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Abstract 

 
 
 

  
 International technological diffusion is a key determinant of cross-country differences in 
economic performance. While patents can be a useful proxy for innovation and technological 
change and diffusion, fully exploiting patent data for such economic analyses requires patents to 
be tied to measures of economic activity. In this paper, we describe and explore a new 
algorithmic approach to constructing concordances between the International Patent 
Classification (IPC) system that organizes patents by technical features and industry 
classification systems that organize economic data, such as the Standard International Trade 
Classification (SITC), the International Standard Industrial Classification (ISIC) and the 
Harmonized System (HS). This ‘Algorithmic Links with Probabilities’ (ALP) approach 
incorporates text analysis software and keyword extraction programs and applies them to a 
comprehensive patent dataset. We compare the results of several ALP concordances to existing 
technology concordances. Based on these comparisons, we select a preferred ALP approach and 
discuss advantages of this approach relative to conventional approaches. We conclude with a 
discussion on some of the possible applications of the concordance and provide a sample 
analysis that uses our preferred ALP concordance to analyze international patent flows based on 
trade patterns. 
 
NOTE: The ALP concordances described and used in this paper will soon be 
available for download on the WIPO website at 
http://www.wipo.int/ipstats/en/statistics/patents/ 
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1  Introduction 
 
International technological diffusion is an important driver of technological change which is a 
key determinant of cross-country differences in income and economic growth (Romer 1990; 
Aghion and Howitt 1992; Grossman and Helpman 1991; Keller 2004). International trade and 
foreign direct investment are often considered to be key catalysts of technology transfer (Coe and 
Helpman 1995; Eaton and Kortum 2002; Branstetter et al. 2006; Archaya and Keller 2009), but 
directly studying this process is often hampered by the fact that measuring transferred 
technology empirically is challenging. Thus far, data and statistics on patents have served as one 
of the more useful proxies for measuring technological change (Griliches 1990; Basberg 1987) 
and diffusion (Jaffe et al. 1993). However, in order to fully exploit patent data in economic 
analyses, researchers must be able to link patents to economic activity at a level of 
disaggregation that allows for different technological, industrial and spatial patterns. Such a 
detailed link between technological and economic activity would further improve our assessment 
of policies that aim to promote innovation, as well as assess the relationship between 
technological change and economic development.  
 
Patent statistics have frequently been used as both technological and economic indicators due to 
the widespread availability of patent data and the assumption that patents reflect direct inventive 
activity and innovation. In his survey reviewing the different ways patents are used as 
technology indicators, Basberg (1987) describes how patents have been incorporated in 
innovation models to measure to technology diffusion and to evaluate the output of research 
activity. In a similar survey, Griliches (1990) documents the numerous instances patents have 
been used as economic indicators and finds that patents have held diverse roles from serving as 
proxy for R&D output to predicting stock-market activity and total factor productivity. Within 
this literature, however, the validity of patents as technological or economic indicators remains a 
somewhat of an open question. Important concerns include the commercial use and value of 
patents, heterogeneity across countries and industries in patent institutions, legislation and 
enforcement, and pronounced changes over time in patenting and patent institutions. We believe 
that more disaggregate analyses of patent statistics – particularly when matched with equally 
disaggregate economic data – will help to address these concerns and enable new empirical 
research related to patents.  
 
In general, there are three levels at which patents can be linked to economic activity. At the 
coarsest macro-level, aggregate patent data taken from a specific country in a specific year can 
be associated with aggregate economic data, respectively. Linking patent and economic data at 
this aggregate level is based simply on the country-year unit of analysis and has enabled research 
on questions such as measuring the rate of innovation (Porter and Stern 2000), a country’s 
innovative capacity (Furman et al. 2002) and the effects of patent harmonization (McCalman 
2001). Analyses of foreign patent flows and economic activity (Eaton and Kortum 1996; Xu and 
Chiang 2005; Falvey and Foster 2006; Harhoff et al. 2007) is similarly based on an aggregate 
association of patents to economic data through a shared space-time unit of analysis.  
 
At the finest level, patents and economic activity can be linked at the firm-level. While this 
micro-linkage between patent and economic data enables rigorous and insightful research on 
patenting as part of firm-level strategies (Brouwer and Kleinknecht 1999; Austin 1993) 
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constructing and maintaining such a firm-level database requires substantial effort, is only 
feasible for a fraction of the firms represented in patent databases, and may miss broader 
considerations regarding relevant products, competitors and industrial dynamics. Among other 
things, these limitations constrain our ability to use a firm-level linkage between patents and 
economic activity to learn much about patenting in important emerging economies where firm-
level data is sparse. 
 
Between these macro- and micro-level linkages is a meso- or industry-level linkage that 
associates patents and economic data based on the domain of goods and services they represent. 
At this level, patents on biomedical and semiconductor inventions, for example, are linked to 
industry or product classes that use biomedical and semiconductor inventions, respectively. We 
argue that a robust industry-level linkage – perhaps in conjunction with macro- and micro-level 
analyses – will enable researchers to better analyze the relationship between patenting and 
economic activity over time, across space and technology classes. Most industry-level linkages 
are based on concordances. For example, the Yale Technology Concordance (YTC) (Kortum and 
Putnam 1997) links the International Patenting Classification code (IPC) to the Canadian 
Standardized Industrial Classification system. Thus, with the YTC a researcher can link patent 
data organized by IPC, country and year to the value of production organized by Canada SIC, 
country and year. Unfortunately, conventional concordance approaches like the YTC suffer from 
a host of flaws that limit their usefulness in empirical research. After describing these limitations, 
we propose new methods for constructing concordances and, thereby, industry-level linkages 
between patent and economic data. These methods use text analysis, data mining and 
probabilistic matching to build these links in ways that can be applied broadly or narrowly across 
time and space, can be easily updated, and can create direct linkages between patent data and a 
variety of industry and trade classification schemes in a way that that does not require layers of 
concordances. 
 
We refer to the general approach we develop in this paper as an Algorithmic Links with 
Probabilities (ALP) approach to constructing concordances. We propose and test two different 
versions of this approach.  First, a data mining approach (ALP-DM) identifies patents that 
contain manually-assigned keywords where each word pertains to a specific industry. The 
patents are aggregated and reveal a frequency matches between the keywords and IPC 
subclasses. This frequency then provides the basis for weighting each of the matches. Second, a 
keyword extraction and probabilistic matching approach (ALP-PM) extracts keywords from the 
patents themselves and then matches these keywords probabilistically to industry or trade 
classifications. By implementing these two approaches using the full PATSTAT database 
provided by the European Patent Office (EPO), we generate probability distributions of the 
technologies used within each industry and, conversely, distributions of the industries using 
certain types of technology. Since these distributions create linkages in both directions – from 
patents to economic data and vice versa – researchers can use these direct concordances for 
industry-level analyses of the relationships between patents and an array of economic activity 
organized by different classification schemes such as SITC, NACE, ISIC and HS. Given that 
these methods require minimal manual or subjective intervention, the concordances they 
generate are easy to update and refine. 
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After providing a brief background of related patent concordance research, we discuss the 
prevailing IPC concordances in some detail and describe a fundamental limitation of these 
conventional concordances when applied to economic data. We then describe our ALP 
approaches to constructing more useful concordances and generate IPC concordances for both 
trade (SITC) and industry (ISIC) classification schemes. To provide a test our approach, we use 
our ALP-DM and ALP-PM approaches to generate concordances that can be directly compared 
with two prevailing concordances, including the YTC. Before concluding, we demonstrate the 
use of ALP concordances with a specific analysis that compares patent and trade flows.  
 
 

2  Background 
 
Patents are a potentially powerful data source for technology and innovation analyses because 
the patents themselves contain a wealth of information, including the names of the inventee, 
date, prior art, technologies used, as well as a full description of the embedded technology with 
numerous figures and references. Recently, there has been a large push initiated by the private 
sector to develop novel ways of analyzing, organizing and making this patent information 
accessible to firms interested in exploiting or diversifying their patent portfolios and formulating 
R&D strategies (Moehrle et al. 2010). This form of patent analysis – called “patinformatics” – 
aims to reveal relationships between individual patents and broader technological fields in order 
to inform commercial, legal and policy decisions and includes grouping similar concepts and 
technologies, creating patent landscape maps, tracking the evolution of these maps over time, 
and analyzing and interpreting citation networks. These approaches typically use the latest 
developments in text analysis and text clustering software, and then uses the findings from these 
programs to create different visualization and mapping schemes. The methods we develop are 
conceptually similar to these tools and could ultimately provide a valuable economic layer to 
patent landscapes, networks and other patinformatic analyses. 
 
 
The ALP concordances we construct are designed to enable more rigorous econometric analysis 
at the industry-level. By doing this, we continue to build on other efforts to link patent and 
economic data through technology-industry associations. While these industry-level linkages are 
facilitated by the fact that the IPC and economic classification systems share a detailed 
hierarchical structure, they are complicated by the fact that these classification systems are 
motivated by different objectives. Whereas economic classification systems are intended to 
disaggregate goods and services into meaningful and related sub-groups, the IPC system is 
intended to facilitate the patent examination process by enabling patent examiners to precisely 
identify the novel technical features of the disclosed invention and to define the prior art against 
which they can assess novelty. Since goods or services in very different economic classifications 
can use the same technical feature (e.g., an electronic motion control device may be used in 
washing machines and satellites), this difference in intended usage implies that linking patents to 
economic data through a concordance of their respective classification systems is never 
straightforward. Whereas one could manually construct a one-to-one concordance between two 
industrial classification schemes that share the same unit of analysis (i.e., industry), constructing 
a concordance between the IPC and an economic classification at any useful level of resolution is 
effectively a many-to-many mapping that may not amenable to a manual approach. 
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The first attempt to link patent data with industry data was conducted by Schmookler in 1966 
(Comanor and Scherer 1969) who assigned “industries-of-use” to patents organized by the US 
patent class (USPC). The classification scheme used in this concordance assigned patent classes 
to industries where at least 2/3 of patents in that class were used for that particular industry. A 
later concordance developed by a branch of the US Patent and Trademark Office (USPTO) used 
a similar methodology and assigned equal weighting to patent classes which related to multiple 
industries. The first comprehensive concordance, the YTC, emerged in the early 1990s (Evenson 
and Putnam 1994; Kortum and Putnam 1997). The YTC was constructed by leveraging a useful 
feature of the roughly 250,000 patents issued in Canada between 1978 and 1993. For each of 
these patents, the Canadian Patent office examiners were required to assign a technology field 
from the IPC system (standard practice worldwide) and to indicate the Industry of Manufacture 
(IOM) and Sector of Use (SOU) of the invention according to the Canadian Standard Industrial 
Classification (1980 cSIC-E Version). The patents examined in this window implicitly concord 
IPC to cSIC since examiners were assigning patents to both systems concurrently. The YTC 
tabulated these assignments to make this an explicit IPC-cSIC concordance.  
 
Because it is based on assignments made by patent examiners – presumably, experts in the field 
– the YTC benefits from hundreds of thousands of hours of expertise and consideration. 
Furthermore, this structure implies that the YTC comprehensively covers all technologies and 
industries included in the 250,000 patents that were cross-classified. An additional benefit is that 
the YTC uses probabilistic rather than subjective weights, which allows for the same technical 
feature to be used in multiple sectors. On the other hand, the YTC suffers from several serious 
limitations. First, it is only possible to possible to directly link to one classification system, the 
cSIC, which is not commonly used in industry-level studies. Bridging to any other economic 
classification system introduces noise and can hopelessly atrophy the resulting composite 
concordance (as discussed below). Second, it is frozen in time and space, as it were, because it 
will always be based on Canadian patents examined between 1978 and 1993. This introduces 
potential technological, temporal and spatial biases (Schmoch et al. 2003). 
 
 

3  The IPC & Prevailing IPC-Industry Concordances 
 
In this section, we describe in more detail the structure of the prevailing concordances that 
attempt to link the IPC to industry classification systems. First, we describe briefly the structure 
of the IPC system and contrast it with existing economic classification systems. We then 
differentiate between the prevailing concordances that that build on the YTC and those that chart 
a different path entirely and discuss them in reverse order.  
 
The IPC was established in 1971 by the Strasbourg Agreement to provide a harmonized, 
language independent, hierarchical system for classifying technology embedded in patents and 
utility models2. Given its role in defining the scope of prior art considered in patent examination, 

                                                           
2 For a complete guide to the IPC, including useful training resources, see 
http://www.wipo.int/export/sites/www/classifications/ipc/en/guide/guide_ipc_2009.pdf 
To explore the IPC interactively with complete notes see http://www.wipo.int/ipcpub 
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the IPC is a central feature to the global network of national patent systems. The current version 
of the IPC divides technology into eight sections, which are further divided into a total of nearly 
70,000 “subgroups”. To illustrate the structure of the IPC, consider the example of IPC 
“subgroup” B64C 11/18, which covers “Aerodynamic features of propellers used in aircraft.” 
This group number is composed of section B (“Performing operations; Transporting”), class B64 
(“Aircraft; Aviation; Cosmonoautics”), subclass B64C (“Aeroplanes; Helicopters”), main group 
B64C 11/00 (“Propellers”), and subgroup B64C 11/18. We construct our concordance at the 
four-digit subclass level (e.g., B64C, A21B, etc.), of which a total of 639 exist (in the most 
recent version). In terms of how the IPC is used in practice, patent examiners around the world 
classify the inventions claimed by the patents they examine. Where multiple inventive features 
are evident in an invention, examiners often cross-list the patent in multiple IPCs.3 
 
With this brief description of the IPC in mind, consider the structure of existing IPC-industry 
concordances. Two of these concordances, the “DG Concordance” (Schmoch et al. 2003) and the 
MERIT Concordance (Verspagen et al. 1994), chart a different path than the YTC. Both of these 
concordances attempt to match IPC subclasses to ISIC industry classifications using the official 
descriptions of these respective categories. In order to do this manually, both efforts are based on 
one-to-one matches, which is only feasible at a relatively coarse resolution. Specifically, the DG 
concordance assigns 625 IPC subclasses to one of 44 different manufacturing sectors, of which 
one or more ISICs are associated. The MERIT Concordance matches IPC subclasses to 22 
industrial classes based on a mix of two- and three-digit ISIC codes. Both approaches are notable 
for their attempt to manually and directly (i.e., one-to-one) translate the IPC to the ISIC industry 
classification system. While the mapping to the ISIC that emerges from these efforts is 
undeniably coarse, it can nevertheless enable some useful empirical and policy analysis.  
 
For more rigorous analysis, higher resolution economic data can be particularly useful – but 
leveraging these higher resolution data requires a higher resolution concordance. To construct a 
higher resolution concordance, researchers have had little choice but to trod the YTC path and 
rely on the same narrow base of Canadian patents. Two other prevailing concordances take this 
approach and seek to build on the YTC. Specifically, the OECD Concordance (Johnson 2002) 
and PATDAT Concordance used by Silverman4 simply layer an additional concordance to 
translate the IPC to more commonly used industry classification systems such as ISIC (used in 
OECD) and the US Standard Industrial Classification (SIC) (used in PATDAT). This 
conventional composite concordance approach introduces additional complications, such as 
causing the strength of the technology-industry linkage to atrophy. To illustrate this problem, 
Table 1 takes a random IPC subclass, B64D “Aircraft; Aviation; Cosmonautics Equipment for 
Fitting In or To Aircraft”, and shows what happens during the layering process. Whereas the 
initial concordance is sensible, the composite concordance has clearly atrophied – even when the 
additional concordance layer (cSIC-ISIC in this case) is itself quite robust. Obviously, the 
severity of this problem intensifies with additional concordance layers. 
  

                                                           
3 In some jurisdictions, examiners must designate a primary IPC and list the remaining IPCs as secondary. The 
PATSTAT database compiles patent data from many jurisdictions, only some of which follow this convention, so a 
primary IPC designation is not always available when multiple IPCs are listed on a patent 
4See http://www.rotman.utoronto.ca/~silverman/ipcsic/documentation_ipc-sic_concordance.htm 
for documentation and procedure 
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In summary, any effort to analyze the relationship between patents and economic activity at the 
industry-level faces a serious concordance dilemma. While there is rich, high resolution data for 
both patents and economic activity, and these data would seem to enable a host of insightful 
empirical analyses, jointly harnessing the high resolution on both sides requires a robust, 
accurate and high resolution concordance. Manual, one-to-one concordances are too crude for 
many research questions, but up-to-date more sophisticated concordances have little choice but 
to build on a relatively narrow set of Canadian patents that are effectively frozen in time, space 
and technology. Furthermore, since very few (if any) datasets are described with the cSIC 
classification system, additional concordance layers are required to construct more broadly 
useful concordances from this narrow patent base, which quickly atrophies the integrity of the 
concordance. 
 
 

4  Guiding Principles and Methodology 
 
To escape the dilemma described in the previous section, an ideal concordance would replicate 
the human process of reviewing each patent and assigning industry codes based on the 
information contained within the patent, while also including a much broader set of patents from 
around the world, allowing for direct translation into multiple economic classification schemes, 
and facilitating updates to reflect technological and classification system changes. In this section, 
we formalize a set of guiding principles based on this ideal and then describe the methods we 
develop to approximate an ideal concordance according to these principles. 
 
Three principles have guided our effort to approximate an ideal concordance to link patents to 
economic activity: 
 

1. Use the descriptive content of individual patents as the basis for the concordance. 
Since technical features classified in the IPC can pertain to several different classes of 
economic activity, it is important to consider each patent individually. An ideal 
concordance would be based on an effective evaluation of the content of each patent, 
including how and where the underlying invention may be used. The patent applicant is 
best suited to assess the potential uses of the invention and, in most jurisdictions, has an 
incentive to discuss this industrial usefulness in the application. 

2. Eliminate the need for concordance layering by constructing direct concordances. 
To avoid the composite concordance problem, we aim to devise methods that can be 
directly applied to the most common economic classification schemes, including SITC 
(Rev. 2 and 3), ISIC (Rev. 2, 3, 3.1 and 4), NAICS, HS and SIC. As new versions of 
these concordances or the IPC are released, new direct concordances are preferable to 
indirect ones that update the older to the newer version via a concordance. 

3. Automate the construction process as much as possible. Technology changes rapidly, 
and the concordance should reflect these changes. A proper concordance will therefore 
need continuous updating to reflect new technologies as they emerge. Automating the 
process implies that it should: 

a. Involve minimal manual work in order to rapidly process millions of patents 
at a time. The process should not require, for example, manually sifting through 
patents or classification schemes. 
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b. Be relatively easy to implement and flexible enough to capture changing 
technologies and industries. Through the process, generating a new version of 
the concordance should be relatively cheap and easy to do. The process should 
also be flexible enough to allow for adjustments in the technological focus or 
years considered to tailor the concordance as needed. 

c. Rely more on objective algorithms than subjective judgments. This helps to 
reduce the manual workload of constructing the concordance, but can also 
provides a critical objective basis on which to construct the weights in a many-to-
many concordance. 

 
The ALP methodology we describe below is guided by these principles and leverages recent 
advances in computing power and search techniques. Programs that perform tasks such as 
keyword extraction and text mining allow for specific bits of information to be extracted from 
individual patents, making it possible to approximate a manual assignment of industry 
classifications. As with any algorithmic search technique, our methods cannot perfectly replicate 
careful manual inspection and assignment, but because they can sift through millions of patents 
they may be able to converge on accurate implied linkages. Because our ALP approach 
statistically relies on the “Law of Large Numbers,” we expect the resulting concordances to 
improve as the number of patents processed increases. 
 
Patents are a natural candidate for mining and clustering techniques because of their wealth of 
information. We use the PATSTAT database available from the European Patent Office (EPO) 
as the source of these patent data. The PATSTAT database contains patent data for 86 countries 
since 1990 and contains details for more than 100 million patent applications, some of which 
relate to the same invention in different jurisdictions. Included in this database are almost 20 
million unique patent abstracts and titles. In contrast, there is no comparable information-rich 
source of qualitative data on economic activity by industry classification. Instead, these 
economic classification systems typically have only one source of qualitative information: the 
brief descriptions used to characterize a particular category of goods or services. Standard 
keyword extraction from these concise industry descriptions is challenging and often produces 
too narrow a set of keywords. To expand these keywords, we exploited the Cross-Lingual 
Expansion tool embedded in WIPO’s PATENTSCOPE.5 This tool is ideal for our purposes 
because it generates synonyms based on the full text of patents in different languages and 
therefore expands our keyword lists based on terms that appear frequently in patent documents.  
 
To showcase these mining and matching methods, we focus on directly mapping four-digit IPC 
subclasses to four-digit SITC trade classifications (SITC Rev. 2) and vice versa. This same 
process can be replicated for industrial classification schemes such as ISIC and SIC. The next 
two sections describe our methodology in detail. 
 
 
4.1 Data Mining Approach (ALP-DM) 
The data mining approach (ALP-DM), as the name implies, relies on data mining the patent 
abstracts and titles included in the PATSTAT database using keywords from the industry 
                                                           
5 This tool is available here: http://www.wipo.int/PATENTSCOPE/search/clir/clir.jsp?interfaceLanguage=en 
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classification descriptions. Specifically, the approach uses search terms generated by hand for the 
industry descriptions and identifies all of the patents that contain these specific keywords in 
either the title or abstract. Based on the number of patents that match the search terms, we obtain 
a frequency of IPC subclasses, which are then reweighted according to how frequent the IPC 
subclass is used overall. 
 
The key process in the ALP-DM approach is producing the search terms that represent each 
industry description and reweighting the number of matches. For each industry code, we 
generate each of the search terms by hand from the text contained in the industry description. In 
some cases, the search terms have been augmented by additional keywords and synonyms 
generated by PATENTSCOPE. The search terms are designed to be as industry-specific as 
possible to reduce the noise coming from patent matches. In many ways, the search terms are 
similar to coming up with a Google search term for a specific industry. This becomes tricky for a 
number of reasons. On the one hand, we would like to include as many patent matches as 
possible to ensure proper coverage of the industry. However, increasing the scope of possible 
matches tends to introduce more noise and reduced accuracy. Therefore, the process requires 
careful treatment and we remove all terms that have multiple meanings or are considered too 
general. We also incorporate the use of “not” terms, since many industry descriptions include 
“not elsewhere specified” or refer to a particular sub-group within an industry. The final result 
from the assignment of search terms is that each industry is typically assigned anywhere from 
one to several dozen search terms, with additional “not” terms. Table 2 provides an example of 
the search terms generated for a grouping of SITC industry codes. 
 
Once the search terms are generated, it is then a straightforward process to query the PATSTAT 
database using these terms. Specifically, we identify patents that contain the exact phrases of 
each search term either in their title or in the abstract. We do not limit the patents by year or 
country, since we want the pool of patents to be as large and as varied as possible. After 
identifying the patents, we obtain a frequency of all the IPC subclasses that are contained within 
those patents. For patents containing multiple IPCs, each IPC is equally reweighted by the total 
number of IPCs contained within each patent. The (unweighted) frequency share for IPC 
subclass j is computed as: 

 ( , ) ij
i j

i

m
Unweighted Frequency SITC IPC

M
  (1) 

where mij indicates the number of patents that list IPC subclass j among those retrieved by the 
keywords for SITC i and Mi is the total number of patents retrieved by the keywords for SITC i.  
 
In the next step, we reweight the frequency shares in (1) by how frequently their corresponding 
IPC subclasses appear in the PATSTAT database. Subclasses that appear very frequently in the 
PATSTAT database are more likely to generate spurious matches with the search terms, so it is 
important to reduce the potential for noise by reweighting the matches. We explore two separate 
weighting schemes. The first weighting scheme (“Specificity Weights”) reweights the matches 
by the total number of IPC subclasses found in the database as follows: 

 ( , ) ij ij j
i j

i i

s m N
SpecificityWeighted Frequency SITC IPC

M M
   (2) 
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where Nj indicates the total number of patents in PATSTAT that list IPC subclass j and sij 

represents the share of patents listing IPC subclass j that link to SITC i. These specificity 
weighted frequencies are then normalized to sum to one. The goal of this weighting scheme is to 
effectively adjust IPC subclasses so they have equal probability of matching the SITC search 
terms. This reduces much of the spurious matches caused by dominant IPC subclasses. There is a 
downside to this weighting scheme, however: it tends to disproportionally overweigh sparsely 
used IPC subclasses relative to frequently used IPC subclasses in ways that may not accurately 
reflect the way these technologies are used in practice. We therefore formulate a second, 
alternative weighing scheme as a middle ground. This hybrid of unweighted and specificity 
weighted frequency is defined as: 

 ( , ) ij ij
i j

ij ij
j

s m
Hybrid Weighted Frequency SITC IPC

s m



 (3) 

where we weight each of the IPC subclasses that match to SITC i by share sij in both the 
numerator and denominator. This hybrid weighting approach is less extreme than pure specificity 
weights and may provide a better reflection of the nature of the technologies used in the 
industries.  
 
Table 3 illustrates the differences between the two weighting schemes using an example. In the 
example, the search terms for an SITC industry yields two IPC subclasses: A and B. In the initial 
raw frequency, IPC subclass A has a weight of 10%, while B has a weight of 90%. However, due 
to the fact that IPC subclass B shows up in the dataset 10,000 times, while A shows up in the 
dataset only 100 times, the “true” technological nature of this industry should weigh more 
heavily towards A since we can be reasonably sure that all of those matches are not spurious. 
Applying the specificity weighting approach reverses these weights, with A having a weight of 
91.74% and B having a weight of 8.26%. This may be too extreme, since A only appears in 10% 
of the raw estimates, while B appears in 90% of the raw estimates. It may be the case that B is a 
widely applicable technology, while A is a narrowly defined technology that is rarely used. 
Applying the hybrid weighting approach moderates the results, assigning a 55.25% weight for A 
and 45.75% weight for B.  
 
With the differences in our two candidate weighting schemes in mind, note that since the nature 
of these technology-industry linkages is likely to vary across sectors, we would not expect one 
weighting scheme to dominate the other universally. In the subsequent section, we test how well 
these ALP concordances based on these different weighting schemes match existing 
concordances, which is the best test we could formulate for comparing these weighting options.  
 
Once all of the IPCs have been reweighed, the final step in the process purges the low-frequency 
IPCs and renormalizes the results. We set an arbitrary cutoff of 2% so that all IPCs whose 
frequencies are less than 2% are excluded and the remaining results are reweighted. This 
significantly reduces the amount of noise in each SITC. It may be worthwhile experimenting 
with different cutoff conditions to ascertain the optimal cutoff value. Based on our own 
explorations, we believe 2% represents a reasonable cutoff. 
 
To better illustrate the full outcome of the process, we provide the results for SITC code 8484, 
which is described as “Headgear and fitting thereof”. We first queried the PATSTAT database 



Lybbert and Zolas  August 2012 

11 
 

using the search terms found in Table 1. This initial query yielded 11,660 unique patents and 379 
unique IPCs. Table 3 shows the results once the matches are reweighted, expunged of the low-
frequency IPCs and renormalized. The final result conforms nicely with our own expectations of 
the types of technology that would be embedded in this industry.  
 
We repeat these steps for every SITC description and generate weights that match all 4-digit 
SITCs to 4-digit IPCs. We also apply the same methodology to the product descriptions from 
other common industry classification systems, such as ISIC, NAICS, HS and US SIC. The 
benefit of such a concordance is that no layering of concordances is required and the results are 
based on actual concurrent data, with minimal subjectivity. Researchers will have the flexibility 
to use a variety of different industry classification systems and get customized technology 
reports for each industry. Going forward, we will continue to explore different search queries and 
weighting schemes that may more accurately represent the true results. 
 
 
4.2 Indexing and Probabilistic Matching Approach (ALP-PM) 
Our second approach uses a similar methodology as the ALP-DM approach, but incorporates a 
separate matching process. In this case, we first extract keywords from the patents and then 
match them to the industry descriptions using probability weights. While the data mining 
approach would typically be used to translate industries into technologies, this approach might 
better be used in the opposite direction and match technologies to industries. This approach may 
also ultimately enable patent-specific matching to economic classifications, although this would 
require further refining.  
 
In the initial step of this approach, we order the patents by IPC cluster. We then run each of the 
patents through a keyword extraction program. For our initial approach, we utilize an open- 
source Python-based keyword extraction program called “Topia Term Extract 1.10.”6 This 
extraction program is a generalized text extraction program that identifies the important terms 
within written content. The benefit of this program is that it also uses language patterns and 
statistical analysis to determine the strength of each keyword, so that it is possible to rank the 
keywords by order of importance. There are many other keyword extraction programs in 
existence, each with their own niche and specialty. While the results from each program will 
differ slightly, the programs generate very similar results on the whole. 
 
Because of the large quantity of words contained in both the patent abstracts and titles 
(especially when compared to the quantity of words found in the industry descriptions), it makes 
sense to weigh the keywords extracted from each patent according to relative importance. In this 
case, we weigh the keywords from the title to be twice the weight of the extracted keywords 
from the abstract. This is due to our belief that a single word from the title will provide a better 
clue as to the real nature of the invention rather than a single word from the abstract. We also 
limit the number of keywords extracted from each patent to be 10 total words from both the title 
and abstract. Patent titles and abstracts vary greatly in length, so in order for all patents to receive 
equal weighting, it is important to limit the matching process to the ten strongest keywords so 
that certain patents are not more influential.  
                                                           
6 The program package and description can be found at http://pypi.python.org/pypi/topia.termextract/ 
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Another more nuanced step in the keyword extraction process is the use of a “blacklist.” Early in 
our analysis, we found that certain words kept appearing on the keyword extractions that were 
too general to be used in the matching process, such as “system”, “device”, “model”, “invention” 
and more. To construct this blacklist of keywords, we ran the keyword extraction program over 
500,000 random patents and tabulated the keywords. We looked at the top 100 keywords and ran 
the PATENTSCOPE cross-lingual expander on certain keywords, which left us with a blacklist 
of roughly 250-300 keywords. We remove all of the blacklisted words from the extraction 
results. 
 
Once all of the keywords have been extracted and tabulated for the IPC cluster, we are left with a 
list of keywords and weights, which were obtained by summing the number of times each 
keyword appeared in all of the analyzed patents. Each of the keywords and weights are then 
matched against the industry classification descriptions generated in the ALP-DM approach with 
additional augmentations. For our initial runs, we used “exact string” matching, although it is 
possible to do “like” matching and set the tolerance level. For the “exact string” matching 
portion, we used an expanded word list based on the ALP-DM search terms, full industry 
descriptions, PATENTSCOPE synonyms and additional plurals, root words and alternative 
spellings. The reason for this augmentation of the industry terms is that the pool of possible 
industry matches is much smaller than the pool of patent matches (a couple hundred versus 
almost 20 million), so we wanted to maximize the quantity of matches and utilize a filtering 
system and reweighting process to reduce the false positives and thereby improve quality.  
 
For each match, we weighed the importance of the match by the weight of each keyword. The 
industries that matched with the keywords that have the highest weight after the extraction 
process were weighed the most. Once the industry and weights have been tabulated, we are left 
with our raw results. 
 
Next, to reduce the number of spurious matches, we employed a filtering process to the raw 
results. The first filtering process involved assigning allowable IPC-SITC correspondences. To 
implement this filter, we assigned lower level IPC’s (3-digit) with lower-level SITCs (2-digit). If 
the correspondence did not make sense, i.e. agricultural production with steel technology, then 
we disregarded the weights for that specific match. We did this for all 3-digit IPC’s and 2-digit 
SITCs. The next filter involved the 2% cutoff condition, which was similarly employed in the 
ALP-DM approach. All weights that represented less than 2% of the total weights between IPC 
and SITC were disregarded and the remaining weights were retabulated and normalized. We then 
implemented the same “Specificity” and “Hybrid” weighting schemes to these results 
 
To better illustrate the results, we run the full approach for IPC subclass A42B which is 
described as being “Headwear/Hats; Head Coverings”. These results can be found in Table 5 
below. Overall, there are 20,988 patents that contain this particular IPC subclass. After running 
the keyword extraction program through these patents, we find that the 5 most common 
keywords are “utility model”, “cap”, “hat” and “helmet” and “head”. We then used “exact 
string” matching to get the corresponding SITCs. Once again, the end result matches closely with 
our own preconceptions of the industries that use headwear technology or whose industries 



Lybbert and Zolas  August 2012 

13 
 

might be used to make headwear technology. The next section compares how our software-based 
methodology stacks up against the existing concordances. 
 
 

5  Comparison with Existing Concordances 
 
In this section, we use the ALP-DM and ALP-PM approaches with hybrid and specificity 
weights to generate concordances that are structurally comparable to two existing concordances 
and the devise tests for how well the ALP concordances fit the familiar concordances. Given that 
the two comparison concordances – the YTC and the DG concordance – are structurally very 
different, we view these tests as complementary. Specifically, we consider the YTC test to be the 
best high resolution test of how well the ALP approach can match careful human classification 
since it is based on patent examiners’ classification of patent applications into high resolution 
industrial categories and provides probabilistic weights that are directly comparable to ALP 
concordances. The DG concordance provides a test of how well the ALP concordance can match 
more aggregate, one-to-one matches.  
 
5.1 YTC Comparison 
Unfortunately, we cannot identify the exact patents used in the YTC, but we can limit our ALP 
methodology to only the Canadian patents issued in the same time period between 1978 and 
1993. This provides us coverage of more than 350,000 Canadian patents and abstracts (30% 
more than was used in the YTC). We then convert the IPC’s from those patents into the 
Canadian SICs using both the ALP-DM and ALP-PM algorithm. Note that our algorithm is more 
heavily weighted towards tradeable goods, since the specific purpose behind our approach is to 
convert technology data into specific product-types. The Canadian SICs are comprised of both 
tradeable and non-tradeable goods (e.g. services), so we expect there to be some inherent 
differences between the two approaches. 
 
We compare the YTC concordance against the concordances based on each of the three 
weighting options (unweighted, specificity weight and hybrid weight) for both the ALP-DM and 
ALP-PM. We do this first for the 4-digit cSIC-E for both the Sector of Use (SOU) and Industry 
of Manufacture (IOM). Since the YTC is constructed as a mix of 3- and 4-digit cSIC 
concordances with 4-digit IPC, we aggregate both the YTC and ALP concordances to the 3-digit 
cSIC. Therefore, in all of the comparisons that follow, our ALP results and the YTC results all 
concord 3-digit cSIC to 4-digit IPC. 
 
The first ALP-YTC comparison we conduct is provided in Table 6, a simple cross-tabulation of 
zero and positive values of the respective results where the off-diagonal elements provide a crude 
measure of errors. The ALP-DM approach generates matching zero values roughly 75% of the 
time and matching positive values 2.4-4.1% of the time. Conditional on YTC=0, the probability 
that ALP-DM correctly generates a zero weight is 78-79%. When YTC>0, the probability that 
this approach correctly generates a positive weight is 62-65%.  In the case of the ALP-PM 
results, 90-94% of the results are matching zero values. The conditional probabilities of a 
matched zero and matched positive weight, respectively, are 96-98% and 28-38%. Table 6 
captures a key tradeoff between the type I and type II errors associated with the ALP-DM and 
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PM approaches: relative to the ALP-PM approach, the ALP-DM approach produces fewer false 
positives at the expense of more false negatives. 
 
Next, we compute the difference between the YTC and our ALP results. Given that the majority 
of these differences are zero due to matching zero values (see Table 6), we compare these 
differences across all possible combinations of 3-digit cSIC and 4-digit IPC excluding matching 
zero values. This provides a strong test of our results with the YTC. Figure 1 shows the 
distribution of these differences in standard deviation (of the YTC) units. Several things are 
noteworthy in this figure. First, these differences are extremely small relative to the standard 
deviation of the YTC. Even after excluding matching zero values, the vast majority of these 
differences are less than 10% of the standard deviation of the YTC. Second, the ALP approach 
and weighting noticeably affects the fit of the ALP results to the YTC results. The ALP-DM 
approach produces the smallest errors, which seems consistent with Table 6 results since this 
figure excludes zero values. In both approaches, the hybrid weights generate the best fit to the 
YTC results. In the case of the ALP-DM approach with hybrid weights, the bulk of the results 
are within 2% of the standard deviation of the YTC. Finally, although it is not clear the 
differences are significant, the weighted ALP-DM approach appears to better fit IOM than SOU 
results.  
 
As a final comparison of our ALP results and the YTC, we assess how the fit between the two 
changes with the number of patents available to process, which is determined by the number of 
Canadian patents in each IPC subclass (4-digit) from 1978 to 1993. Since the ALP approach is a 
statistical approach that relies on the law of large numbers, we hypothesize that it will more 
closely approximate the human classification-based YTC as the number of patents processed 
increases. For future use of ALP approaches, it is important to demonstrate this pattern and to 
characterize how the number of patents processed affects the quality of the results. The YTC 
comparison offers a convenient test of this hypothesis since the number of patents in different 
IPC subclasses varies widely in these Canadian patents (see x-axis in Figure 2). To exploit this 
variation, we non-parametrically regress the absolute deviation of the YTC with our ALP results 
– normalized again by the standard deviation of the YTC – on the number of patents processed. 
This regression (Figure 2) confirms that the fit improves as the number of patents processed 
increases. When the number of patents processed is less 2000, the rate of improvement is very 
apparent. Beyond this threshold, doubling or tripling the number of patents analyzed does 
nothing to improve the fit. This result provides a useful benchmark for future applications of the 
ALP approach, which, incidentally, will almost always include many more patents than are 
contained in this subset of Canadian patents.  
 
Overall, the comparison of the ALP concordances with the YTC shows some systematic biases 
that are mainly attributed to the methodological construction of the concordance. Our 
concordance matches to tradeable classes better than non-tradeable classes.7 While these 
differences can be seen occasionally at high resolution (e.g., 4-digit), the differences quickly fade 

                                                           
7 As we pushed further into the comparison with the YTC, we ran some basic fixed-effect regressions on the 4-digit 
weights to identify any specific differences between certain class levels. We found that our algorithmic approach 
tends to under-weigh most of the non-tradeable cSIC-E (these are cSIC1 greater than 5). This is unsurprising since 
our algorithm relies most frequently on identifying specific products and goods, and it is much more difficult to 
match specific services. 
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with aggregation. There may be more that could be done to refine the matches on the margin, but 
we expect these improvements to be modest at best and will instead focus our attention on 
applying the ALM methodology to other trade and industry classifications.  
 
 
5.2 DG Concordance Comparison 
As a second check, we compare the results of our concordance with the DG Concordance 
constructed by Schmoch et al. (2003). The DG Concordance linked IPCs to both the NACE and 
ISIC (Rev. 3) classification system using a one-to-one mapping of 4-digit IPC groups into 44 
different manufacturing fields, which are then assigned to one or more ISICs. The assignment of 
IPCs to manufacturing fields was based on the industry of operation of firms filing patent 
applications. The DG Concordance used more than 3,000 applicant firms that accounted for 
more than 150,000 patents from 1997 to 1999. Once they identified the industry of the firm, they 
summed up the IPC counts of the patents filed by the firm and assigned the largest IPC weight a 
one-to-one match with the manufacturing field. 
 
We generated ALP concordances for IPC-ISIC (Rev. 3), then aggregated the 4-digit ISICs to 
match the 44 industry fields used in the DG approach. The overall correlation between our ALP 
weights and the DG weights – which are binary indicators for whether a given IPC subclass is 
included in an industrial field (1) or not (0) – ranges from 0.36 to 0.53 depending on the 
methodology used. Given the structural differences between these approaches (i.e., one-to-one 
matching versus probabilities), these correlations seem quite encouraging. Beyond this overall 
correlation, we find that the ALP approach matches the DG concordance better in some fields 
than in others. The ALP concordances matched better with well-defined industrial fields such as 
"Tobacco", "Wood Products" and "Accumulators", but matched less well with more broadly 
defined industry types such as "Non-specific Machinery", "Agricultural Machinery" and 
"Electrical Components".  
 
As a more quantitative comparison of these differences across industrial fields, we take the 
average weight for each field across all of the IPCs within that field. For instance, Field 1 has 19 
different IPCs associated with that specific field. The DG Concordance assigns a 100% weight 
for each those 19 IPCs into ISIC (Rev. 3). We compute a similar average for the ALP 
concordances by taking the average weight of these same 19 IPCs (and similarly for each field). 
Table 7 summarizes these average weights for each field using the different weighting schemes.  
As another comparison, we compare the mean ALP weight for all IPC subclass-field pairs that 
are not matched by the DG concordance (i.e., DG=0) with the mean ALP weight for those that 
are matched by the concordance (i.e., DG=1). As shown in Table 8, the differences between 
these mean weights are statistically significant for all ALP approaches and particularly stark for 
the ALP-DM approach with hybrid weights. For a final comparison, we rank order the weights 
within each IPC subclass across fields and compare these ranked weights to the binary DG 
weights for these subclasses. The final two columns of Table 8 show how frequently the three 
largest ALP weights for a given IPC subclass include the IPC-field linkage implied by the DG 
(i.e., DG=1). Roughly 50% of the time the ALP-DM with hybrid weights captures the DG match 
in the top three.  
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Taken together, these comparisons seem to indicate that ALP concordances – especially from the 
ALP-DM approach – provide a reasonably strong match to the DG concordance. With this 
comparison in mind, it is worth noting that there are added benefits to the ALP approach relative 
to the DG approach. If one is interested primarily in the 44 fields contained in the DG 
concordance, the ALP approach generates a probability structure that in many contexts is 
preferable to the one-to-one binary matches of the DG concordance. Potentially even more 
important, the ALP approach provides much more disaggregated linkages that enable economic 
data to speak to patent data at a much higher industrial resolution if necessary.  
 
 

6  Sample Analysis of Disaggregated Patent & Trade Flows 
 
ALP concordances offer a promising way to jointly analyze patents and economic data at an 
unprecedented level of resolution. To demonstrate one potential use of this concordance, we 
analyze how bilateral patent flows are related to bilateral trade flows. We expect patent flows 
between two countries to be highly correlated with trade because the fixed costs and benefits of 
both activities are similar and the two are closely linked with technology transfer (Coe and 
Helpman 1995; Eaton and Kortum 1996). Previous analyses of international patent flows have 
relied heavily on a “gravity” model of trade, where bilateral patent flows are determined by the 
economic size of the countries (i.e. GDP), distance and other country-specific factors. These 
studies have all looked at the aggregate flows (Harhoff et al. 2007; Bosworth 1983; Eaton et al. 
2004; Slama 1981) with no breakdown of industry-level or sectoral differences. A more detailed 
analysis of the same topic at the industry level can yield additional insights into international 
patenting strategies across the different industries and technologies.8  
 
To make this comparison, we use bilateral trade flows from the UN-Comtrade database 
organized by 4-digit SITC (Rev. 2) and bilateral patent flows from the PATSTAT database 
organized by 4-digit IPC. To use these disaggregated patent and trade data jointly, we concord 
the patents to the 4-digit SITC (Rev. 2) using the ALP-DM approach with hybrid weights. Thus, 
the bilateral patent flows associated with a given 4-digit SITC are computed as weighted bilateral 
patent flows of the 4-digit IPCs that concord to the SITC in the ALM-DM concordance, which 
provides the weights on each of these IPCs. In addition to trade flows, our gravity model 
specification includes country-specific variables such as the origin and destination country GDP 
(obtained from World Bank Indicators) as well as some industry-specific measures.9 As an 
extension of our basic specification, we bifurcate our sample using the Broad Economic 
Classification (BEC) system10 to see how patent flows differ across different industry types. 
After applying the concordance and organizing all the variables, we are left with 634 different 4-
digit SITC industries that filed for patents in at least one of 68 possible destination countries 

                                                           
8 In a survey of the literature regarding patents as measures of technological change, Basberg (1987) notes that 
patents applied for abroad are most likely to be highest quality patents due to time and costs involved with the 
application process. Similar statements acknowledging the value of foreign patents were made in Putnam (1996). 
9 We use the elasticity of substitution measures obtained from Broda and Weinstein (2006) which are organized by 
4-digit SITC 
10 Provided by the United Nations (2002 Version). Note that several SITC’s qualify under multiple  BEC 
classifications, in which case we still counted that SITC among each bifurcated group. Hence, the total number of 
observations from the bifurcation will exceed the total number for all industries.   
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between 2001 and 2005 (14,442,520 possible observations). Table 9 provides a summary of the 
variables used.  
 
At the disaggregated level, there is a much higher proportion of zero patents than zero trade. In 
the cases where both trade and patent flows were zero between the two countries, these 
observations were dropped. Otherwise, we retained the observation and treat the zeros as 
informative. Since we are regressing count data (patents), we run a pseudo (Poisson) maximum 
likelihood (PPML) regression as recommended in Santos Silva and Tenreyro (2006).11 
 
We first estimate a gravity equation of aggregate country-level bilateral patent flows based on 
GDP and country-level trade barriers, such as distance and border effects. We provide this as 
comparison with the previous studies looking at international patenting flows. The GDP 
measures are intended to capture market supply, demand and absorption capabilities for new 
technologies of the origin and destination countries, while the gravity terms capture the 
transaction costs of doing business abroad. We then estimate the same equation and include 
bilateral trade. We expect countries which are more economically integrated to more readily file 
patent applications with each other (after controlling for trade barriers and market sizes) since 
firms’ incentives to protect innovations in foreign markets are increasing in export revenues 
earned in those markets.  
 
The aggregate results in Table 10, which are based on total bilateral patent and trade flows (i.e., 
not disaggregated using the ALP-DM concordance), provide a benchmark for the (shaded) 
disaggregated specifications that use the concordance. Column (1) provides the PPML estimates 
for the simple gravity model of patent flows. The overall fit of the gravity model is quite high, 
with market size playing the largest role in determining patent flows. The regression also shows 
that besides distance, none of the other gravity variables are significant and distance is only 
significant at the 5% level. These findings are similar to the Eaton et al. (2004) study that also 
found a low elasticity of patent flows with respect to distance. Columns (2) and (3) include 
bilateral trade and the same country-specific variables. We can see that trade is positively related 
to patent flows with an estimated trade elasticity of 0.41-0.56 at the aggregate level. When 
similar regressions are estimated at the disaggregate 4-digit SITC level (Columns 3 through 7), 
we see some noticeable differences in the values of the coefficients. Across all industries, the 
trade elasticity decreases to 0.24-0.28 and 0.15-0.17 without and with industry fixed effects, 
respectively. The decline in the elasticity at the disaggregate level seems to imply that while 
trade flows continue to shape patent application decisions, other industry-specific factors enter 
importantly into these patenting decisions once we can model the relationship at higher 
resolution. Specifically, GDP and other gravity variables (e.g., distance, common language, 
colonial relationship) play a larger and statistically clearer role at the disaggregate level.  
 
As an additional exercise, we further leveraged the ALP-DM concordance to estimate the full 
disaggregated model in column (7) by subsamples as defined by selected Broad Economic 

                                                           
11 In addition to the Poisson regression, we also experimented with OLS using ln (Patents + a) where a is a 
relatively small constant. We also ran similar regressions using the Zero-Inflated Poisson (ZIP) regressions. The 
results from these estimations are qualitatively similar to our current estimates and are available upon request. 
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Categories.12 This allows us to investigate whether there are any noticeable differences in 
patenting behavior across broad industries. Specifically, we break our sample into three BEC 
classes across which we expect there to be differences in how firms use patents: Industrial 
Supplies (BEC-2), Capital Goods (BEC-4), and Consumer Goods (BEC-6).  Since Industrial 
Supplies encompass primarily intermediate goods and Consumer Goods encompass primarily 
final goods, we expect bilateral exports to shape bilateral patent flows more in the former than 
the latter. This pattern is evident in our results (Table 11). The trade elasticities for capital and 
consumer goods are nearly twice as large as the elasticity for Industrial Supplies. Once we can 
match patent flows to SITC and subsequently to BEC, we also see that the destination country’s 
market size plays a larger role in patent flows for capital and consumer goods and that capital 
goods are more sensitive to geographic barriers such as distance and border effects.  
 
There is obviously much more that could be done to push this analysis further, which is the focus 
of ongoing research. Our objective here is simply to illustrate how an ALP concordance might be 
used to better understand determinants of international patenting strategies. In addition to 
enabling joint analysis of disaggregated patent and trade flows, such a concordance opens other 
modeling possibilities because many other data sources are structured using economic 
classifications such as SITC and ISIC. Finally, note that while this sample analysis involves 
model estimation, there are many descriptive analyses that are enabled by ALP concordances 
that are potentially just as insightful and policy relevant. For example, these concordances make 
it possible to add layers of economic and industrial activity to standard patent landscapes, 
making it easier to detect key innovation trends and patterns in specific fields. 
 
 

7  Conclusion  
 
There is a long and important literature that uses patents to understand the innovation and 
diffusion of technology. While economists have made important contributions to this field of 
inquiry, economic analyses of patents have often been constrained by the mismatch between 
patent and economic data. The ALP methods we develop in this paper enable patents and 
economic data to speak to each other at an unprecedented level of disaggregation.  
 
There are many policy-relevant questions that could be addressed by joint, high resolution 
analyses of patent and economic data, including both descriptive exercises (e.g., enhanced patent 
landscapes) and more rigorous model estimation (e.g., dynamics models of the economic impacts 
associated with innovation, international technology transfer and patenting strategies, etc.). By 
making the ALP concordances we have constructed widely available to the research community 
and continuing to refine these methods as yet more powerful algorithmic tools are developed, we 
hope to enable these kinds of industry-level analyses in order to complement the insightful but 
scarce firm-level patent data and analyses that exist. 
 
In this paper, we have developed and tested two ALP approaches to constructing concordances 
along with various weighting options. Based on testing these approaches against existing 

                                                           
12 These are provided by the UN and are constructed based on SITC categories. For more details, see 
http://unstats.un.org/unsd/pubs/gesgrid.asp?id=331 .  
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concordances, the data mining approach (ALP-DM) with hybrid weights outperforms the 
probability matching approach (ALP-PM). For near term research, concordances based on the 
ALP-DM approach with hybrid weights will provide the most reliable means of linking patents 
to economic data. With continued advances in text and semantic analysis tools and richer 
databases, however, new possibilities will emerge for building these linkages at yet greater levels 
of disaggregation. For example, an enhanced ALP-PM approach may soon be able to match 
individual patents to economic classifications – or even to actual products or processes that use 
the invention. Although effectively leveraging high resolution linkages like this will demand real 
research creativity, we believe the potential gains associated with a flurry of creative work on 
this frontier are extraordinary. 
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Figure 1 Kernel densities of differences between the YTC and ALP results in standard deviation 
(YTC) units excluding matching zero values. 
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Figure 2 Non-parametric LOWESS regression of the normalized absolute deviation of ALP 
results from the YTC (IOM) as a function of the number of patents analyzed (i.e., the number of 
Canadian patents in the 1978-93 window by IPC subclass (4-digit)). Tick marks along x-axis 
depict the distribution of the number of patents analyzed.  
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Table 1 Concordance for IPC subclass B64D which is “Aircraft; Aviation; Cosmonautics / 

Equipment for Fitting in or to Aircraft” 

Initial Concordance: IPC-cSIC Composite Concordance: IPC-cSIC- ISIC 

Description Weight Description Weight 

Aircraft and Aircraft Parts Industry 43.2% 
Manufacture of other fabricated metal 
products; metal working service activities 

10.8% 

Other Communication and Electronic 
Equipment Industries 

9.4% Manufacture of motor vehicles 10.8% 

Other Machinery and Equipment 
Industries  

6.3% 
Manufacture of bodies (coachwork) for 
motor vehicles; manufacture of trailers and 
semi-trailers 

10.8% 

Indicating, Recording and Controlling 
Instruments Industry 

5.8% Steam and air conditioning supply 10.8% 

Other Textile Products Industries  5.0% Freshwater fishing 1.4% 
Electrical Switchgear and Protective 
Equipment Industry 

2.9% Marine aquaculture 1.4% 
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Table 2 Example search terms used for SITC Industry Descriptions 

SITC 
Code SITC Full Description Search Terms 

“Not” Search 
Terms 

8484 Headgear and fitting thereof, nes “Headgear”, “Head Gear”, "Helmet”  
8510 Footwear “Footwear”  
8710 Optical instruments and apparatus “Optical Instruments”, “Eyeglasses”  

8720 Medical instruments and appliances, nes 
“Medical Instrument”, “Medical 
Appliance”  

8731 
Gas, liquid and electricity supply or 
production meters; etc 

“Gas Meter”, “Liquid Meter”, 
“Electric Meter” “Part” 

8732 
Counting devices non-electrical; 
stroboscopes “Counting Device”, “Stroboscope” “Part”, “Electric” 

8741 
Surveying, navigational, compasses, etc, 
instruments, nonelectrical 

“Surveying Equipment”, “Surveying 
Instrument”  
 

 

 

 

 

 

 

 

 

 

Table 3 Illustration of Weighting Schemes 

SITC IPC Match IPC Total 
Absolute 

Frequency 
Specificity 
Weights 

Hybrid 
Weights 

1 A 100 100 10% 91.74% 55.25% 

1 B 900 10,000 90% 8.26% 44.75% 
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Table 4 IPC Frequency for Industry Group, “Headgear and Fitting Thereof” (SITC 8484) 

IPC Raw Specificity Hybrid IPC Description 
A42B 43.1% 53.5% 97.8% Hats; Head Coverings  
A42C 1.5% 23.4% - Manufacturing or Trimming Hats  
A62B 5.2% 9.9% 2.2% Devices For Life-Saving  
B68B 0.1% 5.1% - Harness; Whips Or The Like 
F41H 1.7% 5.1% - Armour; Camouflage 
B63C 1.6% 3.0% - Life-Saving In Water;  
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Table 5 ALP-PM Approach Example for IPC Class A42B 

IPC Number A42B  

IPC Description Headwear – Hats; Head Coverings  

Top Keywords “Helmet”, “Utility Model”, “Cap”, “Hat”, “Head” 

# of Patents Analyzed 20,988  

 
SITC Description 

Raw 
Weight 

Specificity 
Weight 

Hybrid 
Weight 

8484 - Headgear and fitting thereof, nes 65.0% 13.8% 72.3% 

6576 - Hat shapes, hat-forms, hat-bodies and hoods 19.0% 7.4% 11.4% 

6571 - Articles of felt, nes 8.1% - - 

8421 - Overcoats 7.9% - - 

6579 - Special products of textile material - 20.6% - 

6517 - Yarn of regenerated fibres - 20.1% 6.7% 

6577 - Wadding, wicks - 14.5% 4.6% 

6543 - Woven fabric of wool or fine hair, nes - 12.8% 5.0% 

6581 - Textile material used for packing of goods - 7.9% - 

6121 - Articles of leather used in mechanical appliances - 3.0% - 
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Table 6 Cross-tabs of zero and positive values of YTC and ALP results (both DM and PM 
results are based on hybrid weights) 
  Sector of Use (N=232,498) Industry of Manufacture (N=232,361) 

Data Mining 
(ALP-DM) 

  ALP=0 ALP>0   ALP=0 ALP>0   

YTC=0 73.9% 19.7% 93.5% YTC=0 75.0% 21.3% 96.3%

YTC>0 2.5% 4.1% 6.5% YTC>0 1.3% 2.4% 3.7%

76.3% 23.7% 100% 76.4% 23.7% 100%

Probability 
Matching 
(ALP-PM) 

  ALP=0 ALP>0   ALP=0 ALP>0   

YTC=0 89.5% 4.0% 93.5% YTC=0 93.9% 2.4% 96.3%

YTC>0 4.7% 1.8% 6.5% YTC>0 2.3% 1.4% 3.7%

    94.2% 5.8% 100%  96.2% 3.8% 100%
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Table 7 Comparison of the DG and ALP Concordances across industrial field 
   ALP-DM Approach ALP-PM Approach 
  DG Raw Specificity Hybrid Raw Specificity Hybrid 
Field Description (1) (2) (3) (4) (5) (6) (7) 
1 Food 100% 43% 42% 65% 33% 17% 35% 
2 Tobacco 100% 31% 36% 75% 87% 44% 98% 
3 Textiles 100% 29% 30% 57% 11% 8% 5% 
4 Wearing 100% 21% 2% 18% 2% 1% 0% 
5 Leather 100% 7% 23% 22% 21% 28% 25% 
6 Wood Products 100% 25% 63% 67% 8% 1% 8% 
7 Paper 100% 23% 20% 53% 14% 15% 12% 
9 Petroleum 100% 5% 5% 8% 7% 18% 4% 
10 Basic Chemicals 100% 23% 10% 31% 9% 1% 11% 
11 Pesticides 100% 10% 28% 78% 5% 0% 0% 
12 Paint 100% 0% 0% 0% 0% 0% 0% 
13 Pharmaceuticals 100% 10% 3% 22% 0% 0% 0% 
14 Soaps 100% 12% 24% 34% 5% 0% 2% 
15 Other Chemicals 100% 11% 0% 8% 1% 0% 1% 
16 Man-made Fibres 100% 0% 36% 21% 0% 0% 0% 
17 Plastic Products 100% 3% 17% 21% 5% 4% 6% 
18 Mineral Products 100% 25% 29% 38% 16% 2% 20% 
19 Basic Metals 100% 24% 16% 26% 32% 36% 31% 
20 Metal Products 100% 11% 9% 12% 5% 3% 4% 
21 Energy Machinery 100% 27% 22% 40% 0% 0% 0% 
22 Non-specific Machinery 100% 4% 2% 8% 0% 0% 0% 
23 Agricultural Machinery 100% 7% 3% 4% 2% 0% 2% 
24 Machine Tools 100% 2% 4% 4% 6% 5% 9% 
25 Special Machinery 100% 3% 5% 4% 2% 0% 2% 
26 Weapons 100% 17% 56% 71% 1% 0% 1% 
27 Domestic Appliances 100% 13% 9% 25% 5% 1% 6% 
28 Computers 100% 16% 1% 11% 1% 2% 2% 
29 Electric Motors 100% 9% 16% 12% 0% 1% 1% 
30 Electrical Distribution 100% 8% 9% 10% 12% 1% 6% 
31 Accumulators 100% 23% 69% 74% 0% 0% 0% 
32 Lightening 100% 8% 13% 28% 2% 0% 0% 
33 Other Electrical 100% 6% 1% 4% 11% 10% 12% 
34 Electronic Components 100% 0% 0% 0% 1% 2% 0% 
35 Telecommunications 100% 2% 2% 4% 7% 8% 8% 
36 Television 100% 14% 9% 20% 11% 12% 9% 
37 Medical Equipment 100% 1% 4% 4% 2% 0% 1% 
38 Measuring Instruments 100% 2% 1% 4% 8% 10% 13% 
39 Industrial Control 100% 0% 0% 3% 7% 9% 9% 
40 Optics 100% 5% 7% 11% 4% 2% 5% 
41 Watches 100% 39% 22% 89% 1% 0% 0% 
42 Motor Vehicles 100% 18% 1% 11% 0% 0% 0% 
43 Other Transport 100% 17% 11% 26% 0% 0% 0% 
44 Consumer Goods 100% 19% 22% 30% 9% 7% 9% 
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Table 8 Summary of comparison of ALP concordance with the DG concordances (Schmoch et 
al. 2003) where DG=1 indicates that the DG assigns a particular IPC subclass to an industrial 
field 
    Mean Weight   % ranked in top 3 by IPC subclass

DG=0 DG=1 t-statistic DG=0 DG=1 

Data Mining (ALP-DM) 

Raw 0.02 0.07 24.2 5.9% 42.5%

     w/ 2% cutoff 0.02 0.13 37.6 5.8% 44.5%

Specificity 0.02 0.07 14.2 5.9% 40.3%

     w/ 2% cutoff 0.02 0.11 19.9 5.0% 38.5%

Hybrid 0.02 0.17 41.9 5.7% 52.6%

     w/ 2% cutoff 0.02 0.20 45.0 5.1% 47.5%

Probability Matching (ALP-PM) 

Raw 0.02 0.06 14.5 6.1% 20.5%

     w/ 2% cutoff 0.02 0.06 14.9 6.0% 20.1%

Specificity 0.02 0.04 8.5 6.0% 12.2%

     w/ 2% cutoff 0.02 0.04 8.0 6.1% 12.2%

Hybrid 0.02 0.07 13.7 6.0% 20.2%

       w/ 2% cutoff 0.02 0.07 13.3 5.6% 19.7%
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Table 9 Summary statistics for variables used in sample analysis of bilateral trade and patent 
application flows. 

Variable Source Mean Min. Max. 
Percent 

Zero # of Obs. 

Bilateral Patent Flows PATSTAT 
2.798 

(26.520) 
0 4572 95.8 14,442,520 

Bilateral Trade Flows 
UN-

Comtrade 
7010.57 
(121965) 

0 3.65e7 70.5 14,442,520 

Origin & Destination GDP 
WB 

Indicator 
5.35e11 

(1.50e12) 
8.15e8 1.26e13 - 14,442,520 

Elasticity of Substitution 
Broda & 

Weinstein 
(2006) 

5.85 
(13.642) 

1.1 131.5 - 9,197,184 

Distance CEPII 
7080.58 

(4952.76)
60 19,772 - 14,442,520 

Border CEPII 
0.035 

(0.185) 
0 1 - 14,442,520 

Common Language CEPII 
0.114 

(0.318) 
0 1 - 14,442,520 

Colony CEPII 
0.027 

(0.163) 
0 1 - 14,442,520 

Note: Standard Deviations are in parenthesis. The Means and Standard Deviations for bilateral patent flows and 
trade flows are for the nonzero observations. 
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Table 10 PPML regression results for extended gravity model of bilateral patent flows, 2001-
2005. Shaded variables and results use the ALP-DM concordance with hybrid weights to match 
patents (IPCs) to SITC categories. 
 Aggregate Disaggregated by 4-digit SITC 

 
Dependent 
Variable 

Bilateral 
Patent 
Flows 

 (1) 

Bilateral 
Patent 
Flows 

 (2) 

Bilateral 
Patent 
Flows 

 (3) 

Bilateral 
Patent 
Flows 

(4) 

Bilateral 
Patent 
Flows 

(5) 

Bilateral 
Patent 
Flows 

(6) 

Bilateral 
Patent 
Flows 

(7) 

ln Trade 
 0.407*** 0.563*** 0.276*** 0.170*** 0.237*** 0.148*** 
 (0.0335) (0.162) (0.116) (0.009) (0.0136) (0.0116) 

ln Destination 
GDP 

1.288***  0.761***   1.036*** 1.116*** 

(0.104)  (0.127)   (0.0318) (0.0293) 

ln Origin 
GDP 

1.190***  0.718***   0.921*** 0.984*** 

(0.101)  (0.146)   (0.0312) (0.0305) 

ln Elasticity 
of Substitution 

     -0.187*** -0.0236 

     (0.0378) (0.0373) 

ln Distance 
-0.296*  0.00167   -0.0908* -0.163*** 

(0.137)  (0.139)   (0.0388) (0.0372) 

Border Dummy 
-0.0662  -0.449   -0.258* -0.174 

(0.417)  (0.422)   (0.125) (0.119) 

Same Language 
Dummy 

0.392  0.222   0.305*** 0.339*** 

(0.242)  (0.235)   (0.0900) (0.0788) 

Colonial  
Dummy 

-0.696  -0.304   -0.575*** -0.630*** 

(0.373)  (0.321)   (0.120) (0.104) 
Year Fixed 
Effects 

Yes Yes Yes Yes Yes Yes Yes 

Country Fixed  
Effects 

No Yes No Yes Yes No No 

Industry Fixed 
Effects - - - No Yes No Yes 

Constant 
-60.27*** -9.94*** -44.20*** -12.93*** -7.342*** -55.47*** -57.57*** 

(0.728) (0.767) (5.038) (0.671) (0.361) (1.580) (1.555) 

Observations 22,570 21,801 21,801 4,253,941 4,253,941 2,894,659 2,894,659 
Psuedo R2 0.780 0.966 0.797 0.654 0.747 0.507 0.582 

Note: Robust standard errors are in parentheses. Standard errors are clustered by origin-destination pairs in 
aggregated and origin-destination-industry match in the disaggregated. Industries are denominated by 4-digit SITC 
(Rev. 2). Patents are matched to SITC using weights generated by the ALP-DM approach with hybrid weights and a 
2% cutoff. Country fixed effects include origin and destination country fixed effects. Industry fixed effects are at the 
2-digit SITC level. Significance denoted by: * p < 0:05, ** p < 0:01, *** p < 0:001 
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Table 11 PPML regression results for extended gravity model of bilateral patent flows, 2001-
2005, by selected Broad Economic Categories (BEC). Shaded variables and results use the ALP-
DM concordance with hybrid weights to match patents (IPCs) to SITC categories. 

 
Dependent 
Variable 

All Industries 
Bilateral Patent 

Flows 
(1) 

Industrial Supplies 
Bilateral Patent 

Flows 
(2) 

Capital Goods 
Bilateral Patent 

Flows 
(3) 

Consumer Goods 
Bilateral Patent 

Flows 
(4) 

ln Trade 0.148*** 0.133*** 0.200*** 0.209*** 
 (0.0116) (0.0141) (0.0271) (0.0241) 
ln Destination 1.116*** 1.031*** 1.239*** 1.133*** 
GDP (0.0293) (0.0329) (0.0549) (0.0383) 
ln Origin 0.984*** 0.968*** 0.986*** 0.985*** 
GDP (0.0305) (0.0372) (0.0575) (0.0437) 
ln Elasticity -0.0236 0.0360 -0.0492 -0.0413 
of Substitution (0.0373) (0.0355) (0.0752) (0.0930) 
ln Distance -0.163*** -0.123** -0.232*** -0.140* 
 (0.0372) (0.0447) (0.0588) (0.0557) 
Border Dummy -0.174 0.00741 -0.515* -0.360* 
 (0.119) (0.135) (0.205) (0.167) 
Same Language 0.339*** 0.326*** 0.334* 0.411*** 
Dummy (0.0788) (0.0899) (0.140) (0.0922) 
Colonial  -0.630*** -0.546*** -0.777*** -0.660*** 
Dummy (0.104) (0.134) (0.172) (0.131) 
Year Fixed 
Effects 

Yes Yes Yes Yes 

Country Fixed  
Effects 

No No No No 

Industry Fixed 
Effects 

Yes Yes Yes Yes 

Constant -57.57*** -62.69*** -62.28*** -58.05*** 
 (1.555) (1.826) (2.822) (2.080) 
Observations 2,894,659 1,488,977 774,233 753,960 
Psuedo R2 0.582 0.575 0.639 0.614 
Note: Robust standard errors are in parentheses. Standard errors are clustered by origin-destination pairs in 
aggregated and origin-destination-industry match in the disaggregated. Industries are denominated by 4-digit SITC 
(Rev. 2). Patents are matched to SITC using weights generated by the ALP-DM approach with hybrid weights and a 
2% cutoff. Country fixed effects include origin and destination country fixed effects. Industry fixed effects are at the 
2-digit SITC level. Significance denoted by: * p < 0:05, ** p < 0:01, *** p < 0:001 
 


