough back to be able to address this concern to some extent. While
industry-level County Business Patterns data are suppressed too severely to be of much use, con�dential data from
the Census of Manufactures could be used to estimate pre-trends for industries in the manufacturing sector, but there
is not enough variation in my innovation measure within manufacturing to estimate solely on that sample.
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While entrants may be highly innovative and have been shown to drive year-to-year employ-

ment growth economy-wide (Haltiwanger et. al. 2010), incumbents may have established rela-

tionships with universities, distribution channels, manufacturing expertise, and brand name that

help to preserve their power. I �nd that entering establishments, rather than incumbents, drive

the twenty year growth e¤ect from universities. Multi-unit expansion �large �rms opening a new

establishment near the university �rather than single-unit entry accounts for 70% of employment

growth from entering establishments, indicating the smaller role of entrepreneurs.

Some theories of innovation and growth further predict that innovating entrants may spur

technologically advanced incumbents to compete while forcing laggards into decline, generating a

bifurcated e¤ect (Aghion et. al. (2005); Aghion et. al. (2009)). I �nd evidence consistent with this

pattern and suggestive of creative destruction: incumbents experience more turnover in industries

more closely tied to university innovation. Meanwhile, select incumbents in those industries appear

to remain competitive and grow.

Like entrants, small �rms �and small university spino¤s in particular �are often considered

to be drivers of growth (Shane (2004a)).6 But there may be economies of scope (Arrow (1962)) or

scale (Chandler (1990)) in innovation �or in translating innovation into growth via mass production

and marketing of new products �that might lead large �rms to be complementary to university

research. I thus decompose the university growth e¤ect into entry size categories and �nd that

the largest establishments contribute considerably more absolute employment than do small ones.

Small establishments, however, enter in larger numbers in university-tied industries and contribute

substantial employment growth in proportion to initial size, lending some support to the Shane

view of the importance of spino¤s.

University e¤ects are relevant for policy on multiple levels. National intellectual property pol-

icy, such as that contained in the Bayh-Dole Act, and federal research subsidies to universities both

aim to enhance economic bene�ts derived from universities.7 Local policy makers in particular

care about the bene�ts that accrue to university areas. Though many public attempts to generate

6We know much, descriptively, about di¤erences in spino¤ activity across institutions and industries (DiGregorio
and Shane (2003)) but less about spino¤s�systematic contribution to growth.

7Because ideas are a non-rival good that can generate increasing returns to scale, they may be privately under-
produced and warrant public subsidies and/or intellectual property protection to increase the expected return to
investing in discovery (Romer (1986); Jones and Romer (2009)). The U.S. government engages in both of these
means of encouraging research.
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clusters of innovation fail at huge cost (Lerner (2009)), other evidence suggests that skilled popu-

lations play an important role in subsequent area income (Glaeser et. al. (1995); Moretti (2004)).

My results emphasize the importance of universities for local growth.8

The remainder of the paper is structured as follows. Section II provides background on the

Bayh-Dole Act, its e¤ect on the incentives universities face, and how it generates a useful setting

in which to study the economic e¤ects of university innovation. Section III proceeds to develop

the empirical strategy, while section IV describes the multiple data sources used in measurement.

Section V presents the main results of the paper and section VI discusses associated endogeneity

concerns. Section VII investigates the mechanisms through which universities stimulate growth by

measuring the roles of di¤erent types of establishments, and section VIII concludes.

II. Innovation Policy and The Bayh-Dole Act

Historically, and through the 1960s and 70s, many American universities shied away from direct

involvement in commercialization of research. Though some justi�ed it from the perspective that

patenting and licensing took knowledge out of the public domain, their avoidance was substantively

rooted in a fear of political embarrassment. Patenting could compromise the university�s commit-

ment to open science, they thought, and the pro�t motive inherent in licensing could undermine

the purity of the scienti�c endeavor. At Columbia University, administrators felt "it is not deemed

within the sphere of the University�s scholarly objectives" to hold patents (Sampat (2006)). And

until the 1970s, many top universities, including Harvard, Yale, Johns Hopkins, Columbia, and the

University of Chicago explicitly forbade the patenting of biomedical research.

Neither was the legal regime before the Bayh-Dole Act of 1980 supportive of commercialization.

The federal government held rights to intellectual property developed in universities under federally

funded research, which was a large component of total research conducted: in each year from 1972

to 1980, 66-69% of university research expenditures were from federal sources.9 Researchers could
8Creating a strong university out of nothing is obviously a di¢ cult task. Using universities as a policy tool seems

more reasonable in the context of marginal research subsidies or intellectual property law.
Furthermore, whether a policy to stimulate a local economy via its university would be welfare-enhancing nationally

is a separate question (Glaeser and Gottlieb (2008)). Place-making policies require more justi�cation than just
evidence of stimulative local e¤ects. In particular, they require non-linearities in agglomeration economies: bene�ts
of one place growing outweighing losses from another shrinking. In the case of universities and local industry
growth, it may well be that �rms shift operations away from other geographical areas to be close to and bene�t from
universities. I do not address net e¤ects of universities on industry growth across geographic areas.

9These percentages represent averages across all universities and colleges surveyed; some institutions may have
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patent their innovations if they wished, but with government presumption of title, they could not

keep royalties from licensing unless they negotiated a special Institutional Patent Agreement (IPA)

with the granting agency. Policies regarding these agreements varied widely across agencies; as a

result, any attempt on the part of a researcher to secure patent ownership and royalty rights tended

to involve lawyers, negotiations, drafts of agreements, and other administrative red tape.

Certainly there were some universities involved in patenting on a smaller scale before Bayh-

Dole, but even so, they kept their commercialization activities at arm�s length to avoid its direct

association with the university.10 Many of these were public and land grant universities that had al-

ways been more practically oriented and responsible to their local economies (Goldin and Katz (2008)).

Debate leading up to the law focused largely on the economic issues involved: the positive

externalities of public knowledge versus private incentives to innovate.11 The World War II expan-

sion of defense R&D put substantially more money in the hands of universities and corporations

and raised the stakes on patent law. The government felt that federally �nanced innovations

should be kept in the public domain to maximize potential spillovers. Others worried that compa-

nies would not fully invest in discovery without stronger intellectual property protection allowing

them to bene�t from innovation developed in the course of contract R&D. Rising uncertainty over

U.S. economic competitiveness heightened the pressure to produce innovation at the highest level,

unhindered by burdensome legal code.12

In December 1980, Congress passed the Bayh-Dole Act, which standardized patent policy

across granting agencies and reversed the presumption of title to inventions developed under fed-

erally funded research. Whereas before, rights to any government funded innovations developed

even higher federal funding shares. The statistics were calculated from data in the NSF Survey of Research and
Development Expenditures at Universities and Colleges.
10There were two prominent means by which universities patented in this period. The �rst was to contract with

the Research Corporation, an independent institution which administered patents of a number of universities. The
second was to establish a research foundation only loosely a¢ liated with the university, a good example of which
is the Wisconsin Alumni Research Foundation (WARF), which had already administered a signi�cant number of
patents before Bayh-Dole.
11The nature of this debate might lead one to think that Bayh-Dole would provide a natural setting in which to

test the economic e¤ects of IP protection relative to open science, in the spirit of Murray and Stern (2007), Aghion
et. al. (2009), and Williams (2011). However, becuase the Federal government did not actively publicize the IP to
which it had rights before Bayh-Dole, and commercialized only a small portion of it, the pre-1980 IP regime is likely
not appropriately representative of "open science," leaving no useful counterfactual for such a test of IP rights, per
se.
12University lobbyists were also involved in the debate but were by no means the focus. Much of the debate was

centered on contracting �rms, as discussed above, and witnesses from both universities and small businesses appeared
in the hearings.
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in universities accrued to the government, now universities could patent, own rights to, and keep

royalty revenues from these innovations. The rights came with a responsibility to actively promote

the inventions�commercialization and satisfy a number of other simple criteria, including granting

the federal government a non-exclusive license and sharing any royalties with the inventor. Further

strengthening the rights of universities, Congress passed the Patent and Trademark Clari�cation

Act in 1984, which removed some restrictions on the types of inventions universities could own and

on the transfer of property rights to other parties. Together, these laws signi�cantly strengthened

the incentives of universities and faculty to produce, patent, and commercialize innovation.

Universities and faculty responded to these new incentives.13 Though some universities housed

technology transfer o¢ ces to administer patents before Bayh-Dole, others opened these units at

much higher rates in the mid 1980s and through the early 1990s (Figure 1). Patenting from univer-

sities rose correspondingly (Henderson, Ja¤e, and Trajtenberg (1998)), with the sharpest increase

beginning in the late 1980s as university infrastructure adjusted to handle faculty disclosures, patent

applications, and licensing on a large scale (Figure 2). While only 55 universities had been granted

a patent in 1976, 340 universities had been granted at least one patent by 2006.14 Although it is

di¢ cult to say whether faculty responded by producing more innovation after Bayh-Dole, since it�s

possible that existing innovation simply wasn�t patented at high rates beforehand, there is evidence

from the 1990s that faculty respond to stronger royalty incentives by producing higher quality

innovation (Lach and Schankerman (2008))15.

Thus in terms of both underlying culture and explicit incentives, the Bayh-Dole Act marked a

great shift in the relationship between universities and industry. With congressional endorsement

banishing much of the remaining hesitation to engage in patenting and licensing, these activities

ceased to be political embarrassments and instead became testaments to a university�s prestige.

13 It may be that the incentives created by Bayh-Dole induced faculty to shift focus from basic to more applied
research. I do not directly measure this possible behavioral change; one would need, at a minimum, measures of basic
and applied research output from universities before and after the law, perhaps in the form of publications classi�ed
according to these categories. Moreover, it�s not clear what one would infer from a result that there was a shift in
research topics, as it�s di¢ cult to know what balance of basic versus applied research is socially optimal. Thursby
and Kemp (2002) and Thursby and Thursby (2007) discuss these issues; Lazear (1997) and Thursby et. al. (2007)
develop models clarifying possible behavioral e¤ects generated by licensing and funding incentives. Azoulay et. al.
(2007) �nd that, among life scientists, patents tend to go along with a �urry of academic publications, suggesting
that even if research does become more applied, it�s still basic enough to be within the realm of the academic.
14Counts were calculated from NBER patent data.
15There is also suggestive evidence that patenting increased most after Bayh-Dole in lines of business which most

value technology transfer via patenting and licensing (Shane 2004b).
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The sort of large scale technology transfer from universities that exists today would have been very

di¢ cult and likely impossible to achieve without the strengthened property rights, standardized

across granting agencies, that were set into law in 1980.

III. Universities in the Local Economy

Economists have long considered knowledge �ows to be facilitated by face-to-face interactions

between people. In 1890, Alfred Marshall wrote that in industrial clusters, �the mysteries of the

trade are no mystery, but are as it were, in the air,�re�ecting the notion that important knowledge

is often transmitted without being written down. Lucas (1988) agreed that �most of what we know

we learn from other people�and argued that oral transmission of knowledge is an important part

of why people cluster together in cities despite the increased costs �as in the form of higher land

prices, for example �that such clustering imposes. Substantial theoretical and empirical evidence

supports the notion that innovation and entrepreneurship come in large part from the mixing of

ideas in localities (Glaeser et. al. (1992); Duranton and Puga (2001); Agrawal et. al. (2008)), and

that use of innovation is disproportionately local (Ja¤e et. al. (1993); Kerr (2010)).16 Universities

are likely to be focal points of such idea �ows, given evidence of their high production of ideas,

their connectedness to nearby industrial activity (Ja¤e (1989); Furman and MacGarvie (2007);

Kantor and Whalley (2009)), and their attraction of patent citations disproportionately from local

areas (Belenzon and Schankerman (2010)).

There may additionally be complementarities between codi�ed knowledge, such as patents, and

non-codi�ed ideas or know-how that would suggest a di¤erentially high local return to codi�cation

(Arora (1996)). These complementarities are important to consider in the context of the Bayh-

Dole Act, which increased incentives for universities to codify knowledge in the form of patents. If

patents are complementary with in-person knowledge sharing, then one might expect di¤erentially

high local relative to global economic growth e¤ects after the law.17 Alternatively, if codi�ed and

16For more discussion and evidence of local knowledge �ows, innovation, and entrepreneurship, see Marshall (1890),
Chinitz (1961), Jacobs (1969) , Saxenian (1994), Fallick et. al. (2006), and Simonen and McCann (2008).
17Jensen and Thursby (2001) provide theoretical grounds for complementarities of patents with in-person inter-

actions. Hellmann (2007) explores a theoretical mechanism that may or may not result in net complementarities
of patents with university-�rm relationships. Belenzon and Schankerman (2009) document that some universities
incur costs to promote local development objectives via local technology transfer. Gaspar and Glaeser (1998) exam-
ine the theoretical and empirical e¤ects on cities of electronic communication, which, like codi�ed knowledge, may
complement or substitute for face-to-face interaction.
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non-codi�ed knowledge are substitutes, then high patenting from universities following Bayh-Dole

would be expected to have di¤use growth e¤ects. Increased willingness on the part of universities to

engage with industry, however, could produce similar local growth e¤ects if most industry contacts

are local and would be indistinguishable from complementarities as the source of growth.

But there is reason to believe that these complementarities between patents and face-to-face

interactions exist and can be important in the context of universities. Evidence suggests that �rm

success is related to the local prevalence of top scientists in related technologies, perhaps because of

their hands-on involvement (Zucker and Darby (2007)). Further e¤ort on the part of the scientist

can be necessary to develop a licensed invention into a commercializable product given the embry-

onic phase at which many of them are legally transferred (Jensen and Thursby (2001); Thursby

and Thursby (2007)). And co-mingling patterns of university and industry scientists in some �elds

further suggests that much learning occurs in person even upon transfer of a codi�ed technology

(Murray (2002)). Of the large number of channels through which university innovation can di¤use

to industry, a few �such as publications and conferences �do well at spreading information over

great distance, while many �hiring of students and faculty, consulting, patenting, and new faculty

start ups �can and do have a local bias.

Of course, innovation is not the only means through which universities may a¤ect their local

economies. Skilled workers, trained in or attracted to an area, have been shown to predict subse-

quent income growth (Glaeser et. al. (1995)); in particular, the presence of land grant universities

generates growth via increased area skills (Moretti (2004)).18 Universities may also generate lo-

cal amenities � for example, musical or artistic performances � that would attract people to the

area. To the extent that these other modes of university e¤ects are complementary with university

innovation, they may be captured in my estimation. Indeed, Aghion et. al. (2009) suggest that

technology is likely to be complementary with investment in skills from higher education.

To understand local industry e¤ects of universities, one would ideally like to randomly allocate

universities to locations and measure related industry activity in those locations after the univer-

sities arrived relative to before. Treating only one of two similar areas with a university would

generate clearly de�ned treatment and control groups for comparison under the hypothesis that lo-

cal e¤ects will be di¤erentially larger than global e¤ects. In reality, universities exist non-randomly

18Skilled human capital also predicts higher service �rm formation rates (Acs and Armington (2004)).
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in their locations, and areas with universities di¤er from those without.

To approximate the ideal experiment as well as possible in the real world, I use a shock to the

spread of innovation from universities, combined with cross-sectional variation between universities

in the way in which they are likely to a¤ect their surroundings after the shock. Further, these

cross-sectional di¤erences provide variation even within-area and between a¤ected industries such

that changes in area-level economic performance can be held constant.

More concretely, I argue that the Bayh-Dole Act serves as the change after which universities

relate to industry in a fundamentally di¤erent way, more eager to commercialize their research.

Because universities have a di¤erent mix of research strengths, they produce innovations that feed

into a di¤erent mix of industries. For example, the University of Texas at Austin, which has a top

aerospace engineering department, is likely to stimulate local aerospace industries more than local

pharmaceuticals, while Johns Hopkins University, which specializes in biomedical sciences, will do

the reverse. As such, we are likely to see di¤erences in growth between industries within these

geographical areas.

In a measure called "industry intensity," I capture the extent to which a university�s innovation

is likely to stimulate each industry around it. The technology classes of the patents produced by

each university, combined with a patent-industry concordance, allow me to calculate an industry

intensity for each 3-digit SIC industry in the area around each university.19 I measure outcomes

such as employment, payroll, and payroll per worker in each industry in each county.

Formally, this strategy amounts to estimating an equation in which an outcome y in county c,

industry i, and year t is regressed on an indicator, IfaBDgct, equal to 1 after the Bayh-Dole Act

in counties near universities, the industry intensity measure, intensci, and the interaction of the

two:

ycit = �0 + �1(intensci) + �2(IfaBDgct) + �3(IfaBDgct � intensci) + �t +  c + �cit

The coe¢ cient �3 on the interaction term measures the di¤erential e¤ect of universities on

high intensity relative to low intensity industries after the passage of the law relative to before.

It is expected to be positive for employment and payroll outcomes if university innovation has

19 I describe the construction of industry intensity in more detail in the data section of the paper.
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stimulative e¤ects on related industries. The e¤ects on payroll per worker are a bit more di¢ cult

to think about theoretically because, without a measure of hours worked, it does not literally

represent labor productivity. However, payroll per worker is highly correlated with value added

per worker during my sample period in the U.S.: the correlation between the two in the Annual

Survey of Manufacturers at the 4-digit SIC level from 1977 to 1997 is 0.66.20 To the extent that

payroll per worker re�ects labor productivity, one might expect �3 in that regression to be positive

if university innovation generates not only more work but also more productive work in an industry.

Without a more detailed model, however, there is no clear prediction for this outcome. One could

imagine a decline in average labor productivity if the composition of workers needed in an industry

has changed.

In practice, because I include in the regressions all counties in the nation, IfaBDgct equals

1 after the law only for counties containing or nearby one of the innovating universities in my

sample. Similarly, industries in counties not near a university are not treated with a positive

industry intensity. In my main speci�cations I include county �xed e¤ects,  c, to control for

location-speci�c factors and year �xed e¤ects, �t, to control for cross-industry nationwide changes

over time. I also estimate speci�cations with industry-by-year �xed e¤ects to control for nationwide

industry-speci�c factors in a given year.

In addition to using cross-sectional variation in industry intensities to measure the e¤ect of

universities, I employ variation across universities in the amount of federal funding they received

for research in the years before Bayh-Dole. Because the law a¤ected patent rights speci�cally for

inventions developed in the course of federally funded research, universities that had more funding

would have had more research a¤ected by the law. This test uses variation only across, not within,

geographical areas, but it is useful in that it connects industry outcomes to monetary government

inputs, both overall and for speci�c grant-making agencies.21

The estimated regression has a similar structure:

ycit = �0 + �1(fundc) + �2(IfaBDgct) + �3(fundc � IfaBDgct) + �it + �cit
20This correlation is calculated using the 1987 SIC version of the NBER-DES Manufacturing Industry Database,

1958-2005, publicly available for download at http://www.nber.org/data/nbprod2005.html.
21Freeman et. al. (2010) discuss at greater length the estimation of returns to R&D spending.
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where outcome y in county c, industry i, and year t are the same as those above, fundc is the sum

of federal research funding received by the nearby university in 1976-1980, the �ve years leading up

to Bayh-Dole,22 and IfaBDgct is, as before, an indicator equalling 1 after the law for counties near

universities. �it are industry-by-year �xed e¤ects to control for nationwide changes in industry-

speci�c performance. �3 is expected to be positive if federal funding translates into industry

growth via research.23

Finally, though the geographic nature of this exercise has been implicit throughout the descrip-

tion, I also explicitly use geography for identi�cation of spatial di¤erences in e¤ects. In my main

speci�cations, "university counties, " or those near universities, are all counties within 75 miles of

the university. To zero in on the e¤ects of proximity, I re-estimate my main regressions where only

counties containing the university are said to receive their e¤ects. An increase in the coe¢ cient of

interest when the in�uence of a university is narrowed suggests a larger e¤ect on industry that is

more proximate to and thus more able to interact with the university.

IV. Data

This paper uses several data sets from distinct sources, each of which I brie�y describe here.

A. The Longitudinal Business Database (LBD)

The Longitudinal Business Database (LBD) of the Census provides the outcome data I use in

my analysis.24 It covers all U.S. private non-farm business establishments that �le payroll taxes

with the IRS from 1976 to 2005; these are establishments with at least one paid employee. For

each establishment, there is information on employment as of March 12 of that year and annual

payroll, as well as year of entry, year of exit, and detailed industry classi�cation.25 My analyses

22 If there are multiple nearby universities, the funding for all of them is summed.
23Note that with this speci�cation I can�t rule out the possibilities that 1) federal funding is capturing other

attributes of universities that lead to growth, and/or 2) federal funding goes disproportionately to areas of the
country that are growing quickly after Bayh-Dole for reasons other than the nearby university.
24More detail on the construction of the LBD can be found in Jarmin and Miranda (2002).
25Though the publicly available County Business Patterns (CBP) data set contains employment and payroll infor-

mation by industry at the county level, which is the level at which I ultimately run my regressions, it lacks several
crucial characteristics of the LBD. First, it censors information in small county-industry groups, a shortcoming that
becomes more serious in early data years such as those before my policy change. Second, it does not allow tracking
of establishments over time, precluding deeper analysis of the composition of changes that occur. Finally, there are
design di¤erences in the two datasets - in part due to corrections made using longitudinal information - that cause
them to diverge.
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are run at the county-industry-year level, though for some analyses I use the longitudinal aspect

of the data to build up from the micro level. I aggregate establishments within a county to their

3-digit SIC classi�cation to match to patent technology classes, and I cut o¤ my analysis in 1997,

before the switch to NAICS codes is made.26 The long-run nature of my question and the increased

reliability of LBD data in economic census years �those ending in 2 or 7 �lead me to employ data

from the �ve census years between 1977 and 1997 in my main set of results.

B. NBER Patent Data

The National Bureau of Economic Research Patent Data Project provides a compiled ver-

sion of publicly available data from the United States Patent and Trademark O¢ ce (USPTO) on

utility patents granted between 1976 and 2006 (Hall, Ja¤e, and Trajtenberg (2001)).27 The data

contain year of patent application and grant, assignee, and the patent technology class, among

other things. Assignees (patent owners) may be individuals, U.S. or foreign corporations, U.S. or

foreign governments, hospitals, or universities. I use the subset of patents assigned to universities

and university-a¢ liated hospitals to select my sample of innovating universities and to connect

the research �elds in which each university is highly innovative to the industries that may use a

university�s innovations.28

As previously described, university patenting grew substantially over time, from 294 patents

granted in 1976 to 2,369 granted in 1997 (Figure 2). Patenting also became more pervasive; in

1976 only 55 universities were granted patents, but 269 universities had been granted at least one

patent by 1997 and 340 by 2006.

The patent data are an important part of my estimation strategy because they provide the

link between university research and the nearby industries which are likely to experience growth.

I now describe in detail how I construct my county and industry speci�c measure of innovation.

26There exist many-to-many concordances between SIC and NAICS industry classi�cations, but because my analysis
is long-term in nature and spans 20 years as is, marginal "after" years are unlikely to justify the noise that would be
added by attempting to translate industry codes.
27The NBER patent data have been updated since the version discussed in Hall, Ja¤e, and Trajtenberg (2001),

which only contained patents granted through 1999. The updated data can be downloaded from the NBER patent
data project website: https://sites.google.com/site/patentdataproject/Home.
28The sample I select includes all universities that produced at least 7 utility patents and all hospitals that pro-

duced at least 4 utility patents granted between 1976 and 2006, the entire period of the data. Patenting is highly
concentrated among the top universities and hospitals, so for each group a cuto¤ was imposed where the tail of the
distribution thinned signi�cantly. For both universities and hospitals, the institutions selected produced more than
95% of patents from their institution type in this period.
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Constructing Industry Intensities.� To construct the measure of industry intensity, I

begin with patents produced through 1985 by universities and hospitals in my sample.29 Each

patent of each university is assigned a technology class by the USPTO. On their own, these tech-

nology classes are di¢ cult for a non-specialist to interpret in terms of their signi�cance to various

industries. However, following Kerr (2008), I use a probabilistic concordance, constructed by ex-

perienced practitioners, that weights each 3-digit SIC industry (SIC-3) in terms of the probability

it will use a patent with a given technology classi�cation.30 The weights sum to one across SIC-3

industries for each USPTO technology class. The university-industry-speci�c intensities are thus

a sum of the weights across a university�s patents and within an SIC-3 industry. For counties

that experience e¤ects of multiple universities, these intensities then have to be summed across

universities. The �nal measure is constructed according to Equation 1, where p is the number

of patents granted to university u in technology class n, and w is the frequency of use weight for

patent class n in industry i.

(1) intensci =
X
u2c

X
n

win�pun

Figure 3 presents a simple example of how to construct a university�s industry intensities from a

concordance. Each university ends up with an industry intensity for each of approximately 400

SIC-3s, and the university weights are summed across universities in a county as shown in Equation

1. The measure incorporates both the relative intensity (across technology classes) and the scale

(number of patents) with which the university innovates in a �eld.

The resulting industry intensity measure indeed captures the cross-industry di¤erences in use

of university innovation that one might think it should. Examples of high intensity industries in

the sample include: medical equipment (including surgical, electrotherapeutic, and x-ray); photo-

graphic equipment and opthalmic goods; machinery and tools; computers, storage, and associated

29 Ideally, one would want to create a measure of industry intensity based on the pre Bayh-Dole innovation intensities
of universities. The goal is to exclude possible feedback e¤ects of industry into the research agenda. Because patenting
from universities was much less common before Bayh-Dole than afterwards, using only early patents is likely to miss
much of the research activity that existed. However, given plausible research lags, patents granted in 1985 would
have been produced almost entirely by research initiated before Bayh-Dole. The advantage of using patents until
1985 is precision in measuring industry intensities for each university.
30This concordance updates work done by Brian Silverman and dates back to a period in the early 1990s when

the Canadian patent o¢ ce assigned multiple classi�cations to each patent upon granting. They assigned not only
the technology class of the patent, but also its industry of use. Thus for each technology class there would be a
distribution of industries of use from which this probabilistic concordance could be derived.
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equipment; communications, electronics, and semiconductors; chemicals, pesticides, pharmaceuti-

cal preparations, and diagnostic substances; and national security, aircraft, guided missile/ space

vehicle parts and propulsion; small arms and ammunition; search, detection, and navigation systems

and instruments. Biomedical industries are especially prevalent among high intensity industries.

Low intensity industries include, for example: �nance, accounting, banking, insurance, brokers;

clothing retail (and some production, e.g. leather gloves and mittens); transportation and carrying

services (e.g. taxi, bus, freight, USPS); administration of educational, public health, and social

programs; dealers: motor vehicle, RV, boat, motorcycle; construction materials: brick, stone, sand

and gravel, crushed granite.

Most of these low intensity industries are generally low-skill and probably do not use much

innovation produced by universities. The one notable exception is �nance. In fact, there are

a number of important �nancial innovations that emerge from universities and are used regularly

by practitioners; take as a famous example the Black-Scholes option pricing model, which was

developed in academia and for which the 1997 Nobel Prize in Economics was awarded to Robert

Merton and Myron Scholes. However, because �nancial innovations are not generally patentable,

this measure of university innovation will tend not to pick up innovations used by these industries,

and they will score low on industry intensity.

Finally, note that the resulting measure of industry intensity is highly skewed, as expected given

1) the high concentration of patenting among a few top universities and 2) the greater prevalence

of patenting in some �elds over others. The standardized version of this variable, mean zero and

standard deviation 1, remains skewed; it is summarized in Table 1.

C. NSF Federal Research Funding to Universities

Data on federal research funding to universities from 1963 to 2007 come from the National Sci-

ence Foundation�s publicly available survey on Federal Science and Engineering Support to Univer-

sities, Colleges, and Non-Pro�t Institutions. The data contain amounts of funding by government

agency, university campus, category of spending, and year. There are approximately 100 agencies

and 25 departments to which they belong.31 Having the data on the university campus level, as

opposed to the university level, is important for systems like the University of California that has

31Data are reported only on the level of the department until 1971.
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multiple innovating campuses spread widely around the state.

In addition to providing funding amounts, these data also provide geographical locations for

each campus �city, state, and zip �which allow me to assign each of them latitude and longitude

coordinates (to de�ne their local areas) as well as to assign them to counties using geocoding

software.

To give a sense of the funding magnitudes, in 1980, MIT was receiving $163.2m in total funds,

$26.9m of which came from the DOD and $27.2m of which came from NIH. A much less research-

intense university, Montana State University at Bozeman, was also receiving signi�cant federal

funds in 1980: $10.6m total, $381k DOD, and $346k NIH. Like patents, federal funding is also

highly concentrated among top universities: the top �ve university campuses out of over 200 in my

sample attracted nearly 20% of that group�s federal funding dollars between 1976 and 1980.

D. Geographical Data

My empirical analysis relies on knowing not only where universities and hospitals are, but

also on knowing which counties are nearby. I use Geographic Information Systems (GIS) software

to translate geographical information I have on these institutions into information that is com-

patible with the organization of the LBD. In particular, the software can produce approximate

latitude/longitude coordinates and a "containing county" code for each {city,state,zip} triplet. It

can also produce the codes of all adjacent counties and, further, can list all counties within a

speci�ed distance.

In most of my analysis, I consider all counties having any part within a 75 mile radius of

an innovating university to be "university counties." All university counties are considered to be

treated both by my "industry intensity" measure of innovation and by federal funding from the

nearby universities. The radius of 75 miles was selected with the goal of being inclusive in any

part of the U.S. In other words, though this distance seems large for the compact places of the

northeast, it can be moderate for places in the south and west. Rather than adjusting the circle

size around universities by region, I use a uniform circle size nationwide and perform tests in which

I adjust circle size for all parts of the country simultaneously.
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E. Main Sample

The sample that results from combining these various data sources contains observations at

the county-industry-year level, where industries are 3-digit SICs and included years are the �ve

census years during the period: 1977, 1982, 1987, 1992, and 1997. Because there are often multiple

universities and hospitals in a given county or in nearby counties, each of their associated "treatment

e¤ects" � federal funding and the industry intensity measure of innovation �are summed within

treated county-industries. Thus the set of counties around Harvard, Harvard hospitals, and MIT

are treated by the sum of federal funding to all three institutions. Within each surrounding county,

a biomedical industry, for example, would be treated by the biomedical industry intensity that is

the sum of those from each of those schools. The resulting data set contains only one observation

for each county-industry-year, even if that unit is treated by more than one institution. Bayh-Dole

treats only university counties �counties containing or surrounding a university or research hospital

� in the years after 1980, so the indicator IfaBDg equals 1 only in those county-industry-years.

Table 1 presents descriptive statistics on the main sample.32; 33

V. Results

A. Relevant Industry Growth

Table 2 presents the main employment results. Column 1 regresses employment on an indicator

that equals 1 after Bayh-Dole in university counties, on the standardized measure of industry

intensity, and on the interaction of the two. The coe¢ cient on the interaction term indicates an

increase of approximately 39 workers per county-industry after Bayh-Dole for a standard deviation

increase in industry intensity. This speci�cation includes both county and year �xed e¤ects, so the

estimate tells us that industries more closely related to the local university�s innovation experienced

32Note that mins and maxes have been rounded to satisfy Census Bureau con�dentiality requirements, and that
medians are not disclosable.
33Note that these statistics re�ect a sample with a large number of zeros for county-industry-year outcomes. There

are two reasons why a county-industry-year may have zero employment and payroll but still be in the data. The
�rst is that some industries appear in a county in some years but not in others, usually entering at some point in
the 20 year period I study and then remaining. That some industries enter in certain counties and others don�t,
however, does not imply that no other industries could have entered. In fact, all industries that are treated by
university innovation have some latent propensity to enter and we only observe the ones that cross some threshold
and entered. Ignoring industries that are treated but don�t enter would miss part of the treatment e¤ect. Inclusion
of these county-industries is the second reason for zeros in the data. All treated industries in university counties are
included in the sample.
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substantially greater employment growth after Bayh-Dole than did less related industries in the

same county. Column 2 adds industry-by-year �xed e¤ects to control for national industry-speci�c

changes. Thus the coe¢ cient of 30.51, slightly diminished from column 1, accounts for the fact

that university-related industries may be the most quickly growing ones, nationally, and it measures

only the additional employment growth due to nearby university innovation.34 Column 6 presents

the log speci�cation estimated on the balanced sample of county-industries that never have zero

employment. This speci�cation thus excludes all county-industries that entered during the twenty

year period and all "potential" county industries that were treated with university innovation but

never entered.35 ;36 When the speci�cation in column 1 is run on this sample, as shown in column

5, the coe¢ cient of interest is still highly positive and signi�cant; the e¤ect in that sample, then,

is driven by large county-industries that add substantial employment in absolute terms but not

enough in proportional terms to be picked up in the log speci�cation.

Columns 3 and 4 show an increase in average establishment size for treated industries; the

magnitude with industry-by-year �xed e¤ects is nearly 2 workers per establishment per year for a

standard deviation increase in industry intensity. This result is a �rst suggestion that there may

be something about university innovation that is complementary with large establishments.

Table 3 shows analogous results for payroll outcomes. A standard deviation increase in

industry intensity generates an additional $1.83 million in payroll per county-industry after Bayh-

Dole (column 1), and allocating this payroll across workers gives a $222 increase in pay per worker

for a standard deviation increase in industry intensity (column 3). Though the payroll per worker

e¤ect is not signi�cant when industry-by-year e¤ects are added and coe¢ cients are averaged across

the four census years following Bayh-Dole (1982, 1987, 1992, 1997), it is signi�cant by 1997 even

with the additional �xed e¤ects (Table 4, column 6). For a standard deviation increase in industry

intensity, the 20 year e¤ect on payroll per worker is $342 with county and year �xed e¤ects and $208

with industry-by-year �xed e¤ects added. To the extent we believe payroll per worker may re�ect

34 In particular, the existence of a strong e¤ect in this speci�cation rules out the notion that the university e¤ect
I measure is driven by a non-universtiy-related, nationwide boom in biomedical industries.
35See the data section for a more complete discussion of zeros in the sample.
36These two omissions have opposite e¤ects on the coe¢ cient: excluding entrants makes the coe¢ cient smaller,

but excluding potential entrants makes the coe¢ cient larger. The intuition for these e¤ects is that the former group
are treated industries that experienced substantial employment gains (from zero to positive employment), while the
latter are treated industries that experienced no employment gains at all.
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labor productivity,37 this result suggests an increase in average labor productivity in industries that

more heavily use university innovation.

For both employment and payroll outcomes, e¤ect sizes seem to rise over time after Bayh-Dole

and �atten out by 1992 and 1997 (Table 4 and Figure 4). This slow adjustment to a steady state

makes sense given the gradual pace with which universities altered their infrastructures to the new

commercialization regime after the Act. They opened technology transfer o¢ ces at low rates in the

early 1980s and at very high rates in the late 80s and early 90s (Figure 2). Without these o¢ ces,

most researchers would not be bothered to initiate a long and elaborate process of patenting and

licensing a discovery. But with these o¢ ces in place, patenting from universities shot up in the

late 80s and early 90s. The increase in employment growth in related industries at that time likely

re�ects this somewhat delayed but growing connectedness of universities to industry.

The total 20 year e¤ect of university innovation on employment growth is large when compared

with the base employment of 100 workers per county-industry in university counties. Taking the

1997 estimate from column 2 of Table 4, the increase of 34 workers for a standard deviation

increase in industry intensity comprises a 34% increase for industries that more intensely use the

local university�s innovation. When this change is viewed relative to the standard deviation of 20

year employment growth, it looks much smaller: 34/740 = 5%. The large standard deviation is

due to the skewness of the data; some very large county-industries raise the measure of dispersion.

Another way of scaling the coe¢ cient is per university patent a¤ecting an industry; with this metric,

the magnitude of the 20 year e¤ect is about 15 workers per patent.

All results thus far have been estimated under the assumption that all counties within a 75 mile

radius of a university are treated by it. To understand the role of proximity to the university in the

extent to which industry is stimulated, I now alter that assumption and limit the reach of university

treatment only to counties containing universities. Estimates for the same basic equations, but

with the narrowed treatment, are displayed in row 1 of Table 5. Estimates using the 75 mile circle

treatment are reproduced in row 2 for comparison. E¤ects sizes are signi�cantly greater when

the focus of the estimation is narrowed around university campuses: in speci�cations with county

and year �xed e¤ects, for a standard deviation increase in industry intensity, employment rises by

37Payroll per worker does not directly measure labor productivity because it does not account for hours worked.
However, payroll per worker is correlated 0.66 with value added per worker at the SIC4 level from 1977-1997 in the
Annual Survey of Manufacturers.
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68 workers per county-industry in "containing" counties but only by 39 workers in all "75 mile

circle" counties. There is also a greater positive e¤ect on number of establishments in containing

counties and a smaller increase in average establishment size. These last two e¤ects could re�ect

increased small establishment start-up activity in the areas immediately surrounding universities.

All of these di¤erences in estimates between rows 1 and 2 indicate di¤erent treatment e¤ects of

high intensity versus low intensity industries within a county depending on how close that county is

to the university. This evidence suggests that proximity is important in the spread of knowledge.

The amount of people to talk to and learn from in a place also appears to facilitate the spread

of knowledge. Table 6 shows that the e¤ect of university innovation scales with initial county

employment. 1977 county employment here is measured in thousands of workers, so the coe¢ cient

in column 1 indicates that an additional 100,000 initial workers corresponds to an additional 17

workers from a standard deviation increase in university innovation. The e¤ect of universities on

payroll and average establishment size also scales with initial county size.

B. Di¤erential Growth by Pre Bayh-Dole Federal Funding Levels

Results shown thus far use the scale and relative intensity of university innovation in di¤erent

technological areas as the source of cross-sectional variation. I now turn to estimating the e¤ect of

universities on local employment growth using a di¤erent source of variation: the amount of federal

research funding received by university campuses in the �ve years before Bayh-Dole. Universities

that received more funding before the law was passed would have had more research suddenly

opened to commercialization, and the areas around them might be expected to experience a larger

stimulative e¤ect.

Table 7 presents estimates using total federal funding, total Department of Defense (DOD)

funding, and total National Institutes of Health (NIH) funding. The latter two subcategories may

track more closely dollars for practical research likely to in�uence industry. Indeed, the coe¢ cients

on the interaction term �the product of an indicator equalling one after Bayh-Dole and the �ve

year pre-Bayh-Dole sum of funding �are all positive and signi�cant, with stronger e¤ects for DOD

and NIH funding in particular. An area that received an additional $10 million in DOD or $7

million in NIH funding before Bayh-Dole received an additional worker per county-industry after

1980. This e¤ect is the average over all economic census years through 1997, so it is an average
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long-term e¤ect of initial funding. These positive employment e¤ects from government research

spending can be taken into consideration in addition to the health and national security advances

that would generally be viewed as the primary economic bene�ts of government spending from

these agencies.

VI. Endogeneity Concerns and Robustness

There are several endogeneity concerns to keep in mind when considering these results. The

biggest concern, and the one around which the empirical strategy is designed, is the endogeneity

of university research agenda to local industry activity. This concern has two sources: pre-trends

and measurement.

Though the core strategy of combining a shock with cross-sectional variation aims to isolate

the e¤ect of universities on industry, it leaves open the possibility that employment was growing

di¤erentially across industries and space before Bayh-Dole in such a way that it both predicts the

technological �elds of university innovation and continues in a similar manner after the law. In

other words, this argument is that there were pre-existing industry growth trends, not having to do

with university research, that continued after Bayh-Dole and explain my e¤ect. I cannot measure

the pre-trends necessary to completely rule out this possibility using the LBD data due to its left-

censoring in the pre-Bayh-Dole period. However, for this confound to explain my result, a very

particular type of di¤erential pre-trend would need to have existed: speci�cally, the industries I

measure to be most a¤ected by universities would need to have been growing faster than others in

that area before the law. Which industries grew quickly before the law would also need to have

di¤ered across geographical areas according to the strengths of the nearby university.

One might also be concerned that my measure of industry intensity, which provides between-

industry identi�cation, picks up endogenous research activity of universities because it uses patents

granted until 1985. Ideally the measure would use patents granted only until 1980 to capture

innovation that was truly exogenous to the Bayh-Dole Act and its associated stronger connections

between universities and industry. However, because patenting was considerably more sparse before

the law, it would be di¢ cult to accurately measure universities�innovative strengths with pre-1980

patents; using additional years of observed patent production improves measurement. Patents until
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1985 are still arguably exogenous to the biggest e¤ects I �nd, which don�t hit until 1992 and 1997.

Furthermore, given patent application-to-grant lags of at least 2-3 years and plausible research lags,

any patents granted by 1985 undoubtedly came from research projects conceived before Bayh-Dole.

The results are not driven by arbitrary estimation choices. Positive and signi�cant e¤ects are

also present for quantile regressions at the 50th and 75th percentile. Some outliers at the top of

the employment growth distribution can be removed without eliminating the e¤ect. Removing

some of the zero observations by reducing the number of "potential entrant industries" included in

the data only strengthens the e¤ect.38

An important consideration in understanding these e¤ects is whether they are driven by a few

top universities and their associated innovative clusters, or whether the university e¤ect is found

nationwide around innovative universities. To investigate this question, I re-run the estimation

without two major hotbeds of innovative activity: Silicon Vally and Boston�s Route 128 corridor.

Excluding Massachusetts and California from the estimation sample results in only a 4 employee

reduction in the 31 worker university e¤ect per standard deviation increase in industry intensity.39

Other results are similarly little-altered by the exclusion. It appears that the local economic e¤ects

of universities are important nationwide.

The possibility that universities simply produced innovation in the nation�s most quickly grow-

ing industries, such as biotech, also cannot explain the e¤ect. Employment and payroll growth

e¤ects remain strong even when including industry-by-year �xed e¤ects to account for nationwide

changes in industry performance.

Estimation of the e¤ects of federal funding on subsequent employment has more potential

confounders because funding varies at the county, not industry, level. Thus any shocks that a¤ect

areas di¤erently could potentially bias the result. If areas with highly funded universities also

disproportionately experienced other positive economic shocks, my estimates of the funding e¤ect

would be biased upward. It could also be that areas with highly funded universities were trending

di¤erently before Bayh-Dole; if those areas were already growing faster beforehand �something I

would not be able to observe in LBD data �I may attribute too much of their subsequent growth

38See section IV.E. describing the main data sample for a more complete discussion of "potential entrant industries"
and accounting in estimation for entry.
3931 workers per county-industry is the coe¢ cient from the speci�cation with industry-by-year �xed e¤ects in Table

2, column 2.
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to Bayh-Dole and federal research funding.

Finally, the timing of e¤ects may raise concern that something other than universities generated

this 20 year growth.40 I �nd the largest growth e¤ects in 1992 and 1997, such that many years

elapsed during which university-industry dynamics could have evolved. I argue, however, that

the dynamic e¤ects of stronger university-industry connections in the years after Bayh-Dole are an

important part of what I seek to measure. The goal is to measure the long-run, general equilibrium

e¤ects of a major change in the relationship between universities and industry. Though some

e¤ects were apparent very soon after the law as commercialization began to rise, signi�cantly more

powerful e¤ects came later as universities adjusted their commercialization infrastructure to the

new innovation environment.

VII. Employment Growth Contributions by Establishment Type

Do universities generate employment growth from entrepreneurs or from existing powerhouses?

Numerous claims are launched regarding the important contribution of entrepreneurs �new and

small �rms �to job creation; SBA Administrator Karen Mills asserted in May 2010 that �small

businesses create about 2 of every 3 new jobs in America each year,� and �drive American in-

novation and competitiveness.�41 Recent empirical evidence, however, indicates that new � but

not necessarily small ��rms are responsible for much of the nation�s year-to-year net job creation

(Haltiwanger et. al. 2010). The extent to which these types of establishments, as purported

innovators, drive the long-run employment growth e¤ect from university innovation is unknown.

While entrants may be highly innovative, engendering market change at the expense of com-

petitors, incumbents may be entrenched, in good position to fend o¤ young �rms and continue

to grow. In particular, they may have established relationships with universities � useful when

navigating bureaucracy and administrative hassle in technology transfer �as well as established

systems for commercializing products: manufacturing expertise, distribution channels, and brand

40One might actually expect delayed industry e¤ects of research, which takes time to produce, to disseminate,
and potentially to develop further into a usable or marketable product. On a national level, in highly aggregated
industries, Adams (1990) �nds lags of approximately 20 years between the appearance of academic research and
industry productivity gains.
41See Davis, Haltiwanger, and Schuh (1996) for a more complete collection of claims made by politicians and

the Small Business Administration, among others, on the importance of small businesses in generating employment
growth.
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name, all of which may help to preserve power. Some theories of innovation and growth further

predict that innovating entrants may spur technologically advanced incumbents to compete while

forcing laggards into decline, generating a bifurcated e¤ect (Aghion et. al. (2005); Aghion et. al.

(2009)). These theories stress the importance of entrants and of the weeding out of less productive

incumbents.

To empirically evaluate the relative importance of incumbents versus entrants, I decompose the

total twenty year growth e¤ect from universities into three well-de�ned groups of establishments: 1)

surviving incumbents: those that existed in 1977 and were still alive in 1997, 2) dying incumbents:

those that existed in 1977 and exited before 1997, and 3) surviving entrants: those that entered

after 1977 and were still alive in 1997.42

Row 1 of Table 8 presents the results of this �rst dimension of decomposition. Cells in columns

1-4 contain coe¢ cients on industry intensity in regressions predicting 1977 to 1997 employment

change for the establishments in that group. Each coe¢ cient thus represents the treatment e¤ect

of university innovation on that type of establishment. The coe¢ cient of 43.72 in column 1, row 1

is the total 20 year growth e¤ect for a standard deviation increase in industry intensity.43 Moving

across columns in the top row, one can see that the entrants, with a coe¢ cient of 46.26 (column

4, row 1), dominate incumbents in contributing to the total growth e¤ect; the coe¢ cients for the

two incumbent groups, 19.66 and -22.2, sum to essentially 0 net incumbent growth. The negative

coe¢ cient for dying incumbents indicates that among existing establishments, those in industries

more closely connected to university innovation actually shed more employment than did others.

Taken together, these results suggest a �creative destruction�e¤ect in these innovative industries,

consistent with the Aghion et. al. models. Some incumbents may respond to new competition by

innovating and growing while others, perhaps the less e¢ cient establishments, are forced out.

Not all entering establishments �t our standard notion of small entrepreneurial ventures, how-

ever. While some entering establishments are single-unit �rms - i.e. the entering establishment is an

entering �rm - others are expansions of existing multi-unit �rms. Table 9 decomposes the entering

establishment e¤ect into that from single-unit entry versus multi-unit expansion. Row 1 indicates

42Establishments that both entered and exited during the period did not contribute to the net e¤ect and are
omitted from this part of the analysis.
43This is the coe¢ cient from a regression of (emp97 - emp77) on industry intensity with county and year �xed

e¤ects but no industry-by-year �xed e¤ects.
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that when all establishment sizes are pooled, multi-unit expansions contribute approximately 2.5

times the employment growth of single-unit entrants. Moving down each column, the pooled e¤ects

are broken down by establishment size at entry to the geographic location; unsurprisingly, among

small establishments, single-unit entrants drive the employment growth e¤ect, while among large

entering establishments, multi-unit expansions dominate single-unit entrants. The results of Tables

8 and 9 together indicate that the employment growth e¤ect from university innovation is driven

by entrants and in particular by large, multi-unit expansion into the areas near universities. Ex-

amples of this type of growth around universities abound, from Novartis opening a research facility

in Cambridge, MA, to numerous big pharmaceutical companies establishing facilities around the

University of Pennsylvania and its hospitals.

How small versus large �rms, more generally, �gure into the dynamics of innovating industries

is also a subject of considerable theoretical and empirical focus. Small �rms, and university spino¤s

in particular, are often considered to be drivers of growth (Shane (2004a)), but their systematic

impact on the economy is uncertain because it is di¢ cult to track �rms that use university ideas and

to measure their importance relative to other �rms. Small �rms, and the inventors within them,

may have the advantage of freedom to explore new and risky ideas (with potentially high payo¤s)

that large �rms may avoid in favor of focusing on more immediate market rewards, potentially

by buying innovations of known quality from outside the �rm (Acemoglu (2009)). On the other

hand, large �rms may be better positioned to translate university innovation into economic growth

given possible economies of scope (Arrow (1962)) or scale (Chandler (1990)) in innovation. In

particular, large �rms with many lines of business may be better able to self-insure against the

riskiness of a new project or to use their vast resources to mass produce and market a newly

developed or purchased product. It is an empirical question whether small or large �rms are more

complementary to universities in generating growth from research.

The rows of Table 8 further decompose each group of incumbents and entrants by establish-

ment size at entry. In columns 2 and 4, the larger establishments contribute most positively to that

column�s total employment growth e¤ect. The suggestion that large establishments are comple-

mentary with university innovation is consistent not only with the broader theories discussed above,

but also with anecdotal evidence from technology transfer o¢ cers that, while small �rms often li-

cense and develop a technology initially, they then pass it o¤ to large �rms to be mass-produced
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and marketed. Large �rms may be better equipped to exploit relatively developed university in-

novation and translate it into employment growth. Scientists, too, indicate that they often go

directly to large �rms with their discoveries, as large �rms may be more able to incorporate new

methodologies or research projects. The large �rm advantage may include elements of both scale

and scope.

Somewhat at odds with the conventional wisdom on small business and university spino¤s,

small establishments treated by universities in these data contribute much less to absolute employ-

ment gains over the 20 year period than do large establishments. The smallest establishments,

however, do contribute considerably in proportion to initial size; the treatment e¤ect for a standard

deviation increase in industry intensity of 6.24 employees for surviving entrants of the smallest size

is much larger relative to their 1-25 employee base than is 24.50 relative to a 1000 employee base

(Table 8, column 4, rows 2 and 5). Innovation-intense industries also experience entry of signi�cant

numbers of small establishments; column 5, which regresses the number of establishments in each

group that entered since 1977 and survived until 1997 on industry intensity, indicates that a stan-

dard deviation increase in industry intensity generates an additional third of a small establishment

(0.36) that entered and survived but one one-hundredth (0.01) of a large entering establishment

that survived to the end of the period. Entering small establishments may thus play an important

role in the innovation economy even if they are not the dominant contributers to the university

employment growth e¤ect.

VIII. Conclusion

I measure the e¤ects of university innovation on local employment and payroll growth using

a new identi�cation strategy and detailed data, which allow tight geographical and technological

links between universities and industry outcomes. I �nd that employment, average establishment

size, payroll, and payroll per worker grew di¤erentially more after the Bayh-Dole Act of 1980 in

industries more closely related to innovation produced by the local university or hospital. My

best estimate of the total employment growth e¤ect from universities over the 20 year period from

1977 to 1997 is approximately 34 workers per county-industry for a standard deviation increase in

industry intensity, or 15 workers per county-industry per e¤ective patent, o¤ a base of about 100
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workers per county-industry. The impact of universities increases with proximity to a university

and with initial county size, supporting the importance of spatial relationships in the �ow of

knowledge. Overall, these results indicate the that the increase in university connectedness to

industry under the new intellectual property regime created by Bayh-Dole produced important

local economic bene�ts. The local nature of the e¤ects re�ects some combination of 1) changing

university attitudes towards disseminating research to industry contacts, which may tend to be

disproportionately local, and, 2) complementarities between codi�ed (patented) and non-codi�ed

(oral) knowledge.

Federal funding of university research is also important in stimulating local employment

growth: an additional $10 million of DOD funding or $7 million of NIH funding to universities

in the �ve years before Bayh-Dole generated an additional worker per county-industry after 1980.

Local growth e¤ects are only one of multiple economic bene�ts that may be used to evaluate the

large amounts of federal money �$6.2 billion in 1971 and $23.8 billion in 2007 �devoted to univer-

sity research in the sciences.44 And of course, such local employment e¤ects from NIH and DOD

spending may still be small compared to the primary bene�ts in health or national security, for

example, that come from associated knowledge advancement.

The mechanisms through which local university e¤ects operate have both intuitive and sur-

prising components. Supporting the view of new �rms as drivers of economic progress, entering

establishments over the period from 1977 to 1997 more than account for the full 20 year growth

e¤ect, while incumbents have an insigni�cant contribution, as a whole, to growth: some die o¤ as

others compete and grow. This turnover in industries most closely tied to university innovation

may re�ect a sort of creative destruction induced by universities�technological progress. Somewhat

at odds, however, with the common notion that small �rms generate the majority of new jobs, large

establishments dominate smaller establishments in contributing to the 20 year growth e¤ect in ab-

solute terms. Furthermore, multi-unit �rm expansions rather than single-unit entrants account for

the majority of employment growth from establishments entering a geographic area. Considered

together with the estimated increase in average establishment size in university-related industries,

these results suggest a complementarity between university innovation and large establishments in

44Funding amounts are aggregates from the NSF Survey of Federal Science and Engineering Support to Universities,
Colleges, and Nonpro�t Institutions, reported in 2005 dollars.
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generating employment growth.

Numerous underlying economic characteristics of localities, from the degree of competition

between �rms to job mobility to a skilled population, have been shown to a¤ect an area�s subsequent

growth.45 Universities hold an important place among these factors both because of their core

mission as producers and transmitters of new ideas and because of the control policy-makers may

potentially wield over their operations. My evidence indicates that universities have important

long-run positive growth e¤ects on their local economies, and that these e¤ects exhibit themselves

in a somewhat more subtle way than the conventional wisdom on university spino¤s would imply.

45See, for example: Glaeser et. al. (1992), Glaeser et. al. (1995), Glaeser and Kerr (2009), Glaeser et. al. (2010),
Agrawal et. al. (2010), Doms et. al. (2010), Fallick et. al. (2006), and Chen et. al. (2010) for explorations of various
factors of local growth.
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FIGURE 1
Openings of University and Hospital Technology Transfer Offices
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Source:  Association of University Technology Managers (AUTM) Licensing Activity Survey, 2007.
Note:  Bars represent the number of university technology transfer offices  (among AUTM members) opened in each year from 1967 to 2007.
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FIGURE 2
University Patents Granted by Year, 19761997
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FIGURE 3
Construction of Industry Intensity from Patent Data and a

Probabilistic Concordance

Concordance
Patent Class SIC3 weight

111 0.20
222 0.00

12300 333 0.20 Example: SIC3 weight calculation
444 0.45
555 0.15 111 0.40 = 2*0.20 + 1*0.00

University A 222 0.05 = 2*0.00 + 1*0.05
111 0.00 2 x 12300 333 0.80 = 2*0.20 + 1*0.40
222 0.05 1 x 12301 444 1.00 = 2*0.45 + 1*0.10

12301 333 0.40 555 0.75 = 2*0.15 + 1*0.45
444 0.10 sum of weights = 3
555 0.45

Notes:

This figure provides an example of how the industry intensity measure is constructed.  The
concordance on the left shows two patent classes and corresponding weights for all five SIC3
industries, even industries that have zero weight for a given patent technology class.  Weights
sum to 1 across SIC3s for each patent class.

If University A has two patents of the first class and one of the second, its industry intensities
are calculated as shown at right.  It ends up with a weight for every SIC3 industry.  Because
University A has 3 total patents, the sum of its industry intensities (before standardization for
regressions) is 3.  Thus this measure captures both the scale and the relative intensity with
which a university innovates in different technological areas.
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FIGURE 4
Employment Effects by Year After BayhDole

1982 – 1997
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TABLE 1

Descriptive Statistics: Main Sample

Panel 1: All Census Years

Obs Mean Std. Deviation Rounded Min Rounded Max

Total Employment 4,814,860 93.49 911.53 0 200,000

Total Emp, Univ Counties 3,723,200 103.77 1,008.72 0 200,000

Total Emp, Non-Univ Counties 1,091,660 58.41 439.05 0 150,000

Employment/ # Establishments 4,814,860 13.06 128.88 0 30,000

Total Payroll ($ thou) 4,814,860 3,131.09 164,662.00 0 280,000,000

Payroll per Worker ($ thou) 4,814,860 11.02 438.51 0 800,000

Number of Establishments 4,814,860 5.01 40.90 0 10,000

Industry Intensity 4,814,860 0.00 1 -0.089 100

Federal Research Funding, University Counties Only

    5 Yr Sum of Total Funding ($m) 4,814,860 160.52 326.20 0 2,400

    5 Yr Sum of DOD Funding ($m) 4,814,860 16.55 71.16 0 600

    5 Yr Sum of NIH Funding ($m) 4,814,860 62.67 144.18 0 950

Panel 2: University Counties Only

Obs Mean Std. Deviation Rounded Min Rounded Max

∆employment (97 - 77) 744,640 48.24 739.76 -70,000 100,000

Base employment 744,640 103.79 921.21 0 200,000

∆emp(97-77) / base emp 340,837 0.53 1.35 -2 2

Panel 3: County Level Variables

Total County Employment 15,370 30,918.86 121,380.50 0 4,000,000

Total County Employment, Univ Counties 8,950 45,973.15 155,172.90 0 4,000,000

Industries per County 15,370 330.18 146.70 1 400

∆ county employment (97 - 77) 3,074 13,399.47 46,807.55 -100,000 900,000

Notes:

1. Observations are a county-industry-year.  Panel 1 includes all five census years between 1977 and 1997.  Panel 2 describes 

the total 1977 to 1997 change in employment.

2. Industry intensity measures the extent to which an industry is likely to be affected by innovation produced at nearby 

universities.  It has been standardized to have mean 0 and standard deviation 1.  For details on how this variable is constructed 

from the technology classes of university patents, please refer to the Data section of the text.

3. Base employment is defined as the average of 1977 and 1997 employment in a county-industry.

4. Following Census Bureau rules, mins and maxes are rounded to preserve the confidentiality of establishments.



TABLE 2

Effects of University Innovation on Related Industry Employment

(1) (2) (3) (4) (5) (6)

Total 

Employment

Total 

Employment

Emp per 

Establishment

Emp per 

Establishment

Total 

Employment

Log 

Employment

After Bayh-Dole * univ cnty 10.57 *** 79.03 *** -1.85 *** -0.412 *** 57.77 *** 0.036 ***

(2.81) (6.65) (0.23) (0.136) (8.20) (0.009)

Industry Intensity * univ cnty 51.86 *** 48.3 *** 6.6 *** 3.769 *** 69.36 *** 0.066 ***

(6.61) (7.36) (0.46) (0.383) (8.66) (0.004)

After Bayh-Dole * Industry Intensity 38.73 *** 30.51 *** 3.15 *** 1.697 *** 49.88 *** 0.001

              * univ cnty (4.66) (4.28) (0.26) (0.264) (5.86) (0.001)

County Fixed Effects Yes Yes Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes Yes Yes

Industry * Year Fixed Effects Yes Yes

Observations 4,814,860 4,814,860 4,814,860 4,814,860 1,378,925 1,378,925

R-squared 0.12 0.12 0.015 0.05 0.14 0.32

Notes:

1.  Robust standard errors are clustered at the county level and adjusted for de-meaning where relevant (cols. 2 and 4).

2.  An observation is a county-industry-year. 

3.  After Bayh-Dole is an indicator equal to 1 after 1980, and univ cnty is an indicator equal to 1 for counties near a university.

4.  Industry intensity measures the extent to which an industry is likely to be affected by innovation produced at nearby universities.  It has been 

standardized to have mean 0 and standard deviation 1.  For details on how this variable is constructed from the technology classes of university 

patents, please refer to the Data section of the text.

5. Columns 5 and 6 present results from a reduced sample of just the county industries that have non-zero employment in every sample year.  

These specifications exclude county-industries that entered during the twenty year period and county-industries that were treated but never 

entered ("potential industries").



TABLE 3

Effects of University Innovation on Related Industry Pay

(1) (2) (3) (4) (5) (6)

Total Payroll 

($thou)

Total Payroll 

($thou)

Payroll per 

Worker ($thou)

Payroll per 

Worker ($thou)

Payroll per 

Worker ($thou)

Log Payroll per 

Worker

After Bayh-Dole * univ cnty 571.45 *** 2287.46 *** 1.476 ** 3.84 *** 1.684 ** 0.051 ***

(158.39) (242.5) (0.592) (0.42) (0.805) (0.003)

Industry Intensity * univ cnty 1883.41 *** 1807.87 *** 0.196 *** 0.065 0.001 0.008 ***

(252.39) (282.5) (0.041) (0.075) (0.031) (0.001)

After Bayh-Dole * Industry Intensity 1831.26 *** 1537.34 *** 0.222 *** 0.068 0.314 *** 0.007 ***

              * univ cnty (253.89) (238.9) (0.038) (0.092) (0.037) (0.001)

County Fixed Effects Yes Yes Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes Yes Yes

Industry * Year Fixed Effects Yes Yes

Observations 4,814,860 4,814,860 4,814,860 4,814,860 1,378,890 1,378,890

R-squared 0.0052 0.006 0.0002 0.0003 0.0019 0.11

Notes:

1.  Robust standard errors are clustered at the county level and adjusted for de-meaning where relevant (cols. 2 and 4).

2.  An observation is a county-industry year.  All five census years from 1977-1997 are included.

3.  After Bayh-Dole is an indicator equal to 1 after 1980, and univ cnty is an indicator equal to 1 for counties near a university.

4.  Industry intensity measures the extent to which an industry is likely to be affected by innovation produced at nearby universities.  It has been 

standardized to have mean 0 and standard deviation 1.  For details on how this variable is constructed from the technology classes of university 

patents, please refer to the Data section of the text.

5. Columns 5 and 6 present results from a reduced sample of just the county industries that have non-zero payroll per worker in every sample 

year.  These specifications exclude county-industries that entered during the twenty year period and county-industries that were treated but 

never entered ("potential industries").



TABLE 4

Differential Effects by Year

(1) (2) (3) (4) (5) (6)

Total 

Employment

Total 

Employment

Total

Payroll ($thou)

Total

Payroll ($thou)

Payroll per 

Worker ($thou)

Payroll per 

Worker ($thou)

I{1982} * Industry Intensity * univ cnty 16.81 *** 12.68 *** 337.79 *** 267.8 ** -0.013 0.126

(2.81) (2.59) (102.29) (107.87) (0.035) (0.086)

I{1987} * Industry Intensity * univ cnty 40.24 *** 33.74 *** 1680.82 *** 1426.47 *** 0.268 *** -0.175

(5.54) (5.30) (253.23) (257.39) (0.061) (0.200)

I{1992} * Industry Intensity * univ cnty 51.81 *** 41.59 *** 2481.50 *** 2148.63 *** 0.407 *** 0.127

(6.00) (5.61) (306.64) (300.52) (0.046) (0.087)

I{1997} * Industry Intensity * univ cnty 46.62 *** 34.30 *** 2858.06 *** 2314.1 *** 0.342 *** 0.208 **

(5.07) (4.54) (467.03) (391.06) (0.095) (0.096)

County Fixed Effects Yes Yes Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes Yes Yes

Industry * Year Fixed Effects Yes Yes Yes

Observations 4,814,860 4,814,860 4,814,860 4,814,860 4,814,860 4,814,860

R-squared 0.12 0.12 0.0052 0.006 0.0002 0.0002

Notes:

1.  Robust standard errors are clustered at the county level and adjusted for de-meaning where relevant (cols. 2 and 4).

2.  An observation is a county-industry year.  All five census years from 1977-1997 are included.

3.  Industry intensity measures the extent to which an industry is likely to be affected by innovation produced at nearby universities.  It has 

been standardized to have mean 0 and standard deviation 1.  For details on how this variable is constructed from the technology classes of 

university patents, please refer to the Data section of the text.

4. Univ cnty is an indicator equal to 1 for counties near a university.



TABLE 5

Effects of Proximity to University Innovation

(1) (2) (3) (4)

Total 

Employment

Total

Payroll 

($thou)

Emp per 

Establishment

Num. 

Establishments

After Bayh-Dole * Industry Intensity 67.69 *** 3243.63 *** 2.04 *** 0.202 **

    * univ cnty (containing cnty only) (12.66) (641.20) (0.40) (0.083)

After Bayh-Dole * Industry Intensity 38.73 *** 1831.26 *** 3.15 *** 0.158 ***

    * univ cnty (all cntys in 75 mile radius) (4.66) (253.89) (0.26) (0.032)

County Fixed Effects Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes

Notes:

1.  Robust standard errors are clustered at the county level.  An observation is a county-industry-year.

2.  Each row in the table represents a separate regression, where the difference between the two 

regressions is only which counties are assumed to experience the effects of the university.  The first row 

narrows the set of affected counties to just those containing an innovating university or hospital.  The 

second row shows coefficients from tables 1 and 2 for comparison; all counties within a 75 mile radius of the 

university were assumed to be treated by the university.  The indicator variable univ cnty is thus defined 

differently in the first and second rows.

3.  After Bayh-Dole is an indicator equal to 1 after 1980.  Univ cnty is an indicator equal to 1 for counties 

affected by unviersities. 

4.  Industry intensity measures the extent to which an industry is likely to be affected by innovation produced 

at nearby universities.  It has been standardized to have mean 0 and standard deviation 1.  For details on 

how this variable is constructed from the technology classes of university patents, please refer to the Data 

section of the text.



TABLE 6

Differential Effects of University Innovation by County Size

(1) (2) (3) (4)

Total 

Employment

Employment 

per 

Establishment

Total

Payroll 

($thou)

Payroll per 

Worker ($thou)

After Bayh-Dole * Industry Intensity 0.171 *** 0.0021 *** 8.793 *** 0.0002

    * univ cnty * 1977 county emp (0.017) (0.000) (0.91) (0.0002)

County Fixed Effects Yes Yes Yes Yes

Year Fixed Effects Yes Yes Yes Yes

Observations 4,814,860 4,814,860 4,814,860 4,814,860

R-squared 0.142 0.015 0.0063 0.0002

Notes:

1.  Robust standard errors are clustered at the county level.  An observation is a county-industry-year.

2. 1977 county employment, measured in thousands of employees, is the total employment in that 

county in 1977.

3.  After Bayh-Dole is an indicator equal to 1 after 1980. 

4.  Industry intensity measures the extent to which an industry is likely to be affected by innovation 

produced at nearby universities.  It has been standardized to have mean 0 and standard deviation 1.  

For details on how this variable is constructed from the technology classes of university patents, please 

refer to the Data section of the text.

5. Main effects of all variables are included in all specifications.



TABLE 7

Effects of Federal University Research Funding 

on Industry Employment

(1) (2) (3)

Dependent Variable: Employment

5 Yr Sum: 

Total Funding

5 Yr Sum: 

DOD Funding

5 Yr Sum: 

NIH Funding

After Bayh-Dole * Fed Funding * univ cnty 0.061 *** 0.104 *** 0.140 ***

(0.012) (0.032) (0.027)

Industry * Year Fixed Effects Yes Yes Yes

Observations 4,814,860 4,814,860 4,814,860

R-squared 0.11 0.11 0.11

Notes:

1.  Robust standard errors are clustered at the county level.

2.  After Bayh-Dole is an indicator equal to 1 after 1980, and univ cnty is an indicator equal to 

1 for counties near a university. 

3.  Federal funding is measured in millions of dollars.  The 5 year sum of federal funding 

includes the years 1976-1980, inclusive.  Col. 2 uses the 5 year sum of funding from the 

Department of Defense.  Col. 3 uses the 5 year sum of funding from the National Institutes of 

Health.

4.  In all columns, the dependent variable is total employment in the county-industry-year, 

while the measure of federal funding changes across columns.

4.  Main effects of After Bayh-Dole * univ cnty and Fed Funding * univ cnty are included in all 

specifications. 



TABLE 8

Decomposing the 20-Year Employment Growth Effect

by Composition Group and Establishment Size

(1) (2) (3) (4) (5)

∆emp ∆emp ∆emp ∆emp 1997 # estabs

All Groups

Group 1: 

Surviving 

Incumbents

Group 2: 

Dying 

Incumbents

Group 3: 

Surviving 

Entrants

Group 3: 

Surviving 

Entrants

All Establishment Sizes 43.72 *** 19.66 *** -22.2 *** 46.26 *** 0.43 ***

(4.95) (2.33) (3.79) (6.47) (0.10)

Entry Size 1-25 1.31 *** -0.93 *** 6.24 *** 0.36 ***

(0.31) (0.27) (1.32) (0.08)

Entry Size 26-100 1.42 *** -1.58 *** 3.53 *** 0.03 ***

(0.36) (0.44) (0.87) (0.01)

Entry Size 101-1000 10.44 *** -11.09 *** 12.01 *** 0.03 ***

(1.02) (1.90) (1.59) (0.00)

Entry Size >1000 6.49 *** -8.60 *** 24.50 *** 0.01 ***

(1.37) (1.62) (3.88) (0.00)

Notes:

1.  Robust standard errors are clustered at the county level.

2.  All cells are treatment coefficients from a regression of 1997-1977 change in employment in that group-

establishment category on industry intensity*univ cnty. 

3.  Industry intensity measures the extent to which an industry is likely to be affected by innovation produced 

at nearby universities.  It has been standardized to have mean 0 and standard deviation 1.  For details on 

how this variable is constructed from the technology classes of university patents, please refer to the Data 

section of the text.

4. Entry size groups are assigned according to the size of the establishment in its year of entry.  Because the 



TABLE 9

Employment Growth Contribution of

Single-Unit Entrants versus Multi-Unit Expansions

by Establishment Size

(1) (2) (3)

∆emp ∆emp ∆emp

Group 3: All

Entering 

Establishments

Single-Unit

Entrants

Multi-Unit

Expansions

All Sizes 46.28 *** 13.93 *** 32.32 ***

(4.48) (1.68) (3.63)

Entry Size 1-25 6.24 *** 5.15 *** 1.09 ***

(1.32) (1.09) (0.36)

Entry Size 26-100 3.53 *** 2.23 *** 1.30 ***

(0.87) (0.67) (0.27)

Entry Size 101-1000 12.01 *** 3.24 *** 8.76 ***

(1.59) (0.56) (1.10)

Entry Size >1000 24.50 *** 3.31 *** 21.17 ***

(3.88) (0.93) (3.43)

Notes:

1.  Robust standard errors are clustered at the county level.

2.  All cells are treatment coefficients from a regression of 1997-1977 

change in employment in that group-establishment category on industry 

intensity*univ cnty. 

3.  Industry intensity measures the extent to which an industry is likely to be 

affected by innovation produced at nearby universities.  It has been 

standardized to have mean 0 and standard deviation 1.  For details on how 

this variable is constructed from the technology classes of university patents, 

please refer to the Data section of the text.

4. Entry size groups are assigned according to the size of the establishment 

in its year of entry.  Because the data are left-censored, entry size for 

incumbents is defined as establishment size in 1977.




