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Materials Prices and Productivity

Enghin Atalay ∗

March 31, 2012

Abstract

There is substantial within-industry variation, even within industries that use and

produce homogeneous inputs and outputs, in the prices that plants pay for their ma-

terial inputs. I explore, using plant-level data from the U.S. Census Bureau, the

consequences and sources of this variation in materials prices. For a sample of in-

dustries with relatively homogeneous products, the standard deviation of plant-level

productivities would be 7% lower if all plants faced the same materials prices. More-

over, plant-level materials prices are both persistent across time and predictive of exit.

The contribution of net entry to aggregate productivity growth is smaller for pro-

ductivity measures that strip out differences in materials prices. After documenting

these patterns, I discuss three potential sources of materials price variation: geography,

differences in suppliers’marginal costs, and suppliers’price discriminatory behavior.

Together, these variables account for 13% of the dispersion of materials prices. Fi-

nally, I demonstrate that plants’marginal costs are correlated with the marginal costs

of their intermediate input suppliers.

1 Introduction

There is substantial within-industry variation, even within industries that use and pro-

duce homogeneous inputs and outputs, in the prices that establishments pay for their mate-

rial inputs. This paper assesses the implications and sources of this variation in materials

∗I thank Frank Limehouse, for his help with the data disclosure process, and Ali Hortaçsu and Chad
Syverson, for providing me access to some of their datasets. In addition, I am indebted to Aditya Bhave,
Ezra Oberfield, Marshall Steinbaum, Kirk White, and Stephane Wolton for their helpful comments on
earlier drafts. Any comments, sent to atalay@uchicago.edu, would be greatly appreciated. Disclaimer:
Any opinions and conclusions expressed herein are those of the author and do not necessarily represent the
views of the U.S. Census Bureau. All results have been reviewed to ensure that no confidential information
is disclosed.
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prices. When input prices differ across plants, some plants will have low marginal costs not

only because they effi ciently transform inputs into outputs, but also because they happen to

purchase their intermediate inputs at particularly low prices. Using plant-level data from

the U.S. Census Bureau, I document that intermediate input price dispersion is substantial,

persistent across time, and an important factor in explaining dispersion in measured total

factor productivity. I then provide suggestive evidence that plants’materials prices1 are

inversely related to their suppliers’productivities, and that intermediate input suppliers en-

gage in price discriminatory behavior. Lastly, I relate plants’productivities to those of their

suppliers. I show that these patterns can be matched with a heterogeneous-establishment

industry model in which output and factor markets are imperfectly competitive.

Large, persistent, within-industry productivity differences motivate my analysis.

Syverson (2004b), for example, estimates that, in the average 4-digit manufacturing industry,

the 90th percentile plant has a total factor productivity that is approximately 90% higher

than the 10th percentile plant.2 Given the importance that a plant’s productivity has on

its growth and survival, as well as the strong relationship between countries’GDPs and the

average productivities of their firms,3 several papers have tried to explain why some plants

are productive while others are not. This literature has argued that relatively productive

plants are more likely to: employ high quality inputs (Sakellaris and Wilson (2004) and Fox

and Smeets (2011)), patent (Balasubramanian and Sivadasan (2011)), expose themselves

to export or import markets (Bernard and Jensen (1999), Eslava et al. (2004, 2009), and

Halpern, Koren, and Szeidl (2011)), and use best-practice management techniques (Bloom

and Van Reenen (2010)). In addition, productivity dispersion is larger in markets with less

intense competition (Syverson (2004a)) and in countries with larger factor misallocations

(Hsieh and Klenow (2009)).

In the cited studies, plants’productivities are calculated as the ratio of outputs to

inputs. Usually, data on input and output prices are not collected, meaning that—in most

cases—real revenues are the measure of establishment outputs, while real input expenditures

are the measure of establishment inputs.4 With these measures, an establishment’s measured

1Throughout this paper, I will use the terms "intermediate inputs" and "materials" interchangeably.
2Large within-industry productivity differences have been documented across a wide range of sectors and

countries. See Bartlesman and Doms (2000) and Syverson (2011) for surveys.
3Prescott (1998), for example, argues that cross-country differences in (physical or human) capital stocks

can only explain a small fraction of cross-country per capita GDP differences. The residual explanation for
GDP per capita differences is that firms’TFP levels vary across countries.

4Five partial exceptions are Syverson (2004a), Eslava et al. (2004, 2009), Hsieh and Klenow (2009), and
Ornhagi (2006).
In Syverson (2004a) and Hsieh and Klenow (2009), the authors utilize establishment-level output price

data, but do not have establishment-level intermediate input price data. Ornhagi (2006), on the other hand,
has data on materials prices. His analysis, focuses on the estimation of input elasticities, instead of the
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productivity will depend on the output price it is able to charge and the factor prices it is

charged. Potentially, an establishment’s measured productivity may have no relationship

with how effi cient it is in transforming inputs into outputs. Quantifying the extent to which

input price variation confounds the measurement of plants’technical effi ciencies is one of the

main contributions of the this paper.5

In empirically documenting a positive relationship between buyers’and suppliers’

marginal costs, this paper contributes to two additional literatures. The first set of papers

contain models that predict, but have not empirically confirmed, that firms/plants of similar

productivities tend to trade with one another. Kremer (1993), for example, develops a

model in which the productivity of different production units within a sequential production

process is complementary. This model predicts that, as a result of the complementarity,

units with similar productivity levels will choose to interact with one another. Oberfield

(2011) constructs a model in which buyers meet supplier contacts stochastically, over time;

each buyer chooses the supplier, among its contacts, that allows it to produce at the lowest

marginal cost. In this model, as well, linked plants’measured productivities will be positively

correlated.

Papers in the second literature explore the extent to which shocks to individual

firms may have aggregate implications. An unknown, key parameter in these papers is

the strength of the relationship between buyer and seller productivity. When buyer and

seller productivities are strongly correlated, small differences between countries, in firm-level

productivities, will lead to large differences in countries’GDPs (Jones (2011)). Similarly,

when buyer and seller productivities are strongly correlated, shocks to a small set of firms

will foster large aggregate fluctuations (Acemoğlu et al. (2011; Theorem 3)).

In the following section, Section 2, I sketch out a model in which plants sell output to

a representative consumer and purchase intermediate inputs from suppliers in an upstream

sector. The model is designed to match the observed correlations between plants’ input

distribution of plant-level productivities, which is the focus here.
Perhaps closest to the current paper, Eslava et al. (2004, 2009) use plant-level input and output-price

data from Colombia to test the hypothesis that a trade liberalization stiffens the competitive environment,
forces low-productivity plants to exit, and thus increases aggregate productivity.
Among these papers, only Syverson (2004a) restricts the sample to homogeneous-output industries. So,

some of the variation in quantity total factor productivity in Eslava et al. (2004, 2009) and Hsieh and Klenow
(2009) will be a result of differences in output or input quality.

5The potential confounding effects of input and output price variation in productivity estimation are
already well known. Both Katayama, Lu, and Tybout (2009) and Gorodnichenko (2010) argue, in detail,
how plant-level measured productivities may have little to do with plants’technical effi ciencies. After arguing
that conventional productivity estimates may be misleading, these papers propose structural estimators of
establishments’cost and revenue functions, exploiting information derived from the solutions to their cost
minimization and/or profit maximization problems. The results contained in the current paper complement
and motivate the analysis of Katayama, Lu, and Tybout (2009) and Gorodnichenko (2010).

3



prices, output prices, and different productivity measures, as well as the correlation between

plants’suppliers’marginal costs and plants’own materials prices. In the model, establish-

ments enjoy some degree of monopoly power in output markets and monopsony power in

factor markets. As in Foster, Haltiwanger, and Syverson (2008), imperfect competition in

the output market yields a positive relationship between revenue productivity and output

prices and a negative relationship between quantity productivity and output prices. What

is new, compared to most other models of heterogeneous-establishment industries, is a dis-

cussion of how intermediate input prices are determined.6 I assume that each plant has

access to only a small set of potential suppliers. Plants that are fortunate to be connected

to low-marginal cost suppliers pay lower-than-average materials prices. Because buyers and

suppliers of the intermediate input share the gains from the buyer-supplier relationship, the

marginal costs of linked counterparties will correlated with one another.

I begin Section 3 by describing the two plant-level datasets– the Census of Man-

ufacturers and the Commodity Flow Survey– employed in this article, as well as the set

of industries that comprise my sample. Building heavily off of Foster, Haltiwanger, and

Syverson (2008), I focus on the few industries—such as gasoline, ready-mix concrete, and

cardboard boxes—for which plants’output prices and materials prices can be computed and

meaningfully compared across establishments. In Section 3.3, I specify five assumptions

that allow me to compute plant-level productivity measures. As much as possible, I choose

assumptions that are common in the literature on estimation of plants’productivities. The

one key difference with the literature is a relaxation of the assumption that all plants within

each industry purchase their intermediate inputs at the same price.7 In Section 3.4, I de-

fine three different measures of plant productivity. These three measures differ according to

their inclusion or exclusion of plant-level prices. Revenue total factor productivity (TFPR) is

computed using industry-level price indices for both plants’outputs and intermediate inputs.

Quantity total factor productivity (TPFQ) uses plant-level output prices, but industry-level

price indices for intermediate inputs. Finally, technical effi ciency (which I denote Φ) uses

both plant-level materials and output prices.

I establish, in Section 4.1, the hypothesized negative correlation between TFPQ and

materials prices. In my benchmark sample, the correlation between the logarithm of TFPQ

and materials prices is −37%. In Section 4.2, I compute the fraction of TFPQ dispersion

6Several papers model the allocations and profits that emerge out different networks of buyer-supplier
relationships. Three examples are de Fontenay and Gans (2007), Manea (2011), and Oberfield (2011).
Unlike these papers, the analysis in Section 2.2 invokes convenient assumptions on suppliers’marginal costs
and the method by which prices are determined. In combination, these assumptions yield relatively simple
expressions for the distribution of transaction prices.

7However, I maintain the conventional assumption that there is no within-industry dispersion in the prices
at which plants purchase their capital; see Section 3.3.
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that is due to differences in materials prices: the standard deviation would be 7% lower, and

the 75/25 ratio would be 10% lower, in a counterfactual world in which all plants face the

same materials prices. To give context, 7% to 10% is larger than the fraction of productivity

dispersion explained by the competitive environment (Syverson (2004a)), but smaller than

fraction explained by differences in labor quality (Fox and Smeets (2011)).

As I demonstrate in Sections 4.3 and 4.4, plant-level intermediate input prices are

both persistent across time and important predictors of plant survival. The 1-year autocor-

relation of the logarithm plants’material prices is 80%. Thus, the serial correlation of the

logarithm of input prices is comparable to that of the logarithm of TFPR, TFPQ, or output

prices, which are 73%, 71%, and 79%, respectively. In addition, plants that pay more for

their material inputs are also significantly more likely to exit the industry: a one standard

deviation increase in plants’materials prices corresponds to a 1.1 percentage point increase

in the probability that the plant will exit within the next five years. At the same time, there

seems to be no difference between entrants and incumbents in the prices that they pay for

intermediate inputs. Following from the negative correlations between quantity productivity

and input/output prices, the productivity advantage of entrants (compared to incumbents)

and surviving plants (compared to exiting plants) is highest when using TPFQ, and lower

when using either TFPR or Φ, as the productivity measure. Concomitantly, the contribu-

tion of net entry to aggregate productivity growth is smaller for productivity measures that

embody plants’output prices (i.e., TFPR, but not TFPQ or Φ), but larger for productivity

measures that embody input prices (i.e., TFPR and TFPQ, but not Φ).

In Section 5, I address the question of why materials prices differ within a given

industry. An analysis of the sources of materials price dispersion is critical to understand-

ing plants’contributions to social welfare. Plants that, for example, have low materials

prices from exploiting monopsony power are contributing nothing to social welfare. On the

other hand, plants that search for low-marginal-cost suppliers are contributing to social wel-

fare, even though having low-marginal-cost suppliers do not increase plants’own technical

effi ciencies.

I offer three potential explanations for within-industry differences in materials prices.

First, plants in particular geographic regions enjoy particularly low input prices due, for ex-

ample, to the abundance of primary materials with which the intermediate input is produced.

Second, plants will pay relatively little for their intermediate inputs when their suppliers are

exceptionally productive: productive upstream plants are passing on some of their low mar-

ginal costs through to their buyers. Thirdly, suppliers tend to charge different prices for

their outputs across different destinations. I take this last finding as evidence of price dis-

criminatory behavior, a third source of price variation in intermediate goods markets. For a
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pooled sample of ready-mix concrete and cardboard box manufacturers, these three sources

reduce the observed price variation by 13%. In terms of explaining variation in materials

prices, both the across-supplier component (low-marginal-cost suppliers charge, on average,

low prices) and the within-supplier component (a given supplier will charge different prices

to different downstream plants) are consequential.

Section 6 concludes. Proofs (Appendix A), other useful formulas (Appendix B),

a more detailed description of the construction of the benchmark sample (Appendix C),

robustness checks (Appendix D), and bootstrapped confidence intervals (Appendix E) are

all relegated to appendices.

2 Theoretical Motivation

In this section, I motivate the empirical analysis of Sections 4 and 5, using an amended

version of the model given in Section 2 of Foster, Haltiwanger, and Syverson (2008). The

model consists of an industry of plants, which sell output to a representative consumer, and

purchase intermediate inputs from an upstream industry.

The analysis consists of two, largely independent, parts. In Section 2.1, the prices

that plants pay for intermediate inputs are exogenously specified. Besides facing differ-

ent materials prices, plants are heterogeneous in their technical effi ciencies and appeal to

consumers. The main result of this subsection is Proposition 2, which contains a series of

relationships among plants’productivity measures, input prices, and output prices.

Section 2.2 describes how materials prices are determined. In the model, plants have

access to different sets of heterogeneous-cost suppliers. Plants share, with their suppliers,

the surplus generated by the buyer-supplier relationship. As a result, plants with low-

marginal-cost suppliers will purchase their intermediate inputs more cheaply, generating a

positive relationship between the marginal costs of buyers and suppliers.

2.1 Equilibrium conditions, taking materials prices as given

The analysis focuses on an industry, with Ĩ plants, each producing a differentiated good.
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The expenditure function of the representative consumer is given by:8

log Υ = ∆̃0 +
Ĩ∑
i=1

∆̃i logP out
i −

γ
(
Ĩ − 1

)
Ĩ

(
logP out

i

)2

+
1

2

γ

Ĩ

Ĩ∑
i=1

Ĩ∑
k=1,k 6=i

logP out
i · logP out

k

(1)

In this equation, Υ is the total revenues of plants in the industry, P out
i is the price that

plant i charges for its output, ∆̃0 is a demand shifter for the industry’s output, and ∆̃i are

idiosyncratic demand shocks for the output of plant i.9 The parameter γ (restricted to be

greater than 0) reflects the degree to which the representative consumer is able to substitute

across different plants’outputs.

In general, some subset of the Ĩ plants may decide to not produce, in equilibrium.

(Below, I will provide an inequality describing when plants are able to profitably produce.)

Without loss of generality, label plants so that only the first I ≤ Ĩ plants produce. Then,

the representative consumer’s expenditure function becomes (see Theorem 1 of Bergin and

Feenstra (2009)):

log Υ = ∆0+
I∑
i=1

(
∆i logP out

i − γ (I − 1)

I

(
logP out

i

)2
)

+
1

2

γ

I

I∑
i=1

I∑
k=1,k 6=i

logP out
i ·logP out

k (2)

where ∆0 = ∆̃0 ·

 Ĩ∑
i=I+1

(
∆̃i

)2

− 1

I

 Ĩ∑
i=I+1

∆̃i

2 and ∆i = ∆̃i +
1

I

(
1−

I∑
i=1

∆̃i

)

Using Shephard’s Lemma, and differentiating Equation 2 with respect to logP out
i ,

yields a simple expression for Ri, the share of industry revenues that go to plant i:

Ri =
d log Υ

d logP out
i

= ∆i − γ
I − 1

I
logP out

i +
γ

I

I∑
k=1,k 6=i

logP out
k (3)

As γ increases, plants’revenues are increasingly responsive to their prices.

I assume that each plant, i, produces with a constant returns to scale Cobb-Douglas

8Consumer preferences are specified differently in Foster, Haltiwanger, and Syverson (2008). In that
paper, demand for each variety is linear in prices. Linear demand yields predicted correlations among the
levels of prices and productivities. Since, in Section 4, I will correlate the logarithm of plants’input prices,
output prices, and productivity measures, I prefer the translog specification: this set of preferences generates
predictions on the relationships among the logarithm of prices and productivity measures.
I eschew the simpler CES specification of consumer preferences, as this specification—in combination with

monopolistic competition—would generate the counterfactual prediction that revenue total factor productiv-
ities are unrelated to marginal costs.

9The ∆̃i are restricted to sum to 1:
∑Ĩ
i=1 ∆̃i = 1.
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production function, with intermediate inputs (Ni) and labor (Li) as the two inputs:

Qi = Φi

(
Li

1− σ

)1−σ (
Ni

σ

)σ
(4)

While factor elasticities are the same throughout the industry, each plant has a unique

technical effi ciency, Φi. I assume that the wage, W , is the same for all plants in the

industry, but the price of the intermediate input, P in
i , may differ. The process by which P

in
i

is determined will be specified in the next subsection. For now, it suffi ces to assume that

P in
i is constant in Ni (e.g., there are no quantity discounts). Each plant’s marginal cost of

production equals:

MCi =
1

Φi

W 1−σ (P in
i

)σ
(5)

Given the preferences defined by Equations 1-3 and the production function defined

by Equation 4, plants’pricing behavior takes a simple form.

Proposition 1 When the revenue share, Ri, of each plant is suffi ciently close to 0, the

output price, P out
i , is approximated by the following equation:10

logP out
i ≈ 1

2

(
logMCi + logMC

)
+

1

2γ

(
∆i + ∆

)
(6)

≈ 1

2

(
σ logP in

i − log Φi + σlogP in − log Φ
)

+
1

2γ

(
∆i + ∆

)
where, for any variable X, X ≡ 1

I

∑I
i=1 Xi.

Proof. See Appendix A on page 43.
Output price variation has three sources: Plants with low output prices are tech-

nically effi cient (Φi is large), have low material prices (P in
i is small), or have low demand

shocks (∆i is small). Even though low marginal costs are correlated with low output prices,

plants with low marginal costs also have larger than average markups.

Using Equation 6, I can write plants’quantity and revenue total factor productivities

in terms of Φ, P in, and ∆.

log TFPQi ≡ log

(
Qi

Qi ·MCi

)
= log Φi − σ log

(
P in
i

)
− (1− σ) logW (7)

log TFPRi = log TFPQi + logP out
i (8)

≈ 1

2

(
log Φi − log Φ− σ log

(
P in
i

)
+ σlog (P in) +

1

γ

(
∆i + ∆

))
10Equation 6 is derived by invoking the approximation log(1 +Ri) ≈ Ri, which becomes more accurate as

Ri → 0 .
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Φ, which embodies plants’ability to transform inputs into outputs, is independent of

conditions in factor and output markets. TFPQ reflects both the ability to transform

inputs into outputs, as well as conditions in factor markets. Finally, a plant’s TFPR is

determined by its technical effi ciency, conditions in factor markets, and conditions in output

markets.

Plugging Equation 6 into Equation 3 yields the following expression for the revenue

share of plant i:

Ri ≈
1

2

(
∆i + ∆

)
− γ

2

(
logMCi − logMC

)
(9)

In combination, Equations 8 and 9 imply that a plant will have a positive revenue share

(Ri > 0) if and only if its log TFPR is greater than 0.

Finally, for plants i ∈ {1, ..., I}, profits equal:

Πi =
Υ ·Ri

P out
i

(
P out
i −MCi

)
(10)

≈ Υ

[
1

2

(
∆i + ∆

)
− γ

2

(
logMCi − logMC

)]
·
[
e

1
2(logMC+ ∆̄

γ ) − (MCi)
1/2 e−

1
2γ

∆i

]
Plants i ∈

{
I + 1, ..., Ĩ

}
earn zero profits. Total industry sales, Υ, can be computed by

plugging in the optimal pricing decisions (Equation 6) into Equation 2.11

To close the model, and solve for Ĩ, I assume that there is a large pool of potential

entrants, who may enter only after paying a sunk cost. Potential entrants will weigh

expected profits to the cost of entry. To compute the expected profitability, one would

integrate Equation 10 over the joint distribution, ϕ(∆, P in,Φ), of ∆i, P in
i , and Φi.

Using Equations 6-8, one may express relationships between plants’productivities

and input/output prices. These relationships, which are collected in Proposition 2, depend

on the relationships among the three exogenous variables (∆, Φ, and P in). In turn, the

correlations between ∆, Φ, and P in will depend on ϕ as well any correlation that is induced

by selection on TFPR. Plants will profitably produce if ∆ or Φ is suffi ciently large, or if P in

is suffi ciently low. Even if ϕ is multiplicatively separable in ∆, Φ, and P in, the correlation

between ∆ and Φ will be negative in the observed sample. Likewise, selection on TFPR will

tend to induce a positive correlation between ∆ and P in, and a positive correlation between

P in and Φ.
11One can show that (see Appendix B.1 on page 45):

log Υ = ∆0 +
Iγ

8

[
2 · Cov

(
∆

γ
, logMC

)
+ 3 · V ar

(
∆

γ

)
− V ar(logMC)

]
+

1

2

[
E [logMC] + E

[
∆

γ

]]
.
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In the following proposition, I assume that these correlations are not too far from 0 in

the observed sample. Without making this assumption, it would be diffi cult to say anything

meaningful about the correlations between plants’productivity measures and input/output

prices.

Proposition 2 Assume that a) Cov(logP in, log Φ),Cov(logP in, ∆), and Cov(∆, log Φ) are

suffi ciently close to 0 in the observed sample, and b) Ri → 0 for all plants i. Then, the

following relationships hold:

1. Cov(log TFPR, log TFPQ) = 1
2
V ar(log TFPQ)+ 1

2γ
[Cov(∆, log Φ)− σCov(∆, logP in)] >

0

2. Cov(log TFPQ, log Φ) = V ar(log Φ)− σCov(logP in, log Φ) > 0

3. Cov(log TFPQ, logP in) = −σV ar(logP in) + Cov(logP in, log Φ) < 0

4. Cov(log TFPR, logP out) = 1
4
V ar(log TFPQ) + 1

4γ2V ar(∆) > 0

5. Cov(log TFPQ, logP out) = 1
2γ

[Cov(∆, log Φ)− σCov(∆, logP in)]−1
2
V ar(log TFPQ) <

0

6. Cov(logP in, logP out) = 1
2

[
σV ar(logP in)− Cov(logP in, log Φ) + Cov(logP in,∆)

γ

]
> 0

7. V ar(log TFPQ)− V ar(log Φ) = σ2V ar (logP in)− 2σCov (log Φ, logP in) > 0

In Section 4, I check that these seven predicted relationships hold for a sample

of homogeneous-goods industries.12 Moreover, consistent with Equations 8-9, I document

that plants with low technical effi ciencies and high input prices tend to exit with greater

probability.13 What is unclear, so far, is why intermediate input prices differ across plants.

I develop a theory of materials price dispersion in the following subsection.

12As I will show in Section 4, TFPQ is significantly more disperse than TFPR. The model that I have
presented in this subsection yields an ambiguous prediction on the relative dispersions of TFPQ and TFPR:

V ar(log TFPQ)− V ar(log TFPR) = −V ar(logP out)− 2Cov
(
logP out, log TFPQ

)
=

3

4
V ar (log TFPQ) +

3

4γ
Cov (log TFPQ,∆)− 1

4γ2
V ar (∆)

≶ 0

13To develop this prediction rigourously, I would need to construct a model—similar to that of Asplund
and Nocke (2006)—with multiple periods, in which Φ, ∆, and P in evolve stochastically.
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2.2 Materials prices

There are two aims of this subsection. The first is to show that plants’marginal costs are

positively related to those of their suppliers: plants that are lucky enough to be connected to

an exceptionally low-cost supplier will purchase their intermediate inputs at a low price, and

thus have low marginal costs. The second aim of this subsection is to decompose materials

price variation into a between-supplier and a within-supplier component. Between-supplier

variation in materials prices reflects differences in marginal costs, across suppliers, whereas

within-supplier variation occurs because of differences in the bargaining position—determined

by the web of buyer-supplier relationships—between buyers and suppliers.

I assume that manufacturers of the intermediate input, the upstream plants j ∈
{1, ..., J}, produce at constant marginal cost, MCj. The intermediate input produced by

the upstream industry plants are not vertically differentiated: the downstream plant will

choose the supplier that provides the input at the lowest price. Each downstream plant,

i, has access to ξ ≥ 2 potential suppliers. While the number of potential suppliers is the

same, the identities of these potential suppliers differ across the downstream plants.14 Let

MCi(k) denote the marginal cost of the kth most effi cient supplier of plant i. Finally, let

G(·) denote the cumulative distribution (with associated probability distribution function,
g(·)) corresponding to the marginal cost of a randomly drawn supplier.

Suppliers engage in Bertrand competition for the patronage of each downstream

plant, i. Given this assumption, each buyer purchases from the lowest-marginal-cost supplier

at price P in
i = MCi(2). The p.d.f. of the 0materials price, P in, conditional on the marginal

cost of the supplier, MCup, equals:15

h(P in|MCup) = (ξ − 1)
g (P in)

1−G(P in)

(
1−G(P in)

1−G(MCup)

)ξ−1

for P in > MCup (11)

By integrating Equation 11, moments of any function, f(·), of the materials price
that i pays, conditional on the marginal cost of the best potential supplier, are given by the

14The idea that plants are exogenously restricted in whom they can potentially trade with is taken from
de Fontenay and Gans (2007), Manea (2011), and Oberfield (2011). The restriction may have any number
of origins. For example, the set of counterparties that each plant can trade with may be the result of a
costly search process, as outlined in Chaney (2011).
15In Appendix A, I show that H(P in|MCup) = 1 −

(
1−G(P in)
1−G(MCup)

)ξ−1
. Differentiating this expression,

with respect to P in, gives the desired result.
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following expression:

E
[
f
(
P in
)
|MCup

]
=

ξ − 1

(1−G(MCup))ξ−1

∫ ∞
MCup

f(z)g(z) (1−G(z))ξ−2 dz (12)

According to Equations 11 and 12, the conditional distribution of the materials price

shifts to the right as the supplier’s marginal cost increases. Combining this finding with

the positive relationship between i’s marginal cost and its own materials price (Proposition

2, part 3) yields a positive relationship between the marginal costs of establishments that

trade with one another. These two findings are stated in the following proposition:

Proposition 3 Under the same assumptions as in Proposition 2:

1. The materials price is increasing, in the sense of first order stochastic dominance, in

the marginal cost of the supplier.

2. Plants’marginal costs are positively correlated to their suppliers’marginal costs.

Proof. See Appendix A on page 44.
Proposition 3 generates qualitative predictions on the relationships between plants’

marginal costs, their materials prices, and their suppliers’marginal costs. Next, I will argue

that the predicted price dispersion is substantial, and that both the within-supplier and

across-supplier components (which I will define below) are important drivers of the observed

variation in materials prices. One can show, for future reference, that the probability

distribution functions of the first and second order statistics are:

h1(x) = ξ · g(x) · (1−G(x))ξ−1 (13)

h2(y) = (ξ − 1) ·G(y) · g(y) · (1−G(y))ξ−2 (14)

I assume that suppliers’ quantity productivities are drawn from the Pareto dis-

tribution, with shape parameter, ζ.16 Then, for MC ∈ [0, 1] , G(MC) = MCζ and

g(MC) = ζMCζ−1.17

In the left panel of Figure 1, I plot SD (logP in), which is computed by integrating

over the probability distribution function of prices, as given in Equation 14. For all values

of ξ, the variance of observed prices is of the same order of magnitude as the variance of the

potential suppliers’marginal costs.

16The proceeding results are similar under the assumption of lognormal quantity productivities.
17Taking 1 to be the upper limit of the support of potential suppliers’marginal costs is only a normalization.

One could re-define the units of the intermediate good so that the highest-possible marginal cost of the
supplier is any positive constant.
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Figure 1: Theoretical results. The left panel gives the standard deviation of log(P in), for
different combiantions of ζ and ξ. The right panel displays the fraction of materials price
variation that originates from the across-supplier component.

The right panel of Figure 1 displays the fraction of materials price variation that

originates from the differences in suppliers’marginal costs.18 Variation in materials prices,

V ar [log (P in)], equals the sum of V ar [E [ log (P in)|MCup]] and E [V ar [ log (P in)|MCup]].

V ar [E [ log (P in)|MCup]] reflects the variation in materials prices due to the differences

in MCup that occur across upstream plants, while E [V ar [ log (P in)|MCup]] reflects the

variation in prices due to differences in the relative bargaining position of the buyers and

sellers of the intermediate good. The takeaway from this figure is that, for all values of ξ,

both the within and between-supplier components contribute substantially to the observed

variation in materials prices.

In summation, when buyers and suppliers have limited trading opportunities, plants

with access to low-marginal-cost suppliers will pay below average prices for their intermediate

inputs. This, in turn, generates a positive correlation between the measured productivities

of plants that transact with one another. In a similar vein, materials prices will be spatially

correlated to the extent that upstream plants’marginal costs can be explained by geogra-

phy. While a large fraction of materials price dispersion can be explained by the marginal

cost of the supplier, suppliers also price discriminate across their customers, based on the

downstream plants’outside options. These findings are verified in Section 5: I show that

plants’materials prices are, indeed, related to the marginal costs of their suppliers, and that

individual sellers do sell the same output at different prices to different downstream plants.

I also find some evidence that suppliers and buyers’marginal costs are correlated.

18I plot only one line, because the fraction of materials price variation from the across-supplier component
is unchanged in ζ.
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3 Data and Definitions

3.1 Data sources

For this paper, the main data sources are the Commodity Flow Survey and the Census

of Manufacturers. Both datasets are collected and maintained by the U.S. Census Bureau.

The Census of Manufacturers is conducted every five years, in years ending in ‘2’or

‘7’. This dataset contains information on manufacturing establishments’productive char-

acteristics, including its employment of production and nonproduction workers, measured

in hours; the book value of its building and machine capital; and expenditures on electric-

ity. For certain industries, establishments with five or more employees are asked additional

questions about the products that they produce and the materials that they consume. Of

particular importance for the current paper, establishments list both the quantity and the

value of each of the products they produce (at the 7-digit level) and the quantity and value

of each of the materials they consume (at the 6-digit level).19 For this paper, I use the 1972,

1977, 1982, 1987, 1992, and 1997 versions of the Census of Manufacturers.

The Commodity Flow Survey is necessary to impute buyer-supplier relationships, as

I do in Section 5.1. The Commodity Flow Survey was first conducted in 1993, and thereafter

in years ending in ‘2’or ‘7’. Surveyed establishments are asked to list 25-40 shipments that

they make each quarter.20 Each observation includes information on: the weight and value

of the shipment; a five-digit code, specifying the commodity that was shipped; the method of

transport (air, truck, rail, courier service, etc...); and the destination zip code. Finally, the

Census uses the same plant-level identifier in the Commodity Flow Survey and the Census

of Manufacturers. This allows me to combine the information on production and input

utilization from the Census of Manufacturers with information on shipment patterns from

the Commodity Flow Survey. In Section 5, I employ the 1993 and 1997 Commodity Flow

Surveys.

19To give the reader some idea of the scope of a 7-digit product, ready-mix concrete (3273000) is one of the
larger product groups. Some of the smaller product-groups include corrugated boxes, used as containers of
chemicals and drugs, including paints, varnishes, cosmetics, and soaps (2653021); or self-rising family white
flour (2044126). For 1992, a description of the product codes can be found at
http://www.census.gov/prod/2/manmin/mc92-r-1.pdf.
20Not all manufacturers are surveyed in the Commodity Flow Survey. In 1993, approximately 60 thousand

(out of the 350 thousand existing manufacturing plants) were surveyed, while, in 1997, approximately 30
thousand plants were surveyed.
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3.2 Sample

In this subsection, I describe the construction of the sample. Further details are pro-

vided in Appendix C on page 46.

Similar to Roberts and Supina (1996) and Foster, Haltiwanger, and Syverson (2008),

the analysis centers around industries for which outputs and inputs are relatively homoge-

neous. In industries with heterogeneous inputs or outputs, differences in quality may be

a main source of the variation in the prices that different firms charge. I would like, as

much as possible, to rule out quality as a source of input or output price variation. An

additional restriction is that both the inputs and outputs should be measured in units that

are comparable across establishments.21

The ten industries22 that comprise the main sample are packaged milk, white wheat

flour, ready-mix concrete, grey cotton yarn, cardboard boxes (with the years 1972-1987 and

1992-1997 analyzed separately), gasoline, ground coffee, raw cane sugar, and bulk milk; see

Table 1.23,24 Approximately one-third of the plant-year observations are from plants that

manufacture ready-mix concrete. However, when observations are weighted by their real

sales, the gasoline industry is the most prominent: approximately three-quarters of the total

revenues are earned by plants from this industry.

In addition to producing a product from one of these ten industries, to be in the

benchmark sample, the manufacturers must fill out the materials and production supple-

ments. These supplemental forms, which the Census sends out to larger establishments, are

necessary to compute the unit values of manufacturers’outputs and materials purchases.

Thus, there are two sources of sample selection. First, I have chosen industries based

on the characteristics of the outputs they produce and the inputs they purchase. These in-

dustries tend to use intermediate materials more intensively than the broader manufacturing

sector. Since the scope for material price differences to cause measured productivity disper-

21This second restriction rules out industries like oak, hardwood rough lumber (7-digit product code=
2421163). For this industry, output is measured in units of board feet, but different plants manufacture
lumber with different thickness. For this reason, it is diffi cult to compare different plants’output prices,
productivities, or other plant-level characteristics.
22When referring to the different subsamples of the benchmark sample, I will use the terms "industry"

and "product" interchangeably.
23A problem similar to the one described in footnote 21 exists for the post-1992 cardboard box industry.

Beginning in 1992, the units of output switch from thousands of pounds to thousands of square feet. I detail
my response to this potential problem in Appendix C.
24Cardboard boxes, raw cane sugar, gasoline, ground coffee, and ready-mix concrete are included in both

the current paper and Foster, Haltiwanger, and Syverson (2008). I could not include carbon black, block ice,
or processed ice, as there were insuffi ciently many plants that filled out both the production and materials
supplements. I do not include hardwood flooring or plywood, the last two industries that Foster, Haltiwanger,
and Syverson (2008) include; large output price dispersions seem to indicate that the outputs of these
industries are not suffi ciently homogeneous.

15



Sample Units of Output Material Inputs N

Milk-Bulk 1000 lbds.
Unprocessed
whole milk (88%)

127

White Wheat Flour 50 lbd. sacks Wheat (90%) 503

Ready-Mix Concrete 1000 cubic yards
Cement (53%),

Sand/Gravel (28%)
3708

Carded Cotton Yarn 1000 lbds.
Cotton Fibers (80%),
Polyester tow (10%)

431

Boxes, Year≤1987 Short tons Paper/paperboard (90%) 1820
Gasoline 1000 barrels Crude petroleum (84%) 692
Ground Coffee 1000 lbds. Green coffee beans (80%) 300
Raw Cane Sugar Short tons Sugar cane (93%) 177
Boxes, Year≥1992 Square feet Paper/paperboard (89%) 646

Milk-Packaged 1000 quarts
Unprocessed
whole milk (72%)

2099

Pooled - 10503

Table 1: Description of the ten industries in the benchmark sample. The percentages that
appear in the Material Inputs column are the fraction of intermediate input expenditures
that go to each particular material input. The Material Inputs column shows the inputs that
represent greater than 6% of the average plant’s total material purchases.

sion increases with the intensity of intermediate input usage (see Equation 22), it is likely

that the decline in total factor productivity dispersion is larger for the ten industries in my

sample than for the broader manufacturing sector.

Second, the plants that are the focus of this study tend to be larger and more

productive, compared to the other plants from their respective industries. The average

plant in my sample employs roughly 5 times more employees, and has revenues that are 4

times larger, compared to the average plant of their respective industry. (For more details,

see Table 16, in Appendix C). Furthermore, since the probability of exit tends to decrease

with size, the plants in my benchmark sample are relatively more likely to survive: plants in

the benchmark sample have a 5-year survival rate of 86%, compared to the average survival

rate for plants in their industries, 72%.

These sample selection issues limit the generalizability of the results given in Sections

4 and 5. However, by sacrificing generality, I am able to isolate the effect of differences in

materials prices on intra-industry productivity dispersion.
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3.3 Assumptions

I make five assumptions regarding plants’production technologies and the way in which

labor, capital, and electricity are supplied. The dual objectives of these assumptions are to

a) take the predictions of Section 2’s model to the data, and to b) highlight the importance

of material price dispersion in the measurement of plant-level productivities. With these

goals in mind, I will, as much as possible, adhere to conventional assumptions made in the

literature on plant-level production function estimation.

Assumption 1: Plants within an industry have Cobb-Douglas production functions, with labor, capital,

electricity, and materials as the inputs. Furthermore, the factor shares are common

across all plants within an industry-year combination. Also, plants’production func-

tions exhibit constant returns to scale.

There are three components to the first assumption: a unitary elasticity of substitu-

tion, common factor shares within an industry, and constant returns to scale. The unitary

elasticity of substitution is common in studies of plants’production functions, mainly for

convenience. However, several authors have estimated an elasticity of substitution between

labor and capital that is less than 1 (see Raval (2011)). For the objects of interest, the

Cobb-Douglas assumption seems to have little effect on the dispersion of measured pro-

ductivity. I show, in Appendix D.4 on page 56, that the results of Section 4 are robust to

complementarities between material inputs and other inputs. Furthermore, when measuring

the fraction of productivity dispersion that can be explained by differences in labor quality,

Fox and Smeets (2011; Section 5) find that productivity dispersions are remarkably similar,

whether the production function is assumed to be Cobb-Douglas or translog.

The other parts of Assumption 1 are also rather innocuous. In Syverson (2004b),

the relationships between within-industry productivity dispersion and other industry char-

acteristics is robust to using plant-specific factor shares when estimating plants’TFPs.25

Related to the constant-returns-to-scale component of Assumption 1, Syverson (2004a) es-

timates that the returns to scale are indistinguishable from 1 for plants in the ready-mix

concrete industry, the industry that contains roughly one-third of the plants in my sample.26

Assumption 2: The unit input costs of capital and electricity are the same for all plants within an

industry-year combination. In addition, the marginal cost of each of these inputs is

constant in the amount purchased.

25Syverson does find, however, that the measured within-industry differences in TFP are smaller when
computed using plant-specific factor shares.
26Baily, Hulten, and Campbell (1992) estimate returns to scale for a broader set of industries and find the

same result.
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Data limitations necessitate the assumption that all plants face the same costs for

a unit of capital services. The assumption that electricity costs are the same across plants

within an industry can be relaxed, without changing any of the results of Section 4.27 Since

I can directly observe the quantity of labor input, I do not need to assume that wages are

the same across plants.28

Assumptions 1 and 2 are consistent with the set-up of Section 2’s model. Assump-

tions 3-5 deal with the fact that plants may produce multiple outputs and purchase multiple

intermediate inputs. These assumptions were not addressed in Section 2, since plants were

assumed to produce and purchase only one type of good.

Assumption 3: The fraction of each input employed in producing a particular product equals the

plant’s share of revenue coming from that product.

The need for Assumption 3, an assumption also made by Foster, Haltiwanger, and

Syverson (2008), stems from a limitation of the dataset. In particular, for plants that

produce multiple goods, it is impossible to know exactly how much of each input that is

used in the production of each output. I make the simplest possible assumption, and

assume that each input is allocated in proportion to plant’s sales of each product. For

example, for a hypothetical plant that employs L units of labor and sells Yg dollars of good

g, for g ∈ {1, ...G}, the amount of labor used in the production of good g is

L · Yg∑G
ĝ=1 Yĝ

. (15)

Similar to Foster, Haltiwanger, and Syverson (2008), I argue that the dispersion of produc-

tivity is robust to the way in which inputs are allocated to outputs, mainly because the

plants in my sample tend to be heavily specialized in the goods they manufacture.

In addition to Assumptions 1-3, which are common in papers that estimate plant-

level productivities, I make two assumptions on the substitutability among different material

27Davis, Grim, and Haltiwanger (2008) compute plant-level energy prices and show that there is substantial
variation, within industries, in the cost of a kilowatt-hour of electricity. In an unreported robustness exercise,
I check that the results of Section 4 are virtually identical after relaxing the assumption that all plants face
the same electricity prices, the reason being that the expenditure share of energy is small (on average, 2.5%)
for plants in the benchmark sample.
28Differences in labor quality, across plants, may muddle the interpretation of plants’productivities. Using

hours worked as the measure of labor means that plants with exceptionally skilled workers would appear
to be highly productive. If workers’wages reflect differences in worker skill (as opposed to, for example,
workers’bargaining power), it would be preferable to measure labor inputs by the wages paid by each plant.
In an unreported robustness check, I reproduce Tables 2 and 3 using the wage bill, instead of hours worked,
as the measure of labor inputs. The results are essentially identical when using this different measure of
labor inputs.
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inputs. Together, Assumptions 4 and 5 will allow me to compute plant-specific material

prices from the data at hand. While restrictive, they are much less so than the common

presumption that all plants face the same intermediate input prices.

Assumption 4: If multiple intermediate inputs are observed, the elasticity of substitution between the

materials is 0.

This assumption is pertinent only for the two industries, plants producing ready-mix

concrete or yarn, for which I observe multiple intermediate inputs being employed. I show,

in Appendix D.3 on page 55, that the level of productivity dispersion is extremely robust to

moderate levels of substitutability among the different intermediate inputs.

Assumption 5: The elasticity of substitution, between plants’"priced" and "non-priced" materials is 1.

In addition, the elasticity of substitution between "non-priced" materials and capital,

labor, and materials is also 1.

Here, "priced materials" are the materials that most plants in the industry purchase.

For instance, in the case of yarn manufacturers, cotton fibers and polyester tow are the

"priced materials." The non-priced materials are purchased by only a few plants in the

industry. Again, turning to the yarn industry, approximately 10% of the expenditures on

intermediate inputs go to purchases of materials other than cotton fibers (see the ‘Material

Inputs’column of Table 1). Some of these yarn-producing plants purchase silk fibers; others

purchase nylon tow. Since only a few plants purchase these materials, it is diffi cult to

ascertain if plants are purchasing these inputs relatively cheaply or expensively. I treat the

"non-priced" materials as if they were any other input for which I do not observe unit prices,

such as capital or electricity, and assume that there is a unitary elasticity of substitution

between "non-priced" materials and "priced" materials, labor, capital, and electricity.

3.4 Definitions

In this subsection, I define plants’materials and output prices, as well as the three plant-

level productivity measures: TFPQ, TFPR, and Φ. The first two productivity measures

are exactly as in Foster, Haltiwanger, and Syverson (2008). The productivity measure that

is new to this paper, Φ, aims to isolate plants’abilities to transform inputs into outputs.

In particular, this measure, Φ, should not reflect plants’abilities to sell their output at a

relatively high price, or to purchase their intermediate inputs at a relatively low price.

I begin by defining plants’input and output prices. The price, P out
ijt , that plant i

charges for product j in year t is simply the ratio of sales, Yijt, to physical quantity shipped,
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Qijt:

P out
ijt ≡

Yijt
Qijt

. (16)

Before defining plant-level input prices, I introduce some notation. Let Mijt be

the expenditures on materials of plant i in the production of product j in year t. Plant

i’s purchases consist of "non-priced" materials, which I denote using M0
ijt, and "priced"

materials, which I denote using M1
ijt (and M

2
ijt if j is produced using two material inputs).

Let, sµjt denote the average fraction—across plants in my sample in industry j and year t—of

materials expenditures that are spent on material µ.29 Finally, let Sjt denote the average

fraction of materials expenditures, in industry j in year t, that go to "priced" materials.30

For plants in industries that use only one type of "priced" material (i.e., all industries

except for ready-mix concrete and yarn manufacturing), the input price is given by the ratio

of materials expenditures of the first good, M1
ijt, to the physical quantity, N

1
ijt, consumed of

the first good.

P in
ijt ≡

M1
ijt

N1
ijt

(17)

To construct plant-level materials prices for ready-mix concrete and yarn manufac-

turers, I begin by defining a unit of the intermediate input bundle as follows:

Nijt = min

{
s1jt

Sjt

N1
ijt

N̄1
ijt

,
s2jt

Sjt

N2
ijt

N̄2
ijt

}
(18)

= lim
%→0

s1jt

Sjt

(
N1
ijt

N̄1
ijt

) %−1
%

+
s2jt

Sjt

(
N2
ijt

N̄2
ijt

) %−1
%


%
%−1

In Equation 18, Nijt is the number of units of the intermediate input bundle purchased by

plant i in industry j in year t. Because the units of Nijt have no natural interpretation, it is

necessary to normalize by the average input utilization of each of the intermediate goods, N̄1
ij

and N̄2
ij.
31 Assumption 4 pins down how the two different materials are combined to form

the composite intermediate input; relaxing Assumption 4 would involve allowing % > 0.

Let P̄ 1
ij and P̄

2
ij be the average unit price of materials 1 and 2 in industry j. Then,

the materials bundle’s ideal price index equals the value-weighted average of the individual

29For example, for j=concrete and µ =cement, sµjt would be approximately 0.53, slightly more in some
years, slightly less in others.
30Continuing with the example from the previous footnote, Sjt would be approximately 0.81(= 0.28+0.53)

for ready-mix concrete manufacturers.
31Klump, McAdam, and William (2011) comprises a discussion on the necessity of normalizing CES

production functions when % 6= 1. (When % = 1, the units can be factored out into a multiplicative constant.)
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inputs’prices:

P in
ij ≡

s1jt

Sjt

P in
1ijt

P̄ in
1jt

+
s2jt

Sjt

P in
2ijt

P̄ in
2jt

(19)

Having defined plant-level materials and output prices, I am now able to state how

plant-level productivities are computed. For each plant, i, producing in industry j, define

its quantity total factor productivity (TFPQ) in year t as the ratio between the physical

quantity produced and the inputs it utilized in the production of this product.32

TFPQijt ≡ Qijt (Lijt)
−λjt (Kijt)

−κjt (Eijt)
−εjt (Mijt)

−σjt (20)

In Equation 20, Lijt, Kijt, and Eijt denote the amount of labor, capital, and energy

used in the production of product j. From Assumption 3, each input listed in Equation 20

equals the total amount purchased of that input multiplied by the share of plant i’s revenues

derived from producing its main output. As in Foster, Haltiwanger, and Syverson (2008),

labor is stated in terms of hours, and capital is computed by summing plants’reported book

values of equipment and structures. The industry-year specific cost shares are computed as

in Foster, Haltiwanger, and Syverson (2008). Note that, because of Assumption 1, the factor

elasticities, λjt, κjt, εjt and σjt, are the same for all plants within an industry-year pair. In

addition, λjt + κjt + εjt + σjt = 1 for all j, t pairs. To emphasize, since Mijt = P in
ijt ·Nijt, low

materials prices are a factor associated with high TFPQijt.

Revenue total factor productivity (TFPR) captures a plant’s ability to transform a

given bundle of inputs into revenue. As Equation 21 makes clear, plants will have a high

TFPR for one of two reasons: Either they have high TFPQ, or they sell their output at a

particularly high price.

TFPRijt ≡ Yijt (Lijt)
−λjt (Kijt)

−κjt (Eijt)
−εjt (Mijt)

−σjt (21)

= TFPQijt · P out
ijt

Finally, plants’technical effi ciencies (Φijt) purge out the effect of variation in the

32There are many ways to estimate plant-level productivity. I would have liked to compare the estimates
generated by Equations 20-22 to those computed using other estimation methodologies. Like Foster, Halti-
wanger, and Syverson (2008), I am unable to compute plant-level productivities using the methods outlined
in Olley and Pakes (1995), Blundell and Bond (2000), Levinsohn and Petrin (2003), and Ackerberg, Caves,
and Frazer (2006). These methods generally require annual observations. Unfortunately information on
quantities of output produced or intermediate inputs purchased exist only for years in which the Census of
Manufacturers is conducted. Most likely, my results would not change if other productivity measures were
used. Van Biesebroeck (2008) reports that, unlike estimates of input elasticities, which are sensitive to the
estimation methodology, plant-level productivity estimates are highly correlated across different estimation
methodologies.
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prices that plants pay for their intermediate inputs:

Φijt ≡ Qijt · (Lijt)−λjt · (Kijt)
−κjt · (Eijt)−εjt ·

(
M0

ijt

)−σjt·(1−Sjt) · (Nijt)
σjt·Sjt (22)

= Qijt · (Lijt)−λjt · (Kijt)
−κjt · (Eijt)−εjt · (Mijt)

−σjt ·
(
P in
ijt

)σjt·Sjt
= TFPQijt ·

(
P in
ijt

)σjt·Sjt
The equality of the first and second lines of Equation 22 follows from Assumption 5:

because of the unitary elasticity of substitution between "priced" and "non-priced" materials,

Mijt =
(
M0

ijt

)(1−Sjt) ·
(
M1

ijt +M2
ijt

)Sjt . The equality of the second and third lines follows

from the definition of TFPQ. Equation 22 states that plants will have high TFPQijt for

one of two reasons: either the plant is technically effi cient (Φijt is large), or intermediate

input prices are low (P in
ijt is low).

33

So that I can compare observations across industries and years, all quantities will be

stated relative to the mean for that industry×year. I use lower-case letters to denote the

logged, de-meaned values. For any plant-level statistic, Xijt, define:

xijt ≡ log (Xijt)−
∑

k:k∈i’s industry in year t logXkjt

‖{k : k ∈ i’s industry in year t}‖ (23)

4 Implications of Materials Price Dispersion

In this section, I explore some of the implications of price dispersion in intermediate

inputs markets. Correlations among plant-level statistics are given in Section 4.1. In Section

4.2, I estimate that 7 to 16 per cent of the variation in tfpq is attributable to differences

in the materials prices that plants face. In Section 4.3, I argue that the price that plants

face when purchasing their materials is persistent across time. In Section 4.4, I document

that materials prices are substantially higher for exiting plants (compared to survivors) and

neither higher nor lower for entrants (compared to incumbents). Then, in Section 4.5, I

compute the contribution, towards aggregate productivity growth, of the entry of relatively

productive plants and the exit of relatively unproductive plants.

33Of course, there may be within-industry differences in the factor market conditions for labor, capital,
and electricity. Because of Assumption 2, these differences would be incorrectly labeled as differences in
"technical effi ciencies."
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4.1 Correlations

I begin by computing the correlations among different plant-level statistics. All plant-

level variables are de-meaned by industry-year according to Equation 23. Correlations are

weighted by plants’real sales.34 The correlations, which are collected in Table 2, match the

predictions made in parts 1-6 of Proposition 2.

The correlation coeffi cients between tfpq, tfpr, and pout are similar to those com-

puted in Foster, Haltiwanger, and Syverson (2008). Plants with higher tfpq have a lower

marginal cost and pass on some of this lower marginal cost to their consumers (generating

a low pout). In addition, tfpq and tfpr are highly correlated, as are tfpr and pout.

The variables that are new to this study are φ and pin, the logged technical effi ciencies

and materials prices. First, plant-level materials prices, pin, are negatively correlated with

tfpq. Plants that purchase inputs cheaply appear to be more productive. At the same

time, tfpq and φ are highly correlated with one another, while the correlation between φ

and tfpr is similar to the correlation between tfpr and tfpq. These last correlations should

bring some solace to researchers who do not have access to plant-level materials and output

prices, and who wish to use tfpr as a proxy for φ.

Finally, plant-level input and output prices are correlated with one another.35 There

are several possible explanations for this positive relationship. First, the positive correlation

may reflect that some differences in input and output quality still remain (despite my best

efforts to choose a sample of industries with outputs and material inputs that are comparable

across plants). Independent of quality differences, the positive correlation between input

and output prices may be due to imperfections in output markets, as Proposition 2 would

predict. A third possible explanation is that a selection mechanism, one on plant survival,

may be causing us to observe a positive relationship between pout and pin (see Equations 8

and 9).

Correlations for each of the ten industries are presented in Appendix D.5. It seems

that, within the benchmark sample, the sugar industry is something of an outlier: for the

177 plant-year observations in the industry, the correlation between pin and tfpq is −3%,

not significantly different from 0. Except for sugar, the range of correlations between pin

and tfpq lies between −28% (packaged milk) and −49% (coffee).

34Throughout this section, real revenues are computed using 4-digit-industry output price indices from
the NBER Productivity Database. Unweighted calculations are presented in Appendix D.6.
35Eslava et al. (2004) document this empirical regularity, as well, using a broad sample of Colombian

manufacturing establishments.
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pin pout tfpq φ tfpr
pout 0.231*
tfpq -0.369* -0.551*
φ 0.127* -0.469* 0.873*
tfpr -0.232* 0.219* 0.616* 0.694*
Std. Dev. 0.117 0.119 0.161 0.151 0.137
Skewness -0.135 0.127 0.739 0.669 1.201

Table 2: Correlations and sample statistics of plant-level characteristics, pooled across all
products. All variables are de-meaned by year and product. N=10,503. Observations are
weighted by plants’real revenues. Stars indicate that the correlation is significantly different
from 0, at the 5% level (see Appendix E for details). Correlations that give plant-year
observations equal weight are presented in Appendix D.6.

4.2 Implications for productivity dispersion

In this subsection, I compare the dispersions of the distributions of tfpq and φ. In so

doing, I provide a measure of the fraction of tfpq dispersion that can be explained by differ-

ences in intermediate input prices. The main finding, that dispersion in tfpq is significantly

greater than the dispersion of φ, is the prediction of part 7 of Proposition 2.

Pooling across the 10 industries in the sample, the standard deviation of φ is 16.3%

(= e0.151), while the standard deviation of tfpq is 17.5%, 7% larger than the standard de-

viation of φ. So, by purging out the effect of differences in materials prices, the observed

distribution of productivities would be approximately 7% lower; the 95% confidence interval

of the difference between the standard deviations of tfpq and φ is [0.2%, 10.4%].

I also give, in Table 3, two other measures of dispersion, the 90/10 ratio and the

75/25 ratio. The difference between the dispersion of tfpq and the dispersion of φ is even

greater with these two alternate measures: 9% for the 90/10 ratio, and 10% for the 75/25

ratio.

Again, even though I have chosen industries based on the homogeneity of the inputs

and outputs, it is likely that at least some of the variation in materials and output prices

is due to differences in quality. Variation in input/output quality attenuates the negative

correlation between tfpq and pin (see Appendices D.1 and D.2.) As a result, within-industry

variation in quality will lead to a downward bias in the measured difference between the

dispersion of tfpq and the dispersion of φ. In other words, the 7% to 10% decline in

dispersion most likely underrepresents the actual fraction of tfpq dispersion that is due to

differences in materials prices.

To provide some context, I relate the 7% to 10% decline in dispersion to dispersion

declines reported in two other papers. First, Syverson (2004a) hypothesizes that, in markets
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Dispersion of tfpq Dispersion of φ Percent Decline
Sample 90/10 75/25 SD 90/10 75/25 SD 90/10 75/25 SD

Milk-Bulk 0.597 0.285 0.252 0.531 0.267 0.229 13.1% 7.2% 10.3%
Flour 0.360 0.190 0.142 0.349 0.158 0.148 3.2% 23.2%* -4.1%
Concrete 0.521 0.251 0.224 0.486 0.236 0.215 7.4%* 6.6%* 4.4%*
Yarn 0.581 0.275 0.256 0.633 0.310 0.252 -8.0% -10.8% 1.5%
Boxes, Yr.≤’87 0.380 0.179 0.168 0.366 0.177 0.166 3.7%* 1.0% 1.6%
Gasoline 0.300 0.145 0.132 0.280 0.133 0.122 7.6% 9.5% 8.1%
Coffee 0.709 0.326 0.266 0.562 0.277 0.229 30.1%* 19.5%* 17.4%*
Sugar 0.588 0.297 0.280 0.766 0.340 0.319 -20.7% -11.9% -11.5%*
Boxes, Yr.≥’92 0.566 0.293 0.225 0.526 0.276 0.211 7.9%* 6.2%* 6.7%*
Milk-Packaged 0.535 0.261 0.227 0.502 0.248 0.218 6.7%* 5.3%* 4.1%*
Pooled:
Weighted

0.351 0.164 0.161 0.324 0.151 0.151 8.8%* 9.7% 6.9%*

Pooled:
Unweighted

0.527 0.253 0.227 0.493 0.238 0.219 7.2%* 6.5%* 3.9%*

Table 3: Dispersion of tfpq and φ. In the final three columns, stars indicate that the
difference between tfpq and φ is statistically significant, at the 5% level (see Appendix E for
details). Except for the final row, observations are weighted by plants’real revenues. See
Table 28 in Appendix D.6 for the unweighted computations, broken out by industry. Due
to Census’rules regarding data confidentiality, I am prohibited from reporting the actual
quantiles of any empirical distribution. The quantiles (but not the standard deviations) are
computed in a two-step process. First, using a kernel density estimator, I produce a smoothed
version of the empirical cumulative distribution function of the variable of interest. I then
report the quantile of this smoothed distribution. The decrease in productivity dispersion–
between tfpq and φ– is not substantially affected by this smoothing procedure.
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Revenue- Dispersion of tfpr Dispersion of tfpq Percent Increase
weighted? 90/10 75/25 SD 90/10 75/25 SD 90/10 75/25 SD
Yes 0.306 0.147 0.137 0.351 0.164 0.161 16.0%* 12.9% 18.5%*
No 0.380 0.178 0.176 0.527 0.253 0.227 47.3%* 53.0%* 33.7%*

Table 4: Dispersion of tfpr and tfpq. In the final three columns, stars indicate that the
difference between tfpr and tfpq is statistically significant, at the 5% level (see Appendix
E for details). Due to Census’ rules regarding data confidentiality, I am prohibited from
reporting the actual quantiles of any empirical distribution. See the caption of Table 3 for a
description of the imputation of the quantiles of tfpq and tfpr. N=10,503.

for which competitive forces are exceptionally strong, low-productivity plants are relatively

more apt to exit the industry, thus leading to a more compressed productivity distribution.

Within the ready-mix concrete industry, Syverson characterizes areas with high densities of

construction activity as highly competitive markets. Compared to low-density markets, the

interquartile range of total factor productivity is 2 to 3% smaller in high-density markets.

In a second example, Fox and Smeets (2011) compute the fraction of measured productivity

dispersion that can be explained by differences in worker quality. For a sample of Danish

firms in eight industries, the 90/10 ratio of the distribution of TFP declines by approximately

20% after including controls for worker quality and the wage bill.

While price dispersion in intermediate input markets tends to reduce the dispersion of

measured productivity (i.e., the dispersion of tfpq is greater than that of φ), price dispersion

in output markets has the opposite effect on the dispersion of measured productivity (i.e.,

the dispersion tfpr is smaller than that of tfpq). The latter relationship, which Foster,

Haltiwanger, and Syverson (2008) also document, stems from the strong negative correlation

between pout and tfpq: The standard deviation of revenue productivity, which is 14.7% in the

revenue-weighted calculations, is approximately 19% smaller than the standard deviation of

quantity productivity. The countervailing effects—as in this case, on the standard deviation

of measured productivity—of factor price dispersion and goods price dispersion will be a

recurring finding in the remainder of this section.

4.3 Persistence

A long stream of research, beginning with Baily, Hulten, and Campbell (1992), has

documented the persistence of plant-level characteristics. Using regressions of the form,

xi,j,t+5 = α + β · xijt + εijt, (24)

Foster, Haltiwanger, and Syverson (2008) compute the 1 and 5-year autocorrelation co-
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Revenue-
weighted?

tfpq φ tfpr y pin pout

β No 0.351* 0.299* 0.306* 0.895* 0.309* 0.432*
s.e. No (0.022) (0.023) (0.024) (0.010) (0.025) (0.024)
β1/5 No 0.811 0.786 0.789 0.978 0.791 0.846
β Yes 0.175 0.185* 0.201 0.868* 0.326* 0.305*
s.e. Yes (0.092) (0.083) (0.106) (0.045) (0.047) (0.040)
β1/5 Yes 0.706 0.713 0.726 0.972 0.799 0.789

Table 5: Coeffi cient estimates and robust standard errors of the regression defined by Equa-
tion 24. Stars indicate significance at the 5% level. N=4310.

effi cients for different plant-level statistics, x. They compute that plant-level productivities

and output prices have a 1-year autocorrelation coeffi cient of approximately 80%. I replicate

these findings in Table 5. The novel components of Table 5 appear in the second, fourth,

and penultimate columns, where I compute the autocorrelation coeffi cients of φ, y, and pin.

I find that the persistence of φ is similar to that of the two other plant-level productivity

measures, and that the persistence of pin not statistically different from the persistence of

pout. By far, the most persistent plant-level characteristic is log revenues, y: the 1-year

autocorrelation coeffi cient is approximately 97%.

4.4 Characteristics of entering and exiting plants

Along many important dimensions, plants that are about to exit are different from

surviving plants, while plants that are entering an industry are different from incumbents.

Several studies have documented a negative relationship between productivity (or size) and

probability of survival. Moreover, while entrants are smaller than the average plant in their

industry, they are not less productive.

I replicate these results in Table 6, using regressions defined by Equations 25 and

26. Like Foster, Haltiwanger, and Syverson (2008), I find that entrants have above-average

tfpq and tfpr, but below-average revenues. These authors also estimate that, compared to

other plants in the industry-year, exiting plants have lower tfpq and tfpr. The productivity

advantage of entrants, and productivity disadvantage of exiting plants, is larger for quantity

productivity than it is for revenue productivity: removing the output-price component of

revenue productivity tends to decrease the difference between surviving and exiting plants’

productivitties.

xijt = αjt + β1I {i ∈ Entrant at year t}+ εijt (25)

xijt = αjt + β2I {i ∈ Exit before t+ 5}+ εijt (26)
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Coeffi cient
on:

Revenue-
weighted?

tfpq φ tfpr y pin pout

Entry No 0.017* 0.020* 0.015* -0.456* 0.005 -0.002
Entry No (0.008) (0.007) (0.006) (0.032) (0.006) (0.006)
Entry Yes 0.009 -0.004 -0.005 -0.698* -0.019 -0.014
Entry Yes (0.025) 0.023) (0.022) (0.092) (0.015) (0.016)
Exit No -0.025* -0.016* -0.020* -0.534* 0.014* 0.005
Exit No (0.007) (0.007) (0.006) (0.031) (0.005) (0.006)
Exit Yes -0.051* -0.042* -0.039 -0.609* 0.013 0.012
Exit Yes (0.018) (0.016) (0.020) (0.131) (0.012) (0.012)

Table 6: Comparison of plant-level statistics and entry/exit status. In the first four rows,
each cell gives the coeffi cient estimate, or standard error, of β1 in Equation 25. In the final
four rows, each cell gives the coeffi cient estiamte, or standard error, of β2 in Equation 26.
Stars denote significance at the 5% level. N=10,503.

In addition to these already-known empirical regularities, I compute, in the second-

to-last column of Table 6, that exiting plants pay, approximately 1.4% (1.3% for the revenue-

weighted calculations) more per unit of the intermediate input than the average plant in their

industry-year. When observations are weighted equally, the technical effi ciency, φ, is 2%

higher for entrants (compared to incumbents), and 1.6% lower for exiting plants (compared to

survivors). Comparing the first two columns of 6, the productivity advantage of incumbents

is larger for tfpq than it is for φ: Removing the materials-price component from quantity

productivity decreases the measured difference between surviving and exiting plants’pro-

ductivitties. In summation, Table 6 states that materials price variation and output price

variation have opposite effects on the measured productivity disadvantage of exiting plants.

Interactions among different selection mechanisms are explored in Table 7. This

table presents the results of a logit regression, in which the dependent variable equals 1 if

the plant exits before the subsequent Census of Manufacturers. Besides industry-year fixed

effects, the regressions include characteristics that affect plants’probabilities of survival. The

effects of increasing measured productivity or materials prices are considered, in isolation,

in the first four columns of Table 7. A one standard deviation increase in tfpq, tfpr, and

φ is associated with a 1.2%, 1.2%, or 0.8% decline in the probability of exit, while a one

standard deviation increase in pin is associated with a 1.1% increase in the probability of

exit. Including plant-level input prices, as I do in the fifth and sixth columns, attenuates the

estimates of the tfpr and tfpq terms, since some component of the selection-on-productivity

mechanism is now being captured by the pin variable. Note that no such attenuation occurs

between the third/fourth and seventh columns.

Tables 6 and 7 indicate that part of the selection-on-profitability mechanism is due
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tfpr -0.594* -0.552*
(0.179) (0.180)

tfpq -0.458* -0.380*
(0.133) (0.139)

φ -0.315* -0.369*
(0.138) (0.139)

pin 0.530* 0.472* 0.375* 0.594*
(0.180) (0.182) (0.189) (0.181)

Table 7: Coeffi cient estimates and standard errors (clustered at the plant level) from a
logit regression: the depedent variable equals 1 provided the plant exits before the following
Census of Manufacturers. Stars denote significance at the 5% level. N=10,503.

to the higher-than-average intermediate input prices that exiting plants pay. Relatedly, the

productivity advantage of entrants (compared to incumbents) and surviving plants (com-

pared to exiting plants) is highest when using tfpq as the productivity measure. In other

words, controlling for output prices, but not materials prices, tends to make entrants (sur-

vivors) appear relatively more productive, compared to incumbents (exiting plants). The

next subsection considers the magnitude and significance of the differences, across the three

productivity measures, of the importance of reallocation via entry.

4.5 Decompositions of industry productivity growth

In this subsection, I compute the fraction of aggregate productivity growth that oc-

curs via the net entry effect: the exit of relatively unproductive plants and the entry of

relatively productive plants. The extent to which reallocation across plants explains aggre-

gate productivity growth has been extensively studied (e.g., Baily, Hulten, and Campbell

(1992), Griliches and Regev (1995), Foster, Haltiwanger, and Krizan (2001), and Foster,

Haltiwanger, and Syverson (2008)). Of these analyses, I am following, most closely, Sec-

tion 5.2 of Foster, Haltiwanger, and Syverson (2008). There, the authors compute the net

entry effect when either tfpr or tfpq is used as the measure of plant productivity. Because

entrants charge significantly lower prices, compared to incumbents, the net entry effect is

smaller when revenue productivity measures are used instead of quantity productivity mea-

sures. The authors conclude that, "in terms of understanding the barriers to allocative

effi ciency ... revenue based productivity decompositions may focus too much attention on

continuing businesses and not enough on the role of entering businesses." (page 419). Below,

I show that accounting for materials prices substantially reverses this finding. The net entry

effect is larger when tfpq, instead of φ, is used as the measure of plant productivity.

Like Foster, Haltiwanger, and Syverson (2008), I use the following two growth de-
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compositions, the first due to Baily, Hulten, and Campbell (1992) and Foster, Haltiwanger,

and Krizan (2001) and the second due to Griliches and Regev (1995):

∆tfpt =
∑
i∈C

θi,t−1∆tfpit +
∑
i∈C

(
tfpi,t−1 − tfpt−1

)
∆σit +

∑
i∈C

∆tfpit∆θit (27)

+
∑
i∈N

θi,t−1(tfpit − tfpt−1)︸ ︷︷ ︸
Entry Effect

−
∑
i∈X

θi,t−1(tfpi,t−1 − tfpt−1)︸ ︷︷ ︸
Exit Effect

∆tfpt =
∑
i∈C

1

2
(θi,t−1 + θi,t) ∆tfpit +

∑
i∈C

1

2

(
tfpi,t + tfpi,t−1 − tfpt−1 − tfpt

)
∆θit (28)

+
∑
i∈N

θit

(
tfpit −

1

2
tfpt−1 −

1

2
tfpt

)
︸ ︷︷ ︸

Entry Effect

−
∑
i∈X

θi,t−1

(
tfpi,t−1 −

1

2
tfpt−1 −

1

2
tfpt

)
︸ ︷︷ ︸

Exit Effect

In Equations 27 and 28, θit denotes the revenue share of plant i, within its industry,

in year t; tfpt gives the revenue-weighted average (log) productivity in year t; ∆ is the

difference operator; and C, N , and X are the sets of continuing, entering, and exiting plants.
The decompositions highlight the different sources of industry productivity growth, including

the the Entry Effect, the Exit Effect, and the sum of the two effects (the Net Entry Effect).36

The magnitudes of these three effects will depend on which productivity measure—either tfpr,

tfpq, or φ—that is being plugged into Equations 27-28.

The results of the industry decompositions are given in Table 8. I decompose

the productivity growth—over 5 year intervals—separately for each of the 10 industries in the

benchmark sample. The values reported in the table are the averages over these 10 industries.

In the first 3 rows, industries with larger sales (primarily gasoline manufacturing) are given

more weight, while, in the last 3 rows, industries’weights are determined by the number

of plants in the industry. The main takeaway from the table is that the Net Entry term

is larger for quantity productivity (tfpq) than it is for either revenue productivity (tfpr)

or technical effi ciency (φ). So, consistent with Foster, Haltiwanger, and Syverson (2008),

Table 8 indicates that the contribution of net entry to aggregate productivity is larger when

output prices are accounted for. At the same time, accounting for materials prices reduces

the measured contribution of net entry to productivity growth. These patterns are robust

to the decomposition method and the relative weights given to different industries.37

36Since a large number of plants enter and exit my benchmark sample without actually entering or exiting
their industries, I will be unable to distinguish among the sources of aggregate productivity growth that are
listed in the first lines of Equations 27 and 28.
37One problem with the productivity growth decompositions originates from the overrepresentation, in
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Productivity
Measure

Weight
Industries By:

Total Entry Exit
Net
Entry

Entry Exit
Net
Entry

tfpr Real Revenues -1.60 -0.08 0.08 0.00 -0.05 0.12 0.08
tfpq Real Revenues -1.60 -0.06 0.15 0.09 -0.02 0.19 0.16
φ Real Revenues -1.60 -0.09 0.13 0.04 -0.05 0.17 0.12

tfpr # of Plants 1.30 0.23 0.12 0.35 0.16 0.22 0.38
tfpq # of Plants 1.30 0.32 0.12 0.44 0.25 0.22 0.47
φ # of Plants 1.30 0.25* 0.14 0.39 0.17* 0.24 0.41

Decomposition Method Foster et. al Griliches and Regev

Table 8: Aggregate productivity growth decompositions (all values are given as percentages).
Stars indicate that the value given in the cell is significantly different than the corresponding
value that uses tfpq as the measure of plant productivity. See Appendix E for details.

For completeness’sake, I assess the statistical significance of the differences, across

the productivity measures, of the importance of the Entry, Exit, or Net Entry terms. When

industries are weighted by the number of plants, the Entry Effect is significantly greater

when φ—instead of tfpq—is used as the productivity measure. Other differences are not

statistically significant.

5 Sources of Materials Price Dispersion

I discuss three explanations for the observed within-industry dispersion of intermediate

input prices. The sources of materials price dispersion have implications for the social

benefits generated by each plant. Plants that pay low materials prices by taking advantage

of monopsonistic power are not providing any societal benefit: low materials prices are a

transfer of profits from supplier to buyer. On the other hand, if plants pay low materials

prices because their suppliers are exceptionally productive, low materials prices represent a

positive impact on social welfare.

To calculate the relative importance of these different sources of materials price

dispersion, I need to impute, for each manufacturer, the identities of its suppliers. I outline,

in Section 5.1, the algorithm that I use to impute buyer-supplier relationships. In Section

5.2, I compute the fraction of dispersion in tfpq and pin that can be explained by plants’

geographic locations and their suppliers’marginal costs. A positive correlation between

the benchmark sample, of large plants. Because of this, entering and exiting plants are underrepresented
in the benchmark sample. As a result, the decompositions understate the role of net entry as a source of
aggregate productivity growth.
In Appendix D.7, on page 61, I show that the qualitative patterns of this section (in particular, the

difference, between the three productivity measures, in the size of the Net Entry Effect) hold after correcting
for the underrepresentation of entering and exiting plants.
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plants’marginal costs and their suppliers’marginal costs stimulates the following question:

If plants with low-marginal cost suppliers are more productive, and having low marginal

costs is so advantageous, what prevents plants from purchasing their materials inputs from

the low marginal cost suppliers? In Section 5.3, I argue that buyer-supplier relationships are

persistent, suggesting that there is some inertial force that inhibits all plants from switching

to low marginal cost suppliers. I close, in Section 5.4, by showing that suppliers charge

different prices to different customers, prima facie evidence of price discriminatory behavior.

I calculate the fraction of materials price dispersion that can be explained by this price

discriminatory behavior.

5.1 Imputation of buyer-supplier relationships

To impute buyer-supplier relationships, I use the algorithm introduced in Atalay, Hor-

taçsu, and Syverson (2012). The algorithm generates a list of establishments that could

potentially receive any shipment that is observed in the Commodity Flow Survey. Consider

a hypothetical shipment of commodity, c, made by establishment, h, to zip code, z.38 The

establishments, i, that could potentially receive this shipment are those who are located in

zip code, z, and are members of an industry that use commodity, c. For example, the po-

tential recipients of a shipment of Portland cement to z would be all plants in that zip code

who were engaged in road construction, concrete brick manufacturing, ready-mix concrete

manufacturing, or wholeasaling of brick, stone and related materials. If there are multiple

potential recipients of the shipment, and one of these establishments is owned by the same

firm as the sending establishment, then I presume that the shipment was received by the

same-firm establishment.39 Otherwise, I assign each potential recipient, i, to be downstream

of plant h.40

So that I can compare suppliers’and buyers’productivities, I require both the up-

stream and downstream industries to be from the manufacturing sector. Of the ten indus-

tries in the benchmark sample, only two—ready-mix concrete and cardboard boxes—have a

38The commodity code used in the 1993 Commodity Flow Survey is the Standard Transportation Com-
modity Code (STCC). A list of STCC codes can be found in pages 117 to 167 of "Reference Guide for
the 2008 Surface Transportation Board Carload Waybill Sample," published by Railinc. Since 1997, the
Commodity Flow Survey has used the Standard Classification of Transported Goods (SCTG) classification
of commodity codes. Documentation related to SCTG codes can be found on the Census website.
39Atalay, Hortaçsu, and Syverson (2012) make the same assumption. This assumption is motivated by

the finding that establishment h is much more likely to ship to zip codes that contain an establishment from
the same firm.
40By assigning all potential recipients, i, to be downstream of plant h, I am undoubtedly overcounting

the number of buyer-supplier relationships. In an unreported robustness check, I reproduce the analysis of
Section 5.2, weighting observations by the inverse of the number of potential recipients in the destination
zip code. I find that the results of Section 5 are essentially unchanged.
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main input that is produced by a manufacturer. For Portland cement producers, I look

for shipments in the Commodity Flow Survey for which the commodity code is that of ce-

ment.41 The industries with establishments that could potentially receive Portland cement

(STCC=32411) are road construction firms (SIC=1610-1619), concrete brick and block man-

ufacturers (SIC=3271), ready-mix concrete manufacturers (SIC=3273), and wholesalers of

brick, stone and related materials (SIC=5032). For paper and paperboard manufacturers, I

look for shipments in the Commodity Flow Survey for which the commodity code is that of

paperboard (STCC=26311 in 1993, SCTG=27319-27320 in 1997). The industries with es-

tablishments that could potentially receive these shipments of paperboard are manufacturers

of corrugated and solid fiber boxes (SIC=2653) and folding paperboard boxes (SIC=2657).

For within-firm shipments, surveyed establishments do not report the actual market

value of the transaction. Instead, the establishments are asked to estimate what the value

of the shipment would have been if it had been sold to some other firm. Since it is unclear

what these values actually represent, I remove downstream establishments who receive a

substantial fraction, 15% or more, of the relevant input from other plants from the same

firm.42

Mismeasurement of buyer-supplier relationships will primarily affect the estimated

strength of the relationship between buyers’and suppliers’productivities. In other exercises,

I a) compare downstream plants’materials prices and upstream plants’productivities, and b)

examine the persistence of buyer-supplier relationships. These exercises rely only on infor-

mation about the sending establishments, and thus are not as sensitive to mismeasurement

of buyer-supplier relationships.

5.2 Materials prices and supplier marginal costs.

I document the following two relationships. First, ready-mix concrete and cardboard

box manufacturers that have exceptionally productive suppliers purchase their cement or

paperboard at lower than average prices. This finding, along with the negative relationship

between a plant’s input prices and its tfpq (which is documented in Section 4.2), combines

41Productivity data for ready-mix concrete manufacturers are unavailable in 1997. So, for cement and
concrete manufacturers, I only look at buyer-supplier relationships in the 1993 Commodity Flow Survey.
42While varying the 15% cutoff down to 0% or up to 25% does not affect this section’s results, the

relationship between input prices and supplier productivity begins to disappear once the cutoff exceeds 25
or 30%.
Bernard, Jensen, and Schott (2006) show that reported prices on cross-border shipments, for which the

sender and receiver are part of the same firm, are manipulated to take advantage of the different tax policies
of the destination and source countries. Even though such an incentive to mis-report does not exist in the
Commodity Flow Survey data, I argue that one should not put too much weight on input prices of the plants
that buy a substantial fraction of their inputs from within the firm.
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to generate the prediction of a second relationship: the tfpq of a plant and the tfpq of

its suppliers should be positively correlated. These relationships match the predictions

contained in Proposition 3.

I begin with some notation. Let χhit denote the total mass (in thousands of pounds)

of shipments sent by plant h to plant i in year t, and let ωhit denote the total value (in

thousands of real dollars) of shipments sent by plant h to plant i in year t. Then, the

(f.o.b.)43 price that plant h charges plant i is simply the ratio of the value to the price:

PCFS
hit =

ωhit
χhit

(29)

The "CFS" superscript will denote prices computed using the Commodity Flow Survey

data (as opposed to the prices that are computed in Section 4, using data from the Census

of Manufacturers.)44

A supplier’s average output price equals a value-weighted average of the prices that

it charges to the plants that we observe it supplying to:

P out,CFS
ht =

∑
i:h→i ωhitP

CFS
hit∑

i:h→i ωhit
(30)

Plants’average input prices are defined similarly. For each downstream plant, i, I take

the value-weighted average over all plants, h, that I observe i purchasing from:

P in,CFS
it =

∑
h:h→i ωhitP

CFS
hit∑

h:h→i ωhit
(31)

Note that, because it does not include freight charges, P in,CFS
it will be less than what

plants pay for their intermediate inputs. I define a second plant-level input price, that

includes freight charges:

P̃ in,CFS
it =

∑
h:h→i ωhit

(
PCFS
hit + τhit

)∑
h:h→i ωhit

(32)

I estimate transportation costs, τhi, from the mileage of the shipment and the mode of

43F.o.b. stands for free on board (or freight on board). Unlike the c.i.f. (cost, insurance, and freight)
price, the f.o.b. price does not include freight or insurance charges.
44The Commodity Flow Survey has, up to now, been an unexploited source of data on plants’ output

prices. With this in mind, I compare plants output prices, derived from the Commodity Flow Survey to the
prices derived from the better-known Census of Manufacturers. For the 53 cement manufacturers in this
section’s sample, the correlation between pout,CFSh and pouth is 21%. For the 60 paperboard manufacturers
in the sample, the correlation between the two plant-level output prices is 41%.
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transport.45,46

Finally, for any concrete or cardboard box manufacturer, i, that is identified by

the algorithm outlined in Section 5.1, I compute average supplier productivity, TFPQit as

follows:

TFPQit ≡
∑

h:h→i ωhitTFPQht∑
h:h→i ωhit

(33)

Similar to the analysis of Section 4, all plant-level statistics are logged and stated

relative to the average value for the industry-year. Again, the logged, de-meaned variables

are written using lower-case letters.

With these definitions in hand, I am now able to compare the price that a plant pays

for its material inputs to the average productivity of the plant’s suppliers.47

p̃in,CFSit = βdivision + β1 · tfpqit + εit (34)

The results are presented in Table 9. A 10 percent increase in the marginal cost

of plants’ suppliers corresponds to a 2 to 2.5 percent increase in plants’materials prices.

The estimated effect of supplier productivity on materials prices is somewhat stronger for

boxes than it is for ready-mix concrete. Including fixed effects for the geographic region

of the downstream plant slightly decreases the estimate of β1: one reason why intermediate

input prices are spatially correlated is that the plants within a particular region are likely to

have the same suppliers. (An alternate explanation is that marginal costs of plants in the

supplying industry are spatially correlated.)

Each cell in Table 10 presents the unexplained variation—measured as the (revenue-

weighted) standard deviation of the residuals, when p̃in,CFSit is regressed on different com-

binations of the right-hand side variables of Equation 34. Comparing the first and second

45The Bureau of Transportation Statistics collects information on ton-mile freight charges for shipments
sent along different transport modes. Since the Commodity Flow Survey contains information on the weight
of each shipment, as well as the distance that the shipment traveled, it is straightforward to estimate the
shipment freight charge.
See http://www.bts.gov/publications/national_transportation_statistics/html/table_03_21.html for

the data on freight rates.
46For the corrugated-box manufacturing industry, I relate p̃in,CFSit and pinit . (Remember that p

in
it cannot

be computed in 1992 or 1997 for ready-mix concrete manufacturers.) The strength of this relationship,
between the materials prices computed from the two data sources, indicates the success (or lack thereof)
of the imputation procedure outlined in Section 5.1. The correlation between p̃in,CFSit and pinit is 25%,
meaning that I am mismeasuring many buyer-supplier relationships, but that the imputation algorithm
yields a workable dataset.
47Using pin,CFSit , instead of p̃in,CFSit , as the dependent variable of Regression 34 generates a similar estimate

of β1.
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Sample Boxes Concrete Pooled Boxes Concrete Pooled

tfpqit
-0.261*
(0.059)

-0.189*
(0.093)

-0.245*
(0.050)

-0.253*
(0.058)

-0.188
(0.112)

-0.237*
(0.049)

N 190 131 321 190 131 321
Adjusted R2 0.104 0.036 0.087 0.099 0.084 0.091
Division F.E.? No No No Yes Yes Yes

Table 9: Coeffi cient estimates and robust standard errors, from the regressions defined by
Equation 34. Stars indicate significance at the 5% level.

Include Division
Fixed Effects ?

No Yes No Yes

Include tfpqit ? No No Yes Yes
Sample Sample Size
Boxes 190 0.202 0.197 0.190* 0.187
Concrete 131 0.374 0.351 0.365 0.345
Pooled 321 0.224 0.220 0.214* 0.211*

Table 10: Each cell gives the real-revenue-weighted standard deviation of the residuals in a
particular regression; the full specification is given in Equation 34. Across the columns of the
table, different combinations of independent variables are included in the regressions. Across
the rows of the table, different samples are used. Stars indicate that the decline in dispersion
is significantly more than the decline that would occur from simply including "fake" random
variables on the right hand side of Equation 34. See Appendix E for details.

columns of Table 10, I calculate that the inclusion of division fixed effects reduces the un-

explained variation of materials prices by approximately 1.8%
(
= 0.224−0.220

0.224

)
. The inclu-

sion of suppliers’productivities reduces the unexplained variation by approximately 4.4%(
= 0.224−0.214

0.224

)
, while the two sets of variables jointly reduce the unexplained price variation

by 5.8%. Stars in Table 10 indicate that the decline in dispersion is significantly more than

what would be expected by including randomly-generated regressors.48

A prediction that emerges from two previously documented relationships—the nega-

tive relationship between pout and tfpq, and the negative relationship between p̃in,CFSit and

tfpqit—is that plant level tfpq should be positively correlated to the tfpq of the plants’

suppliers. I test this prediction by running the regression specified by Equation 35.

tfpqit = βdivision + β1 · tfpqit + εit (35)

48Any set of variables—for example, a random variable drawn from a standard normal distribution, or a
set of 12 dummy variables that sum up to 1—will necessarily explain some positive fraction of the variation
in p̃in,CFSi . In Appendix E, on page 65, I test whether the decline in dispersion is significantly greater than
what would be expected from including different combinations of "fake" random variables on the right hand
side of Equation 34.
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Sample Boxes Concrete Pooled Boxes Concrete Pooled

tfpqit
0.078
(0.066)

0.132*
(0.045)

0.090
(0.052)

0.027
(0.063)

0.133*
(0.054)

0.070*
(0.047)

N 190 131 321 190 131 321
Adjusted R2 0.003 0.059 0.010 0.034 0.052 0.042
Division F.E.? No No No Yes Yes Yes

Table 11: Coeffi cient estimates and robust standard errors of the regressions defined by
Equation 35. Stars indicate significance at the 5% level.

Include Division
Fixed Effects ?

No Yes No Yes

Include tfpqit ? No No Yes Yes
Sample Sample Size
Boxes 190 0.219 0.211 0.218* 0.210
Concrete 131 0.210 0.203 0.203* 0.197
Pooled 321 0.218 0.211 0.217 0.211

Table 12: Each cell gives the real-revenue-weighted standard deviation of the residuals in a
particular regression; the full specification is given in Equation 35. Across the columns of the
table, different combinations of independent variables are included in the regressions. Across
the rows of the table, different samples are used. Stars indicate that the decline in dispersion
is significantly more than the decline that would occur from simply including "fake" random
variables on the right hand side of Equation 35. See Appendix E for details.

The results of this regression, which are displayed in Table 11, confirm that there is, indeed,

a positive relationship between plants’marginal costs and the marginal costs of plants’sup-

pliers. The relationship between tfpqit and tfpqit is weaker, however, than the relationship

between tfpqi and p̃
in,CFS
it that was estimated in Table 9.

Table 12 shows the unexplained variation of tfpqit that remains after regressing on

different combinations of explanatory variables. Only 4% of the variation in tfpqit can be

accounted for, using division fixed effects and suppliers marginal costs.

5.3 Persistence of relationships

Buyer-supplier relationships are persistent across time. The estimated persistence of

buyer-supplier relationships suggests that there is some force that inhibits intermediate in-

puts purchasers from switching suppliers. Whether this inhibiting force reflects some extra

profitability that is conferred by repeated interaction, or some idiosyncratic match-specific

productivity, it will prevent all buyers from switching to the lowest-cost intermediate goods

suppliers.
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To provide some empirical evidence for the persistence of buyer-supplier relation-

ships, I explore the shipments sent by cement and paperboard manufacturers in the 1993

and 1997 Commodity Flow Surveys. Again, from the Commodity Flow Survey, I cannot

observe the identity of the downstream buyer. Instead, I proxy for the identity of the down-

stream buyer using the destination zip code. I run a conditional logit regression, described

by Equation 37; the dependent variable equals 1 if the cement/paperboard plant, i, ships to

zip code, z, in 1997. The explanatory variable of interest is an indicator, which equals 1 if

the plant shipped to the zip code in 1993. Destination zip-code level fixed effects, supplier

fixed effects, and the log distance between plant i and zip code z are additional explanatory

variables.49

I {i→ z in 1997} = βz + βi + β1 log (distance i→ z) + β2I {i→ z in 1993} (37)

+ β3I {plant of i’s firm is located in z in 1997}+ εiz

The results are presented in Table 13. Both cement and paperboard suppliers’

decisions on which destinations to ship to are persistent across time. If plant i sells to zip

code z in 1993, the probability that i will zip to z in 1997 is much higher, approximately 8

times larger for cement manufacturers and 10 times larger for paperboard manufacturers.

There are two distinct interpretations of the positive estimate on, β2, the coeffi cient

on the persistence of buyer-supplier relationships (see Heckman (1981), or Dubé, Hitsch, and

Rossi (2010)).51 In the first interpretation, an establishment’s profitability of working with a

counterparty increases from having transacted with that counterparty in the past. There are

many reasons why the profitability of a buyer-supplier relationship might increase as buyers

and suppliers interact with one another. Kellogg (2011), for instance, documents that oil

49Equation 37 can be derived from a discrete choice model in which establishments choose which zip code
to sell to. Suppose that establishments can sell to at most one zip code and suppose that the profits that
establishment i would earn from selling to zip code z are given by:

uizt = αi + αz − α1 log (distance i→ z) (36)

−α2I {i→ z in year t− 1} − α3I {plant of i’s firm ∈ z}+ ηizt.

When ηizt is distributed according to the Type 1 Extreme Value distribution, establishments choices will
be consistent with Equation 37.
50In addition, I restrict the sample to establishments that were sampled in both the 1993 and 1997

Commodity Flow Surveys. Secondly, in order to comply with Census disclosure rules, I restrict the sample
to plants that are members of firms, f, such that the following three criteria hold: a) there exists at least one
i, z pair for which plant i (owned by firm, f) shipped to zip code z in 1993, but not in 1997; b) there exists
at least one i, z pair for which plant i shipped to zip code z in 1997, but not in 1993; and c) there exists at
least one i, z pair for which plant i shipped to zip code z in both 1993 and 1997. The coeffi cient estimates
are similar when the sample is constructed without this second restriction.
51Spurious state dependence occurs when the ηizt in Equation 36 are serially correlated, or if there are

omitted variables in Equation 37.
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Sample Cement Cement Cement Paperboard Paperboard Paperboard
Did the plant sell to 2.075 2.009 2.988 2.661
the zip code in 1993? (0.105) (0.105) (0.067) (0.069)
Log Mileage -2.835 -2.594 -2.593 -1.025 -0.867 -0.881

(0.050) (0.050) (0.051) (0.024) 0.026 (0.026)
N 106795 106795 106795 75360 75360 75360
Number of zip codes 2015 2015 2015 1256 1256 1256
Number of plants 53 53 53 60 60 60
Pseudo- R2 0.687 0.713 0.718 0.148 0.257 0.290
Unconditional
probability of entry

0.021 0.021 0.021 0.030 0.030 0.030

Include control for
firm presence in z?

No No Yes No No Yes

Table 13: Coeffi cient estimates and standard errors, from the regression defined by Equation
37. The sample is comprised of cement and paperboard plants that were included in the
sample of Regressions 34, 35, and 40. For a zip code to be in the sample, at least one plant
must have shipped to the zip code.50

production companies and drillers become more productive as they gain experience working

with one another. Alternatively, according to the second interpretation, some establishments

happen to find it more profitable to work with certain counterparties for idiosyncractic

reasons, other than geographic proximity. The estimate of the persistence term, β2, will be

positive provided these idiosyncratic factors display some persistence. Unfortunately, the

data that I have at hand do not permit me to distinguish between these two interpretations.

Either interpretation, however, is consistent with downstream establishments that decide to

remain matched with high-marginal-cost suppliers.

5.4 Price discriminatory behavior of suppliers

A third explanation for price variation lies in differences in the relative bargaining power

of the suppliers and buyers of any given material input. As the model in Section 2.2 shows,

plants may have different relative bargaining strength because they occupy different positions

within the buyer-supplier network. In this subsection, I document that suppliers charge dif-

ferent prices—for the same good—across destinations. I then show that these within-supplier

price differences explain a large fraction of the dispersion in the prices that downstream

plants pay for their intermediate inputs.

For each buyer-supplier relationship, I define the within-supplier price deviation, ψhit,
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as:

ψhit ≡ log

(
PCFS
hit

P out,CFS
ht

)
, (38)

ψhit is the price that i pays for h’s output, compared to the other plants that buy

intermediate inputs from h; ψhit is positive provided plant i purchases its material inputs

from h at a higher price than P out,CFS
ht , the average output price of supplier, h.

Motivated by the right panel of Figure 1, Figure 2 decomposes the price distribution

into two separate components. Any buyer-supplier-specific price, pCFShit , is the sum of the

supplier’s average output prices, pout,CFSht , and the within-supplier price deviation, ψhit. The

price, pCFShit , that a supplier charges a buyer for intermediate inputs can be, mechanically,

high for one of two reasons: either the supplier has a high average price, pout,CFSht , or the

supplier charges i a higher price than its other customers (i.e., ψhit is large). For my sample

of cement and paperboard manufacturers, the distributions of pCFShit , ψhit, and p
out,CFS
ht are

depicted in Figure 2.52 The standard deviation of pCFShit is 0.35, larger than the standard

deviation of suppliers’ average output prices (SD(pout,CFSht ) = 0.28), and almost twice as

large as the standard deviation of the within-supplier deviations (SD(ψhit) = 0.19).

The price-discrimination coeffi cient, ψit, measures the extent to which plant i pays

its supplier a higher materials price than the other customers of its suppliers. It is a weighted

average, over i’s suppliers, of the ψhit:

ψit ≡
∑

h:h→i ωhitψhit∑
h:h→i ωhit

=

∑
h:h→i ωhit

(
phit − pout,CFSht

)
∑

h:h→i ωhit
(39)

I regress buyers’average materials prices on their suppliers’marginal costs and their

own ψit.

p̃in,CFSit = βdivision + β1 · tfpqit + β2 · ψit + εit (40)

The regression results are given in Table 14. As in Table 9, the estimate of β1

is positive and statistically significant: plants with low-marginal cost suppliers pay lower

than average prices for their intermediate inputs. In addition, there is a strong, positive

relationship between p̃in,CFSit and ψit.

A positive, significant coeffi cient estimate of β2 is not surprising. A mechanical

relationship between ψit and p̃in,CFSit exists, as higher-than-average-priced shipments will

generate a large value for p̃in,CFSit (see Equation 32) and a large value of ψit (see Equation

39). The more interesting calculations, which are given in Table 15, compute the fraction

52Figure 2 looks similar, whether one uses the sample of cement manufacturers, the sample of paperboard
manufacturers, or the pooled sample of paperboard and cement manufacturers.
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Figure 2: Value-weighted price distributions. The solid, thin line gives the distribution of
log(PCFS

hi ). The thick, dash-dot line gives the disitribution of within-supplier price devia-
tions, ψhi, while the thin, slashed line gives the distribution of suppliers’average output
prices. The sample includes all shipments sent by cement and paperboard manufacturers
that comprised the sample of the regressions defined by Equations 34 and 35.

Sample Boxes Concrete Pooled Boxes Concrete Pooled

tfpqit
-0.231*
(0.060)

-0.138
(0.085)

-0.210*
(0.051)

-0.229*
(0.056)

-0.144
(0.103)

-0.207*
(0.047)

ψit
0.322*
(0.097)

0.868*
(0.284)

0.422*
(0.123)

0.326*
(0.104)

0.903*
(0.229)

0.419*
(0.126)

N 190 131 321 190 131 321
Adjusted R2 0.184 0.427 0.217 0.182 0.507 0.219
Division F.E.? No No No Yes Yes Yes

Table 14: Coeffi cient estimates and robust standard errors of the regressions defined by
Equation 39. Stars indicate significance at the 5% level.
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Include Division
Fixed Effects ?

No No Yes No Yes

Include tfqit ? No No No Yes Yes
Include ψit ? No Yes Yes Yes Yes

Sample Sample Size
Boxes 190 0.202 0.191* 0.186 0.182* 0.178*
Concrete 131 0.374 0.286* 0.257* 0.281* 0.252*
Pooled 321 0.224 0.206* 0.202* 0.198* 0.195*

Table 15: Each cell gives the real-revenue-weighted standard deviation of the residuals in a
particular regression; the full specification is given in Equation 40. Across the columns of the
table, different combinations of independent variables are included in the regressions. Across
the rows of the table, different samples are used. Stars indicate that the decline in dispersion
is significantly more than the decline that would occur from simply including "fake" random
variables on the right hand side of Equation 40. See Appendix E for details.

of the dispersion in p̃in,CFSit that can be explained by ψit. Including ψit as a covariate

reduces the unexplained variation of p̃in,CFSit by 7% (= 0.224−0.206
0.224

). A combination of ψit
and tfpqit explains 12% (= 0.224−0.198

0.224
) of the variation of plants’materials prices, while the

full combination of right-hand-side variables reduces the unexplained variation of p̃in,CFSit by

13% (= 0.224−0.195
0.224

).

6 Conclusion

In this paper, I have studied the consequences and sources of materials price dispersion.

Variation in materials prices explains a substantial fraction of the variation in plants’mar-

ginal costs, revenue total factor productivities, and probabilities of survival. Moreover, one

reason why some plants have low materials prices is because they have access to suppliers

with low marginal costs.

These results indicate that establishments’survival and growth prospects are directly

related to those of their customers and/or suppliers. In future work, I hope to investigate

the causal relationship between establishments’growth and the growth rates of their coun-

terparties. Such an investigation will be an important building block in understanding the

propensity with which shocks to a small set of firms have the potential to cascade throughout

the economy and produce aggregate fluctuations.
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Appendix

A Proofs

Proposition 1 (Reminded) When the revenue share, Ri, of each plant is suffi ciently

close to 0, the output price, P out
i , is approximated by the following equation

logP out
i ≈ 1

2

(
logMCi + logMC

)
+

1

2γ

(
∆i + ∆

)
(41)

≈ 1

2

(
σ logP in

i − log Φi + σlogP in − log Φ
)

+
1

2γ

(
∆i + ∆

)
Proof.
Write the profits of firm i as the product of a) quantity b) and the difference between

price and marginal costs:

Πi =
ΥRi

P out
i

(
P out
i −MCi

)
= ΥRi

(
1− MCi

P out
i

)

Take first order conditions and re-arrange. Doing so results in a markup,P
out
i

MCi
, that equals

1 −
[
∂ logRi
∂ logP outi

]−1

. Using the expression for ∂ logRi
∂ logP outi

= − I−1
I

γ
Ri
(which can computed from

Equation 3), plant i’s output price is given by the following equation:

P out
i

MCi
= 1 +

RiI

γ(I − 1)
(42)

Assuming that Ri is suffi ciently close to 0, log
(

1 + RiI
γ(I−1)

)
is approximately equal to

Ri
γ

I
I−1
. Thus, Equation 42 leads to

logP out
i ≈ logMCi +

Ri

γ

I

I − 1
. (43)

Furthermore, the revenue share of plant i equals (see Equation 3)

Ri = ∆i −
γ(I − 1)

I
logP out

i +
γ

I

I∑
k=1,i 6=k

logP out
k ,
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yielding:

RiI

γ(I − 1)
= ∆i

I

γ(I − 1)
− logP out

i +
1

I − 1

∑
k 6=i

logP out
k

= ∆i
I

γ(I − 1)
− I

I − 1
logP out

i + logP out. (44)

Plugging Equation 43 into Equation 44 leads to

logP out
i ≈ logMCi + ∆i

I

γ(I − 1)
− I

I − 1
logP out

i + logP out.

logP out
i ≈ 1

2
(logMCi) +

∆i

γ
+

logP out

2
(45)

The equation

1

I

I∑
i=1

logPi =
1

2I

I∑
i=1

(
logMCi + logP

)
+

1

2γ

1

I

I∑
i=1

∆i,

is equivalent to

logP out ≈ logMC +
1

γ
∆. (46)

Thus, plugging 46 into Equation 45 yields

logPi ≈
1

2

(
logMCi + logMC

)
+

1

2γ

(
∆i + ∆̄

)
,

which is the desired result.

Proposition 3 (Reminded) Assume that a) Cov(logP in, log Φ),Cov(logP in, ∆), and

Cov(∆, log Φ) are suffi ciently close to 0 in the observed sample, and b) Ri → 0 for all

plants i. Then, the following relationships hold:

1. The materials price is increasing, in the sense of first order stochastic dominance, in

the marginal cost of the supplier.

2. Plants’marginal costs are positively correlated to their suppliers’marginal costs.

Proof.

1. Let G(·) denote the cumulative distribution function of suppliers’marginal costs, and
let H(P in|MCup) denote the cumulative distribution function of the price that i pays

44



for the intermediate input, conditional on the marginal cost of the lowest-marginal-cost

supplier.

Then:

1−H(P in|MCup) = Pr
{
ξ − 1 draws each ≥ P in|ξ − 1 draws each ≥MCup

}
=

(
1−G(P in)

1−G(MCup)

)ξ−1

Re-arranging:

H(P in|MCup) = 1−
(

1−G(P in)

1−G(MCup)

)ξ−1

The desired result follows from the fact that the right hand side of the previous equation

is decreasing in, MCup, the marginal cost of the best supplier.

2. Since, from part 1,
∂E[logP in|MCup]

∂MCup
> 0, Cor(logP in , logMCup) > 0. Since I assumed

that Cov(logMCup, log Φ) ≈ 0

Cov(logMC, logMCup) = Cov(σ logP in, logMCup)− Cov(log Φi, logMCup)

> 0

B Other Calculations

B.1 An expression for industry sales in terms of marginal costs

and demand shocks

As a reminder, expenditures on the industry output equals (see Equation 2):

log Υ = ∆0 +

I∑
i=1

∆i logP out
i − γ

2
(logPi)

2 +
γ

2I

I∑
i=1

I∑
k=1

logP out
i logP out

k

This is equivalent to:

log Υ = ∆0 + I · E
[
∆ logP out

]
− Iγ

2
E
[(

logP out
)2
]

+
γI

2

(
logP out

)2
(47)

= ∆0 + I · E
[
∆ logP out

]
− Iγ

2
V ar

(
logP out

)
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Next, I derive the following expression for V ar(logP out), in terms of moments of the

joint distribution of MC and ∆. Note that these moments are taken over the sample of

plants that we observe selling positive amounts of the good.

V ar(logP out) = V ar

(
1

2
(logMC) +

1

2γ
(∆)

)
(48)

=
1

4
V ar(logMC) +

1

4γ2
V ar(∆) +

1

2γ
Cov(logMC,∆)

Similarly, I derive the following expression for E [∆ logP out], in terms of the moments

of the joint distribution of MC and ∆.

I · E
[
∆ logP out

]
=

I

2
E

[
∆ logMC +

∆2

γ

]
+
I∆̄logMC

2
+
I
(
∆̄
)2

2γ
(49)

=
I

2
E [∆ logMC] +

I

2γ
E
[
∆2
]

+
logMC

2
+

∆̄

2γ

Finally, I plug Equations 48 and 49 into Equation 47, which leads to the following

expression for Υ, in terms of the moments of the joint distribution of MC and ∆:

log Υ = ∆0 +
I

2
· Cov(∆, logMC) +

I

2γ
V ar (∆) +

logMC

2

+
∆̄

2γ
− Iγ

8
V ar(logMC)− I

8γ
V ar(∆)− I

4
Cov(logMC,∆)

=
Iγ

8

[
2 · Cov

(
∆

γ
, logMC

)
+ 3 · V ar

(
∆

γ

)
− V ar(logMC)

]
∆0 +

1

2

[
E [logMC] + E

[
∆

γ

]]
The final expression for log Υ is the value that appears in footnote 11.

C Construction of the Sample

The benchmark sample consists of 10 industries (collections of 7-digit products) for

which both inputs and outputs display minimal levels of quality differentiation. The con-

struction of the sample consists of plants for which the following five conditions hold. First,

I discard any plants that have missing data on labor inputs, capital stocks, electricity bills,

or materials bills. Second, I discard any plants that do not fill out either the Census of

Manufacturers Materials Supplement (containing information on purchases of intermediate

inputs) or the Census of Manufacturers Productivity Supplement (containing information
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on products produced). Third, I throw out plants that have imputed values for quantities

of materials purchased or products produced.53 Fourth, I require that the plants in the

benchmark sample earn at least half of their revenues from one of the 10 main industries.

Fifth, I discard any plant that has an output price (defined by pout, as in Equation 16), an

input price (defined by pin, as in Equation 17 or 19), or a quantity total factor productivity

(defined by tfpq, as in Equation 20) that is more than 3 units away than the average for

that industry×year.
Industries are defined as the collection of 7-digit products in the following manner.

Bulk milk is the combination of fluid whole milk, bulk sales (2026112) and fluid skim

milk, bulk sales (2026115). The units of bulk milk are thousands of pounds.

White wheat flour is the combination of the ten 7-digit products: white flour, shipped

for export (2041105 and 2041107); bakers’and institutional white bread-type flours (2041111

and 2041113); bakers’and institutional soft wheat flour (2041115 and 2041117); family white

flour, other than self-rising (2041121 and 2041123); self-rising family white flour (2044126);

and flour shipped to blenders or other processors (2041128 and 2041129). The units of white

wheat flour are 50-pound sacks.

Ready-mix concrete consists of the single 7-digit product (3273000). In 1972 and

1977 some ready-concrete plants were producing a product with a code of 3273011. The

units of output are cubic yards. Production data do not exist for 1997; materials data do not

exist for 1992 or 1997. Because of this, for the analysis in Section 4, the sample period for

ready mix concrete is 1972-1987. The sample period for the analysis of Section 5, in which

I use the Commodity Flow Survey but not the Census of Manufacturers’materials data, is

1992. In addition to the five criteria listed in the first paragraph of this section, I require

ready-mix concrete plants to have positive purchases of both cement and sand/gravel. (I

need positive purchases of both of the main intermediate inputs so that I can estimate the

elasticity of substitution between cement and sand/gravel, using Equation 50.)

Yarn is comprised of the two 7-digit products, spun gray (22811100) and yarn, spun

53White, Reiter, and Petrin (2012) argue that, because of survey nonresponse, on average, 40% of the
non-adminisrative record plants in the Census of Manufacturers have imputed data. Moreover, because the
Census uses industry averages to impute missing values for shipments, materials purchases, or other vari-
ables, the imputation method causes a downward bias in estimated within-industry productivity dispersions,
and also biases the measured relationships among plant-level characteristics. With this in mind, I have
chosen to exclude all plants with imputed data on the quantities of materials purchases or goods shipped.
(Unfortunately, imputed-data flags for other variables—employment, electricity purchases, etc...—exist only
beginning in 2002. However, using data from 2002, I have checked that there are very few observations
with a) non-imputed quantities of materials/output and b) imputed values for other relevant variables. For
2002, I have also checked that the difference—between the three productivity measures—is robust to the in-
clusion/exclusion of observations that have imputed values for the "other" variables.) Then, at least for my
selected sample, I will be able to accurately measure within-industry dispersions of prices and productivities.
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and finished in the same establishment (2281187). The units of output are thousands of

pounds.

Gasoline is comprised of the following three 7-digit products: motor gasoline (2911131),

distillate fuel oil (2911412), and No. 4 type light fuel oil (2911414). The units of output

are thousands of barrels.

Coffee consists of two 7-digit products, whole bean coffee (2095111) and ground

coffee (2095115). The units of output are thousands of pounds.

Sugar consists of the single 7-digit product, raw cane sugar (2061011). The units

of output are short tons.

Packaged milk consists of the following three 7-digit products: fluid whole milk

(2026212), low fat milk (202623), and skim milk (2026225). The units of output are thou-

sands of quarts.

Corrugated boxes is a combination of nine 7-digit products, with products being

classified by their end use. These end-uses are containers of food and beverages (2653012);

carry-out boxes for retail food (2653014); containers of paper and allied products (2653013);

containers of glass, clay, and stone products (2653015); containers of metal products, ma-

chinery, equipment, and supplies (2653016); containers of electrical machinery, equipment,

supplies, and appliances (2653018); containers of chemicals and drugs, including paints, var-

nishes, cosmetics, and soaps (2653021); containers of lumber and wood products, including

furniture (2653022); all other end uses not specified (2653030). From 1972 to 1987, the

units of output for corrugated boxes were thousands of pounds. From 1992 on, the units of

output for corrugated boxes have been thousands of square feet.

Measuring corrugated boxes in terms of area, instead of mass, is somewhat problem-

atic. The density of boxes depend on their final use. In particular, the density of boxes

is lower for those boxes that are used as containers of food, beverages, paper and allied

products, glass, clay, stone, or metal, while the density of boxes is higher for boxes that are

used as containers of machinery, electronics, chemicals, lumber, and other products. Since

the total cost of producing corrugated boxes seems to be more closely related to the mass—

instead of surface area—of the amount produced, measured quantity total factor productivity

for low-density box manufacturers began to exceed, in 1992, the measured quantity total

factor productivity of high-density boxes.

To mitigate the impact of this measurement problem, I de-meaned, according to

Equation 23, plant-level statistics separately for the high-density (those plants that produced

output with a product code between 2653016 and 2653030) and low-density (those plants that

produced output with a product code between 2653012 and 2653015) box manufacturers.54

54Dropping the "Boxes, Year≥1992" subsample does not change any of the results from Section 4. I find it
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Employment Total Value of Shipments N Main
Sample Benchmark Main Ind. Benchmark Main Ind. Benchmark Main Ind. Ind.
Bulk Milk 3.950 3.441 9.082 8.023 127 7661 2026
Flour 4.763 3.010 9.854 7.942 503 2073 2041
Concrete 3.547 2.350 7.682 6.827 3708 20956 3273
Yarn 5.942 4.749 9.508 8.645 431 2233 2281
Boxes, Yr.≤’87 5.399 3.998 9.426 8.404 1820 7742 2653
Gasoline 6.554 4.867 12.977 11.157 692 1706 2911
Coffee 4.906 3.484 9.920 8.736 300 874 2095
Sugar 5.708 4.901 10.000 9.301 177 301 2061
Boxes, Yr.≥’92 5.559 3.998 9.799 8.404 646 7742 2653
Packaged Milk 5.119 3.441 9.465 8.023 2099 7661 2026
Pooled 4.740 3.128 9.119 7.689 10503 43546

Table 16: Descriptive statistics for the benchmark sample. Variables are stated in logs. The
final column refers to the 4-digit SIC industry of which the product is a memeber.

In Table 16, I provide some descriptive statistics of the benchmark sample. The

average log employment for plants is 3.93 (i.e., roughly 51 ≈ e3.93 employees work in the

average plant.) Plants that produce ready-mix concrete are one-third the size of the average

benchmark-sample plant, while plants engaged in gasoline production employ approximately

6 (≈ e5.741−3.934) times as many workers as the average plant.

Compared to the universe of plants that are in the same 4-digit SIC industry, the

plants in the benchmark sample employ 5.0(≈ e4.740−3.128) times as many employees and

have revenues that are 4.2(≈ e9.12−7.68) times larger. The difference is due to the Census

Bureau’s survey methodology: the largest plants tend to receive the survey questionnaires

on the products they produce or the materials they consume.

For a particular intermediate input to be included in the analysis, expenditures of the

material must make up at least 6% of total materials expenditures for that product group.

As the cut-off expenditure share decreases, additional intermediate inputs are included in

the analysis. Setting the cut-off too low results in the inclusion of intermediate inputs that

are purchased only by a few plants, hindering cross-plant comparisons of materials prices.

Setting the cut-off too high means that important components of plants’materials prices are

ignored. The 6% cut-off seems like a good compromise between these two considerations.

In some instances for which I combine groups of similar 6-digit products to form a

given "material input".55 For example, I combine material 131111 (domestic crude petro-

worth the trouble to keep the "Boxes, Year≥1992" subsample, since corrugated box manufacturers purchase
one of their main inputs—namely, paperboard—from the manufacturing sector, and thus can be included in
the analysis of Section 5.
55For 1992 and 1997, a description of the 6-digit material codes can be found by downloading MC92F7.dbf
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leum) and 131112 (foreign crude petroleum). The presumption when deciding to combine

two materials is that the manufacturer is indifferent between the two 6-digit materials. The

way in which I combined these 6-digit products is given below.

For milk (either bulk or packaged), the sole material is unpasteurized whole milk

(024111).

For white wheat flour, the sole material is wheat (011111).

In the production of ready-mix concrete, the two materials are cement (which was

coded as 324101 in 1982 and 1992 and 324102 in other years) and sand/gravel aggregate

(144201).

In the production of yarn, the two materials are raw cotton fibers (013101) and a

combination of polyester staple and tow (282425) and acrylic staple and tow (282426).

In the production of gasoline, I have combined foreign and domestic crude petroleum

into one material.

In the production of raw cane sugar, the sole material is sugar cane (013321).

Green coffee beans (017921) are the sole material used in the production of ground/whole

bean coffee.

Finally, in 1992-1997, the sole material used in the production of corrugated boxes

is coded 260003 ("Paper and Paperboard"). In 1987, the material "Paper/Paperboard" is

the combination of 262104 ("Paper, Cellulosic Wadding") and 262108 (Paper). Earlier than

this, "Paper/Paperboard" is the combination of materials 262102, 262103, and 262105.

D Robustness Checks

D.1 Industries with heterogeneous quality outputs

In this subsection, I reproduce the empirical analysis of Sections 4.1 and 4.2 for a set

of industries that display substantial output quality variation. The four industries that I

chose for this exercise are wine, softwood cut stock, cucumber pickles, and sausages.

Industries are defined as the collection of 7-digit products in the following manner:

Wine is a combination of the following three products: white grape wine (2084012),

red grape wine (2084014), and rose grape wine (2084016). The units of output are thousands

of gallons.

Softwood cut stock is a combination of two product groups: furniture cut stock

(2421711) and industrial cut stock (2421751). The units of output are thousands of board

feet.

from the following Census web-page: ftp://ftp2.census.gov/econ1992/MC92/.
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Sample Units of Output Material Inputs N

Wine
1000
gallons

Fresh grapes (41%)
Purchased wines (23%)
Glass containers (19%)

330

Softwood
Cut Stock

1000
board feet

Softwood dressed lumber (75%)
Softwood logs (8%)
Hardwood dressed lumber (8%)

160

Pickles
1000
gallons

Cucumbers (43%)
Glass containers (28%)

145

Sausages
1000
lbds.

Fresh and frozen pork (34%)
Fresh and frozen beef (30%)
Meat, unknown species (13%)

621

Pooled - 1256

Table 17: Description of the four industries comprising the "Quality Variation Sample".
The Material Inputs column gives the inputs that represent greater than 6% of the average
plants’total material purchases. The percentages that appear in the Material Inputs column
are the fraction of intermediate input expenditures that go to each particular material input.

Pickles are a combination of four products: dill pickles (2035211), sour pickles

(2035213), sweet pickles (2035215), and refrigerated pickles (2035219). The units of output

are thousands of gallons.

Sausages are a combination of six products: fresh sausage (2011711 and 2013711);

dry or semi-dry sausages (2011717 and 2013717); and frankfurters (2011721 and 2013721).

The units of output are thousands of pounds.

As with the benchmark sample, materials that make upmore than 6% of intermediate

input expenditures are included as "priced" materials. A summary of the characteristics of

the Output Quality Variation sample are given in Table 17.

Correlations among plant-level characteristics are presented in Table 18. Compared

to the benchmark sample, the standard deviations of most plant-level characteristics are

larger, while the skewness coeffi cients are smaller. (A positive skewness coeffi cient of, for

example, tfpr could reflect the existence of a productivity threshold t̃fpr, below which no

establishments may profitably operate.) In other words, when outputs vary in quality, the

distribution of plant-level characteristics both becomes less skewed and more disperse. More-

over, compared to the benchmark sample, the correlations among the different productivity

measures are weaker.

The dispersions of tfpq and φ are given in Table 19. For the pooled sample,

the dispersions of the two distributions are essentially the same. Looking across the four

industries, there is a significant decline in productivity dispersion for one of the industries,
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pin pout tfpq φ tfpr
pout 0.284*
tfpq -0.273* -0.808*
φ 0.254* -0.659* 0.858*
tfpr 0.024 0.329* 0.305* 0.290*
Std. Dev. 0.318 0.385 0.380 0.380 0.237
Skewness 0.276 0.051 0.070 0.273 0.777

Table 18: Correlations among plant-level characteristics, pooled across the four industries of
the "Quality Variation Sample." N=1256. Stars indicate that the correlation is significantly
different from 0, at the 5% level (see Appendix E for details).

Dispersion of tfpq Dispersion of φ Percent Decline
Sample 90/10 75/25 SD 90/10 75/25 SD 90/10 75/25 SD N

Wine 1.314 0.696 0.479 1.268 0.726 0.481 3.6% -4.0% -0.5% 330
Softwood Cut S. 1.571 0.818 0.547 1.316 0.697 0.477 21.4%* 18.9% 16.0%* 160
Pickles 0.891 0.446 0.344 0.881 0.412 0.339 1.2% 8.6% 1.3% 145
Sausages 0.727 0.399 0.295 0.747 0.366 0.301 -2.7% 9.5% -2.0% 621
Pooled 0.948 0.494 0.380 0.977 0.486 0.380 -2.9% 1.7% 0.0% 1256

Table 19: Dispersion of tfpq and φ, for the "Quality Variation Sample." Observations are
weighted by revenue. Stars indicate that he difference between tfpq and φ is statistically
significant, at the 5% level (see Appendix E for details). Due to Census’rules regarding
data confidentiality, I am prohibited from reporting the actual quantiles of any empirical
distribution. See the caption of Table 3 for a description of the imputation of the quantiles
of tfpq and φ.

softwood cut stock, and no difference for the other three industries.

In summation, output quality variation has the potential to severely attenuate the

difference between the dispersions of φ and tfpq. To the extent that any quality variation

exists in the benchmark sample, the difference between the dispersions of φ and tfpq, as

reported in Table 3, may be downwardly biased.

D.2 Variation in input quality

One of the main presumptions of the empirical analysis is that variation in input qual-

ity is not an important source of variation of input prices or productivities. I have chosen

industries to try to minimize the role of input quality differentiation. There is one specific

industry, ready-mix concrete, for which there is reason to suspect that input quality differ-

ences could be contaminating some of the results. In this subsection, I explain the reason

why input quality varies across plants, and then determine how big of an effect input quality

variation has on the observed relationships between input prices and different productivity
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measures.

Portland cement, the main intermediate input used in the production of ready-mix

concrete, comes in four types, labeled type I, II, III, or IV.56 Sales of type-I and II cement

constitute over 90% of the expenditures on cement, with the majority of sales coming from

type-I cement (U.S. Department of Interior (1989)). In areas where the soil has high sulfate

concentrations, type-II cement may be preferable to type-I cement, since ready-mix concrete

produced using type-I cement is susceptible to sulfate attack (cracking or loss of strength

in the presence of sulfate). Since high-sulfate concentrations exist only in the soil of parts

of the western third of the United States, one should observe type-I and type-II cement

consumed in the western United States, and only type-I cement consumed in the remainder

of the United States.57

So, because of differences in soil composition, input quality variation should be

greater in the western United States than in the eastern United States. With this in mind, I

split the sample of ready-mix concrete plants into two subsamples: plants residing in Census

divisions 1-7, and plants located in Census divisions 8-9.58 In the left panel of Figure 3, I

plot the distribution of pin separately for the two halves of the United States. As expected,

ready-mix concrete plants in divisions 8 and 9 pay a higher price for their intermediate inputs,

as some of these plants pay a higher price to purchase type-II Portland cement. Moreover,

the dispersion of pin is larger in divisions 8-9, as some ready-mix concrete plants purchase

the low-price type I cement, while others must purchase the high-price type-II cement. In

contrast, in the eastern United States, virtually all ready-mix concrete plants purchase type-I

cement, leading to a more compressed pin distribution.

In the right panel of Figure 3, I plot the relationship between pin and tfpq, separately

for the two subsamples. The negative relationship between tfpq and pin is somewhat stronger

in the eastern United States, while the correlations between pin and pout is greater in the

western United States. These geographic differences are consistent with greater cement

quality variation in the western United States.

Finally, in Table 21, I compute the dispersion of tfpq and φ for the ready-mix

concrete subsamples. The decline in dispersion is larger for each of the two subsamples than

it is for the pooled sample of 3708 ready-mix concrete plants.

56The standards for the different types of Portland cement are set by the American Society for Testing and
Materials (ASTM). See the ASTM webpage for more information on the distinguishing factors of different
types of Portland cement: http://www.astm.org/Standards/C150.htm
57I confirm this prediction using the Census of Manufacturers production file.
58Census division 8 is made up of Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, and

Wyoming, while Census division 9 is made up of Alaska, California, Hawaii, Oregon, and Washington. See
http://www.census.gov/geo/www/us_regdiv.pdf for a correspondence between states and Census divisions.
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Figure 3: In the left panel, I plot the distribution of pin separately for ready-mix concrete
platns located in divisions 1-7 (thick, dashed line) and plants located in divisions 8-9 (thin,
solid line). In the right panel, I plot the relationship between tfpq and pin, again separately
for divisions 1-7 and 8-9.

Sample ρ(pin, tfpq) ρ(pin, φ) ρ(pin, pout) ρ( φ, tfpq) ρ( tfpq, tfpr) ρ(tfpq, pout) N
Entire U.S. -0.306* 0.120* 0.276* 0.908* 0.741* -0.476* 3708
Div. 1-7 -0.341* 0.089* 0.251* 0.906* 0.750* -0.430* 3049
Div. 8-9 -0.351* 0.066 0.360* 0.911* 0.688* -0.597* 659

Table 20: Correlations between different plant-level statistics of ready-mix concrete produc-
ers. Each row gives the correlations for different subsamples of ready-mix concrete plants.

Dispersion of tfpq Dispersion of φ Percent Decline
90/10 75/25 SD 90/10 75/25 SD 90/10 75/25 SD N

Entire U.S. 0.521 0.251 0.224 0.486 0.236 0.215 7.4%* 6.6%* 4.4%* 3708
Divisions 1-7 0.486 0.238 0.211 0.439 0.222 0.199 11.3%* 7.7%* 6.2%* 3049
Divisions 8-9 0.611 0.296 0.255 0.570 0.253 0.239 7.4% 18.3%* 6.9%* 659

Table 21: Dispersion of tfpq and φ, for different subsamples of plants in the ready-mix
concrete industry. Stars indicate that he difference between tfpq and φ is statistically sig-
nificant, at the 5% level (see Appendix E for details). Due to Census’rules regarding data
confidentiality, I am prohibited from reporting the actual quantiles of any empirical distrib-
ution (e.g. φ). See the caption of Table 3 for a description of the imputation of the quantiles
of tfpq and φ.
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In summation, there is almost no variation in the quality of cement purchased by

ready-mix concrete plants in the eastern two-thirds of the United States. For this subsam-

ple, the difference between the standard deviation of tfpq and the standard deviation of φ is

2 to 3 percentage points larger than the differences that are reported in Table 3. So, mod-

erate amounts of intermediate input quality variation is probably causing me to somewhat

underreport the fraction of productivity dispersion that is due to differences in materials

prices.

D.3 Substitution across material inputs

Throughout the body of the paper, I assume that the elasticity of substitution between

different material inputs—for industries that use multiple material inputs—is 0 (see Assump-

tion 4 on page 19). For plants that produce ready-mix concrete, I assess the importance of

the assumption that plants may not substitute across different material inputs.

There is some evidence that ready-mix concrete manufacturers substitute across the

two intermediate inputs. I regress plants’utilization of cement, relative to sand/gravel,

against the ratio of plant-level cement and sand/gravel prices. The results, which are given

in Table 22, indicate that the elasticity of substitution is significantly greater than 0.59

log

(
NCement
ijt

N
Sand/Gravel
ijt

)
= βdivision×year + β · log

(
PCement
ijt

P
Sand/Gravel
ijt

)
+ εijt (50)

When the elasticity of substitution between gravel/sand and cement is constant (but

not necessarily 0), the price of a bundle of material inputs equals:

P in
ijt ≡

 sGravel,jt
sGravel,jt + sCement,jt

(
P in
Gravel,ijt

P̄ in
Gravel,jt

)1−%

+
sCement,jt

sGravel,jt + sCement,jt

(
P in
Cement,ijt

P̄ in
Cement,jt

)1−%
 1

1−%

(51)

In Equation 51, sGravel,jt refers to the share of materials expenditures that go to gravel,

P in
Gravel,ijt is the price that plant i pays per 1000 pounds of gravel in year t, P̄

in
Gravel,ijt is the

59A common problem when running regressions similar to Equation 50 is the presence of simultaneous-
equation bias: If a particular concrete manufacturer has a production technology that uses cement exception-
ally intensively, the cement supplier may respond by increasing the price that it charges. The simultaneous-
equation bias would case my estimated of β to under-represent the actual elasticity of substitution.

In unreported regressions, I instrument for
PCement
ijt

P
Sand/Gravel
ijt

using local employment in the limestone industry

(limestone is an intermediate input in cement manufacturing, but not in sand/gravel). The first-stage

regressions are consistent with a negative relationship between local limestone employment and
PCement
ijt

P
Sand/Gravel
ijt

.

The estimate of β, while substantially larger, is much less precisely estimated.
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Fixed Effects Sample β s.e. Adjusted R2 N
Year Entire U.S. -0.178 0.019 0.026 3708
Year×Division Entire U.S. -0.158 0.021 0.135 3708
Year×County Entire U.S. -0.209 0.035 0.467 3708
Year Divisions 1-7 -0.092 0.022 0.010 3049
Year×Division Divisions 1-7 -0.131 0.024 0.068 3049
Year×County Divisions 1-7 -0.184 0.043 0.436 3049

Table 22: Each row presents the results of a regression, defined by Equation 50. The first
three rows give estimates of the elasticity of substitution, using data from the entire U.S.,
while the last three rows give estimates computed using data only from the geographic
divisions in which only type-I cement is used.

Sample
Revenue-
weigthed?

90/10 SD 90/10 SD 90/10 SD N

% 0.1 0.1 0.3 0.3 0.5 0.5
Concrete No 0.5223 0.2302 0.5223 0.2302 0.5222 0.2303 3708

Yes 0.4864 0.2151 0.4863 0.2151 0.4862 0.2151 3708
Pooled No 0.4930 0.2190 0.4929 0.2190 0.4928 0.2191 10503

Yes 0.3240 0.1506 0.3240 0.1506 0.3240 0.1506 10503

Table 23: Dispersion of φ, which is computed using Equations 22 and 23. Due to Census’
rules regarding data confidentiality, I am prohibited from reporting the actual quantiles of
any empirical distribution (e.g., φ). See the caption of Table 3 for a description of the
imputation of the quantiles of tfpq and φ.

geometric average of the price paid by all ready-mix concrete producing plants in year t, and

% is the elasticity of substitution between cement and sand/gravel. In the baseline analysis,

I had set % = 0.

Using Equation 51, I compute ready-mix concrete plants’materials prices. I then

re-compute Φijt, using Equation 22, and φijt, using Equation 23. The dispersion of φ is

given in Table 23. As % increases, the price of a bundle of intermediate inputs decreases

for plants that have exceptionally cheap input prices for one of the two intermediate inputs.

Also, as % increases, the relative price of the bundle increases for plants that pay roughly

the same relative price for the two intermediate inputs. It turns out that, in combination,

these two effects have almost no impact on the overall dispersion of φ.

D.4 Substitution between material inputs and other inputs

The empirical analysis of Section 4 invokes the assumption that the elasticity of sub-

stitution between material inputs and all other inputs, which I will denote %̂, equals 1 (see

Assumption 1 on page 17). In reality, material inputs are likely to be complements to
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Revenue-
weigthed?

0.2 0.4 0.6 0.8 1.0

No 0.1507 0.1507 0.1507 0.1507 0.1506
Yes 0.2193 0.2192 0.2192 0.2191 0.2191

Table 24: Dispersion of φ, which is computed using Equations 53 and 23. The dispersion of
φ, when %̂ = 1.0, equals the value given in the final row of Table 3. N=10,503.

other inputs. In this subsection, I analyze how the dispersion of φ differs under different

assumptions on %̂.

Consider a plant with technical effi ciency Φijt. Assume that, for plant i, the price

of a unit of the "priced" intermediate input is P in
ijt. The price of the other inputs, P other

jt ,

are assumed to be the same for all plants in the industry-year (see Assumption 2 on page

17). With an elasticity of substitution of %̂, plant i’s marginal cost equals:

MCijt =
1

Φijt

Sjt · σjt ·(P in
ijt

P̄ in
ijt

)1−%̂

+ (1− Sjt · σjt)
(
P other
jt

P other
jt

)1−%̂
 1

1−%̂

(52)

=
1

Φijt

Sjt · σjt ·(P in
ijt

P̄ in
ijt

)1−%̂

+ 1− Sjt · σjt

 1
1−%̂

As in Section 4, σjt ·Sjt refers to the expenditure share of "priced" materials. Equa-
tion 52 states that plants’marginal costs are determined by their technical effi ciencies (Φijt)

and the composite price that they face for intermediate inputs and other inputs. The elas-

ticity, %̂, dictates how the prices of intermediate inputs and other inputs are combined. As

%̂ decreases, a larger weight is allotted to the input with a higher relative price.

Re-arranging Equation 52 yields the following expression forΦijt in terms of TFPQijt

and P in
ijt:

Φijt = TFPQijt

Sjt · σjt ·(P in
ijt

P̄ in
ijt

)1−%̂

+ 1− Sjt · σjt

 1
1−%̂

(53)

For the pooled benchmark sample, I use Equation 53 to compute the standard de-

viation of φijt, for %̂ ∈ {0.2, 0.4, .0.6, 0.8, 1.0}. These results, which are presented in Table

24, illustrate that the dispersion of φ is robust to changes in the elasticity of substitution,

even as %̂ approaches 0. Varying the elasticity of substitution, %̂, only has a noticeable effect

on the measured technical effi ciency for plants that have very small or very large values of

P in
ijt ÷ P̄ in

ijt. Since most plants have materials prices that are close to the industry average,

%̂ does not substantially alter the measured dispersion of φ.
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Sample ρ(pin,tfpq) ρ(pin,φ) ρ(pin,pout) ρ( φ,tfpq) ρ( tfpq,tfpr) ρ(tfpq,pout)
Milk-Bulk -0.424* -0.149 0.410* 0.958* 0.444* -0.770*
Flour -0.394* 0.468* 0.312* 0.628* 0.128 -0.722*
Concrete -0.306* 0.120* 0.276* 0.908* 0.740* -0.476*
Yarn -0.301* 0.197 0.211* 0.875* 0.491* -0.763*
Boxes, Yr.≤’87 -0.286* 0.226* 0.280* 0.868* 0.418* -0.797*
Gasoline -0.395* 0.141* 0.171* 0.854* 0.824* -0.368*
Coffee -0.485* 0.030 0.343* 0.855* 0.592* -0.584*
Sugar -0.034 0.481* 0.237* 0.860* 0.858* -0.466*
Boxes, Yr.≥’92 -0.352* 0.089 0.286* 0.901* 0.116* -0.877*
Milk-Packaged -0.281* 0.049 0.225* 0.945* 0.435* -0.754*
Pooled -0.369* 0.127* 0.231* 0.873* 0.694* -0.551*

Table 25: Correlations between plant-level characteristics. All variables are de-meaned by
year and product. Stars indicate that the correlation is significantly different from 0, at the
5% level (see Appendix E for details).

D.5 More correlations

Table 25, below, presents correlations between plant-level characteristics for each of the

10 industries in the benchmark sample.

For several of the correlations, the subsample of raw-cane sugar manufacturing plants

is anomalous. For this industry, plants’marginal costs are unrelated to their materials

prices. Moreover, the correlation between input prices and technical effi ciencies is much

stronger (48%) than for most other subsamples. These patterns are somewhat puzzling.

Most likely, the goods produced by raw cane sugar manufacturers is not as homogeneous as

Foster, Haltiwanger, and Syverson (2008) and I have presumed.

Except for the raw-cane sugar industry, correlations among plant-level characteristics

are qualitatively similar across the different industries in the benchmark sample. The

correlation between materials prices and marginal costs is moderately negative for the 9

other industries, while the correlation between marginal costs and output prices is strongly

negative (ranging between −37% and −88%). Finally, the three productivity measures are

always highly correlated with one another, with the correlation between φ and tfpq being

larger than the correlation between tfpq and tfpr.

D.6 Unweighted results

In this section, I present the unweighted versions of Tables 2, 3, 19, and 25. In the

benchmark calculations, observations are revenue-weighted. To preview the main results,

all of the main conclusions of Section 4 are robust to the weighting scheme.
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pin pout tfpq φ tfpr
pout 0.278*
tfpq -0.303* -0.653*
φ 0.141* -0.549* 0.899*
tfpr -0.098* 0.212* 0.601* 0.581*
Std. Dev. 0.167 0.186 0.227 0.219 0.176
Skewness 0.497 0.169 0.279 0.446 0.848

Table 26: Correlations and sample statistics of plant-level characteristics, pooled across all
products. All variables are de-meaned by year and product. N=10,503. Correlations give
equal weight to all plant-year observations. Stars indicate that the correlation is significantly
different from 0, at the 5% level (see Appendix E for details). Also, see Table 2 for the real-
revenue-weighted version of this table.

Sample ρ(pin,tfpq) ρ(pin,φ) ρ(pin,pout) ρ( φ,tfpq) ρ( tfpq,tfpr) ρ(tfpq,pout)
Milk-Bulk -0.280* 0.033 0.382* 0.950* 0.522* -0.789*
Flour -0.344* 0.454* 0.256* 0.681* 0.254* -0.715*
Concrete -0.271* 0.107* 0.234* 0.928* 0.776* -0.458*
Yarn -0.354* 0.117 0.297* 0.887* 0.455* -0.788*
Boxes, Yr.≤’87 -0.406* 0.153* 0.404* 0.841* 0.425* -0.824*
Gasoline -0.353* 0.203* 0.125* 0.844* 0.840* -0.396*
Coffee -0.293* 0.227* 0.300* 0.862* 0.517* -0.645*
Sugar 0.055 0.459* 0.116 0.912* 0.889* -0.405*
Boxes, Yr.≥’92 -0.428* 0.142* 0.366* 0.834* 0.127* -0.873*
Milk-Packaged -0.282* 0.054* 0.237* 0.943* 0.456* -0.753*
Pooled-Bench. -0.303* 0.141* 0.278* 0.899* 0.601* -0.653*

Table 27: Correlations between plant-level characteristics. All variables are de-meaned by
year and product. Correlations give equal weight to all plant-year observations. Stars indi-
cate that the correlation is significantly different from 0, at the 5% level (see Appendix E
for details). See Table 25 for the real-revenue-weighted version of this table.

The first two tables, Tables 26 and 27, give the correlations among plant-level statis-

tics. Overall, the correlation between pin and pout is somewhat larger, while the correlation

between pin and tfpq is somewhat closer to 0.

Compared to the revenue-weighted versions, the unweighted dispersions of tfpr,

tfpq, and φ are larger (see Table 28 for the benchmark sample and Table 29 for the "Output

Quality Variation" sample). The larger dispersions have two sources. First, weighting by

revenue gives more importance to high revenue-per-plant industries. Since gasoline, which

by far has the largest average sales per plant, has more compressed tfpr, tfpq and φ dis-

tributions, revenue-weighting causes the pooled dispersion to be larger in the unweighted

calculations. Second, the unweighted calculations give relatively more weight, within indus-
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Dispersion of tfpq Dispersion of φ Percent Decline
Sample 90/10 75/25 SD 90/10 75/25 SD 90/10 75/25 SD

Milk-Bulk 0.809 0.306 0.316 0.681 0.322 0.303 20.6%* -4.8% 4.4%
Flour 0.404 0.205 0.163 0.396 0.176 0.172 2.0% 17.9%* -5.3%
Concrete 0.558 0.275 0.238 0.522 0.260 0.230 7.1%* 5.8%* 3.4%*
Yarn 0.620 0.310 0.262 0.629 0.312 0.248 -1.4% -0.6% 5.6%*
Boxes, Year≤1987 0.475 0.204 0.199 0.409 0.196 0.185 17.3%* 4.1%* 8.1%*
Gasoline 0.309 0.151 0.147 0.296 0.137 0.141 4.6% 10.7% 4.8%
Coffee 0.635 0.321 0.257 0.569 0.272 0.249 12.3%* 19.6%* 3.3%
Sugar 0.692 0.330 0.313 0.807 0.352 0.352 -13.2%* -6.3% -10.6%*
Boxes, Year≥1992 0.617 0.318 0.242 0.548 0.278 0.221 13.4%* 15.7%* 10.1%*
Milk-Packaged 0.564 0.284 0.235 0.531 0.262 0.226 6.5%* 8.9%* 4.2%*
Pooled-Bench. 0.527 0.253 0.227 0.493 0.238 0.219 7.2%* 6.5%* 3.9%*

Table 28: Dispersion of tfpq and φ. Obvservations are not weighted. In the final three
columns, stars indicate that he difference between tfpq and φ is statistically significant, at
the 5% level (see Appendix E for details). Due to Census’rules regarding data confidentiality,
I am prohibited from reporting the actual quantiles of any empirical distribution. See the
caption of Table 3 for a description of the imputation of the quantiles of tfpq and φ.

tries, to the low-productivity, low employment plants, again causing unweighted dispersions

to be larger than the weighted dispersions.

The decline in dispersion, of the pooled distribution of productivities, is smaller

when observations are not weighted by revenue. For example, compared to the 8.8% decline

that is given in Table 3, the 90/10 ratio of tfpq is only 7.2% larger than the 90/10 ratio of φ.

The difference, between the unweighted and weighted calculations, is due to differences in

the weight that particular industries get. When observations are not weighted by revenue,

the ready-mix concrete industry (which had a particularly small decline in productivity

dispersion) is relatively more important in the calculations. On the other hand, when

observations are weighted by revenue, the gasoline industry (which has a slightly larger than

average decline in productivity dispersion) is relatively more important in the calculations.

Note that, weighting by revenue, does not cause the within-industry declines in dispersion to

be systematically larger or smaller. For the sample of industries with substantial variation

in output quality, there are no systematic differences between the weighted and unweighted

calculations (compare Tables 19 and 29).
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Dispersion of tfpq Dispersion of φ Percent Decline
Sample 90/10 75/25 SD 90/10 75/25 SD 90/10 75/25 SD N

Wine 1.407 0.735 0.502 1.444 0.779 0.536 -2.6% -5.4% -6.1% 330
Softwood Cut S. 1.379 0.675 0.490 1.310 0.651 0.489 5.4% 3.6% 0.2% 160
Pickles 0.890 0.441 0.346 0.962 0.471 0.368 -7.3% -6.2% -5.8% 145
Sausages 0.800 0.409 0.316 0.730 0.358 0.308 10.0%* 15.3%* 2.5% 621
Pooled-Quality 1.028 0.500 0.400 1.021 0.477 0.410 0.7% 4.8% -2.5% 1256

Table 29: Dispersion of tfpq and φ. Observations are not weighted. Stars indicate that
he difference between tfpq and φ is statistically significant, at the 5% level (see Appendix
E for details). Due to Census’ rules regarding data confidentiality, I am prohibited from
reporting the actual quantiles of any empirical distribution. See the caption of Table 3 for a
description of the imputation of the quantiles of tfpq and φ.

D.7 Correcting for sample selection in productivity decomposi-

tions

As mentioned in Section 3.2, plants in the benchmark sample tend to exit and enter

less frequently, compared to plants from their corresponding industries. As a result, the

productivity decompositions of Section 4.5 may underrepresent the role of entry and exit

in generating aggregate productivity growth. In this subsection, I try to account for this

sample selection problem.

Table 30 presents the aggregate productivity growth decompositions, corrected for

the underrepresentation of entering and exiting plants in the benchmark sample. For each

industry in my benchmark sample, I compute the corrected Entry (Exit) Effects by dividing

by the ratio of the sales-weighted-fraction of entrants (exiting plants) in the overall sample

to the sales-weighted-fraction of entrants (exiting plants) in the benchmark sample. The

correction that I make will magnify the share of entrants/exiting plants to the extent that

entrants/exiting plants are underrepresented in the benchmark sample. Specifically, the

corrected Entry and Exit Effects are given by (FHK denotes the decomposition method

of Foster, Haltiwanger, and Krizan (2001), while GR denotes the decomposition method of

Griliches and Regev (1995).):

Entry EffectFHK =
Pr{i ∈ N | i ∈ overall sample}

Pr{i ∈ N | i ∈ benchmark sample} (54)

×
∑

i∈N∩benchmark

θi,t−1(tfpit − tfpt−1)
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Productivity
Measure

Weight
Industries By:

Total Entry Exit
Net
Entry

Entry Exit
Net
Entry

tfpr Real Revenues -1.60 -0.06 0.11 0.04 -0.06 0.17 0.11
tfpq Real Revenues -1.60 -0.08 0.20 0.12 -0.07 0.26 0.19
φ Real Revenues -1.60 -0.12 0.17 0.05 -0.11 0.23 0.12

tfpr # of Plants 1.30 0.30 0.17 0.47 0.20 0.28 0.49
tfpq # of Plants 1.30 0.40 0.15 0.54 0.30 0.26 0.56
φ # of Plants 1.30 0.27* 0.18 0.45 0.18* 0.29 0.47

Decomposition Method Foster et. al Griliches and Regev

Table 30: Aggregate productivity growth decompositions, using the measures given in Equa-
tions 54- 57. All values are percentages. When tfpr or φ is the productivity measure, stars
indicate that the value given in the cell is significantly different than the corresponding
value that uses tfpq as the measure of plant productivity. See Appendix E for a detailed
description of the bootstrapping procedure.

Exit EffectFHK = − Pr{i ∈ X | i ∈ overall sample}
Pr{i ∈ X | i ∈ benchmark sample} (55)

×
∑

i∈X∩benchmark

θi,t−1(tfpi,t−1 − tfpt−1)

Entry EffectGR =
Pr{i ∈ N | i ∈ overall sample}

Pr{i ∈ N | i ∈ benchmark sample} (56)

×
∑

i∈N∩benchmark

θit

(
tfpit −

1

2
tfpt−1 −

1

2
tfpt

)

Exit EffectGR = − Pr{i ∈ X | i ∈ overall sample}
Pr{i ∈ X | i ∈ benchmark sample} (57)

×
∑

i∈X∩benchmark

θi,t−1

(
tfpi,t−1 −

1

2
tfpt−1 −

1

2
tfpt

)

As in Table 8, I average over the industries in the benchmark sample to arrive at

an aggregate Entry Effect, Exit Effect, and Net Entry Effect. The Net Entry Effect is less

than 0.1 percentage points larger after correcting for the underrepresentation of entering

and exiting plants in the benchmark sample. As in Table 8, the only statistically significant

difference among the three productivity measures is that the role of Entry is lager when

tfpq, instead of φ, is used as the productivity measure.
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Sample Boxes Concrete Pooled Boxes Concrete Pooled

tfpqit
-0.261*
(0.060)

-0.183*
(0.093)

-0.245*
(0.050)

-0.252*
(0.058)

-0.185
(0.115)

-0.236*
(0.049)

p̄in,localit

0.008
(0.030)

0.123
(0.092)

0.004
(0.021)

0.012
(0.030)

0.032
(0.109)

0.003
(0.020)

N 190 131 321 190 131 321
Adjusted R2 0.099 0.046 0.084 0.094 0.078 0.088
Division F.E.? No No No Yes Yes Yes

Table 31: Coeffi cient estimates and robust standard errors, from the regressions defined
by Equation 34, with the addition of p̄in,localit as an explanatory variable. Stars indicate
significance at the 5% level.

D.8 Including local prices in regressions 34, 35 and 40

One concern, regarding the regressions corresponding to Equations 34, 35 and 40, is

that division fixed effects may not suffi ciently control for the geographic forces that generate

variation in tfpqit. Unfortunately, since there are so few observations in the sample of cor-

rugated box and concrete manufacturers, I cannot include fixed effects of greater geographic

detail. Instead, to control for the geographic factors that generate variation in tfpqit, I

include—on the right-hand side of Equations 34, 35 and 40—the average materials price paid

by plants that are close to plant i. In particular, I define p̄in,localit as the logarithm of the av-

erage (value-weighted) price paid by all of the establishments, other than i, that are located

less than 50 miles from plant i. Materials prices are spatially correlated for concrete, but not

for boxes (i.e., pinit is correlated to p̄
in,local
it only for the subsample of concrete manufacturers).

Regressions of plants’materials prices on suppliers’marginal costs are given in Table

31. The estimated coeffi cient corresponding to p̄in,localit is not significantly greater than 0,

and tends to be somewhat larger for the subsample of ready-mix concrete manufacturers.

Importantly, the coeffi cient estimates of the tfpqit term are unchanged after including p̄
in,local
it

as an explanatory variable.

In Table 32, I present the regression results corresponding to Equation 35, while in

Table 33 I present the regression results corresponding to Equation 40. Again, the coeffi cient

estimates of tfpqit are ψit are not significantly altered by the inclusion of local prices, p̄
in,local
it ,

as an explanatory variable. Also, the coeffi cient estimate of p̄in,localit is significant only for

the subsample of ready-mix concrete manufacturers for one of the specifications.
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Sample Boxes Concrete Pooled Boxes Concrete Pooled

tfpqit
0.078
(0.066)

0.133*
(0.046)

0.090
(0.052)

0.028
(0.062)

0.128*
(0.055)

0.070
(0.047)

p̄in,localit

0.029
(0.030)

0.021
(0.037)

0.018
(0.018)

0.009
(0.030)

-0.049
(0.055)

0.014
(0.018)

N 190 131 321 190 131 321
Adjusted R2 0.001 0.053 0.010 0.029 0.050 0.040
Division F.E.? No No No Yes Yes Yes

Table 32: Coeffi cient estimates and robust standard errors, from the regressions defined
by Equation 35, with the addition of p̄in,localit as an explanatory variable. Stars indicate
significance at the 5% level.

Sample Boxes Concrete Pooled Boxes Concrete Pooled

tfpqit
-0.231*
(0.097)

-0.129
(0.083)

-0.209*
(0.052)

-0.227*
(0.056)

-0.128
(0.103)

-0.207*
(0.048)

p̄in,localit

0.011
(0.028)

0.169*
(0.070)

0.006
(0.020)

0.018
(0.028)

0.139
(0.090)

0.007
(0.019)

ψit
0.322*
(0.097)

0.886*
(0.266)

0.422*
(0.123)

0.328*
(0.105)

0.928*
(0.224)

0.420*
(0.126)

N 190 131 321 190 131 321
Adjusted R2 0.180 0.455 0.214 0.179 0.518 0.217
Division F.E.? No No No Yes Yes Yes

Table 33: Coeffi cient estimates and robust standard errors, from the regressions defined
by Equation 40, with the addition of p̄in,localit as an explanatory variable. Stars indicate
significance at the 5% level.
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E Details of the Bootstrapping Exercises

The purpose of this section is to describe, and give the results of, the four bootstrapping

exercises that are employed in Sections 4 and 5. The four bootstrapping exercises are used

to determine a) whether the correlations among certain plant-level statistics are significantly

different from 0, b) whether the dispersion of tfpq is different from that of φ or tfpr, c)

whether the Entry/Exit/Net Entry Effects (as in Equations 27-28) are significantly different

when tfpq is used instead of φ or tfpr, d) whether the declines in dispersion that are

reported in Tables 10, 12, and 15 are significantly more than would be expected by simply

adding independent variables. Below, I explain how each of the bootstrapping exercises is

performed, and give the resulting confidence intervals.

To determine whether specific correlations among plant-level statistics are different

from 0, I take 1000 bootstrapped sample, from the benchmark sample of 10,503 plant-year

observations (or 1256 observations in the case of the Output Quality Variation sample). In

each bootstrapped sample, the number of plants taken from each industry-year is the same

as the benchmark sample. After sampling, I de-mean, as in Equation 23, and then compute

the weighted and unweighted correlations. The 95% confidence intervals are provided in

Tables 34, and 35.60

I follow a similar procedure to determine whether tfpq is significantly more disperse

than tfpr or φ: For each (out of 1000) bootstrapped sample, I de-mean plant-level statistics,

as in Equation 23, and then compute dispersions (the standard deviations, the 90/10 ratios,

and the 75/25 ratios) of tfpq, tfpr, and φ. I then take the ratio of the dispersion of tfpq

and the dispersion of either tfpr or φ. The 95% confidence intervals are provided in Table

36. In most cases, the left endpoint of the confidence interval is greater than 1, meaning

that tfpq is significantly more disperse than both tpfr and φ. For the benchmark, pooled

sample, tfpq is significantly more disperse than φ, except when observations are revenue-

weighted and the interquartile range is the measure of dispersion. The same can be said for

the dispersions of tfpq and tfpr.

And again, I follow a similar procedure to determine whether the Entry/Exit/Net

Entry Effects (as in Equations 27-28) are significantly different when tfpq is used instead of

φ or tfpr. Again, I take 1000 bootstrapped samples, where, in each bootstrapped sample,

the number of plants taken from each industry-year is the same as in the benchmark sample.

For each boostrapped sample, I compute the Entry, Exit, and Net Entry Terms, by plugging

in tfpq, tfpr, and φ into Equations 27 and 28. I then compute the difference, between

60Throughout this section, the confidence intervals correspond to the revenue-weighted calculations. Con-
fidence intervals corresponding to the unweighted calculations are available upon request.
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Sample ρ(pin,tfpq) ρ(pin,φ) ρ(pin,pout) ρ( φ,tfpq) ρ( tfpq,tfpr) ρ( tfpq,pout)
Milk-Bulk -0.68,-0.13 -0.44,0.14 0.06,0.70 0.93,0.98 0.26,0.67 -0.89,-0.56
Flour -0.48,-0.31 0.34,0.57 0.18,0.43 0.54,0.72 0.00,0.27 -0.78,-0.66
Concrete -0.36,-0.26 0.07,0.17 0.23,0.33 0.89,0.92 0.71,0.77 -0.52,-0.43
Yarn -0.45,-0.17 -0.05,0.40 0.08,0.36 0.82,0.92 0.36,0.61 -0.84,-0.67
Boxes, Yr.≤’87 -0.36,-0.21 0.14,0.31 0.21,0.35 0.83,0.90 0.37,0.48 -0.83,-0.76
Gasoline -0.48,-0.31 0.02,0.26 0.06,0.26 0.82,0.89 0.77,0.87 -0.48,-0.27
Coffee -0.69,-0.20 -0.20,0.29 0.10,0.57 0.77,0.92 0.38,0.74 -0.73,-0.41
Sugar -0.22,0.14 0.32,0.61 0.03,0.40 0.78,0.92 0.76,0.93 -0.58,-0.32
Boxes, Yr.≥’92 -0.43,-0.27 0.00,0.18 0.20,0.37 0.88,0.92 0.03,0.20 -0.90,-0.85
Milk-Packaged -0.33,-0.23 -0.02,0.11 0.17,0.28 0.93,0.95 0.37,0.49 -0.80,-0.69
Pooled-Bench. -0.42,-0.31 0.05,0.20 0.18,0.28 0.85,0.89 0.65,0.74 -0.60,-0.50
Wine -0.47,-0.12 0.08,0.50 0.11,0.52 0.71,0.86 0.00,0.48 -0.89,-0.69
Softwood Cut -0.66,-0.23 -0.32,0.19 0.22,0.66 0.87,0.94 0.15,0.56 -0.97,-0.89
Pickles -0.41,0.05 -0.14,0.35 -0.13,0.31 0.93,0.97 0.29,0.60 -0.84,-0.61
Sausages -0.33,-0.04 0.12,0.39 0.06,0.35 0.87,0.92 0.10,0.44 -0.84,-0.73
Pooled-Quality -0.38,-0.17 0.14,0.36 0.16,0.41 0.82,0.89 0.16,0.42 -0.86,-0.75

Table 34: Confidence intervals of correlations among plant-level characteristics. See text for
details.

Benchmark Sample:
pin pout tfpq φ

pout 0.180, 0.279
tfpq -0.424,-0.314 -0.599,-0.504
φ 0.054,0.200 -0.518,-0.422 0.852,0.890
tfpr -0.303,-0.163 0.149,0.284 0.652,0.736 0.568,0.660
Output Quality Variation Sample:

pin pout tfpq φ
pout 0.160,0.407
tfpq -0.385,-0.166 -0.858,-0.165
φ 0.137,0.363 -0.733,-0.560 0.819,0.888
tfpr -0.143,0.180 0.241,0.423 0.157,0.418 0.189,0.404

Table 35: Confidence intervals of correlations among plant-level characteristics. See text for
details.
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Ratio of dispersion of tfpq
to dispersion of φ

Ratio of dispersion of tfpq
to dispersion of tfpr

Sample 90/10 75/25 SD 90/10 75/25 SD
Milk-Bulk 0.970,1.401 0.854,1.498 0.970,1.273 0.977,6.031 0.795,4.583 1.166,3.287
Flour 0.927,1.180 1.040,1.438 0.927,1.059 1.079,1.892 1.232,1.637 0.992,1.463
Concrete 1.037,1.118 1.015,1.126 1.037,1.069 1.047,1.176 1.026,1.165 1.072,1.154
Yarn 0.824,1.028 0.770,1.027 0.824,1.109 1.220,2.101 1.118,2.017 1.341,2.239
Boxes,Yr.≤’87 1.002,1.078 0.972,1.058 1.002,1.060 1.573,1.757 1.427,1.908 1.654,2.098
Gasoline 0.976,1.170 0.974,1.227 0.976,1.145 0.931,1.146 0.911,1.137 0.980,1.125
Coffee 1.018,1.783 1.012,1.671 1.018,1.406 0.894,2.182 0.903,2.016 0.947,1.590
Sugar 0.710,1.018 0.689,1.233 0.710,0.962 0.931,1.364 0.834,1.443 1.030,1.275
Boxes,Yr.≥’92 1.022,1.146 1.008,1.123 1.022,1.117 2.534,4.309 2.517,3.853 2.024,3.230
Packaged Milk 1.036,1.110 1.009,1.113 1.036,1.062 1.485,2.072 1.562,1.942 1.375,1.863
Pooled-Weighted 1.002,1.168 0.996,1.200 1.002,1.104 1.066,1.227 0.984,1.281 1.123,1.249
Pooled-Unweighted 1.056,1.091 1.050,1.093 1.028,1.050 1.415,1.515 1.474,1.600 1.303,1.374

Table 36: Confidence intervals of a) the ratio of the dispersion of tfpq to the dispersion
of tfpr—given in the left three columns—and b) the ratio of the dispersion of tfpq to the
dispersion of φ—given in the right three columns. See text for details.

Measure
Weight
Ind. By:

Entry Exit Net Entry Entry Exit Net Entry

tfpr Sales -0.06,0.11 -0.05,0.19 -0.07,0.23 -0.06,0.11 -0.06,0.19 -0.07,0.24
φ Sales -0.02,0.09 -0.06,0.10 -0.05,0.14 -0.02,0.09 -0.07,0.10 -0.05,0.13

tfpr Plants -0.05,0.23 -0.12,0.13 -0.09,0.28 -0.04,0.23 -0.12,0.13 -0.09,0.28
φ Plants 0.00,0.16 -0.09,0.05 -0.05,0.15 0.01,0.15 -0.10,0.06 -0.04,0.15

Decomp. Method Foster, Haltiwanger, and Krizan Griliches and Regev

Table 37: Confidence intervals of the difference, when tfpq, instead of tfpr/φ, is used as the
measure of plant productivity, of the Entry Effect, Exit Effect, and Net Entry Effect. These
three effects are defined in Equations 27 and 28.

the Entry/Exit/Net Entry Effects when tfpq is used and the Entry/Exit/Net Entry Effects

when tfpr (or φ) is used.

Table 37 gives the confidence intervals of the difference—between when tfpq is used

and when tfpr/φ is used—of the Entry/Exit/Net Entry Effects. In the first and the third

rows, 0 lies within each and every confidence interval: the Entry/Exit/Net Entry Effects

are not significantly different for revenue productivity versus quantity productivity. On

the other hand, when industries are weighted by the number of plants, the Entry Effect is

significantly greater when tfpq, instead of φ, is used as the measure of productivity.

I follow a somewhat different procedure to determine whether the estimated dis-

persion declines, as reported in Tables 10, 12, and 15, are significantly more than would be
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Include Division
Fixed Effects?

No Yes No Yes

Include
tfpqit?

No No Yes Yes

Sample
Size

Sample

131 Concrete 0.3066,0.3676 0.3563,0.3737 0.3025,0.3660
190 Boxes 0.1844,0.1963 0.1937,0.1977 0.1834,0.1959
321 Pooled 0.2149,0.2228 0.2220,0.2240 0.2145,0.2224
131 Concrete 0.1884,0.2078 0.2035,0.2100 0.1874,0.2074
190 Boxes 0.2089,0.2225 0.2192,0.2245 0.2071,0.2222
321 Pooled 0.2073,0.2168 0.2151,0.2182 0.2067,0.2182
131 Concrete 0.3559,0.3737 0.3054,0.3666 0.3458,0.3736 0.3010,0.3653
190 Boxes 0.1937,0.1977 0.1830,0.1960 0.1924,0.1977 0.1817,0.1955
321 Pooled 0.2214,0.2240 0.2144,0.2224 0.2205,0.2240 0.2137,0.2222

Table 38: Confidence intervals. The first 3 rows give the confidence intervals corresponding to
the dispersions given in Table 10. Rows 4-6 give the confidence intervals corresponding to the
dispersions given in Table 12 . The final 3 rows give the confidence intervals corresponding
to the dispersions given in Table 15.

expected by simply adding independent variables. I implement the following algorithm 1000

times:

From the sample of plant-year observations, I construct two new variables P
(
p̃in,CFSit

)
and P (tfpqit). These two variables are constructed by randomly permuting p̃in,CFSit (or

tfpqit) among the observations from a given industry-year. I then regress P
(
p̃in,CFSit

)
(or

P (tfpqit)) against all the combinations of right-hand-side variables of the regressions given

in Equations 34, 35, and 40. Following these regressions, I compute the revenue-weighted

standard deviations of the residuals. These residuals are stored, for each iteration.

The 95% confidence intervals are presented in Table 38. Rows 1-3 give the confi-

dence intervals corresponding to the regression of Equation 34; Rows 4-6 give the confidence

intervals corresponding to the regression of Equation 35; and Rows 7-9 give the confidence

intervals corresponding to the regression of Equation 40 (where the ψit variable is necessar-

ily included on the right hand side). To make things concrete, consider the values given in

the first row and penultimate column. To construct these two values, I repeatedly regress

random permutations of P
(
p̃in,CFSit

)
against tfpqit, and then store the standard deviation

of the residuals from each regression. The smaller value equals the 2.5-percentile standard

deviation, and the larger value equals the 97.5-percentile standard deviation.
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