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Abstract 
 
 

What explains the location of industrial innovation?   Economists have traditionally 
attempted to answer this question by studying firm-external knowledge spillovers. This paper 
shows that firm-internal linkages between production and R&D play an equally important 
role. I estimate an R&D location choice model that predicts patents by a firm in a location 
from R&D productivity and costs. Focusing on large R&D-performing firms in the chemical 
industry, an average-sized plant raises the firm’s R&D productivity in the metropolitan area 
by about 2.5 times. The elasticity of R&D productivity with respect to the firm’s production 
workers is almost as large as the elasticity with respect to total patents in the MSA, while 
proximity to academic R&D has no significant effect on R&D productivity in this sample. 
Other manufacturing industries exhibit similar results. My results cast doubt on the 
frequently-held view that a country can divest itself of manufacturing and specialize in 
innovation alone.i 
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1 Introduction

Where companies innovate, and which factors promote local industrial innovation, is a question

of enormous interest as the invention of new technologies is the key driver of long-run economic

growth. Understanding the role of manufacturing for the location of innovation is particularly

relevant as the production of goods over the past decades has increasingly moved out of the US

and overseas. Some scholars and industry leaders argue that the development of new technologies

depends crucially on familiarity with the production processes of existing technologies, and that,

therefore, innovation will eventually follow manufacturing abroad [Pisano and Shih, 2009, Liveris,

2011]. In this paper, I focus on the location of innovative activity, or research and development

(R&D), of large manufacturing firms in the US and ask to what extent a firm’s production sites

shape the geography of its innovative activity.

Access to information is a prominent factor for the location of industrial innovation, as demon-

strated by a growing literature on knowledge spillovers. The transmission of knowledge, which plays

a predominant role in the development of new ideas and inventions, is facilitated by geographic prox-

imity [Jaffe et al., 1993]. In knowledge-intensive industries, including R&D, firms take advantage of

each other’s expertise and concentrate geographically [Audretsch and Feldman, 1996, Arzaghi and

Henderson, 2008, Carlino et al., 2011]. Universities and other publicly-funded research institutions

also seem to foster local R&D [Furman et al., 2006].

While these studies have focused on knowledge spillovers from the external environment, they

have paid little attention to how firm-internal factors affect where a firm innovates. Geographic

proximity, in addition to improving information flows across firms, also fosters communication

between the different divisions within a firm [Allen, 1977, van den Bulte and Moenaert, 1998]. If

production and R&D inform each other, in their decision where to site R&D, firms will take into

account the location of production sites. Cross-dependencies between R&D and production and

the consequential co-location of these two activities have long garnered interest in the management

literature [Kenney and Florida, 1994, Ambos, 2005, Ketokivi and Ali-Yrkkö, 2009]. In a survey on

new product development in electronics, Dedrick et al. [2009] observe that manufacturing tends to

"pull" the development of new products to factory locations. Pisano and Shih [2009] argue that the

manufacturing process is a factor in developing new products in most high-tech industries.
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Firms, then, face a trade-off between locating R&D in research hubs to take advantage of

external knowledge spillovers and locating R&D close to production to improve internal communi-

cation. This trade-off has been explored in the literature, but few papers have studied the relative

importance of external spillovers and firm- internal linkages empirically.1 I show that within the

Metropolitan Statistical Area (MSA), a firm’s own production plants play an important role for

its local R&D productivity, and that this effect is almost as large as the effect of other innovative

activity. Looking only at firm-external knowledge spillovers therefore misses an important aspect

of industrial innovation in the United States.

Since there is no data on firm R&D spending on a detailed geographic level, I use patents as a

measure of the firm’s innovative activity in an MSA2. I focus on the largest R&D performing firms

in the US, namely multi-unit firms which appear annually in the NSF Industrial R&D Survey. Of

the patenting firms in this sample, more than 70% patent in more than one MSA, and on average,

a firm patents in five different MSAs. As the propensity to patent, as well as the importance of

different types of spillovers, varies across industries, I focus most of the empirical analysis on one

particular industry, namely "Chemicals and allied products". Section 2 describes the data and the

sample I use in greater detail.

In order to investigate the effect on R&D productivity by production sites while controlling

for firm-external sources of spillovers, I use a location choice framework. In the model, which I

develop in section 3, firms choose whether and how much they invest in R&D in each MSA. The

productivity of the local environment, which I assume to be known to the firm, can then be inferred

from its location decisions. Since I observe these R&D location decisions only indirectly in the form

of patents, I combine this location choice model with a stochastic production function for patents

which follows a Poisson process [Hausman et al., 1984]. A firm engages in R&D in a few cities only

because of fixed costs, which leads to the estimation of a zero-inflated Poisson model [Lambert,

1992].
1Henderson and Ono [2008] analyze the trade-off between proximity to plants and proximity to markets for

headquarters of manufacturing firms. Mariani [2002] looks at the decisions of Japanese firms to establish R&D sites,
production sites, or combined R&D-production sites in Europe.

2This is made possible by information on the inventor’s residential address, which locates each patent in a particular
place, and on the institution that holds the rights to the patents (the "assignee") on a patent application. Corporate
patent assignees can be linked to firms in the Census Bureau’s Business Register, establishing a dataset of firm
establishments and patents in each MSA. I am deeply indebted to William Kerr and Shihe Fu for making their
assignee - firm link available to me, and to Gerald Carlino and Robert Hunt for allowing me to use their patent-MSA
dataset.
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I find that, in the context of the model, a chemical firm’s R&D productivity is about 1.8%

higher if the number of its production workers in the same MSA increases by 10%. Taking an

endogenous increase in R&D inputs into account, this corresponds to approximately 10% more

patents by the firm in the MSA. In the average MSA, an average-sized plant raises the firm’s R&D

productivity by 2.5 times. Other patents in the MSA have a significant positive effect on the location

of patents for firms in my sample, as expected given the evidence on external knowledge spillovers.

The size of this effect is on the same order of magnitude as that of the firm’s own production workers,

suggesting that the scale of production activities is of similar importance for the firm as the overall

research environment in the MSA. The elasticity with respect to same-industry employment is half

the size of the elasticity with respect to production workers; firm-internal spillovers are therefore

more important than spillovers across firms within the same industry.

In my sample, academic R&D has no significant effect on the location of corporate patents.

This result seems to contradict much of the literature but can be explained if firms in my sample

locate non-patentable research around universities. I further find that other patents in the same

technology classes as the firm’s have a positive effect on patenting, while patents in the same

industry have a negative effect. Firms that innovate in the same industry and in the same MSA

therefore seem to experience detrimental competition effects. My estimation approach is validated

by the finding that production workers within a 100km around the MSA have a positive effect on

the firm’s patents inside the MSA, while production workers at greater distances have no effect.

The main conclusions are not unique to the chemical industry but hold for other manufacturing

industries as well. I verify that my results are robust to alternative definitions of the variables and

to alternative specifications of the econometric model.

This paper contributes to the literature in three ways. First, it bridges the gap between

the urban economics literature on localized spillovers and the management literature on within-

firm linkages. Firm-external and -internal factors, which are deemed important in either literature

individually, together explain the geographic distribution of R&D more comprehensively. Secondly,

the combination of patent and census data allows me to study the determinants of R&D location

on an unprecedented scale. While the trade-off that firms may face in locating R&D either at

research hubs or at production sites has been previously explored, a rigorous empirical analysis has
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not been possible due to a lack of adequate data3. Finally, this paper is innovative in the way that

it combines a location choice model with a stochastic R&D production function of patents. To the

best of my knowledge, this is the first paper to connect these two elements and offer a structural

economic model to explain the distribution of a firm’s patents across MSAs.

Whether firms "bundle" innovation and production activities is an important question in

light of their increasingly global structures. If production and R&D tend to locate together, the

off-shoring of manufacturing may also induce a loss of know-how and innovative capacity [Cohen

and Zysman, 1987, Ketokivi and Ali-Yrkkö, 2009, Pisano and Shih, 2009, Liveris, 2011]. A global

division of labor, in which developed economies specialize in innovation and developing economies

in production, may not be as viable as commonly thought.

Within national boundaries, too, cities and regions aim to attract innovative activity because

of its associated local externalities. Development of new technologies in a city may lead to faster

adoption of these technologies in the same city, increasing productivity, wages, and population

[Glaeser et al., 1995].4 As R&D facilities create jobs for highly-educated people, externalities also

operate through human capital. While the magnitude and mechanisms of human capital spillovers

are debatable, educated people make better electoral decisions and are less prone to engage in

crime [Moretti, 2004a,b], creating a more attractive and productive environment. If co-location

of manufacturing and innovation is important, one strategy for cities to attract innovation, and

correspondingly economic growth, may be to attract manufacturing.

2 Measuring innovation and production within firms

The lack of readily available data is the greatest impediment to studying within-firm linkages.

Broken down to the firm and MSA level, the best information on corporate R&D stems from patents,

which are R&D outputs. Data on a firm’s establishments, although confidential, is available from

data gathered by the US Census Bureau. For a sample of firms, a bridge between census files and

patent applications lets me track innovation and production sites within the same firm.5

3See Malecki [1980], Mariani [2002]. Several studies have surveyed firms regarding factors that influence their
R&D location decisions nationally or internationally, e.g. Thursby and Thursby [2006].

4The importance of this effect depends on how quickly technology spreads across space. Although the transmission
of codified knowledge has become instantaneous, so-called tacit knowledge cannot be communicated remotely, and it
is debatable whether this tacit component of knowledge is becoming more or less important.

5This bridge has been constructed by Kerr and Fu [2008].
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2.1 Patents quantify industrial innovation

According to Title 35 United States Code, any "new and useful process, machine, manufacture, or

composition of matter, or any new and useful improvement thereof" is patentable. Patents have

therefore frequently been used to measure the output of a firm’s R&D efforts6. In contrast to R&D

expenditures and employment figures, patents also provide detailed information on the location of

R&D. A patent application contains the residential address(es) of its inventor(s) and can therefore

be assigned to a particular MSA [Carlino and Hunt, 2009, Kerr, 2010]7.

The greatest advantage of patent data, as far as this paper is concerned, is that patents

trace innovation even if it does not take place in a designated R&D lab. Looking at the location

of R&D labs only, for example, one does not pick up R&D performed outside of these dedicated

establishments8. However, about 60% of patents in my sample occur in MSAs in which the Census’

Auxiliary Establishment Survey does not identify an R&D lab. To study the co-location of R&D

with other establishments, it is crucial to measure R&D in a way that does not depend on where it

is located.

R&D output and patents are not perfectly correlated. First, not all innovations are patented.

Laws of nature and abstract ideas are not patentable, therefore patents do not record all progress in

fundamental research. Even if patentable, firms only patent inventions if expected profits outweigh

application costs, both in monetary terms and in terms of information disclosure. To the degree that

patents measure commercially valuable inventions, as opposed to basic research or inventions of little

value to the firm, they reflect the economically most important aspect of R&D. Different industries,

however, face different trade-offs between patents and trade-secrets to protect their intellectual

property. In a survey of manufacturing firms, Mansfield [1986] finds that the share of patentable

inventions that were patented ranges from 50% to 86% across industries. To avoid heterogeneity in

terms of how frequently and what types of inventions are patented, I focus the empirical analysis on

one particular industry where patents are relatively common, namely Chemicals and allied products
6see Griliches [1990] for a survey on the use of patents as a measure of technological advancement, and Hall et al.

[2001] for a description of this data.
7In interpreting the MSA of a patent as the MSA in which a firm performs R&D, I assume that inventors live

and work within the same MSA. This is a plausible assumption given that MSAs are defined to represent local labor
markets. A robustness check confirms that using Consolidated Metropolitan Areas instead yields the same results.

8This is a particularly acute problem if one uses census data to identify R&D labs, since only stand-alone R&D
establishments are recorded as such. The directory "Industrial Research Laboratories of the United States" published
by the National Research Council, is another source for R&D location data, which may be less subject to this problem.
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(as defined by SIC code 28)9.

Second, patents can represent varying degrees of technological advancement. This observation

could affect the interpretation of my results: If patents that are located with production sites are

less important, the role of production for innovation is overestimated. More generally, the type of

R&D that is performed at production sites may be systematically different from the type performed

at centralized R&D labs. Frequently, long-range research concentrates at a central laboratory, while

short-term, development-oriented R&D resides organizationally and physically with business units

[Steele, 1975, Malecki, 1980, DeSanctis et al., 2002].

Patent citations have proven useful to address heterogeneity in the importance and nature

of patented inventions [Harhoff et al., 1999, Akcigit and Kerr, 2010]. I follow this approach and

find that weighting patents by the number of citations they received does not alter any results.

Furthermore, in the sample I study, patents that are located close to production sites are at least as

important, in terms of citation indeces, as patents at R&D only sites. I find that self-citation shares,

measuring the degree to which a patent exploits existing technology10, are lower, if anything, for

patents that are located close to production sites, compared to patents at R&D only sites. 11 As

long as these limitations are taken into account, then, patents warrant the geographical investigation

of industrial innovation, and in particular their co-location with production sites.

2.2 Linked patent and census data for large R&D performers

Patent statistics gain power when they are linked to other information about the patenting firm.

While a link between patent assignee firms and the Compustat database has been available for a

while, Kerr and others have recently led an effort to match patent assignees to firm identifiers in the

census data. Such a link opens up new possibilities for research as census datasets not only include

privately-held firms but also detailed information on establishment level.12

9According to Mansfield’s survey, firms in the chemical and pharmaceutical industries patent 81% resp. 82% of
patentable inventions. Levin et al. [1987] find that in a survey of high-level R&D executives, the effectiveness of
patents is rated higher in chemicals and drugs than in any other industry.

10See Akcigit and Kerr [2010].
11Another distinction could be made between product and process R&D. However, there is no straight-forward way

to distinguish between product and process innovation on the basis of patent data since both products and processes
are patented.

12Patent assignee firms linked to the Compustat database have been a fruitful resource for research [Pakes and
Griliches, 1980, Lychagin et al., 2010]. Compustat is of limited use for me since, except for headquarters, it does not
provide information on a firm’s establishments and locations. Bridges between patent and census data have been
established and described by Kerr and Fu [2008] and Balasubramanian and Sivadasan [2011].
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Name-based matches between large patent and census datasets often use geographic infor-

mation to reduce complexity: Patent assignee "Microsoft" is more likely to be matched to census

firm "Microsoft" if both are located in Seattle.13 This mechanism could lead to inflated colocation

patterns in the combined dataset. To avoid this inherent bias in large-scale links, I use the link

established by Kerr and Fu, which focuses on a small sample of firms that could be matched without

the use of geographic information. Details of the applied matching procedure can be found in Kerr

and Fu [2008].

The firm sample in this link consists of firms with complete records in the NSF Survey of

Industrial Research and Development from 1986 to 1996 and with positive R&D expenditures in at

least one of these years. Firms that enter in the R&D survey every year generally maintain R&D

expenditures above $1 million annually14 and over this period account for about 80% of total US

R&D expenditures [Kerr and Fu, 2008]. I further drop from the sample firms that have only one

establishment, of which there are few in the link to begin with.

As I assume throughout that firms are unconstrained in their location decisions, large multi-

unit firms are the appropriate sample to study. For small firms, placing R&D activity away from the

main establishment may not be an option for logistical and financial reasons. Including them in the

sample may suggest that there are co-location benefits between manufacturing and R&D although

in reality the co-location arises from constraints on the firm’s choice set. Another benefit of looking

at firms with stable R&D expenditures is that I do not have to take firm births or deaths into

account. On the down side, restricting the sample to this balanced panel of large R&D performing

companies limits the conclusions that can be drawn. My results have nothing to say about start-ups

or small entrepreneurial firms.

For most of the estimations the sample is further restricted to firms in the chemical industry

(SIC 28, "Chemicals and Allied Products"), resulting in a sample of 128 firms. Focusing on the

chemical industry lends credibility to the estimates because it avoids across-industry heterogeneity

in patenting and spillover effects, and because industrial R&D and patents play an important role

in the chemical industry. The firms in this sample employ on average 7000 employees and spend $

60 million annually on R&D, of which roughly 90% is applied research and development and 10%
13See Thoma et al. [2010] for a survey.
14For details on the sampling scheme of the R&D Survey, see Kerr and Fu [2008].
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basic research.

2.3 The distribution of a firm’s patents across MSAs

The number of patents by firm varies considerably. Table 1 displays the distribution of the number

of patents that sample firms apply for over the period 1988-1992, both for the chemical industry

and for a pooled sample of other manufacturing industries. Although the sample firms all have

large R&D budgets, 13% of firms in chemicals and 15% of firms in other industries do not apply

for patents at all. On the other hand, 26% in chemicals and 13% in other industries apply for more

than 100 patents. Chemical firms file patents more frequently than firms in the other industries:

119 patents in these five years on average, compared to 85.

I next break out a firm’s patents by MSA. MSAs are an appropriate spatial unit to use

here as they are deliberately defined to capture local labor markets and the assumption that an

inventor resides and works in the same MSA, which underlies the interpretation of the patent data,

is plausible.15 There are 313 Primary MSAs in the 1990 census definition, which I use here, so

that on average a firm has 0.4 patents per MSA.16 To describe the distribution of patents across

MSAs and firms in more detail, I look at two aspects: the number of MSAs in which a firm patents,

and the distribution of patents across MSA. First, based on the inventors’ addresses the average

chemical firm patents in 7 distinct MSAs. Table 2 shows the distribution of this number for the

patenting chemical firms in my sample. More than two-thirds of firms patent in more than one and

less than 20 MSAs. Only 21% of chemical firms patent in a single MSA, and 11% patent in more

than 20. Second, as table 3 demonstrates, a firm’s patents are unequally distributed across MSAs.

Of the seven MSAs in which the average chemical firm patents, three MSAs have 1 patent each,

another 3 MSAs have between 2 and 14 patents each, and one MSA has more than 15 patents by

the firm. There is considerable variation, then, in whether and how much a firm patents in a given

MSA.

Figure 1 illustrates that, not accounting for any other MSA characteristics, patents are more

likely to be in an MSA in which the firm operates a production site. The left column shows the
15Definition of MSA from Census Geography Reference: "A large population nucleus, together with adjacent

communities that have a high degree of economic and social integration with that nucleus."
16Several Primary MSAs (PMSAs) are aggregated into a Consolidated MSA (CMSAs). Results are robust to using

CMSAs as spatial unit.
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number of MSAs with and without production sites by the average firm, while the right column shows

the number of patents in each type of MSAs. The average chemical firm operates production sites

in 10 different MSAs, which constitute 3% of all possible MSAs. These 10 MSAs contribute 76% of

the firm’s patents. The remaining MSAs, which contribute 24% of patents, may host establishments

other than production plants. The large share of patents in the small share of MSAs with plants

constitutes preliminary evidence for the co-location of patents and plants. The main estimation

needs to control for other sources of knowledge spillovers, however, as they could be correlated with

the location of production sites. In the next section I develop a theoretical framework that will

serve as the basis for this estimation.

3 A Model for R&D Location Choice

Whether production sites generate spillovers for R&D is a question of whether R&D is more produc-

tive in proximity to production. Answering this question requires information on the productivity

of R&D by a firm in a given location, and on the characteristics of the location. In the absence of

information on R&D inputs by firm and MSA, I cannot simply regress various location attributes on

value-added, as studies on agglomeration have done [e.g. Ciccone and Hall, 1996]. Even if data on

R&D inputs were available, however, this approach might suffer from endogeneity as firms choose

to locate R&D in places that are more productive.

To deal with the absence of data on R&D input I follow a structural approach. I formulate a

model which uses patents and R&D input costs rather than input quantities to determine produc-

tivity. This assumes that firms choose R&D inputs in response to local costs and local productivity.

In this decision, the firm takes the size and location of manufacturing plants as well as the external

environment as fixed. I offer a discussion of this assumption in section 6. I further ignore the

strategic aspect of the patenting decision and assume that patents directly measure the quantity of

valuable R&D output produced.
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3.1 Set-up and Assumptions

Let i index firms and m index MSAs. I specify the firm’s objective as

max
(Li1,...,LiM )

∑
m

E[yim]−
∑
m

C(Lim). (1)

yim is the number of patents that the firm produces over a period of time in location m. I take

patents to be a stochastic outcome, which the firm maximizes in expectation. I use the expected

total number of patents as the outcome to be maximized, rather than overall firm profits, to abstract

from how the firm capitalizes on a patent - which could be through licensing, improving production

processes, or introducing a new product. The assumption that each patent is equally valuable to

the firm simplifies the model, and I discuss extensions below.17

The firm’s choice variable is the vector of R&D employees in every location, (Li1, . . . , Lim).

Lim determines the expected number of local patents yim via

E[yim] = AimL
a
im, where 0 < a < 1. (2)

Aim denotes the city-firm specific R&D productivity. The marginal productivity of R&D labor em-

ployed in the city is decreasing. This is a convenient shortcut to explain why firms patent in multiple

locations. Results do not hinge on this particular assumption, however, as other explanations for

multiple R&D locations, such as increasing marginal costs of R&D labor or the complementarity of

R&D labor and productivity spillovers in patenting, would imply the same empirical specification.18

The cost of using R&D labor Lim in location m is given by

C(Lim) = wmLim + cim [Lim > 0] . (3)

wm is the local wage rate. cim is a city-firm specific fixed cost for R&D, which is incurred whenever

the firm engages in R&D in a location, and which contains regulatory and infrastructure costs, for
17The value a firm attaches to patents may differ across firms, but these differences cannot be distinguished from

differences in R&D productivity. Firms that value patents more highly will invest more in R&D, as will firms that
are more productive in it. Here, both patent valuation and firm-specific productivity will be captured in the term
describing R&D productivity.

18The solution of the model with a CES production function, where E[yim] = ((1− t)Ag
im + tLg

im)
1
g , is available

upon request.
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example. The fixed cost, in combination with decreasing returns in each location, leads firms to

concentrate R&D in a small number of cities, as we saw they do in table 2.

In this setting, the firm chooses the level of R&D labor in each city independently, i.e. Lim

does not depend on Lin. This independence arises because both the value and the costs of patents

sum across locations, and so the overall location problem reduces to one problem in each location.

The decision of how much R&D to perform in a given city will depend on the amount of R&D

performed in other cities if firms take their R&D budget as fixed when deciding on R&D locations,

or if the marginal value of a patent to the firm decreases with the number of patents. Whether a firm

performs R&D in a city is then based on the relative rank of that city in terms of R&D productivity

net of costs, which makes the estimation approach below infeasible. 19 To illustrate the role of

manufacturing for R&D productivity, however, the simple model derived here is sufficient.

The model also uses only one R&D input factor, labor, the cost of which varies across MSAs

and is constant across firms. This assumption could overstate the effect of production on R&D

productivity, if R&D input costs in fact vary across firms. A model with R&D capital and labor,

which allows capital costs to vary across firms, does not produce significantly different results,

however, as appendix B illustrates.

3.2 The Firm’s R&D Location Decision

Under the above assumptions, the firm’s profit maximization problem is

max
{Li}

∑
m

(AimL
a
im − wmLim − cim [Lim > 0]) . (4)

The optimal labor in city m, L∗im, is

L∗im = dim
(
aw−1

m Aim
) 1

1−a (5)

where dim is an indicator variable,

dim =
[
cim ≤ (1− a)

(
aaw−am Aim

) 1
1−a

]
. (6)

19The ranking of cities in terms of R&D productivity net of fixed costs is unobserved, and E[y] does not have a
closed form solution in this case. Estimation can only proceed via simulation. Details for this case are available upon
request.
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The definition of the indicator in equation 6 captures the fact that L∗im is positive if and only if the

expected R&D revenue in city m exceeds the fixed cost. If this condition is satisfied, the value of

L∗im is determined by the first order condition ∂E[yim]
∂Lim

= wm.

The expected number of patents at the profit-maximizing amount of R&D labor, using equa-

tion 2, is

E[yim] = dim
(
aaw−am Aim

) 1
1−a . (7)

The expected patent count yim therefore depends on firm-city R&D productivity Aim and costs wm

and cim. In the empirical section I estimate the effect of different firm-city level variables on E[yim]

and back out the effect on R&D productivity Aim.

4 Estimation

4.1 Econometric Specification

Let Xim be a vector of firm-city characteristics that affect R&D productivity. I specify that the

firm-city specific R&D productivity is given by

Aim = exp(b0 +X ′imb), (8)

where b0 is a constant and b a parameter vector. Plugging this into equations (6) and (7) yields

dim =
[
γim ≤ exp

(
β0 + βwwm +X ′imβX

)]
and (9)

E[yim|Xim] = dim exp
(
β0 + βwwm +X ′imβX

)
(10)

where I have defined

β0 =
a log a+ b0

1− a
βw =

−a
1− a

βX =
1

1− a
b γim =

cim
1− a

. (11)

I assume that, conditional on the covariates, yim follows a Poisson distribution. This is a

rather restrictive assumption, but is frequently made in the patent literature.
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I further have to make assumptions on the distribution of the dummy dim, which indicates

whether a firm performs R&D in a given MSA. The observed patents do not completely deter-

mine whether a firm performs R&D in a given MSA: If the patent outcome is zero, the indicator

could be zero or one, as there may be no patents even if the firm does perform R&D. I assume

γim = γ exp(νim), where γ is a constant and νim is an independent draw from a standard normal

distribution, as I want to remain agnostic about the determinants of the fixed cost. The probability

that a firm invests into R&D is thus E[dim|Xim] = Φ (− ln γ + β0 + βwwm +X ′imβX)), where Φ is

the standard normal cumulative distribution function.

The expected number of patents in the model to be estimated is, then,

E[yim|Xim] = Φ
(
− ln γ + β0 + βwwm +X ′imβX)

)
exp

(
β0 + βwwm +X ′imβX

)
. (12)

With probability Φ (− ln γ + β0 + βwwm +X ′imβX) the firm does engage in R&D in the city and the

expected number of patents is exp (β0 +X ′imβX), and with one minus this probability the firm hires

no researchers in the city and the expected number of patents is zero. I estimate the parameters β0,

βw, βX , and γ using maximum likelihood. The parameters maximize the log-likelihood function

lim = ln([yim = 0] Φ
(
µ0 +X ′imµX

)
(13)

+ Φ
(
−(µ0 +X ′imµX)

) exp (yim(β0 +X ′imβX)− exp (β0 +X ′imβX))

yim!
). (14)

4.2 Relation to Poisson and Zero-Inflated Poisson models

The model derived above is a zero-inflated Poisson (ZIP) model because the possibility of being in

state dim = 0 generates an excess amount of zeros compared to a simple Poisson model. The simple

Poisson model corresponds to the case where fixed costs are zero, i.e. γ = 0, and therefore

E[yim|Xim] = exp
(
β0 + βwwm +X ′imβX

)
. (15)

In general, a ZIP model takes the form

E[yim|Xim] = Φ
(
−µ0 − Z ′imµZ)

)
exp

(
β0 +W ′imβW

)
(16)
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where Xim = (Wim, Zim) [Lambert, 1992]. In the specific version in equation (12), the variables in

the zero-inflation part and those in the Poisson part are identical, i.e. Wim = Zim = Xim, because

both the decision to invest in R&D and how much R&D labor to employ are determined by R&D

productivity. In addition, the parameter vectors µX and βX - the opposite sign is a matter of

convention - are of identical magnitude. This is a consequence of the assumption that the variables

predicting R&D productivity do not affect the fixed costs. If a variable x is allowed to affect the

fixed cost of an R&D lab, such that γim = γ exp(νxim + νim), then µx = ν + βx, i.e. the difference

between −µx and βx is the variable’s effect on the fixed cost. Removing the restriction βX +µX = 0

is therefore equivalent to allowing the independent variables X to have an effect on the fixed cost.

As robustness checks, I compare results from the specific ZIP model derived above to those

from a simple Poisson model, where fixed costs are zero, and to those from the general ZIP model,

where the fixed costs could be a function of Xim. The differences in the estimated effects across

these models are generally insignificant. As the data prefer a model with positive fixed cost20,

but I do not want to make assumptions about which variables enter into γim, the model with the

restrictions βX + µX = 0 remains my main specification.

4.3 Interpretation of the estimated coefficients

To be able to interpret the coefficients in equation (12), I consider how the expected number of

patent changes in response to a change in an independent variables x. The elasticity of E[y|X] with

respect to x is

ηE[y|X],x =

(
φ (− ln γ + β0 + βwwm +X ′imβX)

Φ (− ln γ + β0 + βwwm +X ′imβX)
+ 1

)
βx. (17)

The first term, φ(− ln γ+β0+βwwm+X′imβX)
Φ(− ln γ+β0+βwwm+X′imβX)

βx, captures the change in E[y|X] through the change in

the probability of an R&D investment, and the second term, βx, captures the change in E[y|X]

through the change in the expected value conditional on R&D investment. The elasticity depends

on the value of X. When the probability of R&D investment, Φ (− ln γ + β0 + βwwm +X ′imβX),

is small, a change in x induces a large relative change in this probability. As the probability of

selection approaches 1, the elasticity converges to β.

The change in the number of patents induced by a change in x, however, contains not only
20In the data, 98% of observations have zero patents. Under the Poisson model, given a mean of 0.38 patents, the

share of zeros should be around 68%.
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the effect of x on R&D productivity but also the endogenous response in R&D inputs. I isolate

the effect of x on R&D productivity, defined through Aim = exp(b0 + X ′imb), by translating the

coefficients back into the structural parameters,

a = (βw − 1)−1βw and bx = (1− a)βx. (18)

The elasticity of labor in the R&D production function, a, is determined by the wage coefficient βw.

The elasticity of R&D productivity with respect to x, bx, can then be computed from βx and a.

4.4 Variable definitions and summary statistics

Table 4 summarizes the variables used in the estimation. The sample consists of 128 firms (those

with primary SIC 28 in the R&D panel, see section 2) that are observed across 313 MSAs, leading

to a total of 40,064 observations. Sources and definitions of the variables are detailed in appendix

A and appendix table A1. Appendix table A2 contains correlations. Patents by a firm in an MSA

are highly serially correlated, therefore I cannot exploit time series variation to identify the effect

of plants on patents. Nevertheless, I lag the independent variables to limit the extend to which the

estimation results can be driven by reverse causality (I discuss the issue of reverse causality further

in section 6). The quality of the firm-patent link is best over the period 1986-1996, and I therefore

use plant data from the economic census in 1987.21

The dependent variable y, the firm’s R&D output in an MSA, is the number of patents a

firm applies for in the 5-year period 1988-1992 with the first inventor residing in the MSA. The

average number of patents across all firm-MSAs is 0.4, but this figure masks large heterogeneity

in the distribution of patents across cities as already seen in table 3. Conditional on having any

patents in the MSA, the average number of patents per firm and MSA increases to about 17.

The key predictor of interest is firm manufacturing activity in the MSA. I measure it by

the number of production workers employed by the firm in the MSA, possibly aggregating several

plants. On average a firm operates plants in 10 MSAs with 170 production workers each. This

measure of manufacturing activity seeks to exclude research inputs, e.g. research staff working at a

plant, since otherwise the effect of manufacturing activity on research output would partially operate
21In a robustness check I show that the 1992 census delivers the same results.
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through the direct relation between research inputs and outputs rather than through productivity.

Production workers contribute 55% of plant employment on average. The remaining 45% of other

employees are not further broken out by function, but could include R&D staff. By definition,

production workers are not hired to perform research22, but I discuss possible exceptions below.

Results are robust to using plant capital stock instead of production workers.

The estimation controls for two measures of external spillovers. The amount of patents in

the MSA, outside of the firm, in the previous five years is a direct indicator for how conducive the

MSA environment is for innovation. On average there are 538 patents in an MSA over this period,

excluding the firm’s own. MSA employment in the same 2-digit industry as the firm, excluding the

firm itself, measures potential spillovers arising from firms in the same industry.23 The chemical

industry is of considerable size with on average almost 3,000 employees per MSA.

The economic model explicitly includes the MSA wage as independent variable since it deter-

mines the unobserved level of R&D investment. To avoid an endogenously determined variable, the

median MSA wage across all sectors except chemicals is used. I will further have to control for MSA

population size since congestion cost associated with large MSAs are probably not completely cap-

tured by wages. In particular I do not have comprehensive data on rents, which are usually higher

in larger MSAs and represent another cost facing R&D. The average MSA population consists of

about 600,000 people, which is driven by a large number of small MSAs.

I also control for overall employment across all US establishments of a firm to capture some

of the heterogeneity across firms. Some firms may be inherently more productive in R&D across

all cities, spending more on R&D generally. Since controlling for the size of the R&D budget

directly may induce endogeneity, I use firm size rather than R&D expenditures at the firm level; the

correlation between firm size and R&D expenditures is 0.9 in this sample. On average, the firms in

the sample employ close to 7000 people in the US.

The remaining variables in table 4 are used to establish further results and will be intro-
22"Included in this item [production workers] are workers (up through the line-supervisor level) engaged in fab-

ricating, processing, assembling, inspecting, receiving, storing, handling, packing, warehousing, shipping (but not
delivering), maintenance, repair, janitorial and guard services, product development, auxiliary production for plant’s
own use (e.g., power plant), recordkeeping, and other services closely associated with these production operations
at the establishment covered by the report. Employees above the working-supervisor level are excluded." (Census
Online Glossary)

23The variation in this variable across firms is negligible since individual firms usually contribute only a small share
of total industry employment.
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duced below. All independent variables enter the estimation in logarithmic form, except categorical

variables and ratios.24

5 Results

5.1 Main results

Table 5 reports the main estimation results of the zero-inflated Poisson model derived above. The

dependent variable is the number of patents by a given firm in a given MSA. The main independent

variable is the number of production workers by the firm in the city, which captures the potential

firm-internal spillovers from production to R&D. Other patents in the MSA, other employment in

the same two-digit industry in the MSA, median MSA wage outside of the firm’s own industry,

MSA population and overall firm size are further control variables. The coefficients maximize the

likelihood function in (13). Elasticities are computed in table 6 and discussed below.

The preferred specification is the one in column 4 of table 5, which controls for external

spillovers, MSA wage level and size, and firm size. The coefficient on production workers is positive

and highly significant, in line with the hypothesis that local production matters for innovation.

Other patents and industry employment in the MSA, measuring external spillovers, also bear the

expected positive coefficients. MSA population has a negative effect on the firm’s patenting, which

may surprise given that larger MSAs are usually associated with higher productivity. Rents, how-

ever, are also higher in larger MSAs, and may not be entirely controlled for by the wage. In

addition, I have already accounted for agglomeration benefits in terms of patents and own industry

employment. The negative coefficient on MSA populations therefore captures the higher costs of

performing R&D in larger MSAs, net of wages, patent and industry effects.25 Firm size, across all

MSAs, has a positive effect on the firm’s patenting in the MSA. All else equal, larger firms produce

more patents in a given MSA, either because they are more productive at it or find it cheaper or

both.26 The MSA wage variable aims to capture the cost of R&D labor and indeed enters negatively,
24In the case of variables that take on zero values, I add one to the variable before taking the log. In this case,

interpretation of the coefficient changes slightly, but the difference is minuscule for large values of the variable.
Variables to which the log(x+1) transform is applied are either zero or large, such as manufacturing employment by
the firm in the MSA, and adding one can be safely ignored when interpreting the coefficients.

25Comprehensive data on rent is not easily available. For a subset of MSAs, I find that rent data for central business
districts is insignificant in this specification.

26For the main interpretation of my results I assume that large firms are more productive. The alternative case
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but is imprecisely estimated. The fixed cost parameter, γ, is estimated to be about 26, implying

that an MSA which produces 26 patents in expectation (conditional on R&D investment) receives

R&D investment with a 50% probability.

Columns 1-3 experiment with MSA population and firm size, as these variables do not mea-

sure spillover effects directly and one could debate whether they should be included in the main

specification at all. In the basic specification in column 1, which just includes the external spillover

measures and MSA wage, the coefficient on production workers is the only one that is significantly

larger than zero. Adding MSA population to the specification increases the coefficients on other

patents so that it becomes significantly greater than zero, both in the case where when firm size is

excluded or included (column 2 versus column 1 and column 4 versus column 3). Not controlling

for MSA population would therefore blur the spillover effect of other inventive activity with con-

gestion effects of larger MSAs. The coefficient on production workers, however, is not sensitive to

the inclusion of MSA population. As the coefficient on production workers drops slightly, though

insignificantly, when firm size is controlled for, I control for firm size in the main specification.

To interpret the magnitude of the coefficients, table 6 computes elasticities (equations (17)

and (18)). The first column displays the elasticity of the expected number of patents with respect to

the various independent variables, computed at the mean using the estimates in column 4 of Table

5. The expected number of patents increases with the number of production workers almost one-

for-one. As the expected number of patents is not only affected by R&D productivity but also by an

endogenous response in R&D inputs, the second column isolates the effect on R&D productivity. The

value of 0.18 for the elasticity of R&D productivity with respect to production workers means that

a 10% increase in the number of production workers implies a 1.8% increase in R&D productivity.

Together with changes in the optimal amount of R&D labor employed, this accounts for the 10%

increase in the expected number of patents suggested in column 1. The elasticities with respect to

the other independent variables are generally of the same order as magnitude. A 10% increase in

the number of patents in the surrounding MSA implies a 2.2% increase in R&D productivity, which

is not significantly different from the effect of the firm’s own production workers. With an elasticity

of 0.085, other employment has a smaller effect.

Table 7 explores how the probability of investment, the expected patents conditional on

where large firms face lower R&D capital costs is worked out in appendix B.
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investment, and the underlying R&D productivity change with the covariates. The base scenario

in column 1 is an MSA with all variables set to the mean, except that the number of production

workers is zero ("no plant"). In this case, the expected number of patents conditional on investment

is 4.3, and the probability of investment is 3.5%, multiplying to yield an unconditional expectation

of 0.15 patents. In an MSA with an average-sized plant (column 2), the expected number of

patents conditional on investment is 23, the probability of investment 53%, and the unconditional

expectation therefore 15 patents. Compared to the base scenario R&D productivity is 2.5 times.

The third column performs the experiment of "doubling the MSA" by setting population, within

industry employment and the number of patents to twice the respective mean. This has an only

minor impact on the firm’s patenting: R&D productivity increases by 3%. The negative effect of

population size is therefore slightly more than counteracted if patents and industry employment

increase proportionately.

The aggregate effect of production workers on patents is large. The estimated model predicts

that if all sample firms stopped producing in the US, instead of inventing about 15,000 patents in

five years, they would invent only 3,000. In the terms of the model, R&D is less productive in the

absence of the spillovers and hence firms invest less into it, leading to a radically diminished number

of patents overall. Of course this is a merely hypothetical exercise - I do not consider how any of the

other quantities in the model may change in response. Nevertheless, this figure demonstrate that

the effect of production workers on R&D productivity is of an economically important magnitude.

5.2 Further Findings

Having established the key result that manufacturing and R&D activity are significantly co-located

at the firm level, I now turn to more nuanced findings about the drivers of industrial innovation

at the firm-MSA level. Do other MSA attributes, in particular universities, matter for patenting

in this sample? Which set of patents contributes to the positive effect of other local patents? Do

production workers outside the MSA affect the firm’s patenting inside the MSA? And finally, how

particular are these results to the chemical industry?
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5.2.1 Academic research has no significant effect

Table 8 shows that other innovative or academic characteristics of an MSA do not matter for cor-

porate patents. I control for the number of doctorate-granting universities in the MSA, federal

funds for academic R&D that universities in the MSA receive27, the share of advanced and profes-

sional degree holders in the MSA population, and whether the MSA is part of a larger consolidated

metropolitan area (CMSA). None of these variables helps to predict the number of patents by the

sample firms in the MSA.

The finding that academic research does not affect patents is a surprising result, given exam-

ples such as Silicon Valley and the results of other studies [e.g. Jaffe, 1989, Furman and MacGarvie,

2007, Hausman, 2011]. ÓhUallacháin [1999], however, does not find a significant relationship be-

tween research universities and patents in an MSA either, except for small MSAs outside of the

manufacturing belt. The fact that academic research is not important for patents in my sample

can be explained by two considerations: First, the sample only includes large, mature companies,

and while there is no effect for this set of firms, there may well be an important effect of academic

research for smaller companies and start-ups. Secondly, patents may not pick up the R&D that the

sample firms perform close to universities. For example, firms may perform basic research, which

does not lead to patentable results, next to universities. In R&D cooperations between a firm and

a university, patents may be assigned to the university and only later sold to the firm.

5.2.2 Contrasting effects of patents in same technology versus same industry

The results above indicate a large and positive effect of other patents in the MSA that is hardly

diminished when other measures of MSA research environment are included in the estimation. I

find that this effect is driven by patents in related technology classes as the firms’. Patents in the

same product industry as the firm, interestingly, have a negative effect.

To measure how similar overall MSA patenting is to the firm’s, I determine the patent class,

subcategory and category in which the firm has the largest number of patents, combined over all

MSAs for the years 1983-1987. The United States Patent and Trademark Office (USPTO) defines

roughly 400 patent classes, which have been aggregated to 36 sub-categories and six categories by
27This data has been compiled by Robert Hunt and Gerald Carlino.
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Hall et al. [2001]. A firm patents in several different patent classes, and assigning the firm’s most

frequent patent class to all patents is an approximation.28 To construct the number of patents in

the firm’s primary 2-digit SIC code, I use a probabilistic concordance between patent classifications

and the SIC system that has been developed by Silverman, Johnson and Kerr [see Kerr, 2008].

On average, within a given MSA a firm will find 5 other patents in its modal patent class, 31 in

its modal subcategory, 95 in its modal category, and 62 in its own 2-digit SIC industry. Patents

in the same class, subcategory or category are not identical to patents in the same industry: The

probability that a patent that belongs to the firm’s modal patent subcategory is assigned to SIC 28

is slightly less than 50%. While the definition of patent classes is based on the firm’s technologies,

the definition of SIC codes is based on the firm’s products.

Table 9 includes these various measures of patents in the estimation, together with the overall

number of MSA patents. As demonstrated in columns 1-3, the effect of patents in the firm’s modal

patent class, subcategory or category is positive and significant. The coefficients on patents in the

same subcategory or category is about three times as large as the coefficient on patents in the same

patent class since a patent class is represents a relatively narrow definition. At the same time, the

effect of the unweighted number of patents vanishes to zero, which is expected if only patents in

the same group are relevant. In column 4, the coefficient on patents in the same SIC industry is

negative and significant, while the coefficients on total patents and employment in the same industry

become significantly positive. These results hold up in columns 5 and 6, where patents in the same

subcategory or category and patents in the same SIC industry are included simultaneously. For

patents in similar technological fields, then, agglomeration is beneficial, while for patents in the

same product market it is detrimental. The negative effect of patents in the same industry is

potential evidence for competition or poaching effects that arise between firms that patent, and not

just operate, in the same industry. For example, a firm may be in direct competition with other

innovators in its own industry, but collaborate with those that use similar technologies in other
28Alternatively, one could weight the MSA patents by the share of the firm’s patents in each group:

WeightedPatents =
∑
k

PatentsFirm,k

PatentsFirm
∗ (PatentsMSA,k − PatentsMSA,Firm,k)

where k indexes patent classes, subcategories, or categories. If this weighted sum of other patents is large, the
distribution of other patents in the MSA across groups is similar to the firm’s. The conclusions are the same as when
using only the group with the largest share.
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industries.

5.2.3 Production workers in close MSA surroundings matter

Production workers in a 100km ring around the MSA positively affect patents in the MSA, as

well, while production workers beyond this distance do not. I construct disjoint "rings" around

an MSA which consist of counties whose centroids are within a 100, 200, 500, 1000 or 1500km

radius of the MSA centroid. The 100km ring consists of all counties with centroid at a distance

less than 100km from the MSA centroid but that do not belong to the MSA itself; the 200km ring

consists of all counties with centroid at a distance less than 200km but more than 100km from

the MSA centroid, and so on. In table 10 production workers in these disjoint rings around the

MSA enter into the model, first individually and then jointly in the last column. The effects are

statistically indistinguishable from zero beyond the 100km ring. The point estimates decrease almost

monotonically as the rings are further removed from the MSA. Within-firm linkages are therefore

not contained within MSA boundaries, but decay with geographic distance from the MSA. The fact

that the estimate is zero for large distances further validates the estimation approach.

5.2.4 Results not particular to chemical industry

Table 11 shows that the positive effect of plants on R&D is not unique to the chemical industry.

Columns 2 and 3 contain estimates for instrument (SIC 38)29 and electronics (SIC 36) manufactur-

ers.30 In both of these industries R&D, and patents, play an important role. For instruments, the

coefficient on production workers is even higher than for chemicals, while for electronics it is about

the same. In column 4, I use a pooled sample of manufacturing industries other than chemicals and

the coefficient on production workers remains of similar magnitude. Co-location benefits of R&D

and manufacturing are therefore not particular to firms in the chemical industry, but are a more

general phenomenon in manufacturing industries.
29

30SIC 36 does not include computers. Definitions of these industries are as follows: SIC 38 - "Measuring, Analyzing,
And Controlling Instruments; Photographic, Medical And Optical Goods; Watches And Clocks"; SIC 36 - "Electronic
And Other Electrical Equipment And Components, Except Computer Equipment".
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5.3 Robustness

5.3.1 Alternative definition of variables

Table 12 shows that the results are robust to measuring production activity differently, using

citation-weighted patents, aggregating at the CMSA level, using 1992 as base year, and dropping

pharmaceutical firms from the sample.

In column 1 I use indicators for production worker quartiles, rather than the number of

production workers itself, to control for the size of a production plant. Plants below the median do

not matter for production at all, while plants in the fourth quartile have twice the effect of plants

in the third quartile. The effect of production workers is therefore related to the scale of production

activity, not just its existence. If production scale is measured by a plant’s capital stock instead of

its production workers, as in column 2, the coefficient is equally significant, but the implied elasticity

or R&D productivity with respect to plant capital stock is only half the size of the elasticity with

respect to production workers.

A particular concern may be that if patents at plants are systematically less valuable than

patents that are not with plants, the importance that production plays for R&D may be overstated.

Column 3 shows that weighting patents by the number of citations they receive does not alter the

estimates, and that therefore heterogeneity in the value of patents is not biasing the coefficients.31

Since I assume that inventors live and work within one spatial unit, aggregation at too small a

scale could yield misleading results. In column 4 I show that results are not sensitive to aggregating

the data to consolidated metropolitan areas, which groups together MSAs that constitute a larger

metro area. The CMSA New York/Northern New Jersey/Long Island, for example, contains primary

MSAs Connecticut, New Jersey and New York.

The quality of the patent assignee - firm link is best from 1986 to 1996, and within this period

two economic censuses take place. While I use data from the 1987 census in the main specification,

column 5 shows that results are very similar if I use data from the 1992 census and correspondingly

shift the dependent variable 5 years forward.

There is considerable heterogeneity across firms even within the two-digit SIC definition of the
31I maintain the zero-inflated Poisson specification here although the dependent variable, citation-normalized

patents, is no longer an integer. The interpretation of these estimates is problematic, and I therefore use unweighted
patent counts in the main specification.
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chemical industry. In particular, the pharmaceutical industry, which is part of this broad definition

of chemicals, may operate and organize differently. Column 6 shows that the estimates are robust

to the exclusion of pharmaceutical firms.

5.3.2 Alternative specifications of the statistical model

In addition to varying the set of variables and how they are defined, I also verify that the results

are not affected by the specific assumptions I make about the fixed costs in section 4. Table 13

compares the estimates obtained from three different versions of the model. The first one is a

standard Poisson model, which corresponds to the case without fixed cost in the economic model,

see section 4.2. The second model is the one used so far, which assumes positive fixed cost that are

uncorrelated with the explanatory variables. The third model relaxes those restrictions and allows

the fixed costs to depend on the explanatory variables via γim = γ exp(νXXim + νim). In this case

there are two full sets of coefficients, β and µ. The effect of independent variable x on the fixed

cost νx is given by νx = µx + βx.

Panel A displays the estimated coefficients and standard errors. In the unconstrained model,

ν is significantly different from zero only for wages and MSA population. Both of these variables

are significantly negatively correlated with fixed costs, suggesting that it is cheaper to set up an

R&D site in large MSAs with high wages. This is plausible if, for example, fixed costs capture the

cost of searching for suitable employees.

Since the interpretation of the estimated coefficients varies between the models, panel B

computes the elasticities of the arrival rate and of R&D productivity with respect to the covariates

for each of the three models, analogous to table 6. Standard errors for the elasticities are derived

using the delta-method. The point estimates for the Poisson model are slightly larger, but the

estimates from the constrained and unconstrained ZIP models are very similar. Generally the

difference between the estimates is not statistically significant. As this paper focuses on R&D

productivity rather than on R&D fixed cost, and results do not hinge on the specific assumptions

about fixed costs, I choose the constrained ZIP model as the main specification.
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6 Discussion

The estimate established above, namely that a 10% increase in production workers is associated with

a 1.8% increase in firm-MSA R&D productivity, does not capture the causal effect of production

scale on R&D productivity for several reasons. First of all, omitted variables which affect both R&D

productivity and the location of production sites may induce a positive correlation between them

even if there is no direct link. Secondly, the estimate may be partially driven by spillovers operating

in the reverse direction, from R&D to production. I argue that, while I cannot rule out that some of

the magnitude of the estimated effect is driven by endogeneity, neither omitted variables nor reverse

causality can explain the effect entirely. I then discuss possible explanations for the link between

production and R&D, how they fit with the model presented here, and their plausibility in light of

the empirical results.

6.1 Omitted variables

The estimates do not seem to be biased by omitted MSA-wide or firm-wide variables. To eliminate

this possibility, I control for MSA or firm fixed effects in the standard Poisson model; a zero-inflated

Poisson model with fixed effects is computationally prohibitive here. As columns 1-3 of table 14

show, additional MSA or firm characteristics do not significantly reduce the effect of production

workers. Since the simple Poisson model, which corresponds to zero fixed cost in the structural

model, delivers results consistent with those of the ZIP model that I use as main specification (see

table 13), I conclude that omitted firm- or MSA-level variables are not driving the results. An

omitted variable that could bias the estimates has therefore to vary at the firm-MSA level.

In the specification presented here, however, it is impossible to distinguish unobserved firm-

MSA level heterogeneity that correlates with production and R&D productivity from spillovers

between production and R&D. For example, a firm may locate most of its activities in the MSA

where its founders live - simply because it likes the MSA, and not because it is profitable to

locate activities together. I assess in how far this may be driving the estimates by controlling for

headquarter employment in the MSA. If firms located R&D and production together only because

they prefer a certain MSA over others, we would expect them to co-locate them with headquarters,

and headquarter employment to wash out the effect of production workers on R&D. The location
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of headquarters, however, may also be endogenously determined by R&D productivity, and for this

reason the main specification does not include headquarter employment. Column 5 of table 14

shows that the estimated effect of production workers is not entirely driven by the location of firm

headquarters. Headquarter employment has a significantly positive effect on R&D productivity,

and while the coefficient on production workers drops by about 30%, it is still positive and highly

significant. This observation makes me confident that the colocation of production and R&D is

not exclusively attributable to unobserved firm preferences for MSAs. Without the possibility to

determine the exact magnitude of these preferences, however, the estimates presented in section 5

have to be interpreted as the combined effect of spillovers and unobserved firm-MSA tastes.

6.2 Reverse causality

The second reason why the estimate may not be interpreted as a causal effect is reverse causality.

The model here emphasizes the location choice for R&D in response to given plants, but a firm

may consider co-location benefits when it decides on where to establish plants. In this case, plants

are located in an MSA precisely because R&D is also located there. If spillovers between R&D and

plants operate in both directions, part of the estimated effect may stem from the benefit of R&D

on manufacturing.

To demonstrate that reverse causality can only explain a small part of the estimates, I look

at whether plants predate patents or the other way around. This is complicated by the fact that

the patent database used here goes back to 1975 only, and that patents are a stochastic flow, i.e.

if no patent is observed in one year it does not mean that the firm did perform R&D that year.

Notwithstanding these complications, table 15 gives an idea of the ages of patents and plants. In

panel A I consider all firm-MSA observations with both patents from 1988-1992 and plants in 1987;

these are 359 observations that heavily contribute to the estimated effect of production workers

on patents. Patents occur for the first time after 1987 in 22% of these observations. In 90% of

observations a plant existed in the MSA already prior to 197832. For those observations for which

it is possible to infer whether the patent or the plant occurred first, panel B tabulates the gap

between those events. In only 10% of cases patents predate plants, and in three-quarters the patent
32This may or may not be the plant that the firm operates there today - it may have closed down and started-up

again between then and 1987.
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occurred five or more years after the first plant. The bulk of the estimate is therefore explained by

observations where the plant existed before the patents.

6.3 Alternative explanations for the estimated effect

As the above discussion illustrates, this paper does not claim to estimate the causal effect of pro-

duction workers on patenting. Rather, it shows that a firm’s production plants and patents tend

to locate together, beyond the degree predicted by the external environment. As long as this pat-

tern is the result of an optimized location decision, it suggests that there are important linkages

between production and R&D within the firm that benefit from geographic proximity. The model

in section 3 expresses these linkages in terms of R&D productivity gains. Here I discuss alternative

explanations for the colocation of production and plants, and in how far they are consistent with

the evidence.

First, a firm may seek to concentrate its activities in a small number of MSAs to minimize

monitoring and set-up costs. This contradicts the results from the unconstrained specification in

table 13, which shows that production workers have a positive effect on R&D fixed costs, if they

have an affect at all. If production and R&D locate together, the effect of production workers on

R&D fixed costs should be negative. I do not rule out, however, that proximity to production

reduces the cost of R&D inputs, for example by sharing equipment or labor. Neither the model nor

the empirical evidence aim to distinguish between such cost advantages and productivity gains.

Secondly, the coefficient on production workers could pick up a direct effect of R&D labor on

R&D output if production workers performed R&D. Several pieces of evidence support the view that

production workers invent at most a negligible share of patents. A recent survey of inventors finds

that about 80% of US inventors in chemical fields have a PhD degree [Walsh and Nagaoka, 2009]. In

addition, US patent law defines that only those who contributed ideas can be named as inventor on

a patent, precluding as inventors workers who merely execute experiments. I furthermore observe

that patents at plants receive more citations, have a lower share of self-citations, and score higher in

terms of originality and generality than patents that appear in MSAs where the firm only operates

an R&D lab.33 If patents at plants were mainly invented by production workers, we would expect
33For the definition of the originality and generality indeces, see [see Hall et al., 2001]. I use the Auxiliary Estab-

lishment Survey to identify stand-alone R&D establishments of the sample firms.
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them to be incremental improvements of the existing production technology and to receive fewer

citations, have a larger share of self-citations, and score lower in terms of originality and generality.

I do not rule out that production workers patent in some cases, in particular in industries

where production is sophisticated. In this situation, production and R&D are linked in a more

immediate way than the model suggests, namely by sharing the same inputs. A location choice

model for R&D would be inappropriate if patents were simply a by-product of operating a plant,

however. This is clearly not the case: About one quarter of patents occur in MSAs in which the

firm does not have a plant, and most inventors are not production workers, as discussed above.

7 Conclusion

Firm-internal linkages between production and R&D play an important role for the location of

industrial innovation in the US. This paper establishes this fact by estimating the importance of a

firm’s production plants for the location of its patents, while controlling for firm-external sources of

knowledge spillovers. In the context of the model presented here, the elasticity of R&D productivity

with respect to production workers is 0.18. This implies that a firm is more than twice as productive

at R&D in an MSA with one of its plants than in an otherwise identical MSA without a plant. Other

patents in the MSA have a similar positive effect on firm R&D, while academic research does not

play an important role in this sample.

The ambition of this paper is not to estimate the causal effect of production workers on

patenting, but rather to show that production plants are an important factor for R&D location

that has been neglected in the discussion of knowledge spillovers. I overcome limitations of previous

studies by using combined patent and census data, which allow me to track a firm’s innovative

and production activities at the MSA level. Relying on patent data to study spillovers bears some

challenges, however. I restrict the main sample to large chemical firms to optimize the bridge

between firms and patent assignees and the degree to which patents capture innovation. To make

statements about R&D productivity, I explain unobserved R&D input levels within a structural

model. The resulting estimates cannot isolate the effect of production workers from unobserved

firm- and MSA-specific tastes. Furthermore, they may be partially driven by plants locating in

response to R&D, rather than the other way around. Even this reverse causality argument assumes,
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however, that plants and R&D benefit from locating together.

The patterns observed in this paper likely mask heterogeneity across firms, industries, and

time periods. Even when restricted to large chemical manufacturers, the sample contains firms with

different R&D processes, for which proximity between production and R&D is of different impor-

tance. Interactions between R&D and production may also change over the lifecycle of production

technologies, with emerging technologies depending more strongly on the colocation of R&D and

production. My results derive from data for the 1980s and 1990s, and since then new communi-

cation technologies may have reduced the cost of geographic distance. Case studies of particular

industries and periods could be valuable tools to further shed light on the links between production

and innovation.

The research agenda that this paper points to entails two directions: First, it is important

to understand why innovation and production are often located together within a firm, and how

linkages between production and R&D operate. Based on conversations with R&D scientists in the

chemical industry, my impression is that interactions between R&D and production vary across the

stages of an R&D project. At the onset of a research project, R&D employees need to understand

which problems production faces, and for this they need to talk to the people involved. After a new

process or product has been developed, scaling it up requires the careful calibration of parameters

to a particular facility. More systematic research on this topic is needed though. Second, it is

worthwhile to study whether my results extend to the global level, and to quantify the effect that

the off-shoring of production has on on domestic innovation. The answer has important implications

for economic policy.

References

Ufuk Akcigit and William R. Kerr. Growth through heterogeneous innovations. NBER Working
Paper No. 16443, November 2010.

Thomas J. Allen. Managing the flow of technology. MIT Press, Cambridge, MA, 1977.

Björn Ambos. Foreign direct investment in industrial research and development: A study of German
MNCs. Research Policy, 34(4):395 – 410, 2005.

Mohammad Arzaghi and J. Vernon Henderson. Networking off Madison Avenue. Review of Eco-
nomic Studies, 75(4):1011–1038, October 2008.

David B. Audretsch and Maryann P. Feldman. R&D spillovers and the geography of innovation and
production. The American Economic Review, 86(3):pp. 630–640, June 1996.

29



Natarajan Balasubramanian and Jagadeesh Sivadasan. What happens when firms patent? new
evidenc from US economic census data. The Review of Economics and Statistics, 93(1):126–146,
February 2011.

Gerald A. Carlino and Robert M. Hunt. What explains the quantity and quality of local inventive
activity? Brookings-Wharton Papers on Urban Affairs, pages 65–123, 2009.

Gerald A. Carlino, Satyajit Chatterjee, and Robert M. Hunt. Urban density and the rate of inven-
tion. Journal of Urban Economics, 61(3):389 – 419, 2007.

Gerald A. Carlino, Jake K. Carr, Robert M. Hunt, and Tony E. Smith. The agglomeration of r&d
labs. Federal Reserve bank of Philadelphia Working Paper, 11-42:577–598, September 2011.

Antonio Ciccone and Robert E. Hall. Productivity and the density of economic activity. The
American Economic Review, 86(1):54–70, March 1996.

Stephen S. Cohen and John Zysman. Manufacturing matters: The myth of the post-industrial
economy. Basic Books, New York, 1987.

Jason Dedrick, Kenneth L. Kraemer, and Debora Dunkle. Offshore new product development:
Survey results. Mimeo, University of California Irvine, February 2009.

Garardine DeSanctis, Jeffrey T. Glass, and Ingrid Morris Ensing. Organizational designs for r&d.
The Academy of Management Executive, 16(3):55–66, August 2002.

Jeffrey Furman and Megan MacGarvie. Academic science and the birth of industrial research
laboratories in the U.S. pharmaceutical industry. Journal of Economic Behavior & Organization,
63(4):756–776, August 2007.

Jeffrey L. Furman, Margaret K. Kyle, Iain Cockburn, and Rebecca M. Henderson. Public & private
spillovers, location and the productivity of pharmaceutical research. Annales d’économie et de
statistique, 79-80, 2006.

Edward L. Glaeser, José A. Scheinkman, and Andrei Shleifer. Economic growth in a cross-section
of cities. Journal of Monetary Economics, 36(1):117–143, August 1995.

Zvi Griliches. Patent statistics as economic indicators: A survey. Journal of Economic Literature,
28(4):1661–1707, December 1990.

Bronwyn Hall, Adam Jaffe, and Manuel Trajtenberg. The NBER patent citation data file: Lessons,
insights and methodological tools. NBER Working Paper No. 8498, November 2001.

Dietmar Harhoff, Francis Narin, F. M. Scherer, and Katrin Vopel. Citation frequency and the value
of patented inventions. Review of Economics and Statistics, 81(3):511–15, 1999.

Jerry Hausman, Bronwyn H. Hall, and Zvi Griliches. Econometric models for countdata with an
application to the patents-R&D relationship. Econometrica, 52(4):909–938, July 1984.

Naomi Hausman. Effects of university innovation on local economic growth and entrepreneurship.
Job Market Paper, 2011.

J. Vernon Henderson and Yukako Ono. Where do manufacturing firms locate their headquarters?
Journal of Urban Economics, 63(2):431–450, March 2008.

30



Adam B. Jaffe. Real effects of academic research. The American Economic Review, 79(5):957–970,
December 1989.

Adam B. Jaffe, Manuel Trajtenberg, and Rebecca Henderson. Geographic localization of knowledge
spillovers as evidenced by patent citations. The Quarterly Journal of Economics, 108(3):pp.
577–598, August 1993.

Martin Kenney and Richard Florida. The organization and geography of Japanese R&D: Results
from a survey of Japanese electronics and biotechnology firms. Research Policy, 23(3):305 – 322,
May 1994.

William Kerr. Ethnic scientific communities and international technology diffusion. The Review of
Economics and Statistics, 90(3):518 – 537, 2008.

William Kerr. Breakthrough inventions and migrating clusters of innovation. Journal of Urban
Economics, 67:46–60, 2010.

William R. Kerr and Shihe Fu. The survey of industrial R&D-patent database link project. Journal
of Technology Transfer, 33(2):173–186, April 2008.

Mikko Ketokivi and Jyrki Ali-Yrkkö. Unbundling R&D and manufacturing: Postindustrial myth
or economic reality? Review of Policy Research, 26(1-2), 2009.

Diane Lambert. Zero-inflated poisson regression, with an application to defects in manufacturing.
Technometrics, 34(1):1–14, February 1992.

Richard C. Levin, Alvin K. Klevorick, Richard R. Nelson, and Sidney G. Winter. Appropriating
the returns from industrial research and development. Brookings Papers on Economic Activity,
1987(3):783–831, 1987.

Andrew Liveris. Make it in America: The Case for Re-Inventing the Economy. John Wiley and
Sons, Inc., Hoboken, NJ, 2011.

Sergey Lychagin, Joris Pinkse, Margaret E. Slade, and John Van Reenen. Spillovers in space: Does
geography matter? NBER Working Paper 16188, July 2010.

Edward J. Malecki. Corporate organization of R and D and the location of technological activities.
Regional Studies, 14(3):219–234, June 1980.

Edwin Mansfield. Patents and innovation: An empirical study. Management Science, 32(2):173–181,
February 1986.

Myriam Mariani. Next to production or to technological clusters? the economics and management
of R&D location. Journal of Management and Governance, 6(2):131–152, 2002.

Enrico Moretti. Workers’ education, spillovers, and productivity: Evidence from plant-level pro-
duction functions. The American Economic Review, 94(3):656–690, June 2004a.

Enrico Moretti. Human capital externalities in cities. In J. Vernon Henderson and Jacques-François
Thisse, editors, Cities and Geography, volume 4 of Handbook of Regional and Urban Economics,
pages 2243 – 2291. Elsevier, 2004b.

Breandán ÓhUallacháin. Patent places: Size matters. Journal of Regional Science, 39(4):613–636,
November 1999.

31



Ariel Pakes and Zvi Griliches. Patents and R&D at the firm level: A first report. Economics Letters,
5(4):377 – 381, 1980.

Gary Pisano and Willy Shih. Restoring american competitiveness. Harvard Business Review, July-
August 2009.

Lowell W. Steele. Innovation in Big Business. Elsevier, New York, 1975.

Grid Thoma, Salvatore Torrisi, Alfonso Gambardella, Dominique Guellec, Bronwyn H. Hall, and
Dietmar Harhoff. Harmonizing and combining large datasets - an application to firm-level patent
and accounting data. NBER Working Paper No. 15851, March 2010.

Jerry Thursby and Marie Thursby. Here or There? A Survey of Factors in Multinational R&D Loca-
tion. Report to the Government-University-Industry Research Roundtable. National Academy of
Sciences, National Academy of Engineering, and Institute of Medicine of the Nationl Academies,
2006.

Christophe van den Bulte and Rudy K. Moenaert. The effects of R&D team co-location on com-
munication patterns among R&D, marketing, and manufacturing. Management Science, 44(11):
S1–S18, November 1998.

John P. Walsh and Sadao Nagaoka. Who invents?: Evidence from the japan-us inventor survey.
Mimeo, July 2009.

32



Table 1: Distribution of total patents

Total patents # Firms Share # Firms Share

0 16 12.5% 128 15.4%
1-4 22 17.2% 189 22.8%
5-9 15 11.7% 116 14.0%
10-19 14 10.9% 105 12.7%
20-49 18 14.1% 121 14.6%
50-99 10 7.8% 65 7.8%
100-200 11 8.6% 36 4.3%
200-max 22 17.2% 70 8.4%
Sum 128 100.0% 830 100.0%

SIC 28 - Chemicals Manufacturing Industries

Notes: Firms are multi-unit firms in the NSF R&D Survey 1986-1996. Columns on 
the left contain data for 128 firms with primary SIC code 28. Patents are measured 
over the period 1988-1992. Columns on the right contain data for 830 firms with 
primary SIC codes 20, 22, 24-27, 29-30, 32-38. For data sources see appendix.



Table 2: Distribution of patenting MSAs

# Firms Share

1 24 21.4%
2 16 14.3%
3-4 21 18.8%
5-9 19 17.0%
10-19 20 17.9%
20-max 12 10.7%
Sum 112 100.0%

SIC 28 - Chemicals

Notes: Firms are multi-unit firms in the NSF R&D 
Survey 1986-1996 with at least one patent and with 
primary SIC code 28. Patents are measured over the 
period 1988-1992. For data sources see appendix.

# different MSAs with 
patents



Table 3: Distribution of patents across MSAs, averaged over chemical firms

# Patents in MSA Number Share Share if > 0

0 306 97.71%
1 2.88 0.92% 40.2%
2-4 2.26 0.72% 31.5%
5-9 0.69 0.22% 9.59%
10-14 0.27 0.08% 3.70%
15-49 0.59 0.19% 8.28%
50-149 0.32 0.10% 4.47%
150 - max 0.16 0.05% 2.29%
Sum 313 100.00% 100.00%

Notes: Figures represent averages across 128 firms, which are 
multi-unit firms in the NSF R&D Survey 1986-1996 with primary 
SIC code 28.   For data sources see appendix.

MSAs



Table 4: Summary Statistics of Estimation Sample
(1) (2) (3) (4) (5)

Variable Unit Period Mean SD Mean if > 0

Patents Firm x MSA 1988-1992 0.381 10.7 16.63           
Production Workers Firm x MSA 1987 5.32 66.89 171.18         
Other Patents Firm x MSA 1983-1987 538 1101
Other Employment Own SIC Firm x MSA 1987 2,915           6,436           
Median Wage excluding own SIC ($ thousands) MSA 1987 11.3 1.52
Population MSA 1987 609,412       1,028,513    
Total Firm Employment Firm 1987 6,870           12,400         

Number of Research Universities MSA 1987 0.588 1.13
Federal Academic R&D ($ thousands) MSA 1987-1988 72,428         189,610       
Share of Population with Advanced Degree MSA 1990 0.0699 0.0297
CMSA Dummy MSA 1990 0.204 0.404
CMSA Population excluding MSA MSA 1987 1,818,976    3,897,088    

Other Patents Class Firm x MSA 5.28 21.3
Other Patents Subcategory Firm x MSA 31.2 85.1
Other Patents Category Firm x MSA 95.2 221
Other Patents Own SIC Firm x MSA 62.1 145

Head Quarter Employment Firm x MSA 1987 2.98 75.9 285.45         

# Firms 128               
# MSAs 313               
# Firm-MSA Observations 40,064         

Notes: Sample consists of firms in R&D survey 1986-1996 and with largest share of employees in SIC 28, "Chemicals and 
Allied Products". For data sources see appendix.



Table 5: Main Estimation Results

(1) (2) (3) (4)

Production Workers 0.386 *** 0.394 *** 0.357 *** 0.366 ***
(0.051) (0.052) (0.048) (0.050)

Other Patents, MSA 0.073 0.394 *** 0.107 0.445 ***
(0.086) (0.105) (0.084) (0.113)

Other Employment SIC, MSA 0.114 0.170 * 0.119 0.176 *
(0.080) (0.092) (0.083) (0.094)

Population, MSA -0.517 *** -0.534 ***
(0.164) (0.168)

Total Firm Employment 0.221 *** 0.225 ***
(0.043) (0.043)

Median Wage, MSA -0.683 -0.941 -0.752 -1.069
(0.759) (0.707) (0.784) (0.740)

β0 1.742 6.829 *** -0.353 4.956 *
(1.713) (2.392) (1.975) (2.708)

μ0 1.718 -3.386 3.631 * -1.693
(1.699) (2.410) (1.953) (2.723)

γ 31.79 31.30 26.52 26.12
N 40064 40064 40064 40064
ll -24939 -24224 -24183 -23445

Notes: Estimates from zero-inflated Poisson model with restriction β=-μ. Standard errors in 
parentheses clustered at the firm level. * p< =10%, **p<= 5%, *** p<= 1%. 



Table 6: Elasticities

with respect to…

Production Workers 0.966 *** 0.177 ***
(0.132) (0.057)

Other Patents, MSA 1.175 *** 0.215 **
(0.291) (0.087)

Other Employment SIC, MSA 0.463 * 0.0848 **
(0.267) (0.036)

Population, MSA -1.41 *** -0.258 ***
(0.417) (0.094)

Total Firm Employment 0.595 *** 0.109 **
(0.132) (0.052)

Median Wage, MSA -2.82
(1.779)

Elasticity of

Notes: Computations use estimates in column 4 of table 5. Standard errors 
are derived using the delta-method. See text for details. 

Expected Patents

(1)

R&D Productivity

(2)



Table 7: Illustration of Estimates

(1)
Baseline: No plant

Changes in Covariates production workers = 0, all 
other = mean

relative to 
baseline

relative to 
baseline

Expected number of patents 0.148 14.80 100.0 0.179 1.21
Arrival rate if selected 4.25 28.0 6.59 4.52 1.06
Probability of selection 3.48% 52.8% 15.19 3.96% 1.14
R&D Productivity (index) 1.0 2.49 1.03

Notes: In each column, the expected number of patents, arrival rate conditional on selection, probabilty of selection and 
relative R&D productivity are computed for a different set of independent variables. Independent variables are equal to the 
mean if not otherwise mentioned. Estimates correspond to table 5, column 4. 

(2) (3)
Average plant

production workers = 171
Double MSA Size

population, industry 
employment, other 
patents = 2 x mean



Table 8: Additonal Measures of MSA R&D Environment

Production Workers 0.367 *** 0.365 *** 0.366 *** 0.367 *** 0.366 ***
(0.050) (0.048) (0.050) (0.050) (0.050)

Other Patents, MSA 0.454 *** 0.456 *** 0.443 *** 0.419 *** 0.413 ***
(0.110) (0.124) (0.132) (0.114) (0.114)

Other Employment SIC, MSA 0.180 * 0.173 * 0.176 * 0.167 ** 0.159 *
(0.097) (0.098) (0.105) (0.084) (0.082)

Population, MSA -0.611 *** -0.507 *** -0.553 -0.512 *** -0.519 ***
(0.201) (0.182) (0.439) (0.152) (0.157)

Total Firm Employment 0.227 *** 0.226 *** 0.225 *** 0.225 *** 0.227 ***
(0.042) (0.043) (0.043) (0.042) (0.042)

Median Wage, MSA -1.029 -1.097 -1.098 -1.551 -1.818
(0.740) (0.769) (0.836) (1.134) (1.289)

Number Research Universities 0.045
(0.046)

-0.012
(0.047)

Share Advanced Degree 0.0215
(0.453)

CMSA Dummy 0.2695
(0.433)

Population, CMSA without MSA 0.1206
(0.156)

β0 5.723 ** 4.728 * 5.071 5.9848 * 5.2401 *
(2.797) (2.431) (3.122) 3.4867 2.8347

μ0 -2.455 -1.458 -1.808 -2.724 -1.992
(2.843) (2.460) (3.217) (3.559) (2.873)

γ 26.27 26.29 26.10 26.06 25.73
N 40064 40064 40064 40064 40064
ll -23410 -23432 -23444 -23362 -23357

(5)

Notes: Estimates from zero-inflated Poisson model with restriction β=-μ. Standard errors in parentheses 
clustered at the firm level. * p< =10%, **p<= 5%, *** p<= 1%. 

(2)(1) (3) (4)

Federally-funded Academic R&D



Table 9: Other Patents in Related Fields

Production Workers 0.364 *** 0.360 *** 0.367 *** 0.268 *** 0.260 *** 0.262 ***
(0.050) (0.048) (0.050) (0.045) (0.043) (0.045)

Other Patents, MSA 0.366 *** 0.098 0.129 1.271 *** 0.884 *** 0.857 ***
(0.112) (0.128) (0.150) (0.173) (0.153) (0.195)

Other Employment SIC, MSA 0.144 0.084 0.112 0.415 *** 0.306 *** 0.309 ***
(0.089) (0.080) (0.088) (0.076) (0.067) (0.080)

Population, MSA -0.494 *** -0.376 *** -0.431 *** -0.835 *** -0.611 *** -0.657 ***
(0.164) (0.144) (0.146) (0.141) (0.129) (0.155)

Total Firm Employment 0.234 *** 0.239 *** 0.199 *** 0.185 *** 0.194 *** 0.152 ***
(0.040) (0.043) (0.048) (0.043) (0.044) (0.047)

Median Wage, MSA -1.150 -0.735 -0.712 -0.933 -0.569 -0.507
(0.734) (0.678) (0.655) (0.820) (0.831) (0.792)

Other Patents in Firm's Primary Group
   By Patent Class 0.104 **

(0.047)
   By Patent Subcategory 0.307 *** 0.278 ***

(0.091) (0.068)
   By Patent Category 0.274 ** 0.348 ***

(0.110) (0.110)
   By 2-digit SIC -0.626 *** -0.607 *** -0.626 ***

(0.069) (0.064) (0.069)
β0 5.103 * 3.778 4.169 * 4.347 2.713 3.097

(2.639) (2.406) *** (2.365) ** (2.736) ** (2.661) *** (2.622) ***
μ0 -1.882 -0.603 -0.983 -1.126 0.394 0.022

(2.654) (2.422) (2.383) (2.690) (2.626) (2.575)
γ 25.06 23.94 24.21 25.04 22.35 22.63
N 40064 40064 40064 40064 40064 40064
ll -23286 -22664 -23105 -16806 -16106 -16304

Notes: Estimates from zero-inflated Poisson model with restriction β=-μ. Standard errors in parentheses clustered at the firm 
level. * p< =10%, **p<= 5%, *** p<= 1%. 

(6)(1) (2) (3) (4) (5)



Table 10: Spatial Decay of the Effect

Production Workers 0.370 *** 0.363 *** 0.366 *** 0.368 *** 0.365 *** 0.367 ***
(0.051) (0.051) (0.051) (0.049) (0.049) (0.050)

Other Patents 0.422 *** 0.451 *** 0.450 *** 0.448 *** 0.441 *** 0.413 ***
(0.110) (0.113) (0.114) (0.111) (0.113) (0.115)

Other Employment SIC 0.130 0.161 * 0.151 0.165 * 0.181 * 0.122
(0.086) (0.088) (0.097) (0.099) (0.101) (0.094)

Population -0.411 ** -0.513 *** -0.527 *** -0.533 *** -0.536 *** -0.411 **
(0.164) (0.170) (0.170) (0.168) (0.170) (0.168)

Total Firm Employment 0.161 ** 0.187 *** 0.153 *** 0.194 *** 0.245 *** 0.132 **
(0.063) (0.059) (0.049) (0.051) (0.053) (0.060)

Median Wage -1.598 ** -1.144 -0.849 -0.953 -1.073 -1.347 *
(0.734) (0.732) (0.802) (0.768) (0.743) (0.814)

Production Workers in
   100km ring 0.102 ** 0.096 **

(0.040) (0.039)
   100-200km ring 0.036 0.005

(0.029) (0.027)
   200-500km ring 0.053 * 0.048

(0.031) (0.040)
   500-1000km ring 0.022 0.005

(0.027) (0.033)
   1000-1500km ring -0.014 -0.034

(0.032) (0.036)
β0 5.481 ** 5.213 * 4.917 * 4.891 * 4.874 * 5.191 *

(2.753) (2.725) (2.815) (2.746) (2.678) (2.857)
μ0 -2.322 -1.957 -1.662 -1.634 -1.609 -2.029

(2.772) (2.742) (2.827) (2.759) (2.685) (2.866)
γ 23.54 25.93 25.93 25.97 26.18 23.63
N 40064 40064 40064 40064 40064 40064
ll -22793 -23360 -23300 -23423 -23435 -22661

Notes: Estimates from zero-inflated Poisson model with restriction β=-μ. Rings are defined to include all 
counties with county centroid within given distance from MSA centroid. Standard errors in parentheses 
clustered at the firm level. * p< =10%, **p<= 5%, *** p<= 1%. 

(1) (2) (3) (4) (5) (6)



Table 11: Other Manufacturing Industries

Production Workers 0.366 *** 0.603 *** 0.385 *** 0.344 ***
(0.050) (0.078) (0.098) (0.032)

Other Patents, MSA 0.445 *** 0.406 ** 0.398 * 0.344 ***
(0.113) (0.158) (0.205) (0.123)

Other Employment SIC, MSA 0.176 * 0.422 *** -0.163 * 0.014
(0.094) (0.111) (0.099) (0.047)

Population, MSA -0.534 *** -0.622 ** -0.052 -0.258 **
(0.168) (0.242) (0.200) (0.125)

Total Firm Employment 0.225 *** 0.342 *** 0.289 *** 0.288 ***
(0.043) (0.057) (0.055) (0.040)

Median Wage, MSA -1.069 -3.111 ** 0.378 0.536
(0.740) (1.450) (0.507) (0.713)

N 40064 33491 44448 257918
Firms 128 107 144 824
Patents 15267 16171 17936 70696
Patents/Firm 119 151 125 85.8
Notes: Estimates from zero-inflated Poisson model with restriction β=-μ. Standard errors in 
parentheses clustered at the firm level. * p< =10%, **p<= 5%, *** p<= 1%. 

Chemicals Instruments Electronics Other Mfg
(1) (2) (3) (4)



Table 12: Robustness Checks

q1dummy 0.621
(0.379)

q2dummy 0.049
(0.216)

q3dummy 1.010 ***
(0.304)

q4dummy 2.001 ***
(0.235)

Plant capital stock 0.187 ***
(0.028)

Production Workers 0.380 *** 0.466 *** 0.354 *** 0.395 ***
(0.051) (0.075) (0.037) (0.063)

Other Patents 0.390 *** 0.404 *** 0.517 *** 0.629 * 0.363 *** 0.461 ***
(0.109) (0.116) (0.192) (0.202) (0.114) (0.133)

Other Employment SIC 0.216 ** 0.193 ** 0.281 ** 0.157 *** 0.366 *** 0.142
(0.103) (0.097) (0.135) (0.086) (0.119) (0.108)

Population -0.489 *** -0.541 *** -0.704 *** -0.672 ** -0.441 *** -0.551 ***
(0.162) (0.170) (0.223) (0.288) (0.166) (0.203)

Total Firm Employment 0.244 *** 0.254 *** 0.210 *** 0.243 *** 0.215 *** 0.197 ***
(0.039) (0.039) (0.052) (0.046) (0.048) (0.046)

Median Wage -1.095 -1.002 -2.032 * -0.848 -1.283 * -1.426 *
(0.757) (0.771) (1.079) (1.517) (0.763) (0.819)

β0 4.585 4.773 * 8.349 ** 4.519 3.309 6.416 **
(2.821) (2.776) (3.601) (3.463) (2.616) (3.053)

μ0 -1.111 -1.457 9.457 *** -1.694 -0.153 -3.184
(2.783) (2.794) (0.835) (3.562) (2.610) (3.089)

N 40064 40064 40064 34176 40064 31300
ll -24833 -24416 -20107 -20630 -19284 -19005
Notes: Estimates from zero-inflated Poisson model with restriction β=-μ. Standard errors in parentheses clustered at the firm level. * p< 
=10%, **p<= 5%, *** p<= 1%. 
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Table 13: Alternative Statistical Models

Panel A: Coefficients

Production Workers 0.730 *** 0.366 *** -0.366 *** 0.372 *** -0.261 *** 0.111 *
(0.077) (0.050) (0.050) (0.056) (0.017) (0.060)

Other Patents 0.758 *** 0.445 *** -0.445 *** 0.506 *** -0.226 *** 0.280 *
(0.153) (0.113) (0.113) (0.145) (0.040) (0.153)

Other Employment SIC 0.267 ** 0.176 * -0.176 * 0.225 -0.040 0.185
(0.109) (0.094) (0.094) (0.138) (0.025) (0.171)

Population -0.720 *** -0.534 *** 0.534 *** -0.660 *** 0.026 -0.634 ***
(0.195) (0.168) (0.168) (0.207) (0.043) (0.233)

Total Firm Employment 0.458 *** 0.225 *** -0.225 *** 0.203 *** -0.303 *** -0.099
(0.092) (0.043) (0.043) (0.053) (0.033) (0.069)

Median Wage -0.884 -1.069 1.069 -1.687 * -1.276 *** -2.963 ***
(1.064) (0.740) (0.740) (0.911) (0.262) (1.017)

Constant -1.049 4.956 * -1.693 7.623 ** 9.119 ***
(3.893) (2.708) (2.723) (3.228) (0.766)

N 40064
ll -36734
BIC 73541

(1)

Notes: Estimates from Poisson (column 1), zero-inflated Poisson model with constraints β=-μ (column 2), and 
zero-inflated Poisson model without constraints on the parameters (column 3). In the unconstrained ZIP model, 
ν is the effect of the independent variables on fixed cost. Standard errors clustered at the firm level in 
parentheses. * p< =10%, **p<= 5%, *** p<= 1%. 

μ

ZIP constrained

40064
-23445
46974

ZIP unconstrained

β β β μ

Poisson

40064
-23020
46188

(3)(2)

ν=β+μ



Table 13: Alternative Statistical Models - ctd

Panel B: Elasticities

with respect to…

Production Workers 0.730 *** 0.966 *** 0.874 *** 0.387 * 0.177 *** 0.139 ***
(0.077) (0.132) (0.071) (0.200) (0.057) (0.042)

Other Patents 0.758 *** 1.18 *** 0.940 *** 0.402 * 0.215 ** 0.188 **
(0.153) (0.291) (0.165) (0.229) (0.087) (0.075)

Other Employment SIC 0.267 ** 0.463 * 0.301 0.142 ** 0.085 ** 0.084 **
(0.109) (0.267) (0.201) (0.067) (0.036) (0.035)

Population -0.720 *** -1.408 *** -0.711 *** -0.382 ** -0.258 *** -0.246 ***
(0.195) (0.417) (0.261) (0.192) (0.094) (0.083)

Total Firm Employment 0.458 *** 0.595 *** 0.786 *** 0.243 0.109 ** 0.076 **
(0.092) (0.132) (0.102) (0.170) (0.052) (0.039)

Median Wage -0.884 -2.819 0.771
(1.064) (1.779) (1.118)

Notes: Elasticities for Poisson model (columns 4 & 7), zero-inflated Poisson model with constraints β=-μ(columns 5 & 8), and 
zero-inflated Poisson model without constraints, based on estimates in table 12, columns 1-3. Elasticities computed at the 
mean. Standard errors are computed using the delta-method. See text for details. * p< =10%, **p<= 5%, *** p<= 1%. 

Elasticity of
(4) (5) (6) (7) (8) (9)

Poisson ZIP constrained
ZIP 

unconstrainedPoisson ZIP constrained
ZIP 

unconstrained

Arrival rate R&D productivity



Production Workers 0.730 *** 0.666 *** 0.725 *** 0.366 *** 0.257 ***
(0.077) (0.064) (0.080) (0.050) (0.046)

Other Patents 0.758 *** 0.637 *** 0.445 *** 0.422 ***
(0.153) (0.154) (0.113) (0.097)

Other Employment SIC 0.267 ** 0.277 ** 0.176 * 0.155 *
(0.109) (0.126) (0.094) (0.082)

Population -0.720 *** -0.649 *** -0.534 *** -0.632 ***
(0.195) (0.202) (0.168) (0.139)

Median Wage -0.884 0.378 -1.069 -1.094 *
(1.064) (0.873) (0.740) (0.586)

Total Firm Employment 0.458 *** 0.461 *** 0.225 *** 0.253 ***
(0.092) (0.098) (0.043) (0.040)

Employment HQs 0.234 ***
(0.043)

β0 -1.049 MSA FEs Firm FEs 4.956 * 6.350 ***
(3.893) (2.708) (1.940)

μ0 - - - -1.693 -3.128
(2.723) (1.950)

γ - - - 26.12 25.08
N 40064 24448 35056 40064 40064
ll -36734 -25536 -30230 -23445 -19998

(3)

Notes: Column 1: Estimates from Poisson model. Standard errors clustered at the firm level in parantheses. Columns 2-3: 
Estimates from Poisson model with MSA resp. firm fixed effects. Bootstrapped standard errors in parantheses. Columns 4-5: 
Estimates from zero-inflated Poisson model with restriction β=-μ. Standard errors in parentheses clustered at the firm level. 
* p< =10%, **p<= 5%, *** p<= 1%. 

(4) (5)(1) (2)

Table 14: Omitted Variables

ZIP ZIP w/ HQsPoisson
Poisson w/ MSA 

Fixed Effects
Poisson w/ Firm 

Fixed Effects



Table 15: Plant and Patent Age Distribution, SIC 28

Panel A
before 1978 1978-1982 1983-1987 1988-1992

first year plant 90.25% 5.57% 4.18% 0%
first year patent 52.37% 10.58% 15.04% 22.01%

Panel B
plant - patent age (years) 0 or less 1-4 5 or more

10.38% 14.21% 75.41%

Note: Panel A: The universe are all firm-MSA observations with both patents from 
1988-1992 and plants in 1987 (N=359). Percentages indicate the share of these 
observations for which the first plant resp. patent appeared in a given time period. 
Panel B: The universe are all firm-MSA observations with both patents from 1988-1992 
and plants in 1987 where either the first year a patent occurs is after 1977 or the first 
year a plant occurs is after 1975 (N=183). Percentages indicate the share of these 
observations for which the difference between the first year a plant appeared and the 
first year a patent appeared falls into a certain time span.
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Fig 1: MSAs and patents by presence of firm plant  

No Plant in MSA 

Plant in MSA 

Note: Firms are multi-unit firms in R&D survey 1986-1996 with largest share of employees in SIC 28, "Chemicals and Allied Products". Plant and 
R&D establishment (R&D) presence is measured in 1987. For data sources see appendix.  



A Appendix: Data

The patent data cover all patents granted by the United States Patent and Trademark Office

(USPTO) 1975-1999. Primarily, the data are taken from the NBER patent file and based on the

information included in patent applications. Patent applications contain the name and residential

address of one or more of the inventors, which can be used to assign the patent to a geographic

place. Carlino and Hunt have matched the original lead inventor address data to county fips codes

Carlino et al. [see 2007], and their match provides the basis for the allocation of patents to MSAs.

In cases where it is impossible to assign an individual county but possible to assign a unique MSA,

for example because street and zip code information are missing but city information is available, I

complement their match by assigning MSAs directly.

The USPTO assigns patents to classes, which are not congruent with the SIC system. A

concordance has been developed by Silverman, Johnson and Kerr. If patents need to be assigned

to a specific industry, I use the concordance based on a patent’s industry of manufacture.

Data on a firm’s manufacturing activities comes from the quinquennial Census of Manufactur-

ers (CM) in 1987 and 1992. The CM collects detailed data at the plant level, including the county in

which the plant is located, the number of employees and the number of employees directly involved

in production (production workers), and the primary industry of the plant. Firms in the sample

operate multiple plants (13.4 on average), and I assign the 2-digit SIC with the largest employment

as the firm’s SIC code.

Data on non-manufacturing establishments are taken from the Standard Statistical Estab-

lishment List (SSL) in census years 1987 and 1992. The SSL is directly taken from the Business

Register and contains data on all employers in the United States from a variety of government

agencies. In contrast to the census of manufacturers, which covers only manufacturing plants, the

SSL includes all types of establishments that a firm operates, e.g. retail stores and administrative

offices. Establishments under common ownership share a common firm identifier. One can infer

an establishments function from the "principal processing division" (e.g. "Census of Manufactur-

ers", "Auxiliary Establishment Survey") and the "type of operations" (e.g. "Central Administrative

Office") variable. I use the SSL to compute firm headquarter employment in an MSA and total

employment in an MSA by industry.

33



I use the Industry R&D Survey discussed in section 2.2 for data on total firm R&D expendi-

tures.

The link between patent assignees and firms used here is described in detail by Kerr and Fu,

but there are some points to note. Frequently, a firm holds patents under multiple patent assignee

names, so in general the match between assignees and firms is many-to-one. Further, Kerr and Fu’s

link is time-invariant, that is, they match assignee and firm if the assignee name corresponds to the

firm name for some year (firm names are pulled from the SSEL in 1987, 1992, 1997) and extend the

link back and forth in time (e.g. "abc corporation" which files a patent in 1984 could be matched

to "abc corporation" showing up in the SSEL in 1997).

Table A1 specifies the definitions of all the variables used in the estimation, together with

their sources, and table A2 displays the correlations between them.
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Table A1: Variable Definitions
Label Unit of 

observation Time period Source Defintion

Patents Firm x MSA 1988-1992 US Patent and 
Trademark Office 
(USPTO)

Number of patents the firm filed with lead inventor 
residing in MSA.

Production Workers Firm x MSA 1987 Census of 
Manufacturers

Production workers in manufacturing establishments 
owned by the firm and located in MSA.

Other Patents Firm x MSA 1983-1987 USPTO Number of patents with lead inventor residing in MSA, less 
patents by firm in MSA.

Other Employment Own SIC Firm x MSA 1987 Standard Statistical 
Establishment List 
(SSEL)

Employment within same 2-digit SIC as firm in the MSA , 
less employment in establishments owned by the firm in 
the MSA.

Median Wage excluding own SIC ($ 
thousands)

MSA 1987 SSEL Median wage across all establishments in the MSA, 
excluding establishments in the same two-digit SIC industry 
as the firm. 

Population MSA 1987 Regional Income 
Statistics, Bureau of 
Economic Analysis

Number of people living in the MSA.

Total Firm Employment Firm 1987 SSEL Employment in establishments owned by the firm, across 
all MSAs.

Federal Academic R&D ($ thousands) MSA 1987-1988 NSF Survey of Research 
and Development 
Expenditures at 
Universities and 
Colleges, Carlino and 
Hunt aggregation

Federal funds for separately budgeted research and 
development (R&D) expenditures in science and 
engineering (S&E) at universities and colleges, in nominal $ 
thousands.

Number of Research Universities MSA 1987 Carnegie Foundation Number of universities in the MSA with Carnegie 
Classification "Research I", "Research II", "Doctoral I", or 
"Doctoral II" in 1987. These universities award 50 or more 
doctoral degrees annually and receive more than $15m 
annually in federal support.



Share of Population with Advanced 
Degree

MSA 1990 Census of Population Share of the population aged over 25 with an advanced or 
professional degree in the MSA.

CMSA Dummy MSA

1987

Census Geography 
Reference 1993

Equal to one if MSA is part of Consolidated Metropolitan 
Statistical Area (CMSA), else equal to zero.

CMSA Population excluding MSA MSA 1987 Regional Income 
Statistics, Bureau of 
Economic Analysis

Number of people living in CMSA less number of people 
living in MSA. 

Other Patents Class Firm-MSA 1983-1987 USPTO Number of patents with lead inventor residing in MSA in 
same patent class as the largest share of the firm's patents 
1983-1987 across all MSAs, less firm's patents in MSA in 
this patent class. 

Other Patents Subcategory Firm-MSA 1983-1987 USPTO, Hall-Jaffe-
Trajtenberg defintion of 
subcategories

Number of patents with lead inventor residing in MSA in 
same subcategory as the largest share of the firm's patents 
1983-1987 across all MSAs, less firm's patents in MSA in 
this subcategory. 

Other Patents Category Firm-MSA 1983-1987 USPTO, Hall-Jaffe-
Trajtenberg defintion of 
categories

Number of patents with lead inventor residing in MSA in 
same patent category as the largest share of the firm's 
patents 1983-1987 across all MSAs, less firm's patents in 
MSA in this patent category. 

Other Patents Own SIC Firm-MSA 1983-1988 USPTO, Silverman-
Johnson-Kerr 
concordance

Number of patents with lead inventor residing in MSA in 
same 2-digit SIC as firm, less firm's patents in MSA.

Firm R&D Expenditures ($ 
thousands)

Firm 1987 National Science 
Foundation (NSF) 
Survey of Industry 
Research and 
Development

Total R&D expenditures by the firm in $ thousands. 



Share Applied R&D Firm 1987 National Science 
Foundation (NSF) 
Survey of Industry 
Research and 
Development

Share of total R&D expenditures spent on applied research 
and development as opposed to basic research.

Head Quarter Employment Firm x MSA 1987 SSEL Employment in central administrative offices by the firm in 
the MSA.

R&D Establishment Employment Firm x MSA 1987 SSEL Employment in stand-alone R&D establishments by the 
firm in the MSA.



Table A2: Correlations of Main Variables

Panel A: Firm-MSA and MSA Variables
1 2 3 4 5 6 7 8 9 10 11 12 13

Patents 1 1.000 0.408 0.056 0.064 0.040 0.047 0.038 0.032 0.016 0.035 0.037 0.566 0.683
Production Workers 2 0.408 1.000 0.096 0.104 0.063 0.089 0.067 0.055 0.016 0.042 0.053 0.323 0.233
Other Patents 3 0.056 0.096 1.000 0.755 0.651 0.873 0.710 0.669 0.273 0.476 0.495 0.086 0.038
Other Employment Own SIC 4 0.064 0.104 0.755 1.000 0.481 0.729 0.575 0.469 0.147 0.380 0.479 0.104 0.041
Median Wage excluding own SIC 5 0.040 0.063 0.651 0.481 1.000 0.576 0.486 0.443 0.336 0.547 0.588 0.061 0.026
Population 6 0.047 0.089 0.873 0.729 0.576 1.000 0.826 0.700 0.190 0.420 0.458 0.096 0.028
Number of Research Universities 7 0.038 0.067 0.710 0.575 0.486 0.826 1.000 0.745 0.409 0.352 0.346 0.092 0.024
Federal Academic R&D 8 0.032 0.055 0.669 0.469 0.443 0.700 0.745 1.000 0.421 0.315 0.287 0.069 0.027
Share Advanced Degree Holders 9 0.016 0.016 0.273 0.147 0.336 0.190 0.409 0.421 1.000 0.222 0.240 0.023 0.015
CMSA Dummy 10 0.035 0.042 0.476 0.380 0.547 0.420 0.352 0.315 0.222 1.000 0.724 0.048 0.028
CMSA Population excluding MSA 11 0.037 0.053 0.495 0.479 0.588 0.458 0.346 0.287 0.240 0.724 1.000 0.069 0.022
Head Quarter Employment 12 0.566 0.323 0.086 0.104 0.061 0.096 0.092 0.069 0.023 0.048 0.069 1.000 0.471

Panel B: Firm-MSA and Firm Variables
1 2 3 4 5 6 7

Patents 1 1.000 0.408 0.069 0.073 0.004 0.566 0.683
Production Workers 2 0.408 1.000 0.151 0.142 0.009 0.323 0.233
Total Firm Employment 3 0.069 0.151 1.000 0.905 0.068 0.055 0.049
Firm R&D Expenditures ($ thousands) 4 0.073 0.142 0.905 1.000 0.038 0.052 0.051
Share Applied R&D 5 0.004 0.009 0.068 0.038 1.000 0.006 0.002
Head Quarter Employment 6 0.566 0.323 0.055 0.052 0.006 1.000 0.471

Notes: Sample consists of firms in R&D survey 1986-1996 and with largest share of employees in SIC 28, "Chemicals and Allied 
Products". For variable definitions and sources see table A1, for summary statistics see table 3.



B Appendix: Model for R&D Location Choice with Capital

B.1 Motivation and implications

The effect of production workers on R&D productivity is overstated in the basic model if firm size

affects R&D input costs. I show that the elasticity of R&D productivity with respect to production

workers decreases from 0.177 in the basic model to 0.157 in this model with firm-specific capital

costs; this difference is not statistically significant.

Large firms may face lower costs of performing R&D because they are less credit constrained

than small firms. In the basic model with labor only, this channel is ignored and it is assumed

that firm size affects R&D through productivity only. The effect of production workers on R&D

productivity is therefore overstated. This model with R&D capital illustrates the opposite extreme

where firm size has no effect on R&D productivity but impacts the cost of R&D capital. It therefore

serves to compute lower bounds on the elasticities of R&D productivity.

B.2 Set-up and Assumptions

The assumptions and notation are the same as in section 3 of the paper, except if otherwise stated.

Each firm i decides on an allocation of R&D capital and labor to cities, described by the vectors

Ki = (Ki1, . . . ,Kim) and Li = (Li1, . . . , Lim).

The firm chooses an allocation of R&D labor to cities that maximizes expected R&D revenue

net costs:

max
K,L∈RM

+

E[R(Y )]− C(K,L). (19)

The expected value of yim is a function of the R&D inputs Kim and Lim and city-firm specific

productivity Aim. The marginal productivity of R&D inputs employed in the city is decreasing:

E[yim] = AimK
a
imL

b
im, a+ b < 1, a > 0, b > 0 (20)

The firm’s cost of performing R&D is the sum of the costs incurred in each city, which consist

of capital costs RiKim, wagesWmLim and a city-firm specific fixed cost cim if performing R&D. The

interest paid on capital varies across firms, but not across locations, while the wage varies across

locations but not across firms. The total R&D costs associated with R&D allocation (Ki, Li) are
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therefore:

C(Ki, Li) = Ri
∑
m

Kim +
∑
m

WmLim +
∑
m

cim [Lim > 0] . (21)

B.3 The Firm’s R&D Location Decision

Under the above assumptions, the firm’s profit maximization problem is

max
{Li}

∑
m

(
AimK

a
imL

b
im −RiKim −WmLim − cim [Lim > 0]

)
. (22)

Let K∗im and L∗im be the optimal capital respectively labor in city m. If they are positive, they are

given by the first order condition ∂E[yim]
∂Kim

= Ri and
∂E[yim]
∂Lim

= Wm. Solving out:

K∗im =
(
a1−bbbRb−1

i W−bm Aim

) 1
1−a−b (23)

L∗im =
(
aab1−aRi−aW a−1

m Aim
) 1

1−a−b . (24)

K∗im and L∗im are positive if and only if the expected R&D revenue in city m exceeds the fixed

cost. K∗im is positive if and only if L∗im is positive, therefore we can reduce the considerations to

L∗im:

L∗im > 0⇔ AimK
∗a
imL

∗b
im −RiK∗im −WmL

∗
im − cim ≥ 0. (25)

Therefore I can write

K∗im = dim

(
a1−bbbRb−1

i W−bm Aim

) 1
1−a−b (26)

L∗im = dim
(
aab1−aR−ai W a−1

m Aim
) 1

1−a−b (27)

where dim is an indicator variable,

dim =

[
cim ≤

(
a

a
1−a−b b

b
1−a−b − a

a
1−a−b b

1−a
1−a−b − a

1−b
1−a−b b

b
1−a−b

)(
R−ai W−bm Aim

) 1
1−a−b

]
. (28)

Correspondingly, the optimal arrival rate is

E[yim] = dim

(
aabbR−ai W−bm Aim

) 1
1−a−b

. (29)
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B.4 Estimation

I specify that the firm-city specific R&D productivity is given by

Aim = exp(g0 +X ′img), (30)

where g0 is a constant and g a parameter vector.

The firm-specific interest rate Ri is not observed directly, and I use firm size Si as a proxy for

Ri. I assume that larger firms face lower interest rates, and that the two quantities are related via

logRi = h0 + h logSi. (31)

Plugging this into equations (28) and (29) yields

dim =
[
γim ≤ exp

(
β0 + βwwm + βSSi +X ′imβX

)]
and (32)

E[yim|Xim] = dim exp
(
β0 + βWWm + βRRi +X ′imβX

)
(33)

where I have defined

β0 =
a log a+ b log b+ g0 + ah0

1− a− b
βS =

−ah
1− a− b

βW =
−b

1− a− b
βX =

g

1− a− b
γim =

cim
1− a− b

. (34)

B.5 Interpretation of estimated coefficients

The estimated coefficients on firm size Si and wage rateWm translate back into the structural model

via

βS =
−ah

1− a− b
(35)

βW =
−b

1− a− b
(36)

To back out a and b from these equations, we would need to know h, the parameter that

describes the relationship between firm size and capital cost.
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However, the ratio of capital expenditures to labor expenditures is

RK

WL
=
(
a1−bbbR−aW−bAim

) 1
1−a−b

(
aab1−aR−aW−bm Aim

) −1
1−a−b

=
a

b
, (37)

independent of firm and location. The ratio of capital costs to labor costs can therefore be approx-

imated using data from the firm-level R&D survey. For firms in the estimation sample (restricted

to SIC 28), the ratio between R&D expenditures for materials and supplies to R&D expenditures

for salaries and wages is 0.24. Using therefore a
b = 0.24 and the estimated coefficient on the wage

βW = −1.07 yields

a = 0.11 and b = 0.46. (38)

Combined with the estimate of βS = 0.225, these parameter values imply h = −0.89.

Table A3 compares the elasticities of R&D productivity from the model with labor only,

presented in the main text, to those from the model with capital presented here. As expected,

elasticities are smaller in the latter case, but differences are neither economically not statistically

significant.
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Table A3: Elasticities of R&D productivity in model with capital
(1) (2)

with respect to… Base model Model with capital

Production Workers 0.177 *** 0.157
(0.057)

Other Patents, MSA 0.215 ** 0.191
(0.087)

Other Employment SIC, MSA 0.0848 ** 0.0755
(0.036)

Population, MSA -0.258 *** -0.229
(0.094)

Total Firm Employment 0.109 **
(0.052)

Median Wage, MSA

Elasticity of R&D Productivity in

Notes: Computations use estimates in column 4 of table 4. See text for details. 


	Introduction
	Measuring innovation and production within firms
	Patents quantify industrial innovation
	Linked patent and census data for large R&D performers
	The distribution of a firm's patents across MSAs

	A Model for R&D Location Choice
	Set-up and Assumptions
	The Firm's R&D Location Decision

	Estimation
	Econometric Specification
	Relation to Poisson and Zero-Inflated Poisson models
	Interpretation of the estimated coefficients
	Variable definitions and summary statistics

	Results
	Main results
	Further Findings
	Academic research has no significant effect
	Contrasting effects of patents in same technology versus same industry
	Production workers in close MSA surroundings matter
	Results not particular to chemical industry

	Robustness
	Alternative definition of variables
	Alternative specifications of the statistical model


	Discussion
	Omitted variables
	Reverse causality
	Alternative explanations for the estimated effect

	Conclusion
	Tables and Figures
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8
	Table 9
	Table 10
	Table 11
	Table 12
	Table 13
	Table 14
	Table 15
	Figure 1

	Appendix: Data
	Appendix: Model for R&D Location Choice with Capital
	Motivation and implications
	Set-up and Assumptions
	The Firm's R&D Location Decision
	Estimation
	Interpretation of estimated coefficients


