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Abstract 

 

Small area estimates provide a critical source of information used to study local populations. 

Statistical agencies regularly collect data from small areas but are prevented from releasing 

detailed geographical identifiers in public-use data sets due to disclosure concerns. Alternative 

data dissemination methods used in practice include releasing summary/aggregate tables, 

suppressing detailed geographic information in public-use data sets, and accessing restricted data 

via Research Data Centers. This research examines an alternative method for disseminating 

microdata that contains more geographical details than are currently being released in public-use 

data files. Specifically, the method replaces the observed survey values with imputed, or 

synthetic, values simulated from a hierarchical Bayesian model. Confidentiality protection is 

enhanced because no actual values are released. The method is demonstrated using restricted 

data from the 2005-2009 American Community Survey. The analytic validity of the synthetic 

data is assessed by comparing small area estimates obtained from the synthetic data with those 

obtained from the observed data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISCLAIMER: Any opinions and conclusions expressed herein are those of the authors and do 

not necessarily represent the views of the U.S. Census Bureau. All results have been reviewed to 

ensure that no confidential information is disclosed. 

  



SYNTHETIC DATA FOR SMALL AREA ESTIMATION 

 IN THE AMERICAN COMMUNITY SURVEY 

 

     1.  Introduction.     Demand for small area estimates is growing rapidly among a variety of 

stakeholders who use these data to advance the study of issues affecting local communities and 

the lives of their residents (Tranmer et al., 2005). Statistical agencies regularly collect data from 

small geographic areas and are therefore in a unique position to meet some of this demand. 

However, they are often prevented from releasing microdata for such areas because releasing 

detailed geographical identifiers for small areas may increase the risk of respondent re-

identification and inadvertent disclosure of confidential information (Mackie and Bradburn, 

2000).  

     In order to minimize the risk of disclosure, statistical agencies commonly adopt one or more 

of the following data dissemination methods: 1) release summary tables that contain aggregate 

data for specific geographic areas (e.g., counties, census tracts, block groups); 2) suppress 

geographical details in public-use microdata sets for areas that fail to meet a predefined 

population threshold (e.g., 100,000) and; 3) release the unmasked confidential data set to data 

users via a secure data enclave or Research Data Center (RDC). Although these approaches are 

useful in many situations, each has limitations that preclude its ability to meet the growing 

demand for small area data that is being fueled by researchers, analysts, policy-makers, and 

community planners. 

     For example, summary tables are useful tools for describing basic profiles of housing- and/or 

person-level characteristics for a wide variety of geographical areas, but their utility is limited for 

addressing complex scientific hypotheses that require customizable analytic approaches that are 



not feasible using existing aggregate data products. Releasing public-use microdata mitigates this 

issue by enabling users to perform customized analyses that go beyond the capabilities of 

published summary tables, but the suppression of identifiers for the smallest geographic areas 

limits their use for studying small area phenomenon. Releasing restricted microdata via a 

Research Data Center overcomes the limitations of the previous two by permitting users access 

to the full unmasked microdata, including all small area identifiers. In order to access data within 

an RDC, one must submit a research proposal, apply for special sworn status, pay a data usage 

fee, and travel to the nearest RDC facility. Unfortunately, these requirements are too restrictive 

for many analysts. 

 

1.1.  Synthetic Data for Small Geographic Areas.     This article investigates a fourth 

approach that may permit statistical agencies to release more detailed geographical information 

in public-use data sets without compromising on data confidentiality. The approach extends the 

idea, originally proposed by Rubin (1993), of replacing the observed data values with multiply-

imputed, or synthetic, values. The general idea is to treat the unobserved portion of the 

population as missing data to be multiply imputed using a predictive model fitted using the 

observed data. A random sample of arbitrary size is then drawn from each synthetic population, 

which comprises the public-use data sets. Valid inferences are obtained by analyzing each 

synthetic data set separately and combining the point estimates and standard errors using 

combining rules developed by Raghunathan, Reiter, and Rubin (2003).  

     The synthetic data literature focuses on preserving statistics about the entire sample, but 

preserving small area statistics is usually ignored. Statistics about small areas can be extremely 

valuable to data users, but detailed geospatial information is almost always suppressed in public-



use survey data.  Research on model-based small area estimation has led to a greater 

understanding of how small area data can be summarized by statistical models (Platek et al., 

1987; Rao, 2003), and such models could potentially be used for simulating small area 

microdata. 

 

     1.2.  Fully Synthetic versus Partially Synthetic Data.     There are two general synthetic data 

approaches: full synthesis and partial synthesis.  Under a fully synthetic design all survey 

variables are synthesized and no real data is released. This approach provides the highest level of 

privacy and confidentiality protection (Drechsler, Bender, and Raessler, 2008), but the analytic 

validity of inferences drawn from the synthetic data may be poor if important relationships are 

omitted or mis-specified in the imputation model. Partial synthesis involves synthesizing a subset 

of variables or records that are pre-identified as being the most vulnerable to disclosure (Little, 

1993; Kennickell, 1997; Liu and Little, 2002; Reiter, 2003). If implemented properly, this 

approach yields high analytic validity as inferences are less sensitive to misspecification of the 

imputation model. However, because the observed sample units and the majority of their data 

values are released to the public, it does not provide the same level of disclosure protection as 

full synthesis (Drechsler et al., 2008).  

     At the present time, the creation of partially synthetic data files is the most common 

application of synthetic data in large databases (Abowd, Stinson, and Benedetto, 2006; 

Rodriguez, 2007; Kinney et al., 2011). There are worthwhile reasons why fully synthetic data 

may be more appropriate for small area applications. Perhaps, the most important reason is that 

complete synthesis can offer stronger levels of disclosure protection than partial synthesis. Data 

disseminators are obligated by law to prevent data disclosures and may face serious penalties if 



they fail to do so. Maintaining high levels privacy protection should take precedence over 

maintaining high levels of analytic validity. This point is particularly important for small 

geographic areas, which may contain sparse subpopulations and higher proportions of unique 

cases that are especially susceptible to re-identification. A secondary benefit of fully synthetic 

data is that arbitrarily large sample sizes may be drawn from the synthetic populations, 

facilitating analysis for data users who would otherwise be forced to exclude areas with 

insufficient sample sizes, or apply complex indirect estimation procedures to compensate for the 

lack of sampled cases.  

 

     1.3.  Organization of Article.     This article investigates an extension to Rubin’s synthetic 

data method for the purpose of creating fully synthetic, public-use microdata sets for small 

geographic areas. A hierarchical Bayesian model is used that accounts for multiple levels of 

geography and “borrows strength” across related areas. A sequential multivariate regression 

procedure is used to approximate the joint distribution of the observed data, which is then used to 

simulate synthetic values from the posterior predictive distribution (Raghunathan et al., 2001). 

How statistical agencies may generate fully synthetic data for small geographic areas is 

demonstrated using a subset of restricted data from the American Community Survey. Synthetic 

data is generated for several commonly used household- and person-level variables and their 

analytic validity is assessed by comparing inferences obtained from the synthetic data with those 

obtained from the actual data. The disclosure risk properties of the synthetic data methodology 

are not assessed here and are left to future work. Limitations of the approach and possible 

extensions are discussed in the final section. 

 



     2.  Review of Fully Synthetic Data. 

2.1.  Creation of Fully Synthetic Data Sets.     The general framework for creating and 

analyzing fully synthetic data sets is described in Raghunathan et al (2003) and Reiter (2005). 

Suppose a sample of size  is drawn from a finite population  of size , with 

 representing design, geographical, or other auxiliary information 

available for all  units in the population, and  representing the survey 

variables of interest. It is assumed that there is no confidentiality concern over releasing 

information about  and synthesis of these auxiliary variables is not needed, but the method can 

be extended to synthesize these variables if necessary. Let  be the 

observed portion of  corresponding to sampled units and  

be the unobserved portion of  corresponding to the nonsampled units. The observed data set is 

. For simplicity, assume there are no item missing data in the observed data, but 

methods exist for handling this situation (Reiter, 2004). 

     Fully synthetic data sets are constructed in two steps. First,  synthetic populations 

 are generated by taking independent draws from the Bayesian posterior 

predictive distribution of  conditional on the observed data . Alternatively, one 

can generate synthetic values of  for all  units to ensure that no observed values of  are 

released. The number of synthetic populations  is determined based on the desired accuracy for 

synthetic data inferences and the risk of disclosing confidential information. A modest number of 

fully synthetic data sets (e.g., 5 or 10) are usually sufficient to ensure valid inferences 

(Raghunathan et al., 2003). In the second step, a random sample of size  is drawn from each 

of the  synthetic data populations, . The 

corresponding  synthetic samples  comprise the public-use data 



sets, which are released to, and analyzed by, data users. In practice, the first step of generating 

complete synthetic populations is unnecessary and we only need to generate values of  for units 

in the synthetic samples. The complete synthetic population setup is useful for theoretical 

development of combining rules. 

 

     2.2.  Obtaining Inferences from Fully Synthetic Data Sets.     From the publicly-released 

synthetic data sets, data users can make inferences about a scalar population quantity 

, such as the population mean of  or the population regression coefficients of  on .  

Suppose the analyst is interested in obtaining a point estimate  and an associated measure of 

uncertainty  of  from a set of synthetic samples  drawn from the synthetic populations 

 under simple random sampling. The values of  and  computed on 

the M synthetic data sets are denoted by . 

     Consistent with the theory of multiple imputation for item missing data (Rubin, 1987; Little 

and Rubin, 2002), combining inferences about  from a set of synthetic samples  

is achieved by approximating the posterior distribution of  conditional on . The suggested 

approach, outlined by Raghunathan et al. (2003), is to treat  as 

sufficient summaries of the synthetic data sets  and approximate the posterior density 

 using a normal distribution with the posterior mean  computed as the average of the 

estimates, 

 

 
(1) 

 

and the approximate posterior variance is computed as, 



  (2) 

where  is the overall mean of the estimated variances across all synthetic data 

sets (“within variance”) and  is the variance of  across all 

synthetic data sets (“between variance”).  

     Under certain regulatory conditions specified in Raghunathan et al. (2003),  is an unbiased 

estimator of  and  is an unbiased estimator of the variance of . The  adjusts for 

using only a finite number of synthetic data sets. It should be noted that the subtraction of the 

within imputation variance in  is due to the additional step of sampling units from the 

synthetic populations. Because of this extra sampling step, the between imputation variance 

contains the true between and nearly twice the amount of within variance needed to obtain an 

unbiased estimate of T. 

     When , , and  are large, inferences for scalar  can be based on normal distributions. 

For moderate , inferences can be based on t-distributions with degrees of freedom 

, where , so that a  interval for  is 

 as described in Raghunathan and Rubin (2000). Extensions for multivariate 

 are described in Reiter and Raghunathan (2007). 

     A limitation of the variance estimator  is that it can produce negative variance estimates. 

Negative values of  can generally be avoided by increasing  or . Numerical routines can 

be used to calculate the integrals involved in the construction of , yielding more precise 

variance estimates (Raghunathan et al., 2003). A simpler variance approximation that is always 

positive is shown in Reiter (2002). 

 



     3.  Creation of Synthetic Data Sets for Small Geographic Areas.     Hierarchical models 

have been used in several applications of small area estimation (Fay and Herriot, 1979; Malec et 

al., 1997). See Rao (2003) for a comprehensive review of design-based, empirical Bayes, and 

fully Bayesian approaches for small area estimation. Hierarchical models have also been used for 

multiple imputation of missing data in multilevel data structures (Reiter, Raghunathan, and 

Kinney, 2006; Yucel, 2008).  

     The approach considered here involves three stages. In the first stage, the joint density of the 

variables to be synthesized is approximated by fitting sequential regression models based on the 

observed data within each small area. In the second stage, the sampling distribution of the 

unknown regression parameters (estimated in the first stage) is approximated and the between-

area variation is modeled using auxiliary information. In the third stage, the unknown regression 

parameters are simulated and used to draw synthetic microdata values from the posterior 

predictive distribution. 

     Two levels of geography are considered. For illustration, consider “small areas” as counties 

nested within states. In illustrating the approach, the models are kept relatively simple from a 

computational perspective to make the modeling practical. Despite the simplified presentation, 

the framework can be extended to handle more sophisticated modeling approaches.  

 

     3.1.  Stage 1: Approximation of Joint Density via Sequential Regression.     Suppose that a 

simple random sample of size  is drawn from a finite population of size . Assuming units 

were sampled from each county, let  and  denote the respective sample and population 

sizes for county  nested within state . Let 

 represent the  matrix of survey variables collected from each 



survey respondent located in county  and state . Let 

 represent the  matrix of auxiliary or administrative variables 

known for every population member in a particular county and state. Here only the survey 

variables  are synthesized, but it is straightforward to synthesize the auxiliary variables  

as well. 

     A desirable property of the synthetic data is that the multivariate relationships among the 

observed variables are maintained in the synthetic data, i.e., the joint distribution of variables 

given the auxiliary information  is preserved. Specifying and 

simulating from the joint conditional distribution can be difficult for complex data structures 

involving large numbers of variables representing a variety of distributional forms. Alternatively, 

one can approximate the joint density as a product of conditional densities (Raghunathan et al., 

2001). That is, the joint density  can be factored into the following 

conditional densities: , ,…, . In 

practice, a sequence of generalized linear models are fit based on the observed county-level data 

where the variable to be synthesized comprises the outcome variable that is regressed on any 

auxiliary variables or previously fitted variables, e.g.,  , 

 ,…, . The choice of 

model (e.g., Gaussian, binomial) is dependent on the type of variable to be synthesized (e.g., 

continuous, binary). It is assumed that any complex survey design features are incorporated into 

the generalized linear models and that each variable has been appropriately transformed to 

satisfy modeling assumptions. After fitting each conditional density, the vector of regression 

parameter estimates , the corresponding covariance matrix , and the residual variance 

 are extracted from each of the  regression models and incorporated into the hierarchical 



model described below.  is used to index the set of parameters associated with 

the  synthetic variable of interest and the  regression model from which the direct 

estimates are obtained.  

 

     3.2.  Stage 2: Sampling Distribution and Between-Area Model.     In the second stage, the 

joint sampling distribution of the design-based county-level regression estimates  (obtained 

from each conditional model fitted in Stage 1) is approximated by a multivariate normal 

distribution, 

  (3) 

where  is the  matrix of unknown regression parameters and  is the 

corresponding  estimated covariance matrix obtained from Stage 1. The 

unknown county-level regression parameters  are assumed to follow a multivariate normal 

distribution,  

  (4) 

where  is a  matrix of state-level covariates,  is a  

matrix of unknown regression parameters, and  is a  covariance matrix. 

State-level covariates are incorporated into the hierarchical model in order to “borrow strength” 

from related areas. Prior distributions may be assigned to the unknown parameters  and , but 

for computational simplicity it is assumed that  and  are fixed at their respective maximum 

likelihood estimates, a common assumption in hierarchical models for small area estimation (Fay 

and Herriot, 1979; Datta, Fay, and Ghosh, 1991; Rao, 1999). Details for obtaining the maximum 

likelihood estimates using the expectation-maximization (EM) algorithm (Dempster, Laird, and 

Rubin, 1977) are provided in Appendix 1.  



     Based on standard theory of the normal hierarchical model (Lindley and Smith, 1972), the 

unknown regression parameters  can be drawn from the following posterior distribution,  

  (5) 

 

where  is a simulated vector of values for the unknown regression parameters  . 

 

     3.3.  Stage 3: Simulating from the Posterior Predictive Distribution.     The ultimate objective 

is to generate synthetic populations for each small area using an appropriate posterior predictive 

distribution. Simulating a synthetic variable  for 

observed variable  for synthetic population unit  is achieved by drawing, in 

sequential fashion, from the following posterior predictive distributions , 

, …, . For example, if the first 

variable to be synthesized  is normally distributed then  can be drawn from a normal 

distribution with location and scale parameters  and  , respectively, where  may 

be drawn from an appropriate posterior predictive distribution, or fixed at its maximum 

likelihood estimate  (obtainable from Stage 1). Generating a second (normally distributed) 

synthetic variable  from the posterior predictive distribution  is 

achieved by drawing  from , and so on up to 

. Alternatively, if the variable under synthesis 

 is binary, then  is drawn from a binomial distribution 

, where  is the 

predicted probability computed from the inverse-logit of . For 

polytomous variables, the same procedure is used to obtain posterior probabilities for each 



categorical response, which are then used to generate the synthetic values from a multinomial 

distribution. The iterative simulation process continues until all synthetic variables 

 are generated. The procedure is repeated M times to create multiple 

populations of synthetic variables . In addition, the entire 

cycle may be repeated several times to minimize ordering effects (Raghunathan et al., 2001). 

     The complete synthetic populations may be disseminated to data users, or simple random 

samples of arbitrary size may be drawn from each population and released. Stratified random 

sampling may be used if different sampling fractions are to be applied within small areas. 

Inferences for a variety of estimands can be obtained using the combining rules in Section 2.2. 

 

     4.  American Community Survey (2005-2009).     The proposed methodology is applied to a 

subset of restricted county-level microdata from the 2005-2009 American Community Survey 

(ACS), obtained from the Michigan Census Research Data Center. The ACS is an ongoing 

national survey that provides yearly estimates on a variety of topics, including income and 

benefits, health insurance coverage, disabilities, family and relationships, and others. The ACS 

collects information on persons living in housing units and group quarters facilities in all 3,141 

counties in the United States. Data collection is conducted using a mixed-mode design. First, 

questionnaires are mailed to all sampled household addresses obtained from a Master Address 

File. Approximately six weeks after the questionnaire is mailed the Census Bureau attempts to 

conduct telephone interviews with all households that do not respond by mail. Following the 

telephone operation, a random sample is taken from the list of addresses where interviews have 

not been obtained and these addresses are visited by a field representative. Full details of the 

ACS methodology can be found in the technical documentation (U.S. Census Bureau, 2009). 



     Unlike the ACS public-use microdata files, the restricted data contain identifiers for all 

counties in the United States. For this application, we restrict the data to occupied housing units 

in the Northeast region. The Northeast region consists of 217 counties, all of which included 

households that completed ACS interviews. We use 5 years of restricted data to facilitate the 

disclosure review process and allow for the publication of estimates for all counties; the latter is 

not permitted with fewer years. Seven household- and seven person-level variables were selected 

for this analysis. The variables, shown in Table 1, were chosen by statisticians at the U.S. Census 

Bureau specifically for this project due to their common use among data users. Some variables 

(e.g., household tenure status, education, race) contained numerous categories. Ideally, each 

category would be preserved in the synthetic data; however, the decision was made to keep the 

number of categories at a minimum while maximizing the number of variables used in this small 

demonstration project. Thus, the few polytomous variables were recoded to reduce their number 

of categories. Transformations were applied to the continuous variables to meet normality 

assumptions during the model fitting and the synthetic data generation stages. After the synthesis 

was completed, the variables were transformed back to their original scales. The Census Bureau 

applies single imputation to missing ACS values in the restricted and public-use data files. We 

treat these imputations as actual observations in this application.  

 

 

 

 

 

 

 

 

 

 



Table 1. List of ACS Variables Used in Synthetic Data Application. Variables Shown in the 

Order of Synthesis. 

Variable Type Range/Categories  Transformation 

Household variables 

  Household size 

  Sampling weight 

  Total bedrooms 

  Electricity bill/mo. 

  Total rooms  

    (excl. bedrooms) 

  Income   

  Tenure 

   

 

count 

continuous 

count 

continuous 

count 

 

continuous 

polytomous 

 

 

1 - 20 

1 - 201 

0 - 5 

1 - 687 

1 - 7 

 

0 – 3,999,996 

recoded; mortgage/loan, own 

free and clear, rent 

  

-- 

log 

-- 

cube root 

-- 

 

cube root 

-- 

 

Person variables 

  Sampling weight 

  Gender 

  Education 

 

  Hispanic ethnicity 

  Age 

  Race 

  Living in poverty 

 

continuous 

binary 

polytomous 

 

binary 

continuous 

polytomous 

binary 

 

1 - 341 

male, female 

recoded; < 12 years, 12 years, 

13-15 years, 16+ years 

yes, no 

0 - 115 

recoded; white, black, other 

yes, no 

  

log 

-- 

-- 

 

-- 

-- 

-- 

-- 

 

     Ten fully synthetic household- and person-level data sets were generated for each county. To 

ensure that each synthetic data set contained ample numbers of households and persons within 

each county, synthetic samples were created to be approximately equivalent to 20% of the total 

number of households based on the decennial census count. This yielded a total synthetic sample 

size of 3,963,715 households and 10,192,987 persons in the Northeast region.  

     The first survey variable to be synthesized was household size. Creating a household size 

variable facilitates the subsequent generation of synthetic person-level data. Household size was 

simulated using a Bayesian Poisson-Gamma model conditional on the observed household size 

variable with unknown hyperparameters fixed at their marginal maximum likelihood estimates 

obtained using the Newton-Raphson algorithm (see Appendix 2 for details). All subsequent 

variables were synthesized using the hierarchical modeling approach described in Section 3. 



State-level covariates  that were incorporated into the hierarchical model included population 

size (2005 estimate: log-transformed) and the number of metropolitan and micropolitan areas. 

These covariates were obtained from the Census Bureau website. 

     For numerical variables (continuous, count), design-based estimates of regression parameters 

were obtained by fitting normal linear models within each county and synthetic values were 

drawn from the Gaussian posterior predictive distribution. For binary variables, logistic 

regression models were used to obtain the design-based parameter estimates and synthetic values 

were drawn from the binomial posterior predictive distribution. Logistic regression was also 

applied to polytomous variables after breaking them up into a series of conditional binary 

variables, estimating the propensity of a case belonging to a particular category versus all other 

categories, and using those propensities to predict case membership. We considered using 

multinomial regression for polytomous variables, but preliminary testing yielded convergence 

and stability problems for many counties. Therefore the decision was made to use the modified 

logistic regression approach. To increase the stability of the estimated regression coefficients, a 

minimum sample size rule of  was applied within each county. If the target county did not 

meet this sample size threshold then nearby counties were pooled together until the criterion was 

met.  

     The household variables were synthesized first, followed by the person variables. After the 

synthetic household data sets were created, they were converted to person-level data sets based 

on values of the synthetic household size variable. Taylor series linearization (Binder, 1993) was 

used to adjust the variances of the design-based regression estimates for the additional 

homogeneity due to persons clustered within households. To reduce the ordering effect induced 

by synthesizing the variables in a prescribed order, we repeat the entire synthetic data process 4 



additional times, each time conditioning on the full set of synthetic variables generated from the 

previous implementations. Finally, it should be noted that the person-level variables were 

synthesized independently of the household-level variables. Although multiple imputation theory 

dictates that one should condition on all available information (Rubin, 1987), we found in 

preliminary runs that cycling between household- and person-level synthesis by aggregating 

person-level variables up to the household-level did not yield satisfactory inferences, possibly 

due to the non-standard distributions that the aggregation procedure produced. After applying 

several transformation procedures to the aggregated person-level variables, which did not 

significantly improve the imputations, we decided to keep the household and person levels 

separate for this demonstration project.  

     All results were reviewed and approved by the U.S. Census Bureau’s Disclosure Review 

Board. 

 

     4.1.  Validity of Univariate Estimates.     Figure 1 contains back-to-back histograms depicting 

the overall distributions for each continuous household- and person-level variable. The actual 

distributions are shown in red and the synthetic distribution in blue. All variables are presented in 

their original scale. Visual comparisons show that for some variables, the synthetic data 

distribution corresponds to the actual data distribution reasonably well, but for others, the 

correspondence is poorer. Although the bulk of the distributions are generally maintained in the 

synthetic data, not every peak and valley is preserved. Those variables which do not follow a 

smooth parametric form tend to be most susceptible to a lack of correspondence. For example, 

the shape of the age distribution is bimodal denoting the highest frequency of people between the 

ages of 0-20 and 45-55. The synthetic age values, which are simulated from a normal  



Figure 1. Back-to-Back Histograms of Actual (Red) and Synthetic (Blue) Distributions for 

Continuous ACS Household- and Person-Level Variables in the Northeast Region. 

 

 

 
 



distribution, fail to reflect the underlying bimodality. To a lesser degree, the sampling weight 

variables exhibit some bimodality at the left-most portion of their distributions, which is also not 

accounted for by the synthetic data. More sophisticated techniques, such as mixture modeling or 

nonparametric imputation may do a better job of preserving these non-standard distributional 

forms. 

 

     While it is useful to compare synthetic and actual variable distributions for purposes of 

evaluation, data users are most interested in the validity of the small estimates obtained from the 

synthetic data. Table 2 shows summary measures of univariate county-level estimands obtained 

from the synthetic and actual data. The first column contains the original set of ACS variables as 

well as recoded binary variables indicating overall income percentiles (50
th

, 75
th

 and 90
th

) and 

specific subgroups (income x tenure; poverty x race/ethnicity). The second column shows the 

average county mean obtained from the synthetic and actual data, across all 217 counties. The 

third and fourth columns show the average standard deviation and standard error of the county 

means. The last column contains the intercept and slope values obtained from regressing the 

actual county means against the corresponding synthetic means. Intercept values close to zero 

and slope values close to one indicate strong correspondence between the synthetic and actual 

data estimates.  

     The synthetic data estimates, based on the original ACS variables, correspond roughly to the 

actual estimates, on average; out of the 9 household- and 12 person-level estimands, 5 and 10 of 

them yield synthetic point estimates that lie within two standard errors of the actual estimates, 

respectively, on average. The largest deviations occur for the tenure variable where the 

percentage of housing units being rented is overestimated by about two percentage points, on 

average, and the percentages of housing units owned free and clear and being financed through a 



mortgage or loan, are both underestimated in the synthetic data by about one and three 

percentage points, respectively, on average. These deviations are evident from examination of 

scatter plots of synthetic and actual county-level estimates as shown in Appendix 3.  Similar 

over- and under-estimation effects appear in estimates of the other polytomous variables 

(education, race), but to a lesser extent. The cause of these effects is likely driven by two joint 

factors. The overestimation is likely due to the pooling of nearby counties to facilitate model fit 

for target counties that contained insufficient numbers of rented housing units; the rarest of the 

three membership categories. For the affected counties, the act of pooling at the estimation stage 

yields a higher rate of rented housing units in the synthetic data, which is closer to the population 

average. The underestimation in the other tenure estimates is driven by the fact that rental status 

was the first tenure category to be simulated, followed by ownership (conditional on not being 

rented) and mortgage/loan status (conditional on not being rented or owned). A consequence of 

this step-by-step conditional simulation approach is that the higher rates of rented housing units 

generated for the areas with inadequate samples sizes are offset by lower rates of ownership and 

mortgage/loan status for these smaller areas.  

     Aside from the positive/negative deviations among the polytomous estimates, the other 

estimates, based on continuous and binary ACS variables, appear to be reasonably valid as 

indicated by the diagnostic measures in Table 2 and examination of scatter plots in Appendix 3 . 

Many of the estimands yield intercept and slope values for the linear regression of actual county 

means against the synthetic means that are close to zero and one, respectively, indicating good 

correspondence between the actual and synthetic estimates. However, some of the continuous 

variables including, electricity bill amount, household income, and, especially, age, yield larger 

deviations from the ideal intercept and slope values. The largest deviation occurs for the age 



estimates, which are likely due to the aforementioned bimodality of the age distribution that is 

reflected poorly in the synthetic data. The resulting synthetic county-level age estimates tend to 

be biased upward, particularly, for the counties with the highest average ages..  

     The validity of the percentile and subgroup estimates is mixed. The percentage of households 

with incomes exceeding the 50
th

 percentile in the synthetic data corresponds closely to the actual 

percentages, on average. However, the estimates based on the 75
th

 and 90
th

 percentiles are higher 

in the synthetic data by about 1.5-2.0 percentage points, on average. Scatterplots of the county-

level percentile means shown in Appendix 4 indicate that the correspondence between synthetic 

and actual means becomes poorer as the percentile increases. Almost all of the income and 

poverty subgroup means lie within 1-2 standard errors of their corresponding actual means, on 

average. However, a positive and negative bias can be seen for synthetic estimates of mean 

income among mortgaged and rented housing units from scatterplots in Appendix 5; a result that 

is likely due to the aforementioned under- and over-estimation of these tenure variables in the 

synthetic data, respectively.  

     A few remarks can be made about the uncertainty of the synthetic estimates. Based on 

multiple imputation theory, we would expect the synthetic standard deviations to be 

approximately the same and the standard errors to be larger than the actual standard deviations 

and standard errors, respectively, on average. This expectation is confirmed for some, but not all 

estimates. In most cases, the synthetic data standard deviations are close to their actual data 

counterparts. A particular exception is age, which yields larger standard deviations in the 

synthetic data, on average, due to the aforementioned bimodal age distribution, which is 

smoothed over in the synthetic data causing more age values to lie further away from the mean. 

On average, about half of the synthetic standard errors are equal to or greater than the  



Table 2. Summary Measures of Actual and Synthetic County Means. 

  

Avg.  

Mean 

 

Avg. Standard 

 Deviation 

 

Avg. Standard  

Error of Mean 

Regression of 

Actual Means on 

Synthetic Means 

 Actual Synthetic Actual Synthetic Actual Synthetic Intercept Slope 

Household variables 

  Household size 

  Sampling weight 

  Total bedrooms 

  Electricity bill/mo. 

  Total rooms 

  Income 

  Tenure (%) 

    Mortgage/loan 

    Own free & clear 

    Rent 

Recoded variables 

  Income > 50th pctile,% 

  Income > 75th pctile,% 

  Income > 90th pctile,% 

  Income (Mortgage=1) 

  Income (Own=1) 

  Income (Rent=1) 

 

2.12 

9.99 

2.88 

118.89 

3.23 

67983.9 

 

49.00 

31.12 

19.88 

 

44.65 

19.34 

6.78 

84667.0 

61076.6 

38844.5 

 

2.12 

10.20 

2.82 

119.37 

3.18 

67382.4 

 

47.03 

30.37 

22.60 

 

44.56 

21.49 

8.38 

86992.6 

60456.9 

36921.9 

 

1.46 

7.21 

0.96 

78.72 

1.19 

68481.3 

 

49.38 

45.53 

38.86 

 

48.24 

37.34 

22.96 

69019.2 

76053.1 

37759.4 

 

1.45 

7.04 

1.09 

78.33 

1.28 

54081.9 

 

49.30 

44.97 

41.00 

 

48.19 

38.69 

24.58 

58960.1 

45083.6 

32527.3 

 

0.02 

0.11 

0.02 

1.25 

0.02 

1067.3 

 

0.82 

0.77 

0.63 

 

0.80 

0.59 

0.35 

1536.0 

2132.8 

1436.0 

 

0.01 

0.11 

0.01 

1.10 

0.02 

692.6 

 

0.74 

0.72 

0.63 

 

0.56 

0.43 

0.24 

1195.3 

1232.7 

1166.5 

 

0.02 

0.01 

0.15 

9.90 

0.09 

4681.7 

 

0.04 

0.05 

-0.05 

 

0.01 

-0.00 

0.56 

5460.0 

1717.0 

3480.0 

 

0.99 

0.98 

0.97 

0.91 

0.99 

0.94 

 

0.95 

0.85 

1.09 

 

0.97 

0.91 

0.74 

0.91 

0.98 

0.99 

Person variables 

  Sampling weight 

  Gender (%) 

  Education (%) 

    < 12 years 

    12 years 

    13-15 years 

    16+ years 

  Hispanic (%) 

  Age 

  Race (%) 

    White 

    Black 

    Other 

  Poverty (%) 

Recoded variables 

  Poverty (White=1; %) 

  Poverty (Black=1; %) 

  Poverty (Other=1; %) 

  Poverty (Hispanic=1; %) 

 

10.27 

48.63 

 

31.48 

28.34 

20.33 

19.85 

3.85 

40.89 

 

92.21 

3.55 

4.24 

8.65 

 

7.93 

20.48 

16.62 

19.92 

 

10.67 

48.63 

 

31.67 

27.74 

20.25 

20.35 

4.23 

41.16 

 

91.34 

4.01 

4.65 

9.04 

 

8.19 

21.30 

17.84 

21.11 

 

7.59 

49.97 

 

46.31 

44.40 

40.11 

38.72 

15.72 

22.98 

 

22.17 

14.54 

14.54 

27.54 

 

26.41 

36.86 

35.37 

37.08 

 

8.02 

49.97 

 

46.31 

44.06 

40.04 

39.14 

16.99 

30.34 

 

24.08 

16.26 

18.61 

28.13 

 

26.84 

37.03 

36.07 

37.96 

 

0.08 

0.53 

 

0.49 

0.48 

0.43 

0.40 

0.14 

0.25 

 

0.20 

0.13 

0.16 

0.30 

 

0.30 

4.62 

2.96 

3.52 

 

0.14 

0.44 

 

0.39 

0.57 

0.50 

0.51 

0.26 

0.27 

 

0.36 

0.26 

0.27 

0.53 

 

0.51 

3.52 

4.38 

5.54 

 

-0.09 

0.04 

 

0.09 

0.01 

0.01 

-0.01 

-0.00 

22.02 

 

0.01 

-0.01 

-0.00 

-0.00 

 

-0.00 

-0.01 

0.01 

-0.01 

 

0.97 

0.91 

 

0.71 

0.97 

0.96 

1.00 

1.00 

0.46 

 

1.00 

1.00 

1.00 

1.00 

 

1.00 

1.01 

0.87 

0.98 

 

 

 



corresponding actual standard errors. Estimates of income tend to have smaller standard errors in 

the synthetic data, on average, as a result of outlying observations being less preserved in the 

synthetic data. Moreover, the underestimated variances could be caused by misspecification of 

the imputation model and/or poor choice of transformation for preserving the tail-end of the 

distribution in the synthetic data, a problem which has been highlighted in earlier research on the 

estimation of imputed totals in skewed populations (Rubin, 1983). Another possible source of 

variation not accounted for in the synthetic data is due to the fact that the hyperparameters were 

fixed at their maximum likelihood estimates (see Section 3.2), rather than being randomly drawn 

from an a priori distribution. 

 

     4.2.  Validity of Multivariate Estimates.     The next set of analyses examine the analytic 

validity of synthetic multivariate estimates obtained from multiple regression models. Table 3 

shows average coefficient estimates (and their standard errors) for two regression models fit 

within each county. The first model fits a household-level linear regression of income (cube root) 

on the remaining ACS household covariates, and the second model fits a person-level logistic 

regression of poverty status on the remaining person covariates. Both models yield coefficient 

estimates based on the synthetic data that closely resemble those based on the actual data. Nearly 

all of the synthetic data coefficient estimates lie within one standard error of their corresponding 

actual data estimates, on average. Scatterplots of the synthetic and actual county regression 

coefficients can be seen in Appendix 6. Most of the scatterplots show that the synthetic data 

county estimates are in agreement with the actual county estimates as the points lie about the 45 

degree line. However, there are clear biases associated with some coefficients, particularly, those 

associated with tenure variables that have already been shown to be affected by biases in the 

synthetic data. The standard errors of the synthetic data estimates appear to be on par, and in 



some cases, twice as large, as those of the actual data estimates. In summary, the multivariate 

relationships examined here appear to be reasonably valid in the synthetic data. This is a 

reassuring result given that these relationships were explicitly accounted for in the synthetic data 

generation models. 

 

Table 3. Summary Measures of Actual and Synthetic Linear and Logistic County 

Regression Coefficients. 

 

 
Avg. Beta  

Coefficient 

Avg. Standard Error 

of Beta Coefficient 

Linear regression of household  income (cube 

root) on household-level covariates 

 

Actual 

 

Synthetic 

 

Actual 

 

Synthetic 

  Intercept 

  Household size 

  Sampling weight 

  Total bedrooms 

  Electricity bill/mo. 

  Total rooms 

  Tenure 

    Mortgage/loan 

    Own free & clear 

    Rent 

24.34 

1.52 

-0.04 

1.15 

0.99 

1.25 

 

Ref 

-3.47 

-6.01 

24.26 

1.44 

-0.05 

1.23 

1.04 

1.26 

 

Ref 

-3.05 

-6.84 

1.11 

0.14 

0.24 

0.19 

0.18 

0.14 

 

Ref 

0.37 

0.44 

1.09 

0.14 

0.26 

0.18 

0.17 

0.13 

 

Ref 

0.34 

0.47 

 Avg. Beta  

Coefficient 

Avg. Standard Error 

of Beta Coefficient 

Logistic regression of poverty status on 

person-level covariates 

 

Actual 

 

Synthetic 

 

Actual 

 

Synthetic 

  Intercept 

  Sampling weight 

  Gender: Male 

  Education 

    <12 years 

    12 years 

    13-15 years 

    16+ years  

  Hispanic 

  Age 

  Race 

    White 

    Black 

    Other 

-2.39 

0.25 

-0.33 

 

Ref 

-0.36 

-0.62 

-1.52 

0.36 

-0.00 

 

Ref 

0.28  

0.41 

-2.32 

0.25 

-0.34 

 

Ref 

-0.35 

-0.63 

-1.59 

0.27 

0.01 

 

Ref 

0.22 

0.41 

0.16 

0.07 

0.08 

 

Ref 

0.12 

0.13 

0.18 

0.29 

0.00 

 

Ref 

0.34 

0.25 

0.24 

0.10 

0.08 

 

Ref 

0.13 

0.15 

0.30 

0.63 

0.07 

 

Ref 

0.87 

0.56 

 



 

 

     5.  ACS Simulation.     This section evaluates the repeated sampling properties of small area 

inferences drawn from the synthetic data based on a simulation study. In this simulation, we use 

public-use ACS microdata for the Northeast region for years 2005-2007.  The smallest 

geographical unit in the public-use microdata is a Public-Use Microdata Area (PUMA). PUMAs 

are defined as areas which contain at least 100,000 persons. In many cases, PUMAs overlap 

exactly with counties with the exception of very large counties, which are split into multiple 

PUMAs, and very small counties, which are combined with nearby counties to form a single 

PUMA. There are 405 PUMAs located in the Northeast region. For this simulation study, the 

ACS data is treated as a population from which subsamples are drawn. 500 stratified random 

subsamples are drawn from each PUMA with replacement. Each subsample accounts for 

approximately 30% of the total sample in each PUMA. Each ACS subsample is used as the basis 

for constructing a synthetic population from which 100 synthetic samples are drawn. This 

resulted in a total of 50,000 synthetic data sets. 

     Two types of inferences can be obtained from the synthetic data: conditional and 

unconditional. Conditional synthetic inferences are obtained from synthetic samples that are 

based on a single observed sample drawn from the population. This is the situation that most 

commonly occurs in practice, where a survey is carried out on a single population-based sample 

and the synthetic data is generated conditional on that sample. Unconditional inferences are 

obtained from synthetic samples that are based on multiple, or repeated, population-based 

samples. Obtaining unconditional inferences is not feasible in practice but is possible in the 

simulation study considered here.  



     To obtain conditional inferences, 500 sets of 10 synthetic samples are randomly selected 

(with replacement) from each of the 100 synthetic samples generated conditional on each of the 

500 ACS subsamples. For each set of 10 synthetic samples, a synthetic estimate and associated 

95% confidence interval is obtained for each variable in each PUMA using the combining rules 

of Section 2.2. To obtain unconditional inferences, 100 sets of 10 synthetic samples are 

randomly selected with replacement across each of the 100 ACS subsamples and point estimates 

and associated confidence intervals are again obtained using the relevant combining rules. 

     We use two evaluative measures to assess the validity of the synthetic data estimates. The 

first one is confidence interval coverage (CIC). For conditional inference, CIC is defined as the 

proportion of times that the synthetic data confidence interval, computed at the 0.05 

level,  contains the actual estimate : 

 

where  is an indicator function.  if  and  otherwise. 

     For unconditional inference, the only difference is that the CIC is calculated as the proportion 

of times that the synthetic data confidence interval contains the “true” population value , i.e., 

.  

     The second evaluative measure is referred to as the confidence interval overlap (CIO; Karr et 

al., 2006). CIO is defined as the average relative overlap between the synthetic and actual data 

confidence intervals.  For every estimate the average overlap is calculated as, 

 , 

where  and  denote the upper and the lower bound of the confidence interval for the 

actual estimate ,   and  denote the upper and the lower bound of the confidence 



interval for the synthetic data estimate , and  and  denote the upper and lower 

bound of the overlap of the confidence intervals from the original and synthetic data for the 

estimate of interest.  can take on any value between 0 and 1. A value of 0 means that there is 

no overlap between the two intervals and a value of 1 means that the synthetic interval 

completely covers the actual interval. Calculating the confidence interval overlap is only possible 

for conditional inferences. This measure yields a more accurate assessment of data utility in the 

sense that it accounts for the significance level of the estimate. That is, estimates with low 

significance might still have a high confidence interval overlap and therefore a high data utility 

even if their point estimates differ considerably from each other.  

 

     5.1.  Validity of Univariate Estimates.     Table 4 shows the average confidence interval 

coverage (CIC) and confidence interval overlap (CIO) across all PUMAs for univariate 

household-level estimands. The conditional CIC is high for non-recoded estimates ranging from 

0.86-0.99. The income by tenure subgroup estimates also yield relatively high conditional CIC 

values (range: 0.89-0.97). The CIC values for income percentile estimates do not fare as well as 

they tend to decline monotonically as the percentiles increase. The same general trend is 

observed for the conditional CIO values, which closely resemble the CIC values. Regarding the 

unconditional inferences, the CIC values tend to be slightly higher than the corresponding values 

obtained from the conditional evaluation. The actual CIC  values, obtained from the actual ACS 

subsamples, tend to be very close to the synthetic CIC values, if not slightly higher, except for 

the aforementioned percentile estimates which demonstrate weaker coverage for the most 

extreme percentiles.  

 



Table 4. Simulation-Based Confidence Interval Results for PUMA Means.  

 Conditional Inference Unconditional Inference 

 CIC CIO CIC CIC (Actual) 

Household variables 

  Household size 

  Sampling weight 

  Bedrooms 

  Electricity cost/mo. 

  Rooms 

  Household income 

  Tenure 

    Own free & clear 

    Rent 

Recoded variables 

  Income > 50
th

 pctile  

  Income > 75
th

 pctile  

  Income > 90
th

 pctile  

  Income (Mortgage=1) 

  Income (Own=1) 

  Income (Rent=1) 

 

0.99 

0.95 

0.89 

0.86 

0.97 

0.90 

 

0.93 

0.94 

 

0.89 

0.71 

0.52 

0.89 

0.91 

0.97 

 

0.97 

0.99 

0.87 

0.87 

0.93 

0.91 

 

0.92 

0.96 

 

0.92 

0.71 

0.60 

0.88 

0.98 

0.93 

 

0.98 

0.99 

0.93 

0.91 

0.98 

0.94 

 

0.96 

0.96 

 

0.94 

0.80 

0.62 

0.94 

0.96 

0.99 

 

0.98 

0.98 

0.98 

0.98 

0.98 

0.98 

 

0.98 

0.98 

 

0.98 

0.98 

0.97 

0.97 

0.96 

0.96 

 

     5.2.  Validity of Multivariate Estimates.     Multivariate simulation results are shown in Table 

5. This table shows average CIC and CIO values for regression coefficient estimates obtained 

within each PUMA from a linear regression of income (cube root) on household-level covariates. 

The conditional CIC and CIO values are high and range from 0.93-0.99 and 0.90-0.98, 

respectively, indicating good analytic validity for these multivariate statistics. The unconditional 

CIC values range from 0.85-0.92, which are slightly below the actual CIC values obtained from 

the observed data (0.98). The lowest unconditional CIC values (0.85 and 0.87) are associated 

with the household tenure categories. Given that the analytic model being evaluated here is one 

of the same models used during the synthetic data generation process, it is not surprising that the 

analytic validity of the estimates is generally high. Overall, we believe this result is reassuring 

and underscores the importance of ensuring that the models used during the imputation process 

sufficiently overlap with the analytic models of interest. 



Table 5. Simulation-Based Confidence Interval Results for PUMA Regression Coefficients  

 

Linear regression of  

income (cube root) on 

Conditional Inference Unconditional Inference 

 

CIC 

 

CIO 

 

CIC 

 

CIC (Actual) 

  Intercept 

  Household size 

  Sampling weight 

  Total bedrooms 

  Electricity bill/mo. 

  Total rooms  

  Tenure  

    Mortgage/loan 

    Own free & clear 

    Rent   

0.98 

0.98 

0.99 

0.98 

0.99 

0.98 

 

Ref 

0.95 

0.93 

0.97 

0.95 

0.97 

0.98 

0.97 

0.97 

 

Ref 

0.90 

0.96 

0.92 

0.91 

0.92 

0.91 

0.91 

0.92 

 

Ref 

0.87 

0.85 

0.98 

0.98 

0.98 

0.98 

0.98 

0.98 

 

Ref 

0.98 

0.98 

 

  

     6.  Conclusions.     Data users are increasingly interested in producing small area estimates, 

but statistical agencies are prevented from releasing these data due to disclosure concerns.  

In this article, a synthetic data methodology for generating and disseminating public-use 

microdata for small geographic areas evaluated using restricted data from the U.S. Census 

Bureau. Compared with current practices of disseminating detailed geographical data, the 

synthetic data framework offers data users the flexibility of performing their own customizable 

geographic analyses using data that can presumably be released to the public without restriction. 

     The empirical evaluations show that the synthetic data generated from a Bayesian hierarchical 

model yields generally valid univariate and multivariate county-level estimates and repeated 

sampling properties. However, limitations of the method were apparent when simulating 

synthetic data for non-standard distributions and for polytomous variables when sample size 

limitations required pooling of nearby counties. Such limitations can potentially be overcome 

with more sophisticated modeling approaches, such as nonparametric imputation or mixture 

modeling, which was beyond the scope of this demonstration project. In addition, the “empirical” 

Bayesian approach considered here by fixing the hyperparameters at their maximum likelihood 



estimates may have underestimated the uncertainty of the synthetic data estimates, resulting in 

smaller standard errors and narrower confidence intervals. Although some underestimation of 

uncertainty might be welcomed in fully-synthetic data applications where standard errors are 

expected to be much higher relative to the observed standard errors, a more principled approach 

that accounts for all sources of variation might be viewed more favorably by skeptical data users. 

     Several extensions of this work are currently being considered.  The preservation of skewed 

and non-standard distributions is an important issue that will need to be addressed prior to pubic 

release of synthetic small area microdata. Parametric modeling approaches are inherently limited 

in real-world applications where many of the most commonly used variables do not follow a 

smooth distributional form. The use of transformations to achieve normality is one possible 

solution; however, such transformations are not always effective for some types of distributions 

(e.g., bimodal). One must also consider the possibility that the same transformation might not 

work in all small areas. In this application, a single transformation was applied across all 

counties based on the overall distribution. Incorporating a tuning parameter in the hierarchical 

modeling approach that accounts for distributional differences across small areas might yield 

higher quality synthetic data and small area estimates with greater analytic validity. Another 

possible extension of this work is to complex sample surveys. Although the ACS does not 

employ a complex sample design, most large-scale surveys do, and studies have shown that 

ignoring important design features during the imputation process can have drastic effects on the 

validity of the resulting estimates (Reiter, Raghunathan, and Kinney, 2006). Finally, the 

disclosure risk properties associated with fully synthetic data need to be studied in greater depth. 

Although we argue that fully synthetic data greatly enhances data confidentiality and prevents 



respondent re-identification because no observed data is released to the public, the extent to 

which confidentiality is protected needs to be systematically and empirically assessed.  

     Despite the potential for future improvements, the methodology examined here shows some 

promise and could be implemented by large-scale survey projects, such as the American 

Community Survey, to release more geographically-relevant data to the public. Such efforts 

could potentially help meet the growing demand for small area microdata, which is expected to 

grow among a variety of data users across many disciplines. 
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Appendix 1.  EM Algorithm for Estimating Bayesian Hyperparameters.      

     The EM algorithm is used to estimate the unknown population parameters and from the 

following setup, 

 

 

where  is used to index the set of parameters associated with the  synthetic 

variable of interest and the  regression model from which the direct estimates  and  

were obtained in Step 1. 

     The E step consists of solving the following expectations, 

 

 

     Once these expectations are computed they are then incorporated into the maximization (M-

step) of the unknown hyperparameters  and  using the following equations, 

 , where , and 

 

     After convergence the maximum likelihood estimates are incorporated into the posterior 

distribution of  shown in equation [5]. 

 

Appendix 2.  Creation of Synthetic Household Size Variable.     Let  be the number of 

people in household  in county  within state . 



Assume that  and . Conditional on the data and 

 it is straightforward to simulate values of .  

     First, obtain the marginal maximum likelihood estimates of  through 

Newton-Raphson for each state independently. Also, obtain the covariance matrix 

 by inverting the observed Fisher Information matrix. The marginal likelihood is 

given by, 

 

 

 

where  . Taking the logarithms, the quantity to be maximized with respect to  

and  via the Newton-Raphson is, 

 

The first and second derivatives of this function are, 

 

 

 



 

 

     The logarithm of the gamma function, its first and second derivatives can be accurately 

approximated as follows, 

 

 

 

     The constants  can be found in Abramowitz and Stegun (1965). The Newton-Raphson 

method is applied iteratively to obtain maximum likelihood estimates of  and , 

 

     The logarithm of the estimates for  and  are then assumed to follow the hierarchical 

model,  

 

 



     The Expectation-Maximization (EM) algorithm (Dempster, Laird, and Rubin, 1977) is used to 

obtain maximum likelihood estimates of . The E step is carried out by solving the 

following expectation equations, 

 

 

and the M step is performed by solving the following maximization equations, 

 

 

     It is then straightforward using this setup to synthesize the number of members in each 

household by treating the parameter estimates of  as known and retracing back to 

simulate values of  using the following 3 steps: 

Step 1: Simulate Gamma parameters  and  from the bivariate normal distribution, 

 

Step 2: Simulate Poisson parameter  from the Gamma distribution given the county 

population size, number of households, and simulated parameters obtained from Step 1, 

 

Step 3: Simulate household size from the Poisson distribution, 

. 



Appendix 3.  Scatter plots of Actual (x-axis) and Synthetic (y-axis) County Means of   ACS 

Household- and Person-Level Variables 

 







 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 4. Scatter plots of Actual (x-axis) and Synthetic (y-axis) County Income 

Proportions Greater than or Equal to the 50
th

, 75
th

, and 90
th

 Percentiles. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 5. Scatter Plots of Actual (x-axis) and Synthetic (y-axis) County Subgroup Means 

of Income by Household Tenure Status, and Poverty Status by Race/Ethnicity. 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 6. Scatter Plots of Actual (x-axis) and Synthetic (y-axis) County Linear and 

Logistic Regression Coefficients of Household Income (cube root) on Household-Level 

Covariates, and Poverty Status on Person-Level Covariates, respectively.  

 



 



 
 

 


