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Abstract 
 

The popular belief is that environmental regulation must reduce employment, since such 
regulations are expected to increase production costs, which would raise prices and thus reduce 
demand for output, at least in a competitive market. Although this effect might seem obvious, a 
careful microeconomic analysis shows that it is not guaranteed. Even if environmental regulation 
reduces output in the regulated industry, abating pollution could require additional labor (e.g. to 
monitor the abatement capital and meet EPA reporting requirements). It is also possible for 
pollution abatement technologies to be labor enhancing. In this paper we analyze how a 
particular EPA regulation, the so-called “Cluster Rule” (CR) imposed on the pulp and paper 
industry in 2001, affected employment in that sector. Using establishment level data from the 
Census of Manufacturers and Annual Survey of Manufacturers at the U.S. Census Bureau from 
1992-2007 we find evidence of small employment declines (on the order of 3%-7%), which are 
sometimes statistically significant, at a subset of the plants covered by the CR. 
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1. INTRODUCTION 
 

Prior to 1970 environmental regulation was done principally by state and local agencies – 

for the most part with little enforcement activity.  After the establishment of the Environmental 

Protection Agency (EPA) in the early 1970s, and the passage of the Clean Air and Clean Water 

Acts, the federal government took over the primary role in regulating environmental quality, 

imposing much stricter regulations with correspondingly stricter enforcement.  Since the 

establishment of EPA the federal government has continually required U.S. manufacturing plants 

to further reduce their emission levels. Even though the stringency of environmental regulation 

has continually increased, U.S. manufacturing plants have only faced a moderate increase in their 

level of spending on pollution abatement – pollution abatement costs increased from roughly 0.3 

percent of total manufacturing shipments in 1973 to only 0.4 percent in 2005.  On the other hand, 

certain highly polluting, highly regulated industries face higher abatement costs – pulp and 

paper, steel, and oil refining each spend approximately 1% of their shipments to comply with 

environmental regulations in 2005 (PACE 20051).  

Although pollution abatement expenditures are a very small fraction of the manufacturing 

sectors’ operating costs (even for the most highly regulated industries) the popular belief is that 

environmental regulation must reduce employment. The standard explanation for this effect is 

that such regulations increase production costs, which would raise prices and reduce demand for 

output, thus reducing employment (at least in a competitive market). Stricter regulations may 

encourage plants to adopt more efficient production technologies that are capital-intensive and 

thus reduce employment. Although this effect might seem obvious, a careful microeconomic 

analysis shows that it is not guaranteed. Even if environmental regulation reduces output in the 

                     
1 “Pollution Abatement Costs and Expenditures: 2005” (MA200-2005) U.S. Dept of Commerce, Bureau 
of the Census, April 2008. 
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regulated industry, abating pollution could require additional labor (e.g. to monitor the abatement 

capital and meet EPA reporting requirements). It is also possible for pollution abatement 

technologies to be labor enhancing [see Berman and Bui (2001a) and Morgenstern et al (2002)]. 

Given current high unemployment rates, it is natural for policy-makers to be concerned that new, 

more stringent environmental regulations will lead to job loss, and hence important to test 

whether these concerns are well-founded.  

In this paper we analyze how a particular EPA regulation, the so-called “Cluster Rule” 

(CR) imposed on the pulp and paper industry in 2001, affected employment in that sector. The 

CR was the first integrated, multi-media regulation imposed on a single industry. The goal of the 

CR was to reduce the pulp and paper industry’s toxic releases into the air and water, driven in 

part by concerns about trace amounts of dioxin being formed at mills that used chlorine 

bleaching in combination with the kraft chemical pulping technology. The stringency of the CR 

varied across plants, with larger air polluters subject to MACT (maximum achievable control 

technology) technology standards, and chemical pulping mills subject to BAT (best available 

technology) technology standards for their water pollution discharges. By promulgating both air 

and water regulations at the same time EPA made it possible for pulp and paper mills to select 

the best combination of pollution prevention and control technologies, with the hope of reducing 

the regulatory burden. By imposing different requirements on plants within the same industry, 

the CR allows us to identify the size of that regulatory burden, specifically the impact (if any) 

that the CR had on employment at the affected plants. 

Much of the existing literature relies on variations in environmental regulation across 

geographical areas or across industries to identify its effect on employment.  In contrast, we are 

the first to use establishment level panel data within a single industry to rigorously examine the 
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net employment effects of a specific regulation, the CR, on the directly regulated sector.2 By 

identifying which plants are subject to the CR and when, we can construct accurate control 

groups, which allows us to estimate the effect of regulation on employment with more precision 

using difference-in-differences models. Second, the existing literature tends to measure the 

stringency of environmental regulation either with broad measures of all environmental 

regulations (e.g. total pollution abatement costs) or with measures targeting a single 

environmental medium (e.g. county non-attainment with specific National Ambient Air Quality 

Standards ). In contrast, the CR is a uniquely multi-media regulation, whose employment effects 

may have important implications for future policy-making.  

  Using establishment level data from the Census of Manufacturers and Annual Survey of 

Manufacturers at the U.S. Census Bureau from 1992-2007, we find some evidence of small 

employment declines (on the order of 3%-7%) associated with the adoption of the CR, which are 

sometimes statistically significant.  These declines are concentrated in plants covered by the 

BAT water pollution standards; employment effects at plants covered by only the MACT air 

rules are more often positive than negative, though generally insignificant. 

 Section 2 provides background information on pollution from the pulp and paper industry 

and a brief history of the Cluster Rule.  Section 3 reviews the relevant literature. Section 4 

outlines a theoretical framework of the impact of regulation on employment. Section 5 discusses 

the data and empirical methodology.  Section 6 presents the results, followed by concluding 

                     
2 Environmental regulations may also produce jobs in other industries outside the directly regulated 
sector, e.g. in the environmental protection. Thus to calculate the net employment effect of any regulation 
for the entire economy requires estimating both the job gains as well as the job losses, if any, due to the 
imposition of that regulation. This exercise is beyond the scope of this paper, but we expect that in a full-
employment economy that the number of jobs created by new pollution abatement spending would 
approximately equal the number of jobs lost in the regulated sector as resources are reallocated towards 
the environmental protection sector. 
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comments in section 7. 

 

2.  REGULATING THE PULP AND PAPER INDUSTRY 

 Over the past 40 years the U.S. manufacturing sector has faced increasingly stringent 

environmental regulations with stricter enforcement and monitoring.  The increasing stringency 

of environmental regulation has caused traditional ‘smokestack’ industries, like the pulp and 

paper industry, to devote more resources to pollution abatement. However, even though the pulp 

and paper industry is one of the most highly regulated industries, due to the inherent polluting 

nature of the production process, and spends a relatively large amount of resources on pollution 

abatement, it has historically spent less than 2% of its overall costs on pollution abatement.  

 The entire pulp and paper industry faces substantial levels of environmental regulation, 

however, plants in this industry are differentially affected by regulation, depending in part on 

their technology (pulp and integrated mills vs. non-integrated mills3), age, location, and the level 

of regulatory effort directed at the plant.  Previous research, including Gray and Shadbegian 

(2003), has found that the main factor determining the extent of the regulatory impact on a plant 

is whether or not the plant contains a pulping facility, since the pulping process (separating the 

fibers need to make paper from raw wood) is much more pollution intensive than the paper-

making process.4  Furthermore, different pulping processes generate different types of pollution: 

mechanical pulping is more energy intensive, producing air pollution from a power boiler, while 

chemical pulping could produce water pollution from spent chemicals, at least some of them 

potentially toxic.  Moreover, to produce white paper the pulp must be bleached.  The Kraft 

                     
3  Integrated mills produce their own pulp and non-integrated mills purchase pulp or use recycled 
wastepaper.  
4 The two main environmental concerns during paper-making stage are air pollution if the mill has its own 
power plant and the residual water pollution generated during the drying process. 
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chemical pulping process initially considered to be relatively low-polluting in terms of 

conventional air and water pollution turned out to have other environmental concerns. In 

particular, when combined with elemental chlorine bleaching, the Kraft pulping process creates 

chloroform, furan, and trace amounts of dioxin (all potential carcinogens), raising concerns over 

toxic releases that contributed, at least indirectly, to the promulgation of the Cluster Rule.  

A flood in Times Beach, Missouri (located near St. Louis) helped raise public awareness 

regarding the concerns about toxic pollutants in general, and in particular dioxin.  On December 

5th, 1982 the Meramec River flooded Times Beach, contaminating nearly the entire town with 

dioxin that had been deposited by spraying to alleviate dust in the early 1970’s. The Center for 

Disease Control declared that the town was uninhabitable and in 1983 the US EPA bought Times 

Beach and relocated its residents, reinforcing the public perception of the dangers of dioxin.  

As a result of the Times Beach incident two powerful environmental groups, the 

Environmental Defense Fund and the National Wildlife Federation, sued the EPA for not 

sufficiently protecting the U.S. public from the risks caused by dioxin. EPA, as part of a 1988 

settlement with the environmental groups, agreed to investigate the health risks of dioxin and to 

set regulations to reduce dioxin emissions. Ten years later, EPA implemented regulations that 

included dioxin reductions, as part of the Cluster Rule. 

The Cluster Rule 

EPA initially proposed the Cluster Rule on December 17, 1993.  This was the agency’s 

first integrated, multi-media regulation, designed to protect human health by decreasing toxic 

releases by pulp and paper mill’s into both the air and water.  By simultaneously promulgating 

both air and water regulations the EPA allowed pulp and paper mills to address multiple 

regulatory requirements simultaneously, attempting to diminish the overall regulatory burden on 
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the mills. During the public comment period, many submissions were received from industry 

representatives, governmental entities, environmental groups, and private citizens. Industry 

comments asserted that EPA had underestimated the compliance costs of the proposed standards 

and raised the possibility of substantial negative impacts on the industry ($20 billion in 

compliance costs; 21,800 lost jobs). In response to these comments and additional data supplied 

by pulp and paper industry representatives, EPA made significant changes to the proposed rule, 

reducing control requirements for certain categories of plants and providing greater flexibility to 

plants in choosing control options. 

The final version of the rule was promulgated in 1998.  To address toxic air pollutants, 

EPA established maximum achievable control technology (MACT) standards (referred to as 

MACT I & III) for the pulp and paper industry that required mills to abate toxic air pollutant 

emissions that occurred during the pulping and bleaching stages of the manufacturing process.5 

The MACT I rule regulates mills that chemically pulp wood using kraft, semi-chemical, sulfite, 

or soda processes, while MACT III regulates mills that mechanically pulp wood, or pulp 

secondary fiber or non-wood fibers, or produce paper or paperboard.  The MACT air regulations 

were expected to achieve substantial reductions in hazardous air pollutants (reduced by 59%), 

sulfur (47%), volatile organic compounds (49%) and particulate matter (37%).  

To address water pollution EPA also established Best Available Technology 

Economically Achievable (BAT) effluent limits for toxic water pollutants created during the 

bleaching process. The BAT standards were based on substituting chlorine dioxide for chlorine 

in the bleaching process (i.e., using elemental chlorine-free bleaching [ECF]) or using totally 

                     
5Technology based standard to limit hazardous air pollutants, set without regard to cost.  
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chlorine-free (TCF) bleaching.6  The BAT water regulations were expected to achieve a 96% 

reduction in dioxin and furan, and a 99% reduction in chloroform.  

 

3. LITERATURE REVIEW: ENVIRONMENTAL REGULATION    

The question of the impact of environmental regulation on U.S. manufacturing is not a new 

one. There is an extensive literature on the costs of complying with EPA regulations. Among the 

studies using plant-level data, many have examined the effect of EPA regulations on productivity 

[see Färe, Grosskopf and  Pasurka (1986), Boyd and McClelland (1999), Berman and Bui 

(2001b), and Shadbegian and Gray (2005, 2006)]. Other studies have examined how regulations 

affected investment [see Gray and Shadbegian (1998)] and environmental performance [see 

Magat and Viscusi (1990), Laplante and Rilstone (1996), and Shadbegian and Gray (2003, 

2006)]. However, only a limited of studies have examined the impact of environmental 

regulations on employment [see Berman and Bui (2001a), Greenstone (2002), Morgenstern, 

Pizer and Shih (2002), Cole and Elliott (2007), Walker (2011), and Gray and Shadbegian 

(2013)]. Given the high unemployment rate during the current economic crisis, and the 

government’s continued efforts to reduce unemployment, policy-makers, industry, and the public 

are concerned that stringent environmental regulations may reduce employment and thus 

exacerbate the unemployment problem. 

 Berman and Bui (2001a) compiled a unique plant-level data set to estimate the impact of 

air pollution regulations on labor demand in the Los Angeles, CA area – South Coast Air Quality 

Management District (SCAQMD).  The data set they constructed contains detailed information 

on all the changes in environmental regulation including adoption date, compliance date, date of 

                     
6 Technology based standard to limit conventional and toxic discharges into water, which takes cost into 
consideration. 
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increase in stringency, and the regulated pollutant for all the affected manufacturing plants in the 

SCAQMD.  In their study Berman and Bui found that new air quality regulations introduced 

between 1979 and 1992 did not in fact reduce the demand for labor in Los Angeles, but may have 

actually increased it by a small amount. 

  Morgenstern, Pizer and Shih (2002) estimate a model (1979-1991) for four highly 

polluting/regulated industries (pulp and paper, plastic, petroleum refining, and steel) to examine 

the effect of higher abatement costs from regulation on employment.  They conclude that 

increased abatement expenditures generally do not cause a statistically significant change in 

employment.  

 Cole and Elliot (2007) estimate a similar model to Berman and Bui (2001a) with a panel 

data set on 27 industries (1999-2003) from the United Kingdom. Cole and Elliot treat their 

measures of the stringency of regulation – pollution abatement operating costs as a percentage of 

gross value-added and pollution abatement capital expenditures as a percentage of total capital 

expenditures – both exogenously and endogenously and find, like Berman and Bui, that 

environmental regulations have no statistically significant effect on employment.  

 Gray and Shadbegian (2013), like Cole and Elliot (2007), use a similar model to Berman 

and Bui (2001a) with industry level data to analyze the impact of environmental regulation on 

employment in U.S. manufacturing (1973-1994). However, Gray and Shadbegian (2013) also 

examine whether or not differences in regulatory pressure across industries and over time affects 

how industry employment responds to regulatory pressure. They find that more stringent 

regulations (measured by pollution abatement operating costs relative to output) have a 

statistically significant yet quantitatively negligible effect on employment in most cases, with a 

somewhat larger effect in highly regulated industries. Gray and Shadbegian (2013) also find, as 
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expected, that regulation has a smaller impact in employment in industries in which demand is 

growing faster.  However, they unexpectedly find that employment is more sensitive to 

regulatory pressure in industries with less competition and that the sensitivity of employment to 

regulation is not significantly affected by an industry’s level of import competition. 

 Greenstone (2002), using a difference-in-differences model, examines the effect of 

county nonattainment status for the criteria pollutants –  particulate matter, sulfur dioxide, ozone 

and carbon monoxide – on employment.7 Polluting plants in non-attainment areas face stricter 

regulations than similar plants in attainment areas, thereby potentially raising their production 

costs and lowering economic activity. Greenstone combines county attainment status information 

with facility-level data from Census of Manufacturers (1972–1987) finds that nonattainment 

counties (relative to attainment ones) lost roughly 590,000 jobs. Walker (2011) also finds 

statistically significant employment losses  in non-attainment counties (relative to counties in 

attainment), with employment falling by about 15% at plants in newly designated non-attainment 

areas due to  new Clean Air Act regulations in the 1990s. 

 In sum, most past studies using plant-level data have found small or positive impacts of 

stricter environmental regulation on labor demand, with the exception of Greenstone (2002) and 

Walker (2011), who find more substantial reductions, looking at county non-attainment status.  

However, this does not mean that there is less overall employment due to more stringent 

environmental regulation, it simply suggests that the relative growth rate of employment in some 

sectors differs between attainment and non-attainment areas. Now we turn to our own analysis of 

employment impacts of the CR. 

 

4. THEORETICAL FRAMEWORK  
                     
7 Greenstone also examines the effect of county non-attainment status on capital stock and output. 
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Popular wisdom holds that environmental regulation must reduce employment, because 

such regulation raises the cost of production, thereby decreasing output. Nevertheless, standard 

neoclassical microeconomic analysis demonstrates that this is not necessarily true. Even though it is 

indeed possible for environmental regulation to result in less production, it is also possible that 

pollution abatement technologies are labor enhancing. Therefore, we adopt a model derived by 

Berman and Bui (2001a) that allows environmental regulation to affect labor demand via two 

channels: the output elasticity of labor demand and the marginal rate of technical substitution 

between labor demand and pollution abatement activity. The model developed by Berman and Bui 

(2001a) was based on the partial static equilibrium model (PSEM) of Brown and Christensen 

(1981). The key component of Brown and Christensen’s PSEM is that it allows the levels of 

some “quasi-fixed” factors (e.g. pollution abatement investment) to be set by exogenous 

constraints (e.g. environmental regulation), instead of purely by cost minimization.8 In our case, 

we regard pollution abatement capital and operating costs, as well as environmental regulatory 

variables as “quasi-fixed.” We treat all other “productive” factors as variable. 

Assume that a perfectly competitive polluting plant minimizes costs by choosing levels of 

the M variable inputs and Q “quasi-fixed” inputs. We can write the variable cost function as 

follows:9 

 

where Y is output, Pm are the prices of the variable factors, and Zn are the levels of the “quasi-fixed” 

inputs. Using Shephard’s lemma produces the following set of variable input factor demands as a 

                     
8 This approach permits us to model the plant’s behavior with a variable cost function which is minimized 
with respect to a subset of input factors conditional on both output and the levels of the “quasi-fixed” 
factors. 
9 Our notation is largely adopted from Berman and Bui (2001a). 

),....,1,,....,1,( Zn ZPmPYFCV 
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function of output, prices, and the level of the “quasi-fixed” inputs: 

 

The direct effect of regulation on Li is  

 

The first term in equation (3) indicates the effect of regulation on labor demand through its effect 

on output. The “output” effect of environmental regulation is typically assumed to be negative, 

however Berman and Bui (2001a) note that neoclassical microeconomic theory provides no 

definitive sign. For example, if plants comply with regulations by investing in abatement capital 

that decreases marginal costs, dY/dR can be positive. The second term indicates the effect 

regulation has on labor demand through its effect on the demand for quasi-fixed abatement 

activities, Z, and the marginal rates of technical substitution between pollution abatement 

activities and labor. The change in demand for pollution abatement activity caused by more 

stringent regulation, dZ/dR, must be positive. The βk coefficients cannot be signed a priori, since 

they depend on whether labor and pollution abatement activity are substitutes or complements. 

This is the key reason why the sign of μ, the overall employment effect of regulation, cannot be 

predicted from theory alone. Finally, if input factor markets are competitive and the regulated 

industry makes up only a small portion of those markets, any change in regulatory stringency for 

the industry will not affect the price of its inputs, thus the final term in equation (3) will drop out. 

 Citing data limitations, Berman and Bui (2001a) estimated the impact air pollution 

regulations have on labor demand in the SCAQMD between 1979 and 1992 with the following 

reduced-form version of equation (3): 
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Following Berman and Bui (2001a) we estimate a similar version of equation (4), augmented 

with several plant characteristics as well as county and state level variables described below.10  

 

5.  DATA AND EMPIRICAL METHODOLOGY  

We seek to estimate the causal effect of the CR on employment in the pulp and paper 

industry. However, plants covered by the CR may be systematically different from plants not 

covered by the rule, biasing a simple comparison of covered and non-covered plants. We adopt a 

difference-in-differences (DiD) estimator to help control for any systematic differences between 

covered and non-covered plants and any other potentially confounding factors that changed 

around the time of the promulgation of the CR.   

One potential concern with a DiD analysis is the possibility that the treatment and control 

groups are experiencing different trends which can be misinterpreted as a different impact of the 

treatment when both groups are compared with their pre-treatment values.  Figures 1-3 address 

this issue, showing the trends for total employment, production workers, and production worker 

hours for all three groups of plants: BAT plants, MACT-only plants, and the control group.  

Looking at the pre-promulgation period, we see relatively stable employment for all three 

groups – if anything, there seems to be a bit of a decline in the treated groups relative to the 

control group in the earlier period, which might lead the DiD analysis to overstate employment 

reductions in the treatment groups. 

To implement our DiD estimator we use establishment level data from the Census of 
                     
10  Cole and Elliot (2007) and Gray and Shadbegian (2013) estimate a similar model using industry level 
data.  

RL  )4(
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Manufacturers and Annual Survey of Manufacturers at the U.S. Census Bureau from 1992-2007. 

These datasets are linked together using the Longitudinal Business Database, as described in 

Jarmin and Miranda (2002).  Our Census data include three measures of employment:  total 

employment, number of production workers, and production worker hours. The data also include 

the total value of shipments from the plant, materials inputs (including energy usage), and new 

capital investment. We combine the Census data with data from the Lockwood Directory for 

various years, identifying whether or not the plant includes a pulping process and the plant’s age.   

As mentioned above, the stringency of the CR varied across plants. Out of 490 pulp and 

paper mills that EPA originally estimated would be subject to the new CR MACT regulations 

only 155 mills had to comply with the Air Toxics (MACT) regulations.11  Furthermore, of the 

155 plants that were covered by the MACT regulations 96 of them chemically pulp wood so they 

also needed to comply with the Water Toxics (BAT) standards. The remaining 335 mills did not 

need to comply with either the MACT or BAT requirements of the CR. Plants needed to comply 

with the MACT regulations by April 2001, while those covered by the BAT regulations had to 

comply as soon as their water pollution discharge National Pollutant Discharge Elimination 

System (NPDES) permit was renewed.  Given that most water NPDES permits last for five 

years, the effective BAT compliance dates were spread over 1998-2002.  Thus we have a set of 

regulations affecting multiple pollution media, with different stringency levels across plants.  

This allows us multiple dimensions along which to test the impact of the Cluster Rule. 

We examine whether changes in employment at plants that had to comply with the CR 

before and after it became effective are similar to changes in employment at plants that did not 

have to comply with the CR. Factors other than the CR also affect employment levels.  The 

                     
11 EPA also separately tightened up its rules regarding hazardous air pollutants from pulp and paper mills, 
including those not subject to the CR, but those rules are not as stringent as the CR. 
 



 16  

demand conditions in the pulp and paper industry may fluctuate over time, along with the prices 

of inputs, supply of materials, and production technology, all leading to changes in employment 

levels. The plants in the control group need to satisfy two conditions. First, these plants should 

not be affected by the CR, which we ensure by using EPA lists of the affected plants. Second, 

these plants should otherwise be very similar to the treatment group. Because plants in the 

control group were in the same industry, producing similar products to the treatment group, we 

expect the two groups be reasonably similar in the factors affecting their employment other than 

the CR, satisfying the second condition. We limit the control group to those plants which include 

some kind of pulping process, to avoid the less-comparable plants which use recycled paper or 

purchase market pulp.  Thus the DiD approach allows us to control for any time-invariant 

unobserved heterogeneity as well as any changes over time that affect both groups similarly.  

 

Model Specification 

To obtain a raw DiD effect of the CR on plants’ employment, we can estimate the 

following baseline model: 

(5) lnEMPpt = 0 + 1 MACTp + 2 BATp + 3 MACTp*CR_YEARpt +  4BATp*CR_YEARpt + δt + ηs +upt 

 

where p indexes plants and t indexes years and ηs is a vector of state dummy variables.  The 

dependent variable lnEMP is the log of one of our employment measures; MACT is a dummy 

indicating plants that must comply with the MACT regulations of the Cluster Rule; BAT is a 

dummy indicating plants that must comply with the BAT regulations of the Cluster Rule (a 

proper subset of the MACT plants); and CR_YEAR is a dummy variable indicating when a plant 

must begin to comply with the requirements of with the Cluster Rule. Thus MACTp*CR_YEARpt 
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and BATp*CR_YEARpt capture the change in employment at the CR-covered plants, relative to 

non-covered plants, during the post-cluster rule years. The coefficients β3 and β4 thus measure 

the DiD effect of the CR on employment.  While β3 measures the CR effect on the MACT plants 

relative to the control group, β4 measures the differential effect on the BAT plants relative to the 

MACT plants, so (β3+β4) measures the CR effect on the BAT plants relative to the control group. 

We use several alternative measures of employment at the plant level. First, we examine 

TE, the total employment at the plant, which includes both production and non-production 

workers. Although this measure has been the primary focus for researchers and policy-makers, 

we might expect the impact of a regulation on employment to differ between the two groups.  

Rules involving paperwork and procedural compliance might require additional non-production 

workers to deal with those changes, while increases in production costs that reduced demand for 

the firm’s product might have a greater impact on production worker employment. Thus, we also 

considered a second employment measure - PW, the number of production workers. By 

comparing the results for TE and PW, we could test for evidence of differential effects across 

labor types.  Finally, plants may express a change in production labor demand through changing 

the hours worked instead of the number of workers. Thus we also examine a third employment 

measure - PH, the production worker hours per year. 

In defining the “post-CR” period, we consider both the announcement and effective dates 

of the rule. The CR was announced at the end of 1997. Covered plants had to comply with 

MACT regulations before April 2001, while the compliance date of BAT regulations varied over 

several years, depending on when plants renewed their water discharge permit. Although we 

have information on the compliance dates of each plant, we suspect that they may not be the 

appropriate basis to define the post-CR period. It takes time for plants to adjust, which was why 
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the compliance date of the CR was set for years after it was announced. We expect that, as soon 

as the rule was announced, plants started planning for the adjustment, including adoption of new 

technology and possibly adjusting their employment levels. If the CR had an impact on 

employment, the change could occur before 2001, once the announcement was made.  

Supporting this concern, Gray and Shadbegian (2008) found that reductions in pollution 

emissions from pulp and paper mills began before the Cluster Rule’s 2001 compliance date. 

Based on these earlier results, we consider two break points, using the Cluster Rule’s 1997 

announcement date as one break point (making 1998-2007 the post-CR treatment period – 

CR_1998) and the 2001 enactment date as the other (making 2001-2007 the post-CR treatment 

period  – CR_2001)12, and estimate models using one or the other or both break points.   

To isolate the effect of the CR on employment, we also need to control for plant 

characteristics that are constant over time as well as other time-variant factors that might affect 

employment differently between the covered and non-covered plants. As mentioned before, plant 

characteristics play an important role in determining pollution levels. These characteristics may 

determine whether a plant is subject to the CR and may also have a direct effect on employment 

levels. For example, older plants have higher pollution levels and may be more likely to be in the 

treatment group. These plants may also have different labor demand and elasticity of substitution 

among factors of production and could have changed employment levels differently from non-

covered plants over time. In addition, local labor market conditions can affect a plant’s hiring 

decisions, so we include a set of control variables measuring local labor market conditions: local 

                     
12  An alternative would be to find out how long it would take for plants to install the necessary 
equipments to comply with the CR so as to get a rough estimate of when plants might start the adjustment 
process. However, plants may vary in the timing of the adoption of technology. Furthermore, the timing 
of the adoption of technology may not be indicative of the timing of the potential employment adjustment, 
further complicating this approach. 
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wages, unemployment rates, and per-capita income, measured at the county level13. We also 

include state fixed effects to control for any other time-invariant state-level unobserved 

heterogeneities that may affect employment.14 

When we include these control variables, our model can be written as: 

(6) lnEMPpt = 0 + 1 MACTp + 2 BATp + 3 MACTp*CR_YEARpt +  4BATp*CR_YEARpt + ZptΓ + 

ηs + δt + upt  

 

Here Z is a set of plant characteristics, including OLD, a dummy variable indicating whether or 

not the plant was started before 1960, and a set of county-level labor market conditions that 

change over time, including log wage rate, log unemployment rate, and log per capita income.    

 One final set of analyses include plant-specific fixed effects: 

 (7) lnEMPpt = 0 + 3 MACTp*CR_YEARpt +  4BATp*CR_YEARpt + ZptΓ + δt + αi + upt 

 

Including αi accounts for fixed characteristics of the plant affecting the average employment 

level, but also eliminates variables (e.g. MACT, BAT, and OLD) which do not vary over time. 

 

6. RESULTS 

Baseline models 

Table 1 displays the summary statistics and variable definitions. We exclude observations 

with missing values for value of shipments (TVS), overall employment (TE), production worker 

employment (PW), production worker hours (PH), or plants that seem to match to two different 

                     
13  Income and wage data came from the Bureau of Economic Analysis (BEA) website 
(http://www.bea.gov/regional/reis/), while unemployment data came from the Bureau of Labor Statistics 
(BLS) website (http://www.bls.gov/lau/). 
14 Including these additional regressors can also increase the efficiency of our estimator. 
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Census records.  None of those restrictions results in much loss of sample size. We also exclude 

non-pulping plants from the analysis, about 40% of the plants in the Census data, to ensure that 

the control group is as similar to the treatment group as possible (all CR plants include a pulping 

process). The resulting dataset used for the analysis is an unbalanced panel, with 2,593 

observations over the 1993-2007 period. About two-thirds of the observations are covered by the 

MACT air requirements, while 43% are covered by the BAT water requirements.  Most of the 

plants (three-quarters) had been in operation since 1960, and about 60% of them include a 

pulping process. The majority of employment consists of production workers, though there is 

also substantial non-production employment (about one-fifth of the total). 

Tables 2A-2C show the results for our baseline DiD regression as described in equation 

(5) for each employment measure, comparing employment effects for both BAT and MACT 

plants and allowing effects to occur at the promulgation date (1998), the effective date (2001), or 

both. As suggested by Bertrand et al (2004), our basic DiD results allow for correlations in errors 

across years for the same plant by using standard errors that are robust to within-plant 

correlations over time. Plants covered by the BAT water regulations have employment almost 

two-thirds larger than plants covered only by the MACT air regulations, which are in turn about 

10% larger than control plants (though the latter difference is not significant) for all three 

dependent variables.  

The key variables for our analysis, the DiD terms interacting the treatment categories 

with promulgation or adoption date, are reasonably consistent across model specification and 

employment measures, though only occasionally statistically significant.  Plants covered by only 

MACT air regulations tend to show positive employment changes in the post-CR period, relative 

to the control group, with magnitudes on the order of 5%-10% depending on the employment 
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measure and the time period chosen. The BAT interacted dummies, on the other hand, are 

consistently negative, with magnitudes on the order of 5%-10%, indicating that plants covered 

by the BAT water regulations tend to have negative employment changes in the post-CR period, 

relative to the MACT-only plants.  Since the BAT changes relative to the control group are the 

sum of these two coefficients (which are similar in magnitude, but opposite in sign) they tend to 

be near zero, and are not statistically significantly different from zero.  

We have some  concerns with data quality, therefore we also present “RobustDiD” results 

estimating an iteratively reweighted least squares model to reduce the influence of individual 

data points on the coefficient estimates and correct for possibly non-normal residuals, providing 

a more robust estimation.15  Focusing on the key DiD interactions, the robust BAT*CR_YEAR 

coefficients are almost always close to the non-robust coefficients in sign and magnitude, while 

the robust MACT*CR_YEAR coefficients tend to be larger, showing more positive impacts of 

the CR on employment.  Summarizing the BAT and MACT interactions from the various models, 

we see that MACT-only plants have 7% to 14% higher total employment, production worker 

employment, and production worker hours as compared to either the BAT plants or the control 

group, with the latter two groups being relatively similar. The only statistically significant results 

come from the robust DiD models. Comparing the results across years, the 2001 change seems to 

be a bit larger than the 1998 ones, though not significantly so. 

In Tables 3A-3C we turn to models based on equation (6), which include a series of 

control variables, including the OLD dummy and various county labor market characteristics.  

The control variables give similar results for all three employment measures.  Older plants show 

about 40% higher employment for all three measures.  Plants in high-wage counties have higher 

employment, with similar magnitudes in both the regular and robust models, although only the 
                     
15 Implemented using the rreg procedure in Stata. 
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robust results are statistically significant. Neither county per-capita income nor county 

unemployment rates are significant, though the signs are similar for all three employment 

measures.  Adding the control variables had essentially no impact on any of the other variables in 

the model, with employment at MACT-only plants rising in the post-CR period relative to the 

control group, while employment at BAT plants is lower (sometimes significantly so), and 

roughly comparable to employment at plants in the control group. 

In Tables 4A-4C we now turn to fixed-effect models, based on equation (7), that control 

for any differences across plants that remain fixed through our sample period.  As noted earlier, 

these models cannot include any variables that remain fixed, such as OLD, MACT, and BAT.  

The county-level labor market variables now depend on within-county variation over time, not 

variation across counties, and are only significant in the robust models, although the signs are 

consistent between the regular and robust models.  As in Table 3, wage and unemployment rates 

are positively associated with employment, while per-capita income is negatively related to 

employment.  

For the key DiD interaction coefficients, the main difference compared with the results in 

Tables 2 and 3 is that the post-CR coefficients for MACT plants are smaller and not always 

positive, indicating that their employment experience is not much different from the plants in the 

control group.  The post-CR MACT coefficients also tend to be more negative for the 2001 

cutoff than for the 1998 cutoff, which may reflect relatively little anticipatory investment at those 

plants before the CR effective date. The negative post-CR coefficients for BAT plants are 

somewhat smaller in magnitude than those in Tables 2 and 3, but the reduction in the MACT 

coefficients is larger, so the net (MACT+BAT) effects are more negative than in the earlier 

tables.  The change is especially pronounced for the robust models, which had shown mostly 
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positive (though insignificant) effects for BAT plants in the earlier tables.  They now show 

statistically significant reductions of 3%-7% in employment at BAT plants in the post-CR 

period, with the effects on total employment being slightly larger than on the production worker 

related measures.16   

A potential concern with the DiD estimator is that it is most suitable when the treatment 

is random, or when observable characteristics can be used to adjust for selection into treatment. 

In our case, the MACT and BAT regulations are not randomly assigned to pulp and paper mills. 

Rubin (2008) notes that one can approximate a randomized experiment by selecting a suitably-

matched control group to eliminate or at least reduce this bias. In our case, we can reduce 

selection bias due to differences in observable covariates by choosing a control group with 

comparable covariate distributions to the pulp and paper mills covered by the MACT and BAT 

portions of the CR (Stuart (2010)). To choose such a control group we use a version of the 

propensity score matching (PSM) estimator developed by Rosenbaum and Rubin (1983). 17 

Because we have two treatment groups (MACT-only and BAT) we ran the matching twice - 

once for each group.  The same set of control plants was used for each matching (with 

replacement) and the final dataset included the matched pairs of treatment and control plants.  

We tested a variety of specifications before achieving the desired “balance” of matching 

variables between our treatment and control groups.  The final matching model for the BAT 

group included the plant’s energy cost ratio and age, the county unemployment rate, and an 

index of the state’s pro-environmental Congressional voting. The matching model for the 

MACT-only group included the same variables plus the county non-attainment status for PM, 

                     
16 We estimated a set of comparable models using the log of output as the dependent variable and the 
results are qualitatively similar to the employment results. 
17 To estimate the propensity score and produce our matched control group we employ the psmatch2 
algorithm in Stata, developed by Leuven and Sianesi (2003). 
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SO2, and NOx and county log income.   

Unfortunately, while the DiD estimator with matching provides us with a more 

appropriate control group, it also changes our sample as a few treatment plants (and about one-

third of the control plants) are not included in the matched sample. This raises complications for 

releasing those results due to Census Bureau rules designed to protect data confidentiality.  

However, the estimated effects of MACT and BAT on employment in our DiD analysis with 

matching estimators are quite similar to our main DiD results presented above, in both 

magnitude and significance. This provides us with some assurance that our results are not being 

driven by any observable differences between our treatment and control groups. 

 

7. CONCLUDING REMARKS 

 In this paper we examine the impact of the Cluster Rule on employment at plants in the 

pulp and paper industry.  The Cluster Rule, promulgated in the end of 1997 was EPA’s first 

integrated, multi-media regulation. Using a sample of pulp and paper mills, we use a DiD 

approach to estimate the causal effect of the Cluster Rule on employment. We consider 

alternative starting points for the post-CR period (1998 and 2001), alternative measures of 

employment (total employment, number of production workers, and production worker hours), 

and both regular and robust estimators. 

Our results suggest that the Cluster Rule had relatively small effects on employment, with 

different effects for plants covered by only the MACT air requirements as compared to plants 

that were also covered by the BAT water requirements.  The MACT-only plants show small 

positive employment effects post-CR in most models, though these are often insignificant.  In 

contrast, the BAT plants show small negative employment effects relative to the MACT-only 
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plants and (in some models) relative to the control group, also often insignificant.  For our final 

preferred models, which include plant-specific fixed effects and other control variables, the 

robust estimator shows statistically significantly, yet moderately lower employment for the BAT 

plants as compared to both the MACT-only plants and the control group. In particular, BAT 

plants have on the order of 3%-7% less employment than the control group (the non-robust 

results are similar in magnitude, but not significant).    

These results should be interpreted with some degree of caution.  As noted, most of the 

models we estimated had insignificant coefficients on the DiD term measuring the CR effects.  

Despite our efforts to develop an appropriate control group (including our confirming the results 

with matching DiD estimators), there could still remain some issues of comparability of 

treatment and control plants.  Future research is needed to link an employment analysis of the 

sort conducted here with other measures of the plant’s activities (both in terms of emissions and 

production), to get a more complete picture of how the Cluster Rule affected pulp and paper 

mills. 
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____________________________________________________________________________________________________________ 
____________________________________________________________________________________________________________ 

Table 1 
Descriptive Statistics 
(1993-2007, N=2593) 

____________________________________________________________________________________________________________ 
 
Variable   Mean (std dev)  Description 
 
TE   618.63 (405.16)  Average employment at plant - Census 
PW   482.40 (319.51)  Average production workers at plant - Census 
PH   1040.82 (698.61)  Annual production worker hours at plant, in 000s - Census 
LOGTE   6.20 (0.74)  Log(TE) 
LOGPW   5.94 (0.76)  Log(PW) 
LOGPH   6.71 (0.76)  Log(PH) 
MACT   0.68 (0.47)  Dummy variable =1 if the plant is covered by EPA Cluster Rule MACT requirements 
BAT   0.43 (0.49)  Dummy variable =1 if the plant is covered by EPA Cluster Rule BAT requirements 
MACT*CR_1998 0.43 (0.49)  Dummy variable =1 after 1997 for plants covered by EPA Cluster Rule MACT requirements 
MACT*CR_2001 0.29 (0.45)  Dummy variable =1 after 2000 for plants covered by EPA Cluster Rule MACT requirements 
BAT*CR_1998   0.27 (0.44)  Dummy variable =1 after 1997 for plants covered by EPA Cluster Rule BAT requirements 
BAT*CR_2001            0.18 (0.39)   Dummy variable =1 after 2000 for plants covered by EPA Cluster Rule BAT requirements 
OLD   0.74 (0.44)  Dummy variable =1 if the plant  was in operation in 1960 
INCOME  23834 (5779)  Average per-capita income in county - BEA 
WAGE   27957 (5226)  Average per-job wages in county - BEA 
LOG(INCOME)  10.05 (0.24)  Log of income 
LOG(WAGE)  10.22 (0.18)  Log(Average per-job wage in county)- BEA 
UNEMPLOYMENT 6.17 (2.16)  Unemployment rate in county - BLS 
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_____________________________________________________________________________________ 
_____________________________________________________________________________________ 

Table 2A 
Total Employees - Only Cluster Rule Effects 

_____________________________________________________________________________________ 
 
          OLS-DiD         Robust-DiD 
  
 Model    1     2    3    4    5        6 
   
 MACT  0.096  0.102  0.096  0.016  0.026  0.015 
  (0.118) (0.113) (0.118) (0.047) (0.039) (0.047) 
 
 MACT*  0.058   0.018  0.105+     0.032 
 CR_1998 (0.075)  (0.061) (0.056)   (0.075) 
 
 MACT*   0.071  0.059   0.130*  0.110 
 CR_2001  (0.080) (0.073)  (0.055) (0.074) 
 
 BAT  0.637**  0.619**  0.637**  0.589**  0.571**  0.590** 
  (0.097) (0.095) (0.097) (0.043) (0.035) (0.043) 
 
 BAT* -0.094+  -0.051+ -0.103+   -0.053 
 CR_1998 (0.050)  (0.031) (0.053)   (0.071) 
 
 BAT  -0.096 -0.063  -0.107* -0.073 
 CR_2001  (0.064) (0.064)  (0.052) (0.069) 
 
 
 Adj R2  0.426  0.426  0.425  0.458  0.459  0.458 
_____________________________________________________________________________ 
       

All models include a set of state dummy variables; 2593 plant-year observations; (Standard Errors) 
        +=p<0.10, *=p<0.05, **=p<0.01 
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_____________________________________________________________________________________ 
 

Table 2B 
Production Workers – Only Cluster Rule Effects 

_____________________________________________________________________________________ 
 
           OLS-DiD         Robust-DiD  
  
 Model    1     2    3    4    5          6 
 
 
 MACT  0.114  0.116  0.114  0.034  0.041  0.033 
  (0.121) (0.115) (0.121) (0.048) (0.041) (0.048) 
 
 MACT*  0.039   0.005  0.080     0.022 
 CR_1998 (0.080)  (0.064) (0.058)   (0.077) 
 
 MACT*   0.053  0.050   0.101+  0.087 
 CR_2001  (0.085) (0.076)  (0.057) (0.076) 
  
 BAT  0.629**  0.610**  0.629**  0.570**  0.551**  0.571** 
  (0.099) (0.097) (0.099) (0.045) (0.037) (0.045) 
 
 BAT* -0.084+  -0.055+ -0.087   -0.056 
 CR_1998 (0.050)  (0.031) (0.055)   (0.073) 
 
 BAT*  -0.079 -0.044  -0.081 -0.046 
 CR_2001  (0.065) (0.065)  (0.053) (0.071) 
 
      
 Adj R2  0.404  0.404  0.403  0.440  0.440  0.439 
 
____________________________________________________________________________________
  

All models include a set of state dummy variables; 2593 plant-year observations; (Standard Errors) 
        +=p<0.10, *=p<0.05, **=p<0.01 
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_____________________________________________________________________________________ 
 
 

Table 2C 
Production Worker Hours - Only Cluster Rule Effects 

_____________________________________________________________________________________ 
 

           OLS-DiD         Robust-DiD 
  
 Model    1     2    3    4    5          6 
 
 MACT  0.104  0.100  0.104  0.033  0.033  0.032 
  (0.120) (0.114) (0.120) (0.048) (0.040) (0.048) 
 
 MACT*  0.043  -0.010  0.067     0.002 
 CR_1998 (0.080)  (0.066) (0.057)   (0.077) 
 
 MACT*   0.072  0.079   0.100+  0.099 
 CR_2001  (0.084) (0.075)  (0.057) (0.076) 
 
 BAT  0.626**  0.611**  0.626**  0.566**  0.549**  0.567** 
  (0.098) (0.096) (0.098) (0.044) (0.036) (0.044) 
 
 BAT* -0.077  -0.043 -0.073   -0.048 
 CR_1998 (0.053)  (0.035) (0.054)   (0.072) 
 
 BAT*  -0.078 -0.050  -0.066 -0.035 
 CR_2001  (0.066) (0.064)  (0.053) (0.071) 
 
  
 Adj R2  0.405  0.405  0.405  0.443  0.443  0.443 
 
____________________________________________________________________________________
  

All models include a set of state dummy variables; 2593 plant-year observations; (Standard Errors) 
        +=p<0.10, *=p<0.05, **=p<0.01 
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_____________________________________________________________________________________
_____________________________________________________________________________________ 

 

Table 3A 
Total Employees – Cluster Rule Effects with Control Variables 

_____________________________________________________________________________________ 
 
           OLS-DiD         Robust-DiD 
 
Model           1     2      3     4     5      6 
 
MACT     0.098   0.106    0.098   -0.009   -0.001   -0.013 
    (0.120)  (0.116)   (0.120)   (0.043)   (0.036)   (0.043) 
 
MACT*    0.060     0.024    0.100*       0.027 
CR_1998  (0.074)    (0.059)    0.051)     (0.068) 
 
MACT*   0.069   0.054         0.128*    0.110 
CR_2001  (0.080)  (0.073)       (0.050)   (0.067) 
 
BAT    0.640**   0.622**    0.640**  0.562**  0.544**    0.562** 
  (0.098)  (0.096)   (0.099)   (0.040)   (0.033)   (0.039) 
 
BAT*  -0.089+    -0.049   -0.102*     -0.052 
CR_1998  (0.050)    (0.031)   (0.048)     (0.064) 
 
BAT*  -0.090  -0.058        -0.108*  -0.075 
CR_2001  (0.064)  (0.063)       (0.047)   (0.062) 
 
OLD      0.331**   0.331**   0.331**   0.410**   0.412**  0.414** 
    (0.093)  (0.093)   0.093)   (0.024)    (0.024)   (0.024) 
 
Log(WAGE)      0.462   0.463   0.462    0.471**   0.474**  0.473** 
    (0.398)  (0.398)  (0.398)   (0.106)    (0.106)   (0.106) 
 
Log(INCOME)  -0.045  -0.047  -0.048    0.113     0.111    0.113 
     (0.320)   (0.320)  (0.320)   (0.102)    (0.102)   (0.102) 
 
UNEMPLOYMENT   0.005   0.005   0.005     0.005     0.006    0.006 
     0.017)  (0.017)  (0.017)   (0.007)    (0.007)   (0.007) 
 
Adj R2      0.458   0.458   0.458    0.540     0.541    0.542 
 
____________________________________________________________________________________
  

All models include a set of state dummy variables; 2593 plant-year observations; (Standard Errors) 
        +=p<0.10, *=p<0.05, **=p<0.01 
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_____________________________________________________________________________________
_____________________________________________________________________________________ 

Table 3B 
Production Workers – Cluster Rule Effects with Control Variables 

_____________________________________________________________________________ 
 

            OLS-DiD         Robust-DiD 
 
Model        1     2    3    4    5          6 
 
MACT    0.112  0.115  0.111  0.029  0.036  0.028 
  (0.121) (0.116) (0.122) (0.044) (0.037) (0.044) 
 
MACT*     0.041   0.010  0.075     0.022 
CR_1998  (0.079)  (0.062) (0.053)   (0.070) 
 
MACT*     0.053  0.046   0.095+  0.081 
CR_2001   (0.085) (0.076)  (0.052) (0.069) 
 
BAT   0.635**  0.616**  0.635**  0.530**  0.512**  0.531** 
  (0.099) (0.097) (0.099) (0.041) (0.034) (0.041) 
 
BAT*  -0.080  -0.053+ -0.083+   -0.055 
CR_1998  (0.051)  (0.031) (0.050)   (0.066) 
 
BAT*   -0.075 -0.040  -0.077 -0.041 
CR_2001   (0.065) (0.064)  (0.049) (0.065) 
 
 
OLD    0.370**  0.370**  0.370**  0.437**  0.436**  0.437** 
  (0.094) (0.094) (0.094) (0.024) (0.024) (0.024) 
 
Log(WAGE)    0.466  0.468  0.466  0.509**  0.509**  0.508** 
  (0.403) (0.403) (0.403) (0.110) (0.110) (0.110) 
 
Log(INCOME) -0.109 -0.110 -0.111  0.098  0.096  0.097 
  (0.330) (0.330) (0.330) (0.105) (0.105) (0.105) 
 
UNEMPLOYMENT  0.004  0.004  0.004  0.005  0.005  0.005 
  (0.017) (0.017) (0.017) (0.007) (0.007) (0.007) 
 
Adj R2   0.441 0.441 0.441 0.518 0.518 0.518 
 
____________________________________________________________________________________
  
All models include a set of state dummy variables; 2593 plant-year observations; (Standard Errors) 
+=p<0.10, *=p<0.05, **=p<0.01 
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_____________________________________________________________________________________
_____________________________________________________________________________________ 

Table 3C 
Production Worker Hours – Cluster Rule Effects with Control Variables 

_____________________________________________________________________________ 
 

              OLS-DiD          Robust-DiD 
 
Model       1     2    3    4    5          6 
 
MACT    0.112   0.105  0.106  0.031  0.033  0.029 
  (0.121) (0.115) (0.120) (0.044) (0.037) (0.044) 
 
MACT*    0.041  -0.004  0.070    0.010 
CR_1998  (0.079)  (0.063) (0.052)     (0.069) 
 
MACT*     0.070  0.073   0.098+  0.092 
CR_2001   (0.084) (0.075)  (0.052) (0.069) 
 
BAT    0.635**  0.614**  0.628**  0.518**  0.503**  0.518** 
  (0.099) (0.097) (0.099) (0.040) (0.033) (0.040) 
 
BAT*  -0.080  -0.041 -0.066   -0.046 
CR_1998  (0.051)  (0.034) (0.049)   (0.065) 
 
BAT*   -0.072 -0.045  -0.059 -0.029 
CR_2001   (0.066) (0.063)  (0.048) (0.064) 
 
OLD    0.370**  0.363**  0.363**  0.434**  0.434**  0.435** 
   (0.094) (0.093) (0.093) (0.024) (0.024) (0.024) 
 
Log(WAGE)    0.466  0.525  0.523  0.571**  0.571**  0.570** 
  (0.403) (0.401) (0.401) (0.109) (0.109) (0.109) 
 
Log(INCOME) -0.109 -0.082 -0.083  0.120  0.121  0.121 
  (0.330) (0.315) (0.316) (0.104) (0.105) (0.105) 
 
UNEMPLOYMENT  0.004  0.004  0.004  0.006  0.006  0.006 
  (0.017) (0.016) (0.016) (0.007) (0.007) (0.007) 
 
Adj R2    0.442  0.442  0.441  0.522  0.522  0.522 
 
____________________________________________________________________________________
  
All models include a set of state dummy variables; 2593 plant-year observations; (Standard Errors) 
+=p<0.10, *=p<0.05, **=p<0.01 
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Table 4A 
Total Employees – Fixed Effect Cluster Rule Models 

_____________________________________________________________________________________ 
 
           OLS-DiD         Robust-DiD 
 
Model     1    2    3    4    5          6 
 
MACT*    0.036   0.063  0.009    0.006 
CR_1998  (0.053)  (0.041) (0.009)   (0.011) 
 
MACT*   -0.005 -0.045   0.006  0.003 
CR_2001   (0.063) (0.060)  (0.009) (0.011) 
 
BAT*  -0.064  -0.044* -0.057**   -0.026* 
CR_1998  (0.046)  (0.022) (0.008)   (0.010) 
 
BAT*   -0.058 -0.031  -0.067** -0.053** 
CR_2001   (0.062) (0.060)  (0.008) (0.010) 
 
Log(WAGE)    0.098  0.073  0.072  0.257**  0.269**  0.269** 
  (0.485) (0.482) (0.480) (0.068) (0.066) (0.067) 
 
Log(INCOME) -0.575 -0.558 -0.550 -0.193** -0.228** -0.238** 
  (0.388) (0.384) (0.387) (0.062) (0.061) (0.061) 
 
UNEMPLOYMENT  0.001 -0.001 -0.001  0.004**  0.004**  0.004** 
  (0.009) (0.009) (0.009) (0.002) (0.002) (0.002) 
 
Adj R2    0.889  0.889  0.889  0.988  0.989  0.989 
 
____________________________________________________________________________________
  
All models include a set of state dummy variables; 2593 plant-year observations; (Standard Errors) 
+=p<0.10, *=p<0.05, **=p<0.01 
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Table 4B 
Production Workers – Fixed Effect Cluster Rule Models 

 
           OLS-DiD         Robust-DiD 
 
Model        1    2    3    4    5          6 
 
MACT*   0.020   0.055  0.008    0.006 
CR_1998   (0.056)  (0.041) (0.009)   (0.012) 
 
MACT*   -0.022 -0.057   0.006  0.002 
CR_2001   (0.066) (0.062)  (0.009) (0.011) 
 
BAT*  -0.051  -0.042+ -0.038**   -0.022* 
CR_1998  (0.047)  (0.022) (0.008)   (0.011) 
 
BAT*   -0.039 -0.013  -0.042** -0.029** 
CR_2001   (0.063) (0.061)  (0.008) (0.011) 
 
Log(WAGE)   0.061  0.036  0.034  0.333**   0.341**  0.333** 
  (0.499) (0.496) (0.495) (0.069) (0.069) (0.069) 
 
Log(INCOME) -0.608 -0.582 -0.576 -0.201** -0.207** -0.211** 
  (0.429) (0.426) (0.429) (0.063) (0.063) (0.063) 
 
UNEMPLOYMENT -0.003 -0.004 -0.004  0.005**  0.004**  0.004** 
  (0.009) (0.009) (0.009) (0.002) (0.002) (0.002) 
 
Adj R2   0.872  0.872  0.872  0.988  0.988  0.988 
       
____________________________________________________________________________________
  
All models include a set of state dummy variables; 2593 plant-year observations; (Standard Errors) 
 +=p<0.10, *=p<0.05, **=p<0.01 
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Table 4C 
Production Worker Hours – Fixed Effect Cluster Rule Models 

 
          OLS-DiD         Robust-DiD 

 
Model        1    2    3    4    5          6 
 
MACT*    0.034   0.051 -0.006   -0.002 
CR_1998  (0.057)  (0.043) (0.012)   (0.015) 
 
MACT*     0.004 -0.028  -0.011 -0.010  
CR_2001   (0.066) (0.061)  (0.012) (0.015) 
 
BAT*  -0.047  -0.035 -0.034**   -0.024+ 
CR_1998  (0.049)  (0.027) (0.011)   (0.014) 
 
BAT*   -0.039 -0.017  -0.031** -0.018 
CR_2001   (0.064) (0.061)  (0.011) (0.014) 
 
Log(WAGE)    0.098  0.084  0.083  0.400**  0.404**  0.394** 
  (0.521) (0.519) (0.517) (0.091) (0.091) (0.091) 
 
Log(INCOME) -0.698 -0.689 -0.683 -0.241** -0.228** -0.237** 
  (0.466) (0.463) (0.467) (0.083) (0.083) (0.083) 
 
UNEMPLOYMENT -0.002 -0.002 -0.002  0.003  0.002  0.002 
  (0.009) (0.009) (0.009) (0.002) (0.002) (0.002) 
 
Adj R2    0.861  0.861  0.860  0.979  0.979  0.980 
 
____________________________________________________________________________________
  
All models include a set of state dummy variables; 2593 plant-year observations; (Standard Errors) 
+=p<0.10, *=p<0.05, **=p<0.01 
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Figure 1 - Trends in Total Employment 
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Figure 2 - Trends in Production Workers 
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Figure 3 - Trends in Production Worker Hours 
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