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Abstract 
 

We derive the asymptotic bias from misclassification of the dependent variable in binary choice 
models. Measurement error is necessarily non-classical in this case, which leads to bias in linear 
and non-linear models even if only the dependent variable is mismeasured. A Monte Carlo study 
and an application to food stamp receipt show that the bias formulas are useful to analyze the 
sensitivity of substantive conclusions, to interpret biased coefficients and imply features of the 
estimates that are robust to misclassification. Using administrative records linked to survey data 
as validation data, we examine estimators that are consistent under misclassification. They can 
improve estimates if their assumptions hold, but can aggravate the problem if the assumptions 
are invalid. The estimators differ in their robustness to such violations, which can be improved 
by incorporating additional information. We propose tests for the presence and nature of 
misclassification that can help to choose an estimator.  
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1 Introduction

Many important outcomes are binary such as program receipt, labor market status, and

educational attainment. These outcomes are frequently misclassified in data sets for reasons

such as misreporting in surveys, the need to use a proxy variable, or imperfectly linked data.

Misclassification of a binary variable necessarily leads to non-classical measurement error,

which causes bias even in linear models. Additionally, most models for binary outcomes are

non-linear models, in which both classical and non-classical measurement error lead to bias.

We focus on the consequences of misclassification of the dependent variable in binary choice

models. It is a common misconception that measurement error of the dependent variable

does not lead to bias, which is only the case under classical measurement error in linear

models. However, there are few general results on the consequences of misclassification of

the dependent variable in binary choice models. We present a closed form solution for the

bias in the linear probability model and decompose the bias in non-linear binary choice

models such as the Probit into four components. We present closed form solutions for three

components and an expression that determines the fourth component, which we argue is

usually small. We illustrate these results using simulations and data on food stamp receipt

from Illinois and Maryland matched to the 2001 American Community Survey and the 2002-

2005 Current Population Survey Annual Social and Economic Supplement (CPS-ASEC). We

show how these biases affect coefficients in a model of food stamp receipt. We then use our

results to interpret biased coefficients and assess whether substantive conclusions obtained

from misclassified data are likely to hold in data without error. Some features of the true

parameters are robust to misclassification and we show conditions under which one can use

the biased coefficients to learn about features of the true coefficients such as signs, bounds

and relative magnitudes.

We use the same data and model of food stamp participation to analyze the performance

of several estimators for the Probit model that are consistent under certain forms of misclas-

sification. We examine their performance and assess how sensitive they are to violations of
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their assumptions for consistency and how useful it is to incorporate additional information

on the nature of misclassification. Our results suggest that some of the corrections work

very well, but that falsely making simplifying assumptions on the misclassification may lead

to results that are even worse than ignoring the problem altogether. While a good model

of misclassification can serve as a substitute for accurate data and the estimators are not

very sensitive to misspecification, a bad model can make things worse than the naive Probit

estimates. This shows that it is important to know whether there is misclassification in the

data and whether it is related to the covariates, so we propose two tests for the presence

and nature of misclassification. These tests can be used to assess which of these estimators

is likely to improve upon the estimates based on survey data.

The next section reviews the evidence on the presence of misclassification and the lit-

erature on misclassification in binary choice models. Section 3 introduces the models and

discusses the bias in theory and in practice. In section 4 we show what can be learned

from the biased coefficients. Section 5.1 introduces the Probit estimators, 5.2 evaluates their

performance and section 5.3 proposes the tests for misclassification.

2 The Problem of Misclassification

A binary variable suffers from misclassification if some zeros are incorrectly recorded as ones

and vice versa, which can arise from various causes. Several papers have examined misre-

porting in surveys and have found high rates of misclassification in variables such as par-

ticipation in welfare programs (Marquis and Moore, 1990; Meyer, Mok and Sullivan, 2009;

Meyer, Goerge and Mittag, 2013), Medicaid enrollment (Call et al., 2008; Davern et al.,

2009a,b) and education (Black, Sanders and Taylor, 2003). Bound, Brown and Mathiowetz

(2001) provide an overview of misreporting in survey data. False negatives, i.e. recipients

that fail to report getting program benefits, seem to be the main problem with the rate of

underreporting sometimes exceeding 50%. As our application to food stamp receipt shows,
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this will bias studies that examine similar binary outcomes such as program take-up (also

see e.g. Bitler, Currie and Scholz, 2003; Haider, Jacknowitz and Schoeni, 2003), labor mar-

ket status (e.g. Poterba and Summers, 1995) or educational attainment (e.g. Eckstein and

Wolpin, 1999; Cameron and Heckman, 2001). Since this application deals with misreporting

in survey data, we use the terms misclassification and misreporting interchangeably, but all

our results remain valid if misclassification arises for other reasons. A frequent cause besides

misreporting is that the classification of the true dependent variable is not sharp and coding

it as a dummy involves a subjective judgment, for example whether there is a recession or

not (e.g. Estrella and Mishkin, 1998) or the presence of an armed civil conflict (e.g Collier

and Hoeffler, 1998; Fearon and Laitin, 2003). Similarly, a proxy variable is often used in-

stead of the true variable of interest, such as using arrests or incarceration instead of crime

(e.g. Levitt, 1998; Lochner and Moretti, 2004). Misclassification also occurs if the variable

is predicted such as when predicted eligibility for a program is used. Even though the rates

of misclassification are hard to assess in these cases, they are often substantial and there is

no ex ante reason to believe that misclassification is random. This assumption is more likely

to be true if misclassification stems from coding errors or failure to link some records.

A few papers have analyzed the consequences of misreporting for econometric models. For

example, Bollinger and David (1997, 2001) and Meyer, Goerge and Mittag (2013) examine

how misclassification affects estimates of food stamp participation and Davern et al. (2009a)

analyze the demographics of Medicaid enrollment. These papers show that misclassification

affects the estimates of common econometric models and distorts the conclusions drawn from

it in meaningful ways. However, they are case studies in that they focus on comparing “true”

and “biased” results for particular applications. Consequently, we know that misreporting

can seriously affect estimates from binary choice models, but we know very little about the

way it affects the estimates in general. This is aggravated by the scarcity of analytic results

on bias in binary choice models. Carroll et al. (2006) discuss measurement error in non-

linear models and there is a small literature on misspecification in binary choice models (e.g.
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Yatchew and Griliches, 1985; Ruud, 1983, 1986), but general results or formulas for biases

are scarce and usually confined to special cases for specific models. We derive formulas for

the misclassification bias in linear probability and Probit models, which help to explain the

bias found in the studies above and are informative about the likely sizes and directions of

bias in cases where the “true” dependent variable is not available.

While little is known about how misclassification biases the estimates, several papers

have attempted to correct estimates for misclassification or proposed estimators that are

consistent in the presence of misclassification. Poterba and Summers (1995) attempt to

correct a multinomial Logit model of labor market transitions using external information

on the misclassification probabilities. Hsiao and Sun (1999) derive two structural models

for product demand that allow for misreporting in a multinomial Logit model that do not

require out of sample information. Abrevaya and Hausman (1999) propose a consistent

estimator for duration models. In terms of binary choice models, Bollinger and David (1997)

and Hausman, Abrevaya and Scott-Morton (1998) introduce consistent estimators for the

Probit model, Lancaster and Imbens (1996) consider the related problem in which a binary

outcome is not observed for the control group. Unless the true parameters are known, it is

impossible to test whether these estimators and corrections improve or just change parameter

estimates. In most cases, a change indicates a problem with the original model, but by itself

this does not imply that the correction is an improvement. We evaluate the performance of

the estimators for the Probit model as well as several variants and find that whether they are

likely to improve estimates or make them worse depends on the nature of the misreporting

and the validity of the assumptions. The tests of misreporting we propose help to assess how

well the corrections will work and which ones are promising in a specific case. Our results

on the bias from misreporting are informative about their value, because they show the loss

from running an uncorrected Probit or linear probability model.
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3 Bias due to Misclassification of a Binary Dependent

Variable

This section first introduces the models we analyze and reviews previous theoretical results

on bias in the linear probability model and other binary choice models. Then we derive

the bias due to misclassification in the linear probability model and the Probit model. The

linear probability model is a special case of an OLS regression, so closed form solutions for

the bias can be obtained by adapting known results on non-classical measurement error of

the dependent variable to the case of a binary dependent variable. For the Probit model,

we decompose the bias into four components, three of which have closed form expressions.

We characterize the fourth component and the factors that determine its size and direction.

We argue that this component of the bias is small and discuss conditions under which good

approximations can be obtained from the closed form expressions. Section 3.4 uses matched

survey data on food stamp participation and two Monte Carlo simulations to examine the bias

in practice. We show that the analytic results are useful in interpreting estimates obtained

from misclassified data and provide evidence that coefficients tend to be attenuated, but

retain the correct sign. The fourth component of the bias is small in these applications.

3.1 Model Setup and Previous Results

Throughout this paper, we are concerned with a situation in which a binary outcome y is

related to observed characteristics X, but the outcome indicator is subject to misclassifica-

tion. Let yTi be the true indicator for the outcome of individual i and yi be the observed

indicator that is subject to misclassification. The sample size is N and NMC observations

are misclassified, NFP of which are false positives and NFN are false negatives. We define
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the probabilities of false positives and false negatives conditional on the true response as

Pr(yi = 1|yTi = 0) = α0i

Pr(yi = 0|yTi = 1) = α1i

We refer to them throughout the paper as the conditional probabilities of misreporting.

Additionally, we define a binary random variable M that equals one for individual i if

individual i’s outcome is misreported

mi =

{
0 if yTi = yi

1 if yTi ̸= yi

We consider two cases, in one the true model is a linear probability model, in the other

it is a Probit model. In case of the linear probability model, the researcher would like to run

the following OLS regression

yTi = xiβ
LPM + εLPM

i

to obtain the K-by-1 vector β̂LPM , an estimate of the marginal effects of X on the true

outcome. Since yTi is not observed this regression is not feasible. Using only the observed

data yields the observed model

yi = xiβ̃
LPM + ε̃LPM

i

Inference based on the observed model will be biased if E( ˆ̃βLPM) ̸= βLPM . Section 3.2

derives this bias and shows that it will only be zero in special cases. If the true model is a

Probit model, the researcher assumes that there is a latent variable yT∗
i such that

yTi = 1{yT∗
i = xiβ + εi ≥ 0}

where εi is drawn independently from a standard normal distribution and β is the K-by-1

coefficient vector of interest. Extending our results to other binary choice models in which
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εi is drawn from a different distribution is straightforward. If there is no misreporting, a

consistent estimate of the coefficient vector β can be obtained by running a Probit. Using

the observed indicator yi instead of yTi yields ˆ̃β, which is potentially biased. Little is known

about bias due to measurement error in non-linear models (see Carroll et al., 2006). Yatchew

and Griliches (1984, 1985) derive some results on misspecification in Probit models. We use

their results on the effect of omitted variables, heteroskedasticity and misspecification of

the distribution of the error term in the derivation of the bias in section 3.3. The papers

mentioned above that propose estimation strategies that are consistent in the presence of

misreporting show that ignoring the problem leads to inconsistent estimates, but do not dis-

cuss the nature of this inconsistency. Hausman, Abrevaya and Scott-Morton (1998) provide

the relation between marginal effects in the observed data and marginal effects in the true

data if misreporting is not related to the covariates. They assume that the probabilities

of false negatives and false positives conditional on the true response are constants for all

individuals, i.e.

α0i = α0

α1i = α1

∀i (1)

We refer to this kind of misreporting as “conditionally random” or “conditionally uncor-

related”, as conditional on yTi misreporting is unrelated to X. Hausman, Abrevaya and

Scott-Morton (1998) show that under this assumption the marginal effect in the observed

data is proportional to the true marginal effect

∂Pr(y = 1|x)
∂x

= (1− α0 − α1)f(xβ)β (2)

where f() is the derivative of the link function (e.g. the normal cdf in the Probit model and

the identity function in the linear probability model), so that f(xβ)β is the true marginal

effect. The constant of proportionality is the same for all elements of β and is linearly in-

creasing in the two conditional probabilities of misreporting. Given that Hausman, Abrevaya
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and Scott-Morton (1998) assume α0 +α1 < 1, the marginal effects are attenuated: they will

be smaller in absolute value in the observed data than the true marginal effects, but retain

the correct signs.

This result is informative about the differences between the observed and the true stochas-

tic models, but it is a relation between the true parameters that does not necessarily extend

to estimates of these parameters from a misspecified model. If one has consistent estimates

of the probabilities of misreporting, α̂0 and α̂1, and the marginal effect in the observed data,

̂∂Pr(y=1|x)
∂x

, one can calculate (1− α̂0 − α̂1)
−1 ̂∂Pr(y=1|x)

∂x
. Equation (2) suggests that this may

be a consistent estimate of the true marginal effect. However, as discussed further below, if

the true model is a Probit, running a Probit on the observed data only yields a consistent

estimate of the marginal effect in the observed data in special circumstances. Thus, using the

Probit marginal effects from the observed data in (2) usually yields inconsistent estimates

of true marginal effects. However, we argue that the inconsistency can be expected to be

small in many applications. This problem does not arise in the linear probability model,

because a linear probability model on the observed data yields consistent estimates of the

marginal effects in the observed data. Additionally, the relation in (2) extends from marginal

effects to coefficients, because they are equal in the linear probability model. Consequently,

even though (2) is about true parameters and not about bias, it can still be useful to infer

something from estimates that use the observed data.

3.2 Bias In The Linear Probability Model

Measurement error in binary variables is a form of non-classical measurement error (Aigner,

1973; Bollinger, 1996) and the bias in OLS models when the dependent variable is subject to

non-classical measurement error is the coefficient in the (usually infeasible) regression of the

measurement error on the covariates (Bound, Brown and Mathiowetz, 2001). In our case,

the dependent variable is binary, so the measurement error takes on the following simple
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form:

ui = yi − yTi =


−1 if i is a false negative

0 if i reported correctly

1 if i is a false positive

Consequently, the coefficient in a regression of the measurement error on the covariates X

(if it were feasible) would be:

δ̂ = (X ′X)−1X ′u (3)

δ̂ will only be zero if the measurement error is not correlated with X, which is impossible

for binary variables (Aigner, 1973). Equation (3) implies that the coefficient in a regression

of the misreported indicator on X, ˆ̃βLPM , will be

ˆ̃βLPM = β̂LPM + δ̂

Consequently, the bias will be

E( ˆ̃βLPM − βLPM) = E(δ̂) (4)

This implies that an estimate of E(δ̂), δ̂, is sufficient to correct the coefficients in the linear

probability model for misreporting. Such an estimate could be available from a validation

study, but it entails the assumption that misreporting is the same in the sample that was

used to obtain δ̂ and the sample used to estimate β and that the same covariates were used.

However, the measurement error only takes on three values, so the formula for δ̂ simplifies

to

δ̂ = (X ′X)−1X ′u = (X ′X)−1

N∑
i=1

x′
iui

= (X ′X)−1

 ∑
i s.t. yi=1
&yTi =0

x′
i · 1 +

∑
i s.t. yi=yTi

x′
i · 0 +

∑
i s.t. yi=0
&yTi =1

x′
i · (−1)
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= (X ′X)−1(NFP x̄FP −NFN x̄FN)

= N(X ′X)−1

(
NFP

N
x̄FP − NFN

N
x̄FN

)

where x̄FP and x̄FN are the means of X among the false positives and false negatives.

Consequently in expectation1

E(δ̂) = N(X ′X)−1[Pr(y = 1, yT = 0)E(X|y = 1, yT = 0)

− Pr(y = 0, yT = 1)E(X|y = 0, yT = 1)] (5)

That is, the bias in ˆ̃βLPM depends on the difference between the conditional means of X

among false positives and false negatives, where these conditional means are weighted by the

unconditional probability of observing a false negative or positive. Shifting the dependent

variable from 1 to 0 at high values of X decreases the coefficient estimate while shifting

them from 0 to 1 increases it. The opposite effect occurs at low values of X. Shifting

more observations (i.e. increasing one of the probabilities of misreporting) amplifies this

effect. This also illustrates that the bias will only be zero in knife-edge cases in which the

expression in brackets is 0. Neither equal probabilities of misreporting nor independence of

X or conditional independence of X are sufficient for this. Equation (5) only depends on the

probabilities of misreporting and the conditional means of the covariates, so one only needs

these quantities to correct the bias. Even if one does not know them, one may have an idea

about their magnitude from previous studies or theory. In such cases equation (5) can be

used to assess the likely direction and size of the bias. It makes sense that the bias depends

only on conditional means, because the linear probability model is an OLS model, so the

parameters are estimated from the (conditional) means only. Linear regressions are robust

to misspecification of the variance and higher order moments of the error term, which is a

convenient robustness property of the linear probability model that does not extend to the

1This assumes that X is non-stochastic. The extension to the stochastic case is straightforward.
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non-linear models discussed below.

If the conditional probabilities of misreporting are constants as in Hausman, Abrevaya

and Scott-Morton (1998), the results above simplify to

E( ˆ̃βLPM
1..k ) = (1− α0 − α1)β

LPM
1..k (6)

where βLPM
1..k are the slope coefficients2. This confirms that if the true model is a linear

probability model and misreporting is not correlated with X, one can use OLS on the ob-

served data to obtain unbiased estimates of the marginal effects on the observed indicator,

∂Pr(y=1|x)
∂x

. Consequently, in such cases, one can use equation (2) to correct both coefficients

and marginal effects for misreporting if one knows the conditional probabilities of misreport-

ing.

3.3 Bias In the Probit Model

While deriving the bias for the linear probability model only required the modification of

existing results to a special case, such general results do not exist for non-linear models.

We first show that misreporting of the dependent variable is equivalent to a specific form of

omitted variable bias and then use results on the effect of omitting variables to decompose

the bias due to misreporting. The results presented below are for the Probit model, but the

extension to other binary choice models such as the Logit is straightforward.

3.3.1 Transformation Into An Omitted Variable Problem

The true data generating process without misreporting is assumed to be

yTi = 1{xiβ + εi ≥ 0}

2For the intercept: E( ˆ̃βLPM
0 = α0 + (1− α0 − α1)β

LPM
0 . See appendix A for proof.
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so that, with mi the indicator of misreporting, the data generating process for the misre-

ported data is

yi =

{
1{xiβ + εi ≥ 0} if mi = 0

1{xiβ + εi ≤ 0} if mi = 1
⇔

yi =

{
1{xiβ + εi ≥ 0} if mi = 0

1{−xiβ − εi ≥ 0} if mi = 1
(7)

Thus, the true data generating process has the following latent variable representation:

yi∗ =

{
xiβ + εi if mi = 0

−xiβ − εi if mi = 1
⇔

yi∗ = (1−mi)(xiβ + εi) +mi(−xiβ − εi) ⇔

yi∗ = xiβ + εi︸ ︷︷ ︸
Well-Specified Probit Model

−2mixiβ − 2miεi︸ ︷︷ ︸
Omitted Variable

(8)

The first two terms form a well specified Probit, because εi is not affected by misreporting, so

it still is a standard normal variable. This transformation into an omitted variable problem

is helpful for the results below because Yatchew and Griliches (1984, 1985) discuss omitted

variable bias in Probit models. Much of the analysis below follows their arguments applied

to the special case of misreporting.

We can decompose each of the omitted variable terms into its linear projection on X and

deviations from it:

2mixiβ = xiλ+ νi

2miεi = xiγ + ηi

(9)

Substituting this back into the equation (7) gives:

yi∗ = xi (β − λ− γ)︸ ︷︷ ︸
biased coefficient

+ εi − νi − ηi︸ ︷︷ ︸
misspecified error term

⇔

yi∗ = xiβ̃ + ε̃i

(10)
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An immediate implication of (10) is that the observed data do not conform to the assump-

tions of a Probit model unless ε̃i is drawn independently from a normal distribution that is

identical for all i. While ε̃ is uncorrelated with X and has a mean of zero by construction, it

is unlikely that it would have constant variance or be from a normal distribution. If misre-

porting is related to X, there will almost inevitably be heteroskedasticity that is related to

X. If misreporting is related to ε, for example because the probabilities of false positives and

false negatives differ, normality will only remain in special cases. Consequently, running a

Probit on the observed data does not yield consistent estimates of the marginal effects in the

observed data, so that using equation (2) to obtain estimates of the true marginal effects is

inconsistent. However, we argue below that the inconsistency is often small. Alternatively,

one can use a semi-parametric estimator that does not require normality and is consistent

in the presence of heteroskedasticity (e.g. Han, 1987; Horowitz, 1992; Ichimura, 1993)3 to

obtain an estimate of β̃ and the marginal effects in the observed model that could be used

in equation (2).

In summary, equation (10) underlines three violations of the assumptions of the origi-

nal Probit model, so there are three effects of misreporting: First, X picks up the linear

projection of the omitted variable. Second, the variance of the misspecified error term ε̃ is

different from the variance of the true error term ε, causing a rescaling effect. Finally, there

may be additional bias due to the functional form misspecification of the error term. Such

bias may arise from heteroskedasticity or the higher order moments of the distribution of

the misspecified error term being different from those of the normal distribution. We discuss

the bias from these three violations in turns below.

3.3.2 Bias In the Linear Projection

The first component of the bias is the result of X picking up the linear projection of the

omitted terms. Two terms are omitted, so the linear projection has into two parts that are

3These estimators depend on other assumptions, so it needs to be verified that they hold even in the
presence of misreporting.
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analogous to the two bias terms Bound et al. (1994) derive for linear models. The first term

arises from a relation between misreporting and the covariates X. The second part stems

from a relation of misreporting and the error term ε. Equations (9) are linear projections,

so they can be analyzed like regression equations except for the fact that they are only

conditional expectations in special cases. The familiar linear projection formula gives

λ = 2(X ′X)−1X ′SXβ (11)

where S is an N -by-N matrix with indicators for misreporting on the diagonal. Equa-

tion (11) shows that λ can be interpreted as twice the coefficient on X when regressing a

variable that equals the linear index Xβ for misreported observations and 0 for correctly

reported observations on X. Under the usual Probit assumptions, (1/N)X ′X converges to

the uncentered variance-covariance matrix of X. Following the notation in Greene (2003),

we define plim
N→∞

N−1X ′X = Q, which is positive definite. Additionally, we define the proba-

bility limit of the uncentered covariance matrix of X among the misreported observations as

plim
N→∞

N−1
MC(X

′X|M = 1) = QMR. A typical element (r, c) of X ′SX is
∑N

i=1 xrimixci, whereas

a typical element (r, c) of X ′X is
∑N

i=1 xrixci. From the sums in X ′X, S selects only the xi

that belong to misreported observations, so that

plim
N→∞

1

N
X ′SX = plim

N→∞

NMC

N
plim
N→∞

N−1
MC (X ′X|M = 1)

= Pr(M = 1)QMR

i.e. the term converges to the uncentered covariance matrix of X among those that misreport

multiplied by the probability of misreporting. Thus, the probability limit of λ is

plim
N→∞

λ = 2Pr(M = 1)Q−1QMRβ (12)
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Equation (12) shows that the bias from this source cannot be zero for all coefficients if

there is any misreporting (i.e. if Pr(M = 1) ̸= 0). This would require λ to have rank

zero, which is impossible because both right hand side matrices are positive definite. So

in knife-edge cases some elements of λ can be zero, but not all of them. Multiplication by

2Pr(M = 1) creates a tendency for the bias to be towards or across zero, which reduces to the

rescaling effect if misreporting is not related to X. This effect can be amplified or reduced

by Q−1QMR, which introduces an additional (but matrix valued) rescaling factor due to the

relation of misreporting to X. Both matrices are positive definite, so the diagonal elements

are positive, which creates a tendency for λ to have the same sign as β causing the bias to

be towards (or across) zero. However, unless the off-diagonal elements are zero, bias from

other coefficients “spreads” and may reverse this tendency. This is similar to the problem

of classical measurement error in multiple independent variables in linear models. In both

cases, a single coefficient would always be biased towards zero, but as the bias contaminates

other coefficients, some of them can be biased away from zero.

In summary, the magnitude of the bias depends on three things: all else equal, it is large

if the probability of misclassification is large, misclassification comes from a wider range of

X or is more frequent among extreme values of X. The second point follows from the fact

that in such cases the conditional covariance matrix is large relative to the full covariance

matrix. The third effect is due to the covariance matrices being uncentered, so if the mean

of the X among the misclassified observations differs a lot from that in the general sample,

the bias will be larger. This is an intuitive leverage result.

The second component of the bias in the linear projection stems from misreporting being

related to the error term. γ can also be interpreted as twice the regression coefficient on X

when regressing a vector that contains εi for misreporters and zeros for all other observations

on X. Using exactly the same arguments as above yields

plim
N→∞

γ = 2Pr(M = 1)Q−1plim
N→∞

N−1(X ′ε|M = 1) (13)
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While plim
N→∞

N−1X ′ε = 0 by assumption, this does not imply anything about the conditional

covariance between X and the error term, plim
N→∞

N−1(X ′ε|M = 1). On the contrary, it will

almost inevitably be non-zero if the probability of misreporting depends on the true value

yT , i.e. if the models for false positives and false negatives differ. However, X and ε are

independent by assumption, so the conditional covariance and thus plim
N→∞

γ is 0 if both X and

ε are independent of M as well.

3.3.3 Rescaling Bias

The second effect of misclassification is a rescaling effect that always occurs when misspecifi-

cation affects the variance of the error term in Probit models. The coefficients of the Probit

model are only identified up to scale, so one normalizes the variance of the error term to

one, which normalizes the coefficients to β/σε. Consequently, misspecification that affects

the variance of the error term normalizes the coefficients by the wrong factor. In the absence

of the additional bias discussed below (i.e. if ε̃ were iid normal), estimating (10) by a Probit

model gives

plim
N→∞

ˆ̃β =
β̃

SD(ε̃)
=

β − λ− γ

SD(ε− ν − η)
≡ β̄ (14)

One would expect the error components due to misreporting to increase the variance of the

error term, i.e. SD(ε̃) > SD(ε). Cases in which the variance decreases are possible (e.g. if

all observations with ε < 0 are misreported without any relation to X), but seem unlikely,

so the rescaling will usually result in a bias towards zero. The rescaling factor is the same

for all coefficients, so it does not affect their relative magnitudes and significance tests will

still be consistent. While the rescaling bias changes the scale of Xβ, little is lost in terms of

substantive inference, because the scaling factor in the Probit model is just a normalization

that is commonly agreed on. Most semiparametric estimators for binary choice models are

only identified up to scale, so they “solve” the issue of rescaling bias by imposing an arbitrary

normalization.
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3.3.4 Bias Due To Misspecification of the Error Distribution

If ε̃ were iid normal, estimating equation (10) by a Probit model would yield a consistent

estimate of β̄ as given by (14). However, as was discussed above, it is unlikely that ε̃ inherits

normality and homoskedasticity from ε, so that (10) additionally suffers from misspecification

of the error term. This will result in bias in addition to the one given by (14), i.e. one will

not obtain a consistent estimate of β̄ by running a Probit on the observed data. Ruud (1983,

1986) characterizes this bias and discusses special cases in which the bias is proportional for

all coefficients, but closed form solutions for the bias due to misspecification of the error

distribution do not exist. Adapting a formula derived by Yatchew and Griliches (1985) to

our case provides an implied formula for the exact bias. Taking the probability limit of 1/N

times the first order conditions, the parameter estimate is the vector b that solves

K∑
i=1

x′
iϕ(x

′
ib)

Φ(x′
ib)(1− Φ(x′

ib))

[
Fε̃i(−x′

iβ̄)− Φ(−x′
ib)

]
= 0 (15)

whereK is the number of distinct values of x in the sample4, Fε̃i is the cumulative distribution

function of ε̃i/V ar(ε̃), i.e. the misspecified error term normalized to have (unconditional)

variance 1. As the misspecified error term may be heteroskedastic, the cdf may be different

for different individuals. If Fε̃i is a normal cdf with the same variance for all individuals,

b = β̄ solves (15) so that (14) gives the exact bias. The next section discusses conditions

under which one can expect (14) to provide a good approximation to the bias. Note that Fε̃i

and Φ have the same first and second moments by construction. Consequently, (asymptotic)

deviations of the parameter estimates from β̄ only occur due to heteroskedasticity and dif-

ferences in higher order moments of the two distributions (so we refer to this bias component

as the “higher order bias”).

Unfortunately, (15) has no closed form solution and can only be solved numerically for

4So (15) assumes the sample to contain fixed, distinct values of x. The formula can be generalized to
stochastic variables X (that can be continuous or discrete) by letting P = (x1, ..., xK) be a sequence of draws
from the distribution of X and taking the probability limit of (15) as K → ∞ such that P becomes dense in
the support of X.
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specific cases of Fε̃i which is usually unknown. Nonetheless, some insights into the sign and

size of the bias can be inferred from it. Given that it is derived from a Probit likelihood,

which is globally concave, it crosses 0 only once and does so from above. In the absence of

bias due to misspecification, it does so at b = β̄. Therefore, if the left hand side of (15) is

positive at this point, the additional bias will be positive, while the additional bias will be

negative if the left hand side is negative. Note that

ϕ(xib)

Φ(xib)(1− Φ(xib))
> 0 (16)

so the sign only depends on the sign of xi and the sign of the difference between Fε̃i(xiβ̄)

and Φ(xiβ̄). (15) is a weighted average of x′
i

[
Fε̃i(xiβ̄)− Φ(xiβ̄)

]
with the weights given by

(16). Consequently, observations for which sign(xi) = sign(Fε̃i(xiβ̄)−Φ(xiβ̄)) tend to cause

a positive bias in the coefficient on x, while observations with opposing signs tend to cause a

negative bias. The weight function has a minimum at 0 and increases in either direction, so

differences at more extreme values of xb have a larger impact. Larger values of x also tend

to make x′
i

[
Fε̃i(xiβ̄)− Φ(xiβ̄)

]
larger, because x enters it multiplicatively. The overall bias

depends on the weighted average over the sample, so differences at frequent values of x have

a larger impact.

Consequently, one can get an idea of the direction of the bias if one knows how Fε̃i and

Φ differ. If the former is larger in regions where the sample density of x is high, |xb| is high

or |x| is large, the bias will tend to be positive if x is positive in this region and negative if

x is negative in this region. The next section discusses conditions under which one can use

equations (14) and (15) to obtain the exact bias or approximations to it and under which

conditions the higher order bias discussed in this section tends to be small.
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3.3.5 Approximations to the Full Bias

We have shown that the bias in the Probit model depends on four components: two com-

ponents due to the linear projection, a rescaling bias and bias due to misspecification of the

higher order moments of the distribution function. We have derived closed form solutions for

the first three components of the bias. If one can obtain information about the parameters

they depend on, the formulas above can be used to assess the size and direction of these

components or even calculate the exact bias due to the linear projections and rescaling. The

bias due to misspecification of the error distribution is harder to assess. If one has enough

information about Fε̃i to take random draws form it, one can simulate the exact bias or even

obtain an exact solution of (15). In practice, however, such detailed information will rarely

be available. Some information may be available about how the higher order moments or

the derivatives of Fε̃i and Φ differ. In the former case, one can obtain an approximation

to the bias by using a Gram-Charlier expansion, in the latter one could use a Taylor Series

expansion of (15).

In most cases, little information about the misspecification of the error distribution is

available, so it is important to know under which conditions the bias given by equation (14)

is a good approximation to the full bias. Additional bias only arises from heteroskedasticity

and deviations of the third and higher moments from normality. Therefore, β̄− β should be

a good approximation to the asymptotic bias if one does not expect misreporting to induce

severe forms of heteroskedasticity or highly distort the third and higher order moments. One

can formally assess this, because this bias arises only from the functional form assumption

of the Probit, which is testable. This can be done by a test of model misspecification or the

normality assumption in particular (e.g. Hausman, 1978; White, 1982; Newey, 1985), but

this tests whether the assumptions hold and not whether (14) provides a good approximation

to the bias. A more relevant test would be to verify that misreporting is such that one of

the semiparametric estimators mentioned above (e.g. Han, 1987; Horowitz, 1992; Ichimura,

1993) would consistently estimate β̄ from the observed data regardless of the functional form
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of ε̃. Using such a semiparametric estimator removes the bias due to misspecification of the

error term, but not the other bias components. If the semiparametric estimate is similar to

the Probit estimate after imposing the same normalization, one can conclude that the higher

order bias is small and consider (14) a good approximation.

The semiparametric literature has found that relaxing the functional form assumption

rarely makes a substantive difference, so one could expect the misspecification bias to be small

in the case of misreporting as well. In line with this, we find the bias due to misspecification

of the error term to be small in the Monte Carlo simulations in the next section. Small

misspecification bias not only makes the expressions for the bias easier to analyze, but also

justifies the use of the Hausman, Abrevaya and Scott-Morton (1998) result on marginal

effects given by equation (2), which will only be a good approximation if the higher order

bias is small.

3.4 The Bias in Practice

This section uses administrative data matched to two major surveys to illustrate how the

analytic results from the previous section affect estimates in practice. Misreporting is cor-

related with the covariates in the matched data, but we also examine misreporting that is

conditionally random by conducting a Monte Carlo study in which we induce misreporting

in the data using the probabilities of misreporting we observe in our matched sample. This

leaves the remainder of the data unchanged, so it allows us to examine the effect of the

systematic component of misreporting. Finally, we perform a Monte Carlo exercise using

simulated data in order to assess the size of the components of the bias in the Probit model

with correlation in more detail, particularly the conjecture that higher order bias tends to

be small.

We use the data from Meyer, Goerge and Mittag (2013): the 2001 American Community

Survey (ACS) and the 2002-2005 Current Population Survey Annual Social and Economic

Supplement (CPS ASEC) matched to administrative data from Illinois and Maryland on
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food stamp receipt. See Meyer, Goerge and Mittag (2013) for details on the data and the

matching process as well as an analysis of the determinants of misreporting. We estimate

simple Probit and linear probability models of food stamp take-up at the household level

with three covariates: a continuous poverty index (income/poverty line) as well as dummies

if the head of the household is 50 or older and if the household is in Maryland. We restrict

the sample to matched households with income less than 200% of the federal poverty line

and adjust the survey weights for non-random matching as in Meyer, Goerge and Mittag

(2013). Throughout this paper, we treat the administrative food stamp indicator as truth,

even though it may contain errors that were present in the administrative data or errors

due to the imperfect match to the survey data. Given that there should be few mistakes

in the administrative records and the match rate is high, this assumption seems plausible.

Additionally, most of the analysis below does not require this assumption - the survey data

can be considered as a misreported version of the administrative data even if neither of them

represents “truth”.

Table 1: Bias in the Linear Probability Model, ACS

(1) (2) (3) (4) (5)
Bias MC Bias Bias

Matched Survey Study Survey due to
Data Data (random MR) Data correlation

Poverty index -0.0018 -0.0019 -27.94% 5.56% 33.50%
(0.0001) (0.0001)

Age≥50 -0.1166 -0.1046 -28.93% -10.29% 18.64%
(0.0145) (0.0133)

Maryland -0.0034 -0.0217 -10.03% 538.24% 548.26%
(0.0157) (0.0141)

Constant 0.4957 0.4602 -23.45% -7.16% 16.29%
(0.0205) (0.0201)

Note: Sample size: 5945 matched households from IL and MD with income less than 200% of
the federal poverty line. All analyses conducted using household weights adjusted for match
probability. All biases are in % of the coefficient from matched data. In the MC design, the
dependent variable is administrative FS receipt with misreporting induced with the misre-
porting probabilities observed in the actual sample (Pr(FP)=0.02374 and Pr(FN)=0.2596).
500 iterations are performed.
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Table 2: Bias in the Linear Probability Model, CPS

(1) (2) (3) (4) (5)
Bias MC Bias Bias

Matched Survey Study Survey due to
Data Data (random MR) Data correlation

Poverty index -0.0023 -0.0021 -42.18% -8.70% 33.48%
(0.0002) (0.0001)

Age≥50 -0.1264 -0.0985 -41.79% -22.07% 19.72%
(0.0174) (0.0151)

Maryland -0.0937 -0.0706 -42.60% -24.65% 17.95%
(0.0184) (0.0156)

Constant 0.6037 0.4854 -37.05% -19.60% 17.46%
(0.0248) (0.0235)

Note: Sample size: 2791 matched households from IL and MD with income less than 200% of
the federal poverty line. All analyses conducted using household weights adjusted for match
probability. All biases are in % of the coefficient from matched data. In the MC design, the
dependent variable is administrative FS receipt with misreporting induced with the misre-
porting probabilities observed in the actual sample (Pr(FP)=0.03271 and Pr(FN)=0.3907).
500 iterations are performed.

For the linear probability model we have obtained closed form solutions for the bias

that are straightforward to analyze in both the conditionally random and the correlated

case. The results for both cases are presented in table 1 for the ACS and table 2 for the

CPS and conform to the expectations from section 3.2. The results from the Monte Carlo

study in column (3) confirm that if misreporting is conditionally random, all slopes will be

attenuated by the same factor. In both surveys, this factor is close to its expectation given

by equation (2): 1 − α0 − α1. The obvious exception is the coefficient on the Maryland

dummy in the ACS, for which the rescaling factor is clearly different. This is due to the

fact that this coefficient is very imprecisely estimated and basically indistinguishable from 0.

As is evident from column (4), this proportionality does not hold in the actual survey data,

where misreporting is related to the covariates. The bias in the correlated case is smaller for

all coefficients except for the imprecise Maryland dummy in the ACS, indicating that the

biases partly cancel. Since the only difference in the data used for column (3) and (4) of

table 1 and 2 is the correlation between the misreporting and the covariates, the difference
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in the biases is an estimate of the bias induced by correlation. This difference is presented

in column (5) and in our case biases all coefficients away from 0. In both the random and

the correlated case, the bias is always numerically identical to δ̂ as defined by equation(3)

(results not presented).

The results for the Probit models are presented in table 3 for the ACS and in table 4 for the

CPS. Column (3) shows that, as in the linear probability model, coefficients are attenuated

by the same factor if misreporting is conditionally random and the coefficient is reasonably

precisely estimated. The rescaling factor is different from 1 − α0 − α1, because coefficients

and marginal effects are not equal in the Probit model. As was discussed above, due to the

higher order bias in the Probit model, (2) does not hold between Probit estimates, but only

between true parameters. So contrary to the linear probability model, this proportionality

is not necessarily the case and may not generalize to other applications. However, as long as

this bias is small (or proportional), attenuation will be approximately proportional. Column

Table 3: Bias in the Probit Model, ACS

(1) (2) (3) (4) (5)
Bias MC Bias Bias

Matched Survey Study Survey due to
Data Data (random MR) Data correlation

Poverty index -0.0060 -0.0071 -20.51% 18.33% 38.84%
(0.0004) (0.0005)

Age≥50 -0.4062 -0.4167 -22.15% 2.58% 24.74%
(0.0512) (0.0543)

Maryland -0.0187 -0.0978 -9.08% 422.99% 432.07%
(0.0548) (0.0582)

Constant 0.0987 0.0686 -321.02% -30.50% 290.52%
(0.0583) (0.0605)

Note: See note Table 1

(4) underlines that both the proportionality and the attenuation only apply if misreporting

is conditionally random: The biases are different and some of them are positive, indicating

a bias away from zero. The bias in the survey data is again smaller in absolute value than

the bias without correlation. Column (5) confirms that the bias induced by correlation is in
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Table 4: Bias in the Probit Model, CPS

(1) (2) (3) (4) (5)
Bias MC Bias Bias

Matched Survey Study Survey due to
Data Data (random MR) Data correlation

Poverty index -0.0074 -0.0083 -32.47% 12.16% 44.63%
(0.0005) (0.0006)

Age≥50 -0.4297 -0.3992 -32.17% -7.10% 25.07%
(0.0614) (0.0682)

Maryland -0.3338 -0.3189 -33.15% -4.46% 28.69%
(0.0736) (0.0808)

Constant 0.4108 0.1892 -147.65% -53.94% 93.71%
(0.0723) (0.0735)

Note: See note Table 2

the opposite direction of the bias in the conditionally random case, so the two biases partly

cancel. This explains why Meyer, Goerge and Mittag (2013) find that bias in a more detailed

model of program take-up is relatively small given the extent of misreporting in the data.

As should be evident from equation (12) and (13), whether correlation between misreporting

and the covariates reduces or exacerbates the bias depends on the sign of the correlation and

the coefficient.

It is difficult to interpret the bias in the correlated case, because the formulas derived

above for the Probit model offer little insights on the relative magnitude of the components

of the bias. For example, it seems likely that attenuation is more pronounced in the CPS

survey coefficients because the rate of misreporting is higher than in the ACS, but this result

could be altered by differences in the other bias components. The numbers in column (5)

of tables 3 and 4 suggest that these components are similar, but not the same in the two

surveys. In order to obtain more evidence on the determinants and relative sizes of these

components, particularly whether the higher order bias is relevant in size, we perform a

simulation study that allows us to control the factors that cause the bias components.

We generate two covariates, a continuous variable (x1) and a dummy variable (x2). The

continuous variable is drawn from a normal distribution with a mean of 100 and a standard
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deviation of 50, the dummy variable has a mean of 0.5 and is mildly correlated (0.07) with

the continuous variable. These parameters as well as the ones below are chosen to be similar

to the observed data. The dependent variable is generated according to the Probit model

yT = 1{a− 0.007x1 − 0.4x2 + e ≥ 0} where e is drawn from a standard normal distribution.

The intercept a is chosen such that the mean of yT is always 0.25. We generate misreporting

according to m = 1{c + bx1 + eMR ≥ 0} where eMR is another standard normal variable5.

Consequently, the misreporting model is the same for false negatives and false positives. One

reason for this is to keep the results simple and tractable, but it should also be clear from the

formulas above that the bias mainly depends on whether an observation is misreported and

not its true value. We vary c to control the level of misreporting and b to vary its association

with x1. Misreporting is related to x2 only through the correlation between x1 and x2.

We use this MC design to examine three cases. In the first and second case, we increase

the level of misreporting from 0% to 50% holding everythign else constant. In the first case,

b equals 0 so misreporting is not related to x1, while in the second case b is constant at

-0.005 creating a modest correlation. In the third case, we hold the level of misreporting

fixed at 30% and increase b from -0.02 to 0.02, so that the correlation between x1 and m

increases from roughly -0.5 to 0.5. In all cases we take 100 equally spaced grid points over

the parameter space. At each point, we draw 100 samples of 10000 observations and run a

Probit on yT and on the misreported data. We record the bias as the difference between the

two estimated coefficient vectors as well as the bias due to λ̂ as given by equation (12), γ̂ as

given by (13)6 and the rescaling bias implied by (14): (β̂MR−λ−γ)/SD(ε̂− ν̂− η̂)−(β̂MR−

λ̂ − γ̂). We are particularly interested in the higher order bias, in order to assess whether

our conjecture that it will often be small enough to be ignored is warranted. Calculating

this bias analytically requires solving (15) numerically, so we calculate it as the “residual”

bias, i.e. (β̂MR + λ̂+ γ̂) · SD(ε̂− ν̂ − η̂)− β̂.

5So misreporting conforms to the Probit assumptions as well, but the results are virtually identical for
other misreporting models

6Note that by eq. (10) the bias due to λ (γ) is −λ (−γ).
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Figures 1-3 show the bias of the two coefficients in the left panel and the decomposition

of the bias on x1 into the four components in the right panel. The results are as expected

based on the analytic results in the previous section. Our misreporting model generates

misreporting that is independent of ε, so γ is zero as expected. We do not consider cases

in which misreporting depends on the error term, because λ and γ enter the formula for

the bias symmetrically, so the structure of the bias would be similar to the bias caused

by the correlation with x1 (with the role of λ and γ exchanged). The results confirm our

conjecture that the higher order bias tends to be small. They also confirm that coefficients

are attenuated with the correct sign for reasonable levels of misreporting and correlation,

but that this does not have to hold in general.

Figure 1: MC Design 1 - Uncorrelated Misreporting (b=0)
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The left panel of figure 1 shows that in the uncorrelated case, the bias is the same for both

coefficients (in relative terms) and always between 0% and -100%, i.e. both coefficients will

always be attenuated. As one would expect, it increases continuously until both coefficients

are exactly 0 when 50% of all observations are misreported. It also shows that the bias is

not increasing linearly in the sum of the conditional probabilities of misreporting, α0 and

α1, which underlines that equation (2) is a relation between true values and not between

Probit estimates. The bias decomposition in the right panel shows why this is the case:

The bias is mainly due to λ, which is linear and has a slope of -2 as predicted by (12).

Additionally, there is a small rescaling bias that is non-linear in the level of misreporting.
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As misreporting increases, the variance of ε̃ increases, but the absolute value of ˆ̄β decreases.

As can be seen from (14), the former makes the rescaling bias larger, the latter decreases

it again. Overall, the rescaling bias is small relative to the whole bias and the higher order

bias remains negligible for all levels of misreporting, which suggests that corrections based

on equation (2) will not be far off.

Figure 2: MC Design 2 - Correlated Misreporting (b=-0.005)
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The only difference in figure 2 is that the coefficient on x1 in the misreporting model

is held fixed at -0.005, i.e. misreporting is modestly related to x1. It is impossible to hold

both the coefficient and the correlation constant as the level of misreporting increases. We

chose to hold the coefficient fixed, which causes the correlation to decrease from 0 to -0.2

as misreporting increases from 0% to 50%. The main difference to the uncorrelated case

in figure 1 is that the coefficient on the continuous variable is less severely biased. As in

the food stamp data, the bias due to correlation reduces the bias from λ, but is not strong

enough to override it. Consequently, the coefficient is attenuated over the whole range, but

not completely even if misreporting reaches 50%. This finding does not generalize. If one

chooses b such that the (negative) correlation is stronger, the coeffcient can be biased away

from zero, if b is positive, the bias is more severe than in figure 1 so that the coeffcient

can change its sign. The coefficient on the dummy variable is almost unaffected. The bias

decreases by 0-1.5 percentage points, which we would expect given that the correlation is
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positive and low. The bias decomposition is similar to the previous case: the effect is mainly

driven by λ and the higher order bias is small. Contrary to the previous case, the bias due to

λ is not linear, but concave. This is due to the fact that the correlation between x1 and m is

increasing at a decreasing rate, so its effect to reduce the bias increases at a decreasing rate.

The bias due to rescaling looks different, but this difference is mainly due to its denominator

(which is less attenuated and thus bigger in absolute value), the variance of ε̃ is very similar

in the two cases.

Figure 3: MC Design 3 - 30% misreporting, increasing correlation with x1
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In the third case misreporting stays constant at 30%, but we strengthen the correlation

between x1 and m by raising b from -0.02 to 0.02, which makes the correlation increase from

-0.54 to 0.54. The key insight from the results in figure 3 is that most of the regularities we

have stressed can be overturned for extreme cases: With extreme negative correlation, the

bias can be away from zero and for high positive values of the correlation the bias exceeds

-100% so that the coefficient changes sign. The right panel shows that both phenomena

are driven by λ. If the off-diagonal elements in (12) are negative and large relative to the

diagonal elements, some components of λ can become positive and cause a bias away from 0

that is strong enough to override the attenuation bias. While this shows that coefficients do

not necessarily retain their sign and become attenuated, they do so for a range of reasonable

correlations (-0.45 to 0.2) even at a relatively high level of misreporting (30%). As in the

two previous cases, the higher order bias is small and the changes in the rescaling bias are
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mainly driven by the changes in its numerator, the variance of ε̃ only increases from 1.13 to

1.28.

In this section, we have illustrated how the bias components derived above affect coef-

ficients in real data both if misreporting is conditionally random and if it is related to the

covariates. In our application to food stamp take up, the correlation reduces the bias, which

explains why Meyer, Goerge and Mittag (2013) find relatively small bias and shows that

correlation with the covariates is not necessarily bad. We have found that the bias in the

linear probability model and the Probit model without correlation can be assessed by the

analytic formulas, even though this requires some insight into the likely magnitude of the

different components if misreporting is related to the covariates in the Probit model. The

higher order bias tends to be small, which suggests that one will not lose much by focusing

on the more tractable parts of the bias, although one should be cautious in generalizing from

an MC study. Overall, the results underscore the conjectures that the bias due to misspec-

ification of the error term is small, that the sign of coefficients is robust to a wide range of

misreporting mechanisms and that there is a tendency for the coefficients to be attenuated

even though none of these results should be expected to hold in all cases.

4 What Can Be Learned From Biased Coefficients

In many cases, one has only data that are subject to misclassification and is not willing to

make the assumptions required for the estimators in the next section that are consistent in

the presence of misclassification. In such cases, it is important to know what can still be

inferred from the biased coefficients. This section discusses in how far such inference is valid

and examines the conditions under which its conclusions are plausible.

One of the most robust findings is that slope coefficients only change sign if misreporting

is strongly related to the covariates in particular ways: None of the coefficients in any of

our applications changes sign, and it only happens for some extreme cases in the MC study.
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This is an important result if one can rule out such extreme cases, as interest often centers

on the sign of certain coefficients and whether they are significantly different form 0. If the

sign of the coefficient is not affected by the bias, a test whether the biased coefficient is zero

(or has the opposite sign) is a consistent test of the null hypothesis that the true coefficient is

zero (or has the other sign). The biased coefficient is obtained from a misspecified maximum

likelihood model, so this test is less powerful compared to the test on the true coefficient

and one needs to use robust standard errors as described in White (1982).

A related finding is a tendency for estimates of the slope coefficients to be attenuated,

i.e. to lie between 0 and the true coefficient. If this is the case, the biased estimate can

be interpreted as a lower bound on the true coefficient, but one needs to rule out cases in

which the attenuation result does not hold. If misreporting is conditionally random, equation

(6) shows that the coefficients in the linear probability model will always be attenuated if

α0 + α1 < 1. One can derive a similar result for the linear projection bias in the Probit

model, but it could be overturned if there is strong higher order bias away from zero or if the

variance of ε̃ is smaller than that of ε so that the rescaling factor is less than 1. The MC study

suggests that this is unlikely to happen and we indeed find that both the linear probability

and the Probit model produce attenuated slope coefficients in column 3 of tables 1-4. This

result does not extend to correlated misreporting even though our results still suggest a

tendency for attenuation: In the linear probability model, u in equation (3) contains zeros

for correctly reported observations, which tends to make δ̂ smaller in absolute value than

βLPM unless misreporting is sufficiently selective. Column 4 of tables 1 and 2 show that

4 out of 6 slopes are attenuated in our application. In the Probit model, the presence of

2 Pr(M = 1) in (12) and (13) attenuates all coefficients (as long as 2Pr(M = 1) ≤ 1), so

the correlation and the rescaling and higher order bias would have to be severe enough to

overturn this tendency. While this is the case for 4 out of 6 coefficients in tables 3 and 4,

it does not happen as frequently in the MC study. This is due to the fact that the main

determinant is the sign (and extent) of the correlation between M and the covariates, so
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knowing this sign is important to decide whether the coefficients are likely to be attenuated.

The results in tables 1-4, particularly the coefficient on the Maryland dummy in the ACS

also underscore a caveat that affects all analyses in this section: They are only reliable if the

coefficient is precisely estimated. If it is not precisely estimated, the variance and not the

bias will dominate the RMSE so that the coefficient estimate becomes likely to fall outside

the expected range due to sampling variation. This problem is even more prevalent in the

analyses in the remainder of this section since multiplying the estimates exacerbates this

variation.

Table 5: What Can Be Learned From Survey Coefficients, LPM

(1) (2) (3) (4) (5)
Coefficient Ratios Bias Rescaled
(to age coefficient) Marginal Effects

Matched Bias MC Bias in
Data Study Survey MC Study Survey

ACS
Poverty index 0.0154 1.41% 17.67% 0.37% 36.84%
Age≥50 1.0000 0.00% 0.00% -0.85% 39.48%
Maryland 0.0292 12.82% 611.46% 25.95% 39.63%

CPS
Poverty index 0.0182 3.51% 17.17% -0.29% 71.43%
Age≥50 1.0000 0.00% 0.00% 0.97% 73.50%
Maryland 0.7413 5.56% -3.31% -0.44% 73.51%

Note: See note Table 1 and 2

Equation (6) also suggests that inference based on coefficient ratios obtained from the

linear probability model will be valid if misreporting is conditionally random. Coefficient

ratios are informative about the relative magnitude of the coefficients and their sign if the

sign of one coefficient is known. We can see in column 1 of table 5 that coefficient ratios

seem to be biased, but imply the correct ordering and sign of all coefficients nonetheless.

They also suggest that one should not have too much faith in coefficient ratios if one of the

coefficients is imprecisely estimated.

Equation (2) gives a similar result for the marginal effects in the Probit model with
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conditional random misreporting. It extends to coefficient ratios, because ratios of marginal

effects and ratios of coefficients are equal, but it only holds for the true parameters and

marginal effects in the observed data. Marginal effects and coefficients from the Probit

model are biased estimates of the parameters in the observed data due to the additional bias

from misspecification of the error distribution. One can avoid this problem by forming the

ratios of coefficient estimates obtained from a model that relaxes the normality assumption,

which would make them consistent estimates of the parameters and marginal effects in the

observed data. As long as this bias is small relative to the size of the coefficients, however,

inference based on ratios does not seem to be a bad idea as column 2 of table 6 shows.

Neither of these results hold in the correlated case. The results of the MC study show

that unless correlation is the same for all covariates, it affects the estimates differentially,

which can easily lead to large bias in their ratios. Even though the bias in column 3 of

tables 5 and 6 is modest (with the exception of the Maryland dummy in the ACS), we do

not believe that this generalizes, given that it seems to be due to the fact that the overall

bias is small. Inference based on coefficient ratios should be avoided if there is evidence of

correlated misreporting.

Table 6: What Can Be Learned From Survey Coefficients, Probit

(1) (2) (3) (4) (5) (6) (7)
Coefficient Ratios Observed Bias Rescaled
(to age coefficient) Marginal Effects Marginal Effects

Matched Bias MC Bias in Matched Survey MC Survey
Data Study Survey Data Data Study Data

ACS
Poverty index 0.0148 2.19% 15.35% -0.0018 -0.0017 1.39% 38.89%
Age≥50 1.0000 0.00% 0.00% -0.1033 -0.1164 -0.58% 39.50%
Maryland 0.0460 9.40% 409.82% -0.0242 -0.0053 3.66% 39.67%

CPS
Poverty index 0.0172 4.84% 20.73% -0.0019 -0.0021 1.98% 73.68%
Age≥50 1.0000 0.00% 0.00% -0.0902 -0.1214 2.76% 73.50%
Maryland 0.7768 6.32% 2.84% -0.0721 -0.0943 0.95% 73.37%

Note: See note Table 1 and 2
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The same equations suggest that if misreporting is conditionally random and one knows

α0 + α1 or can estimate it, one could estimate βLPM or the marginal effects of the Probit

model by multiplying the estimates from the observed data by (1−α0−α1)
−1. In the linear

probability model, this provides consistent estimates of the coefficients and marginal effects,

while in the Probit model it can only be used to estimate the marginal effects7 and these

estimates will be biased. As above, this could be solved by using a semi-parametric estimator

to consistently estimate the marginal effects in the observed data. The results in tables 5

and 6 show that scaling-up may be a promising strategy if there is no correlation, but that

it fails if there is correlation. As we have seen in section 3.4, the bias due to correlation

partly cancels the attenuation effect in our application, so that the rescaling factor under

the assumption of no correlation induces an upward bias.

If one has sufficient information about the misreporting process, the results in part 3 can

be used to do a sensitivity analysis or assess what kind of misreporting would be required

to overturn the substantive conclusions one draws from the biased estimates. In the linear

probability model, βLPM can be consistently estimated by ˆ̃β − δ̂ if an estimate of δ̂ or the

parameters in (5) is available. This is more difficult in the Probit model, but if one knows,

for example, the signs of plim
N→∞

N−1
MCX

′Sε and plim
N→∞

N−1
MCX

′SX, one may be able to make an

educated guess about the direction of the bias. Sufficient information on the misreporting

process may also justify the use of one of the consistent estimators discussed in the next

section. However, this section has shown that even if little is known about the misreporting

process, one may be able to obtain important information such as signs, significance and

relative magnitudes from the biased estimates.

5 Consistent Estimators

This section introduces estimators for the Probit model that are consistent under different

assumptions and tests their performance. Since the choice of estimator and their performance

7In principle, an estimate of the coefficients could be obtained by solving (2) for β.
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hinges on the structure of the misreporting, we also introduce two tests for its presence and

correlation with the covariates. We focus on the Probit model, because it is the most common

parametric model and other maximum likelihood estimators can be corrected in similar ways.

Some semiparametric estimators that relax the normality assumptions have been proposed

(e.g Hausman, Abrevaya and Scott-Morton, 1998), but misspecification and misclassification

are different problems and we focus on the latter here. Consequently, we only discuss in how

far misreporting and the corrections for it affect the robustness of the estimators to functional

form misspecification. Correcting the linear probability model hinges on the availability of

information on δ̂ and is straightforward if such information is available. Section 3.4 showed

that how well this correction works depends exclusively on the accuracy of the estimate of

δ̂, so we do not examine corrections for the linear probability model.

We use seven different estimators for the Probit model: three are only consistent under

uncorrelated misreporting, one assumes a very simple relation to X and three are consistent

under correlated misreporting. Section 5.1 describes the estimators, which are all variants of

estimators that have been proposed elsewhere, section 5.2 evaluates their performance. We

conclude by presenting two test for the presence and nature of misreporting that are based

on the estimators.

5.1 Theory

All estimators follow from equation (7), which implies the probability distribution of the

observed outcome yi. Using the definitions of α0 and α1, it can be rearranged to yield:

Pr(yi) = [α0i + (1− α0i − α1i)Φ(x
′
iβ)]

yi + [1− α0i − (1− α0i − α1i)Φ(x
′
iβ)]

1−yi

This immediately implies the log-likelihood function of the observed data:

ℓ(α, β) =
N∑
i=1

yiln (α0i + (1− α0i − α1i)Φ(x
′
iβ))+
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(1− yi)ln (1− α0i − (1− α0i − α1i)Φ(x
′
iβ)) (17)

The parameters of this likelihood are not identified, as it includes 2N +K parameters (two

αs for each observation plus the K-by-1 vector β). Hausman, Abrevaya and Scott-Morton

(1998) assume that the αs are constants8 as in (1), which reduces the log-likelihood function

in (17) to

ℓ(α0, α1, β) =
N∑
i=1

yiln (α0 + (1− α0 − α1)Φ(x
′
iβ))+

(1− yi)ln (1− α0 − (1− α0 − α1)Φ(x
′
iβ)) (18)

This likelihood function only includes K + 2 parameters, i.e. the two αs and β. They show

that these parameters are identified due to the non-linearity of the normal cdf as long as

α0 + α1 < 1. The parameters can be consistently estimated by maximum likelihood or non-

linear least squares. We refer to this estimator as the HAS-Probit. Their assumption that the

probabilities of misreporting are constants implies that α0 is the population probability of a

false positive and α1 is the population probability of a false negative. These probabilities or

estimates of them may be known from validation data or other out of sample information. Let

α̃0 and α̃1 denote such estimates. Following Imbens and Lancaster (1994) this information

can be incorporated in the estimation procedure. In our application below, the probabilities

can be considered known, because they are either calculated within sample or known from

data on the whole population. Thus, their approach simplifies to plugging α̃0 and α̃1 into

(18), resulting in the likelihood of our second estimator:

ℓ(β) =
N∑
i=1

yiln (α̃0 + (1− α̃0 − α̃1)Φ(x
′
iβ))+

(1− yi)ln (1− α̃0 − (1− α̃0 − α̃1)Φ(x
′
iβ)) (19)

8This assumption can be weakened to the assumption that they are independent of X.
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Poterba and Summers (1995) take a similar approach to a model of labor market transitions.

If it is unreasonable to assume that α0 and α1 are known, one should use one of the procedures

Imbens and Lancaster (1994) suggest to obtain standard errors, because the usual standard

errors are inconsistent as Hausman, Abrevaya and Scott-Morton (1998) point out. Meyer,

Mok and Sullivan (2009) estimate α̃′
1 by assuming α̃0 = 0 and subtracting the fraction of

people that report receipt of a program from the fraction of people that receive it according

to aggregate numbers. Assuming α̃0 = 0 is a misspecification, but such numbers are often

available, so we also examine the performance of the estimator that maximizes (18) with α0

constrained to 0 and α1 constrained to α̃′
1:

ℓ(β) =
N∑
i=1

yiln ((1− α̃′
1)Φ(x

′
iβ)) + (1− yi)ln (1− (1− α̃′

1)Φ(x
′
iβ)) (20)

All three estimators assume that conditional on truth, misreporting is independent of

the covariates. The unconstrained HAS-Probit estimates α̂0 and α̂1 from the data, while

the other two estimators constrain these parameters based on outside information. The

main benefit of using outside information is the reduction in computational complexity and

more stability in the presence of functional form misspecification, because separating the

probabilities of participation and misreporting no longer depends on the functional form

assumptions alone. They may not increase the efficiency of the estimators, particularly if

the probabilities of misreporting are considered nuisance parameters (Imbens and Lancaster,

1994).

In many cases, the assumption that misreporting is conditionally random does not hold.

Hausman, Abrevaya and Scott-Morton (1998) suggest some ways to relax this assumption,

one of which is to make α0 and α1 functions of the covariates that depend on misreporting

parameters to be estimated. The model remains identified as long as the functional form

assumptions on the misreporting do not result in perfect colinearity with the Probit part of

the model, but this estimator relies heavily on the functional form assumptions that separate
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misreporting and outcome parameters. We implement a simple form of this estimator by

allowing α0 and α1 to take different values based on categorical variables, i.e. we maximize

the following log-likelihood

ℓ(α0, α1, β) =
N∑
i=1

yiln (D0iα0 + (1−D0iα0 −D1iα1)Φ(x
′
iβ))+

(1− yi)ln (1−D0iα0 − (1−D0iα0 −D1iα1)Φ(x
′
iβ)) (21)

D0i and D1i are two (potentially identical) set of dummies by which one wants to allow the

probabilities of misreporting to differ. This makes α0 and α1 vectors with as many entries

as there are columns in the corresponding D. For example, one may expect misreporting to

differ by observable characteristics (such as gender or age group) or features of the survey

(such as imputation status or mode of interview). We refer to this estimator as the cells

estimator because it allows the alphas to vary by cell.

One can allow for more general dependencies if one can obtain consistent estimates of α0i

and α1i from outside information. Such estimates could be obtained by using the parameters

from models of misreporting that use validation data (e.g. Meyer, Goerge and Mittag, 2013;

Marquis and Moore, 1990) to predict α̂0i and α̂1i in the misreported data. As Bollinger and

David (1997) show, these predicted probabilities can be used in the pseudo-likelihood

ℓ(β) =
N∑
i=1

yiln (α̂0i + (1− α̂0i − α̂1i)Φ(x
′
iβ))+

(1− yi)ln (1− α̂0i − (1− α̂0i − α̂1i)Φ(x
′
iβ)) (22)

They show that maximization of this likelihood yields consistent estimates of β. We refer to

this estimator as the predicted probabilities estimator. Bollinger and David (1997) also show

how to correct the standard errors for the estimation error in the parameters used to predict

the probabilities of misreporting. This correction requires the samples used to estimate the

misreporting parameters and β to be independent, which is not the case in our application,
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so we choose to bootstrap the standard errors. Our results confirm their finding that the

correction has a very small effect on the SEs.

The predicted probabilities estimator does not require the researcher to have access to the

validation data used to estimate the probabilities of misreporting, but if both the validation

data and the data used to estimate the outcome model are available, one could estimate

the misreporting model and the outcome model jointly. Assuming that misreporting can be

described by single index models, the two models imply a system of 3 equations:

Pr(yi|yTi = 0, xFP
i ) =

[
F FP (xFP

i γFP )
]yi

+
[
1− F FP (xFP

i γFP )
]1−yi

Pr(yi|yTi = 1, xFN
i ) =

[
F FN(xFN

i γFN)
]yi

+
[
1− F FN(xFN

i γFN)
]1−yi

(23)

Pr(yTi |xi) = Φ(xiβ)
yTi + [1− Φ(xiβ)]

1−yTi

The first equation gives the model for false positives, which depend on covariates XFP

through the parameters γFP and the link function F FP . Similarly, the second equation

gives the model for false negatives and the third equation the model for the true outcome

of interest, which depends on the parameters of interest, β. In the application below, we

assume that the misreporting models are Probit models, i.e. F FP and F FN are standard

normal distributions. This yields a fully specified parametric system of equations that can

be estimated by maximum likelihood. The likelihood function is derived in appendix B and

depends on three components. Which components an observation contributes to depends on

whether it contains
[
yi, y

T
i , x

FP
i , xFN

i

]
,
[
yi, xi, x

FP
i , xFN

i

]
or both. The first only identify the

misreporting models, the second set of observations are the ones that identify the outcome

equation in the predicted probabilities estimator. The third set identifies both the misre-

porting model and the outcome model, so in principle they could be used to estimate the

outcome model directly. One may still want to estimate the full model, either because one is

interested in the misreporting model or because one considers the observations in the third

set to be insufficient to estimate the parameters of interest (e.g. for reasons of efficiency or
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sample selection). Such cases often arise if a subset of the observations has been validated,

so that there are no observations in the first set: The validated observations allow estimation

of the true outcome model and the misreporting model while those that were not validated

only identify the observed outcome model. We examine an estimator for this setting that

we refer to as the joint estimator with common observations. In other cases, like those

discussed by Bollinger and David (1997, 2001), observations that identify the true outcome

model by themselves are not available, so we also consider an estimator in which the third

set of observations is empty: Some observations identify the misreporting model and others

the observed outcome model, but none identify both. Consequently, this estimator has to

rely on less information than the previous estimator. We refer to it as the joint estimator

without common observations.

In summary, we compare seven estimators for the Probit model. They differ in the way

they allow for dependence of misreporting on the covariates, as well as in the data and

assumptions they require. The first three estimators are variants of the HAS-Probit and

do not allow for any dependence between misreporting and the covariates. The HAS-Probit

requires the conditional probabilities of misreporting to sum to less than one, but uses survey

data only. Fixing the conditional probabilities of misreporting relaxes the assumption on the

sum of the alphas and may improve robustness, but incorporates some information besides

the survey data. This may lead to inconsistencies if this information is wrong. Fixing only

one of the conditional probabilities and assuming that the other one is zero makes such

outside information easier to obtain at the risk of inconsistencies due to using inaccurate

outside information.

The cells estimator allows some dependence between the probabilities of misreporting

by letting them vary by group. Compared to the last three estimators, this dependence is

constrained to a simple form, but the cells estimator can be estimated from survey data

alone. The last three estimators can accommodate any form of dependence between the

probabilities of misreporting and the covariates, but make a parametric assumption on it.
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The joint estimator with common observations has the most stringent data requirements,

which limits the cases in which using it is be desirable and feasible, but is expected to yield the

most efficient results. The predicted probabilities estimator and the joint estimator without

common observations have similar data requirements. The predicted probabilities estimator

only requires the coefficients from the misreporting model, while the joint estimator requires

the actual data to be available.

5.2 Performance

This section discusses the performance of the estimators that we introduced above. We apply

them to the matched survey data used in part 3.4 and also examine their performance if

misreporting is conditionally random by inducing false positives and false negatives at the

rate actually observed in the real data. We run 500 iterations of this MC exercise and record

the average bias and RMSE. For the Predicted Probabilities estimator, we obtain estimates

of the probabilities of misreporting (the first stage) from the same sample that we use for

the outcome model (the second stage). The joint estimators assume access to two different

samples, so we split the sample in halves randomly and use each half as one of the two

samples required for the joint estimators. This implies that comparing the joint estimators

to other estimators in terms of efficiency is not straightforward because the samples used are

different.

With the exception of the estimator that fixes α0 at 0, all estimators are consistent in this

setting if the Probit assumption holds in the administrative data. However, we find that the

HAS-Probit performs poorly in two ways: First, the estimates of α0 and α1 are substantively

biased and second, it tends to be numerically instable. Since the main identification of α̂0

and α̂1 in the HAS-Probit comes from the functional form assumption on the error term,

the first problem is probably due to a violation of this assumption. We did not have any

convergence problems when using simulated data that fulfills this assumption, so we believe
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that the convergence problems stem from the same source9. Given that this makes the

results from the MC study difficult to interpret (how large the bias is mainly depends on

which iterations one considers unreasonable), we do not present them. We conclude that one

needs to carefully assess convergence when using the HAS-Probit (which is feasible in any

given case, but not for 500 iterations) and that the HAS-Probit is sensitive to the functional

form assumption, so that it should only be used if one has a lot of faith in it.

The results in table 7 show that both problems can be greatly improved if one has

estimates of α0 and α1 from other sources and can fix α̂0 and α̂1 at these values. Columns

3 and 6 use the “true” probabilities of misreporting which results in bias that is very close

to 0 (with the exception of the imprecise Maryland coefficient in the ACS). This reinforces

our belief that the main problem with the HAS-Probit is its dependence on the functional

form assumption to identify α̂0 and α̂1. If the probabilities of misreporting are poorly

estimated, the estimates of the slopes can be severely biased, due to the fact that misreporting

is not completely taken care of (or overcompensated). Knowing these probabilities from

outside information fixes this fragility, but leaves a small bias due to misspecification of

the error distribution. The fact that biased estimates of the probabilities of misreporting

affect the slope coefficients just like the residual misreporting would is underlined by the

results in columns 2 and 5. They show that choosing α0 and α1 to be lower than the true

probabilities leads to a partial correction: the estimates are between the estimates from

the survey and the matched data. Alternatively, one could resort to the semiparametric

estimator Hausman, Abrevaya and Scott-Morton (1998) propose to fix this problem, but

it rests on assumptions that may not hold in our data either and we are concerned with

misreporting in parametric models, so evaluating semiparametric methods is beyond the

scope of this paper. In the absence of good estimates of α0 and α1 one should test whether

the estimates from the parametric and the semiparametric estimator are identical. With the

9Convergence problems are to some extent always due to the implementation of the estimator, so a better
program may fix this issue, but the program we used performed satisfactory in all other cases and in most
iterations of the MC study, so we do not think this is an artifact of our implementation.
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exception of the estimator that fixes α0 at 0, all estimators are consistent in this setting if

the Probit assumption holds in the administrative data. However, we find that the HAS-

Probit performs poorly in two ways: First, the estimates of α0 and α1 are substantively

biased and second, it tends to be numerically instable. Since the main identification of α̂0

and α̂1 in the HAS-Probit comes from the functional form assumption on the error term,

the first problem is probably due to a violation of this assumption. We did not have any

convergence problems when using simulated data that fulfill this assumption, so we believe

that the convergence problems stem from the same source10. Given that this makes the

results from the MC study difficult to interpret (how large the bias is mainly depends on

which iterations one considers unreasonable), we do not present them. We conclude that

one needs to carefully assess convergence when using the HAS-Probit (which is feasible in

any given case, but not for 500 iterations) and that the HAS-Probit seems to be sensitive

to the functional form assumption, so that it should only be used if one has a lot of faith

in it. The results in table 7 show that both problems can be greatly improved if one has

estimates of α0 and α1 from other sources and can fix α̂0 and α̂1 at these values. Columns 3

and 6 use the “true” probabilities of misreporting which results in bias that is very close to

0 (with the exception of the imprecise Maryland coefficient in the ACS). This reinforces our

belief that the main problem with the HAS-Probit is its dependence on the functional form

assumption to identify α̂0 and α̂1. If the probabilities of misreporting are poorly estimated,

the estimates of the slopes can be severely biased, due to the fact that misreporting is not

completely taken care of (or overcompensated). Knowing these probabilities from outside

information fixes this fragility, but leaves a small bias due to misspecification of the error

distribution. The fact that biased estimates of the probabilities of misreporting affects the

slope coefficients just like the residual misreporting would is underlined by the results in

column 2 and 5. They show that choosing α0 and α1 to be lower than the true probabilities

10Convergence problems are to some extent always due to the implementation of the estimator, so a better
program may fix this issue, but the program we used performed satisfactory in all other cases and in most
iterations of the MC study, so we do not think this is an artifact of our implementation.
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leads to a partial correction: the estimates are between the estimates from the survey and

the matched data. Alternatively, one could resort to the semiparametric estimator Hausman,

Abrevaya and Scott-Morton (1998) propose to fix this problem, but it rests on assumptions

that may not hold in our data either and we are concerned with misreporting in parametric

models, so evaluating semiparametric methods is beyond the scope of this paper. In the

absence of good estimates of α0 and α1 one should test whether the estimates from the

parametric and the semiparametric estimator are identical.

Table 7: Comparing Estimators - Conditional Random Misreporting

(1) (2) (3) (4) (5) (6)
ACS CPS

Matched α̃0 = 0 α̃0 = .024 Matched α̃0 = 0 α̃0 = .033
Data α̃1 = .19 α̃1 = .26 Data α̃1 = .29 α̃1 = .39

Poverty index -0.0060 -11.12% 1.34% -0.0074 -18.43% 3.30%
Age≥50 -0.4062 -14.45% -2.30% -0.4297 -20.20% 0.00%
Maryland -0.0187 15.22% 13.20% -0.3338 -24.90% 5.84%
Constant 0.0987 -87.58% 10.63% 0.4108 -47.69% 7.22%

Note: Sample sizes: 5945 (ACS), 2791 (CPS) matched households, based on 500 iterations. See
notes Table 1 and 2 for further details on the samples and MC design. The conditional probabilities
of misreporting in column 3 and 6 are based on the actual probabilities, column 2 and 5 use the
(expected) net under count as the probability of false negatives.

Results from the estimators that remain consistent under correlated misreporting in the

same MC setup are as expected, so we do not present them. The cell estimator suffers from

the same problems as the HAS-Probit. The Predicted Probabilities estimator does not do

too well, which stresses the fact that one should avoid variables that mainly introduce noise

in the first stage. The two joint estimators do well, particularly the joint estimator with

common observations, but a small bias remains which may be due to the violation of the

functional form assumption.

In conclusion, this suggests that if misreporting is conditionally random, estimators that

are able to account for misreporting can greatly improve the estimates. However, unless

one has great faith in normality of the error term or uses a semiparametric procedure, it

is important to have external estimates of the probabilities of misreporting, because their
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estimates tend to be fragile, which can lead to bias in the coefficients and convergence

problems.

The fact that it is feasible to estimate the parameters of the true model if misreporting

is conditionally random makes it attractive to assume that this is the case. This assumption

clearly fails in our data, so one should be concerned with the performance of the estimators

when this assumption is violated. We find that all estimators that are consistent only under

conditionally random misreporting fare poorly if there is misreporting. In both surveys, all

estimators suffer from larger bias than the naive estimators, which one may have expected

given the finding that the biases partly cancel for the survey estimates: if one (partly) corrects

for one bias, the overall bias is likely to increase. In situations in which the biases go in the

same direction, such a partial correction may be beneficial, but our results emphasizes that

assuming conditional random misreporting can cut both ways. It greatly improves estimation

if it is valid and may yield improvements if the bias due to correlation is towards zero, but

can easily make the estimates worse than ignoring the problem if it does not hold. Therefore,

one should be cautious with this assumption and test it if possible. This can be done by

the tests in section 5.3 or, if they are feasible, by running one of the estimators that are

consistent if the assumption fails and testing whether the coefficients are the same.

The simplest way to relax the assumption that misreporting is conditionally random is

to allow it to be different within cells defined by dummy variables, but conditionally random

within each cell as suggested by Hausman, Abrevaya and Scott-Morton (1998). A problem

of this approach is that is cannot accommodate continuous variables that are related to

misreporting such as the poverty index in our application. Consequently, we find that the

cells estimator that implements this idea performs poorly. It performs well in simulations in

which the misreporting model conforms to its identifying assumptions, which again suggests

that a good model is better than ignoring the problem, but a bad model can easily be worse

than ignoring the problem.

Tables 8 and 9 present the results from the estimators that are consistent if misreporting
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Table 8: Comparing Estimators - Correlated Misreporting, ACS

(1) (2) (3) (4) (5)
Survey Matched Pred. JE 1: no JE 2:
Data Data Prob. common common

Poverty index -0.0071 -0.0060 -0.0059 -0.0076 -0.0063
(0.0005) (0.0004) (0.0006) (0.0013) (0.0005)

Age≥50 -0.4167 -0.4062 -0.3950 -0.5086 -0.3660
(0.0543) (0.0512) (0.0530) (0.1229) (0.0615)

Maryland -0.0978 -0.0187 0.0050 0.1322 -0.0366
(0.0582) (0.0548) (0.0574) (0.1387) (0.0662)

Constant 0.0686 0.0987 0.1199 0.3088 0.1568
(0.0605) (0.0583) (0.0721) (0.1489) (0.0701)

Weighted Distance 15.672 0 0.694 6.774 0.779
Precision 230.824 272.011 220.563 66.650 209.915

Note: Sample size 5945 matched households. The first stage model for (3)-(5) includes
age≥50, a MD dummy, the poverty index and its square. The model for false negatives
also includes a cubic term. SEs for (3) are bootstrapped to account for the estimated
first stage parameters. All analyses conducted using household weights adjusted for
match probability.

is related to the covariates: The predicted probabilities estimator from Bollinger and David

(1997) and the two joint estimators. The last two rows contain two measures to evaluate their

overall performance compared to the estimates from the survey and matched data. The row

labeled “Weighted Distance” gives the average distance to the coefficients from the matched

data weighted by the inverse of the variance matrix of the estimates from matched data. We

only use the variance matrix from the matched data11 in order to have a distance metric

that abstracts from differences in efficiency. We cannot reject the hypothesis that the slopes

are equal to the administrative data for any of the estimators in column 3-5. The number in

the last row is the F-Statistic of the coefficients from the matched data using the variance

matrix of the estimator in that column. This can be interpreted as a measure of efficiency

with higher values being better. We use the coefficient from the matched data rather than

the estimates in each column in order to avoid confounding efficiency with estimates that are

larger in absolute value. The values from the joint estimators are not directly comparable

11Consequently, this is not a test of equality, but can be read as the χ2 statistic of a test that the
coefficients from matched data are equal to the values in that column.
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to the other estimators, since the sample definitions differ. Both statistics have drawbacks

and should only be interpreted as “rule-of-thumb” measures.

Table 9: Comparing Estimators - Correlated Misreporting, CPS

(1) (2) (3) (4) (5)
Survey Matched Pred. JE 1: no JE 2:
Data Data Prob. common common

Poverty index -0.0083 -0.0074 -0.0070 -0.0044 -0.0070
(0.0006) (0.0005) (0.0007) (0.0028) (0.0008)

Age≥50 -0.3992 -0.4297 -0.4109 -0.3368 -0.3693
(0.0682) (0.0614) (0.0616) (0.1775) (0.0777)

Maryland -0.3189 -0.3338 -0.3733 -0.4076 -0.3347
(0.0808) (0.0736) (0.0819) (0.1958) (0.0931)

Constant 0.1892 0.4108 0.3688 0.1741 0.3454
(0.0735) (0.0723) (0.0836) (0.2462) (0.0998)

Weighted Distance 27.197 0 0.318 13.110 0.481
Precision 148.198 189.154 153.357 37.682 131.888

Note: Sample size 2791 matched households. The first stage model for (3)-(5) includes
age≥50, a MD dummy and the poverty index. SEs for (3) are bootstrapped to ac-
count for the estimated first stage parameters. All analyses conducted using household
weights adjusted for match probability.

The results show that all three estimators work well. The joint estimator without common

observations is less efficient than the joint estimator with common observations, but we

cannot reject the hypothesis that it is unbiased. It is closer to the matched data than the

naive survey coefficients in both datasets, but its lack of precision suggests that it is only

an attractive option in large datasets if the joint estimator with common observations is not

feasible. Both the predicted probabilities estimator and the joint estimator with common

observations work extremely well. The predicted probabilities estimator works a little better

in our applications, but at least in terms of efficiency, we have stacked the deck in its favor

given that we had to split the sample for the joint estimator. One would expect the joint

estimator to be more efficient when the same data are used, as it is the maximum likelihood

estimator. Its main drawback is that it requires observations that identify the entire outcome

model. Such observations are rarely available and when they are available a good case can

be made for using only those observations in a regular Probit model. On the other hand,
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the predicted probabilities estimator only requires a consistent estimate of the parameters

of the misreporting model, which can often be obtained from other studies, as in Bollinger

and David (1997) and does not require the linked data to be available.

An important concern for these estimators besides bias and efficiency is their robust-

ness to misspecification. One will usually not be able to assess whether one has actually

improved things by using a correction for misreporting. If there is no validation data, one

can see whether estimates change, but usually not know whether they change for better or

for worse. The results from applying the estimators that are only consistent if misreport-

ing is conditionally random when this assumption fails indicate that the latter is certainly

possible. Thus, it is important to know how robust the corrections are, i.e. how likely it

is that their results are far off due to some minor misspecification. Informal evidence from

using subsamples (such as one of the two states) to identify the misreporting model suggest

that neither of the estimators is particularly sensitive to minor misspecification, but the

joint estimator with common observations is more robust than the predicted probabilities

estimator. In the MC study where misreporting is conditionally random, both joint estima-

tors fared a lot better than the predicted probabilities estimator, which suggests that the

predicted probabilities estimator is sensitive to the inclusion of irrelevant variables in the

first stage. One can often avoid such misspecification by doing rigorous specification tests

on the misreporting model, which consequently is more important when using the predicted

probabilities estimator. Joint specification tests of the misreporting and the outcome model

can be constructed by testing whether the bias that is implied by the misreporting model

and the bias formulas in section 3 is equal to the difference between the coefficients from the

naive and the corrected model. It is often simple to conduct such tests by simulation as in

Bernal, Mittag and Qureshi (2012).

Overall, the main conclusions from our comparison of estimators are that one should

not assume no correlation if one does not have convincing arguments for it. If feasible, one

should use the joint estimator with common observations but if it is not feasible the predicted
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probabilities estimator is an attractive alternative. As the main downside of the predicted

probabilities estimator is its greater sensitivity to the misreporting model, its specification

should be tested. If possible, one could additionally estimate the joint estimator without

common observations to see whether the two are consistent as a robustness check.

Many of the questions posed above are related to the value of additional information: the

HAS-Probit only depends on survey data, but improves when incorporating external infor-

mation on the conditional probabilities of misreporting. More information on misreporting

allows relaxing the assumption that it is conditionally random, which is important in order

to avoid the potentially large bias from falsely assuming it. Finally, the comparison of the

predicted probabilities estimator and the two joint estimators is informative about the value

of having the data from which the misreporting model is estimated instead of the estimated

parameters and the value of observations that directly identify the outcome model. The key

advantage of additional information in our application is that it greatly improved the robust-

ness of the estimates to misspecification, but provided smaller advantages if the model was

correctly specified. Thus, incorporating additional information appears to be more valuable

in cases where the assumptions of the model are not certain or untestable. As the estimator

that fixes α0 at 0 shows, such information may improve estimates even if it is slightly inac-

curate. Put the other way around, this means that a valid model can be a good substitute

for good data. However, several of our results show that a bad model of misreporting can

make things worse than ignoring the problem altogether.

The value of information becomes very concrete when considering validation studies: The

results above show that the information obtained from validation studies can improve survey

based estimates a lot, but validation studies are costly. This raises the question how much

one loses from correcting estimates based on validation data from previous years, a subset

of the population or even a different survey. Nothing is lost if the misreporting models

are the same in the two datasets, but if they are slightly different the loss depends on the

robustness discussed above. We examine this issue by estimating the misreporting model on
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several subsets of our data and using it to correct outcome models based on other, disjoint

subsets: We correct estimates of food stamp take-up in the ACS using the misreporting we

observe in the CPS and vice versa to see how extrapolating from a different survey works.

For the ACS, we also use the households from IL as the validation sample and see how well

it corrects food stamp take up in MD to examine whether one could still correct estimates if

validation data are only available for some states. The misreporting models are statistically

different, but qualitatively similar in all cases, so one may be tempted to use them even

though estimates will not be unbiased. The results are consistent with our previous findings:

The joint estimator with common observations performs best both in terms of bias and

efficiency. The joint estimator without common observations still suffers from a lack of

precision. The predicted probabilities estimator does well, but contrary to the previous case

it does worse than the joint estimator with common observations. The advantage of the joint

estimator with common observations seems to increase with the degree of misspecification

in the misreporting model. All estimators do better than the naive survey estimates, so

if similar data have been validated or parameter estimates from similar data are available,

using them to correct the survey coefficients may be worth trying.

5.3 Tests for Misclassification

It should be evident from the evaluation of the estimators above that an important part

of correcting misreporting is to choose an appropriate estimator. Survey estimates can be

severely biased if misreporting is ignored, but the corrections can make things worse if invalid

simplifying assumptions are made, so it is important to know whether there is misreporting

in the data and whether it is related to the covariates. This section introduces two tests for

the presence of misreporting: one for the presence of misreporting based on the HAS-Probit

and a second one based on additional information that can also be used to test whether

misreporting is correlated with the covariates.

The first test uses the fact that the likelihood function of the HAS-Probit is an uncon-
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strained version of the regular Probit likelihood, which restricts α0 and α1 to 0. If there is

no misreporting, the HAS-Probit will still be consistent and the probability limit of both

alphas is zero. Thus, a standard test (e.g. an LR- or χ2-Test) that α̂0 and α̂1 are jointly

zero is a consistent test of the hypothesis that there is no misreporting. If misreporting is

conditionally random, the model is correctly specified, so the test has positive power and

can be conducted using the usual variance estimator. To use it as a test against misreport-

ing in the general case that allows misreporting to be related to X, one needs to use the

variance estimator for misspecified maximum likelihood models proposed by White (1982).

While the test remains consistent in the general case, it does not always have positive power.

Consequently, if the test rejects the hypothesis that there is no misreporting, it is always

valid evidence of misreporting (or a misspecified model), but in rather special conditions, the

probability limit of the αs can be 0 despite misreporting. One should check these conditions

before concluding that there is no misreporting from the fact that the estimates of the alphas

are not different from zero.

A second test can be conducted if the data contain cells formed by observables for which

Pr(y = 1) is known. The most likely case is that one knows that it is 0 or 1 for some

cells (e.g. the probability of receiving food stamps is 0 for high income families), which

makes the test very simple: If there are observations in any of these cells for which the

value of yi has probability 0, one can reject the hypothesis that there is no misreporting in

the data. The extension to the case where it is known that Pr(y = 1) = pc in cell c for

c = 1, ..., C is straightforward. Let P = (p1, ..., pc) be the vector of known cell probabilities

and P̂ = (p̂1, ..., p̂C) be the vector of observed cell probabilities where p̂c =
∑

i∈c yi/nc

and nc is the number of observations in cell c. Under the null hypothesis that there is

no misreporting, P̂ is a consistent estimator for P , so a test whether P̂ = P is a test for

misreporting. This test can easily be implemented by regressing the observations for which

the cell probabilities are known on cell dummies and performing any of the standard tests

(e.g. an F-test) that the coefficients on the cell dummies are equal to P . The test can be
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extended to a test of the hypothesis that misreporting is conditionally random, because P ,

α0 and α1 imply a vector of observed probabilities P (α0, α1) = α0 + (1− α0 − α1)P . A test

against known probabilities of misreporting can be conducted by using P (α0, α1) instead of

P in the test described above. A general test whether any constant conditional probabilities

are consistent with the observed data can be done by minimizing the p-value of the test

with respect to (α0, α1). The simplest way to do this is to compute the minimum distance

estimator of (α0, α1) based on the cells with known probabilities, i.e.

(α̂MD
0 , α̂MD

1 ) = argmin
α0,α1

C∑
c=1

[p̂c − (α0 + (1− α0 − α1)pc)]
2

and test whether P̂ = P (α̂MD
0 , α̂MD

1 ). If the cell probabilities are known to be 0 or 1, the

test reduces to a test whether the means of yi are equal for all cells with Pr(y = 1) = 0 and

for all cells with Pr(y = 1) = 1.

An advantage of the second test is that its implementation is simple and it is easy to

determine the alternative hypotheses against which it has no power. It also extends easily

to a test whether misreporting is conditionally random. While the HAS-Probit can be used

to test this (either via a specification test such as the score or information matrix test or

by running it on different subsamples and testing whether the αs are equal), it is easier and

more intuitive with the second test. On the other hand, the test based on the HAS-Probit

does not require external information, so it is always feasible and does not depend on the

validity of that information. Further, the second test only uses information about certain

cells, so it really only tests for the presence of misreporting in these cells, which means that

it probably has lower power. If both tests are possible, they can be combined to exploit the

advantages of both.
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6 Conclusion

We have derived analytic results for the bias due to misclassification in the linear probability

and the Probit model and have shown that it can be substantial and that our results are useful

to assess the bias in common applications. We have lined out conditions under which certain

features of the true parameters are robust to misclassification, so that some inference can still

be based on the biased coefficients without any additional assumptions or information. Some

of the estimators that take misclassification into account have been found to perform well,

but which ones work well depends on the nature of the misclassification, so we have proposed

two tests for the presence of misclassification and whether it is related to the covariates. The

evaluation of the estimators suggests that the true parameters can be estimated from noisy

data if the misclassification model is well-specified. The estimators are not too sensitive to

small misspecifications, but may perform worse than the naive model if key assumptions

such as independence of the covariates are erroneously made. Additional information on the

nature of the misclassification process not only helps to avoid invalid assumptions, but can

also help to increase the robustness of the estimators by placing additional restrictions on

the model.

The last points underline the importance of future research on the extent and charac-

teristics of misclassification in economic data. Knowing more about misclassification in the

data would allow us to make better use of the formulas above to assess the bias in the naive

coefficients and would enable us to analyze whether the conclusions we draw from them are

affected by misclassification. We have found some regularities such as that signs tend to be

unaffected and coefficients attenuated that do not necessarily hold in general. Further knowl-

edge about misclassification in the data may confirm these regularities and thereby increase

our confidence in inference from contaminated data. Information about misclassification can

also make one of the estimators that are consistent in the presence of misreporting feasible

or justify the restrictive assumptions that allow the use of one of the simpler estimators.
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Appendix A: Proof of Equation 6

Equation (6) gives the expectation of the coefficients in the linear probability model when

the conditional probabilities of misreporting are constants as in Hausman, Abrevaya and

Scott-Morton (1998), i.e. when

Pr(yi = 1|yTi = 0) = α0i = α0

Pr(yi = 0|yTi = 1) = α1i = α1

∀i

By the assumptions of the linear probability model Pr(yTi = 1|X) = xβLPM and Pr(yTi =

0|X) = 1 − xβLPM , so that the probability mass function of the measurement error, U ,

conditional on X is

Pr(U = ui|X = xi) =


Pr(yi = 1|yTi = 0) · Pr(yTi = 0|X) = α0(1− xiβ

LPM) if ui = 1

1− α0 + (α0 − α1)xiβ
LPM if ui = 0

Pr(yi = 0|yTi = 1) · Pr(yTi = 1|X) = α1xiβ
LPM if ui = −1

where the probability for ui = 0 follows immediately from the fact that the probabilities

have to sum to 1. Consequently, the conditional expectation of the measurement error is

E(ui|X = xi) = 1 · [α0(1− xiβ
LPM)] + 0 · [1− α0 + (α0 − α1)xiβ

LPM ]− 1 · [α1xiβ
LPM ]

= α0 − (α0 + α1)xiβ
LPM

Assuming that X is non-stochastic12, this implies that the bias, E(δ̂), is

E(δ̂) = E(X ′X)−1(X ′u)

= (X ′X)−1E(X ′u)

= (X ′X)−1
∑
i

xiE(ui|xi)

12The extension to stochastic X follows from the law of iterated expectation.
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= (X ′X)−1
∑
i

xi(α0 − (α0 + α1)xiβ
LPM)

= (X ′X)−1
∑
i

xiα0 − (α0 + α1)(X
′X)−1

∑
i

xixiβ
LPM

= (X ′X)−1X ′α0 − (α0 + α1)(X
′X)−1(X ′X)βLPM

= (α0, 0, . . . , 0)
′ − (α0 + α1)β

LPM

The first term is the coefficient vector from a regression of a constant, α0, on X, so the

intercept will be equal to α0 and all other coefficients will be zero. The expectation of the

biased coefficient vector is E( ˆ̃βLPM) = βLPM + E(δ̂). Consequently, the expectation of the

(biased) intercept is

E( ˆ̃βLPM
0 ) = α0 + (1− α0 − α1)β

LPM
0

and the expectation of the (biased) slope parameters is

E( ˆ̃βLPM
1...k ) = (1− α0 − α1)β

LPM
1...k
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Appendix B: Likelihood of the Joint Estimator

As discussed in section 5.1, the sample used for estimation can be divided into three disjoint

subsamples. The first subsample, S1 contains observations that are in the validation data, but

not in the data used to identify the outcome model and thus contains (yi, y
T
i , x

FP
i , xFN

i ). This

sample identifies the parameters of the misreporting equations, but not the outcome equation.

The second subsample, S2, contains all observations that have been validated and include

all variables in the outcome model, so that it contains (yi, y
T
i , xi, x

FP
i , xFN

i ). This sample

identifies all parameters. The third subsample, S3, contains the observations used to estimate

the outcome model that have not been validated. Thus, it contains (yi, xi, x
FP
i , xFN

i ), which

by itself identifies none of the parameters. Frequently, one of the first two samples will

be empty. For the joint estimator with common observations, S1 is empty; For the joint

estimator with common observations, S2 is empty as in Bollinger and David (1997).

Since the subsamples are disjoint and independent, the log-likelihood of the entire sample

is the sum of the three log-likelihoods of the subsamples:

ℓ(y, yT , x, xFP , xFN ; β, γFP , γFN) =
∑
iϵS1

ℓS1
i (yi, y

T
i , x

FP
i , xFN

i ; γFP , γFN)+

∑
iϵS2

ℓS2
i (yi, y

T
i , xi, x

FP
i , xFN

i ; β, γFP , γFN)+ (24)

∑
iϵS3

ℓS3
i (yi, xi, x

FP
i , xFN

i ; β, γFP , γFN)

Equation (23) and the assumption that the error terms in all three equations are indepen-

dent draws from standard normal distributions imply the following (conditional) probabilities

Pr(yi|yTi = 0, xFP
i ) =

[
Φ(xFP

i γFP )
]yi

+
[
1− Φ(xFP

i γFP )
]1−yi

Pr(yi|yTi = 1, xFN
i ) =

[
Φ(xFN

i γFN)
]yi

+
[
1− Φ(xFN

i γFN)
]1−yi

(25)

Pr(yTi |xi) = Φ(xiβ)
yTi + [1− Φ(xiβ)]

1−yTi
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The first probability is the likelihood contribution of an observation in S1 with yTi = 0,

while the second probability is the liklihood contribution of an observation in S1 with yTi = 1.

Consequently, the likelihood contribution of an observation from S1 is

ℓS1
i (yi, y

T
i , x

FP
i , xFN

i ; γFP , γFN) =(1− yTi )[yi lnΦ(x
FP
i γFP ) + (1− yi) lnΦ(−xFP

i γFP )]+

yTi [(1− yi) lnΦ(x
FN
i γFN) + yi lnΦ(−xFN

i γFN)]

This is the sum of the likelihoods of probit models for false positives and false negatives.

The likelihood contribution of an observation in sample S2 is the probability of the

observed combination of yi and yTi , which is

Pr(yi, y
T
i |xi, x

FP
i , xFN

i ) =

{
Pr(yi|yTi = 0, xFP

i ) Pr(yTi = 0|xi) if yTi = 0

Pr(yi|yTi = 1, xFN
i ) Pr(yTi = 1|xi) if yTi = 1

Using the probabilities from (25) yields the likelihood contribution of an observation from

sample S2:

ℓS2
i (yi, y

T
i , x, x

FP
i , xFN

i ; β, γFP , γFN) =

(1− yTi ) ln
(
[yiΦ(x

FP
i γFP ) + (1− yi)Φ(−xFP

i γFP )]Φ(−xiβ)
)
+

yTi ln
(
[(1− yi)Φ(x

FN
i γFN) + yiΦ(−xFN

i γFN)]Φ(xiβ)
)

Equation (25) defines the probabilities of false positives as α0i = Φ(xFP
i γFP ) and of false

negatives as α1i = Φ(xFN
i γFN). Using these probabilities of misreporting in equation (17)

yields the contribution of an observation from S3:

ℓS3
i (yi, xi, x

FP
i , xFN

i ; β, γFP , γFN) =

yi ln[Φ(x
FP
i γFP ) + (1− Φ(xFP

i γFP )− Φ(xFN
i γFN))Φ(xiβ)]+

(1− yi) ln[1− Φ(xFP
i γFP )− (1− Φ(xFP

i γFP )− Φ(xFN
i γFN))Φ(xiβ)]

Using the three likelihood contributions ℓS1
i , ℓS2

i and ℓS3
i in equation (24) and maximizing
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it with respect to (β, γFP , γFN) yields consistent estimates of the three parameter vectors by

the standard arguments for the consistency of maximum likelihood. Standard errors of all

parameters can be obtained as usual. The joint estimator with common observations used

above assumes that S1 is empty, so the log-likelihood reduces to

ℓJE1(y, yT , x, xFP , xFN ; β, γFP , γFN) =∑
iϵS2

[
(1− yTi ) ln

(
[yiΦ(x

FP
i γFP ) + (1− yi)Φ(−xFP

i γFP )]Φ(−xiβ)
)
+

yTi ln
(
[(1− yi)Φ(x

FN
i γFN) + yiΦ(−xFN

i γFN)]Φ(xiβ)
) ]

+∑
iϵS3

[
yi ln[Φ(x

FP
i γFP ) + (1− Φ(xFP

i γFP )− Φ(xFN
i γFN))Φ(xiβ)]+

(1− yi) ln[1− Φ(xFP
i γFP )− (1− Φ(xFP

i γFP )− Φ(xFN
i γFN))Φ(xiβ)]

]
The second joint estimator we use above, the joint estimator without common observa-

tions, assumes that S2 is empty, so the log-likelihood reduces to

ℓJE2(y, yT , x, xFP , xFN ; β, γFP , γFN) =∑
iϵS1

[
(1− yTi )[yi lnΦ(x

FP
i γFP ) + (1− yi) lnΦ(−xFP

i γFP )]+

yTi [(1− yi) lnΦ(x
FN
i γFN) + yi lnΦ(−xFN

i γFN)]
]
+∑

iϵS3

[
yi ln[Φ(x

FP
i γFP ) + (1− Φ(xFP

i γFP )− Φ(xFN
i γFN))Φ(xiβ)]+

(1− yi) ln[1− Φ(xFP
i γFP )− (1− Φ(xFP

i γFP )− Φ(xFN
i γFN))Φ(xiβ)]

]
Note that the likelihood contribution of S2 can be re-written as the sum of the likeli-

hood contribution if the observation were in sample S1 and the likelihood contribution to a

standard probit likelihood:

ℓS2
i (yi, y

T
i , x, x

FP
i , xFN

i ; β, γFP , γFN) =ℓS1
i (yi, y

T
i , x

FP
i , xFN

i ; γFP , γFN)+

yTi lnΦ(xiβ) + (1− yTi ) lnΦ(−xiβ)
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This can be used to re-write the log-likelihood function as

ℓ(y, yT , x, xFP , xFN ; β, γFP , γFN) =
∑

iϵS1∪S2

ℓS1
i (yi, y

T
i , x

FP
i , xFN

i ; γFP , γFN)+

∑
iϵS2

ℓPi (y
T
i , xi; β) +

∑
iϵS3

ℓS3
i (yi, xi, x

FP
i , xFN

i ; β, γFP , γFN)

where ℓP is the log-likelihood function of a standard probit model. This shows more clearly

which observations contribute to the identification of the parameters. In particular, it shows

the value of observations in S2, because in addition to the likelihood contribution of an obser-

vation in S1, they add a term that directly identifies the parameters of the outcome model,

β. It also shows that observations in S3 contribute to the identification of the parameters of

false positives and false negatives even though these observations only contain information

on the observed dependent variable.
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