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Abstract 
 

There has been a strong surge in aggregate productivity growth in India since 1990, following 
significant economic reforms. Three recent studies have used two distinct methodologies to 
decompose the sources of growth, and all conclude that it has been driven by within-plant increases 
in technical efficiency and not between-plant reallocation of inputs. Given the nature of the 
reforms, where many barriers to input reallocation were removed, this finding has surprised 
researchers and been dubbed “India’s Mysterious Manufacturing Miracle.” In this paper, we show 
that the methodologies used may artificially understate the extent of reallocation. One approach, 
using growth in value added, counts all reallocation growth arising from the movement of 
intermediate inputs as technical efficiency growth. The second approach, using the Olley-Pakes 
decomposition, uses estimates of plant-level total factor productivity (TFP) as a proxy for the 
marginal product of inputs. However, in equilibrium, TFP and the marginal product of inputs are 
unrelated. Using microdata on manufacturing from five countries – India, the U.S., Chile, 
Colombia, and Slovenia – we show that both approaches significantly understate the true role of 
reallocation in economic growth. In particular, reallocation of materials is responsible for over half 
of aggregate Indian manufacturing productivity growth since 2000, substantially larger than either 
the contribution of primary inputs or the change in the covariance of productivity and size. 
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1 Introduction

Reallocating inputs to higher marginal product activities will increase aggregate productivity. In
recent decades, India has introduced many reforms aimed at encouraging this process, including in-
dustrial de-licensing, tariff reductions, FDI liberalization, directed lending, and lifting of small-scale
industry reservations. Following these reforms in the early 1990s, India has experienced a robust
increase in annual aggregate productivity growth to almost 5%. However, three recent studies
looking to quantify the contribution of reallocation to this growth all find that it played very little
role, and that growth was instead driven by within-plant gains in technical efficiency (Sivadasan
2009, Harrison, Martin, and Nataraj 2011, and Bollard, Klenow, and Sharma 2013).1 BKS note
that “many economists believe Indian reforms during this era improved resource allocation, [so] the
absence of a growth pickup from reallocation is surprising,” and call it “India’s Mysterious Man-
ufacturing Miracle.” Two distinct approaches were taken by these researchers in their estimates
of aggregate productivity growth (APG) due to reallocation. In this paper, we argue that both
approaches artificially understate the effects of reallocation, and that a different methodology, from
Petrin and Levinsohn (2012), correctly calculates the growth arising from reallocation of inputs to
firms with different marginal products.

The approach in BKS uses estimates of value added (VA) production function parameters to
estimate marginal products for capital and labor at every plant. If any primary input is reallocated,
its contribution to aggregate reallocation is the difference in its value of marginal product between
its new and old plant. But for the use of the value added production function instead of gross
output (GO), this is similar to the definitions of reallocation from Basu and Fernald (2002) and
Petrin and Levinsohn (2012). However, as Basu and Fernald (1997) argue, using value-added
production functions will misclassify growth coming from the reallocation intermediate inputs as
technical efficiency growth.

The approach in HMN and Sivadasan is to estimate gross output (GO) production functions to
recover plant-level TFP residuals. They then follow Olley and Pakes (1996) to estimate contribution
of aggregate reallocation to growth as the sum (across all plants) of the plant-level change in output
share times the estimated plant-level average product.2 However, in equilibrium, plant TFP may
not be positively correlated with the marginal product of inputs. For instance, in an equilibrium
where firms face common input prices, the marginal products for each input will be equal across
firms, regardless of differences in plant-level productivity. We use a simplified version of the Hsieh
and Klenow (2009) setup to illustrate that the correlation may be negative, in which case the Olley-
Pakes decomposition will generate the wrong sign for the productivity effects of reallocation.3

When we apply the Olley-Pakes (OP) measurement to Indian manufacturing data, the OP

1We reference these papers repeatedly, and for notational convenience respectively refer to them as Sividasan,
HMN, and BKS.

2More precisely, Olley-Pakes uses the average product relative to the unweighted industry average.
3Our results caution against using any APG index that focus exclusively on TFP residuals and ignore marginal

products of inputs, including the widely used indices of Baily, Hulten, and Campbell (1992), Griliches and Regev
(1995), and Foster, Haltiwanger, and Krizan (2001). According to Hulten, the Bailey-Hulten-Campbell (BHC) decom-
position was not intended to map micro-level changes to their impact on aggregate output (indeed Hulten (1978) is
the important reference on mapping micro-level technical efficiency changes to changes in aggregate output). Nishida,
Petrin, and Polanec (2014) explore these types of decompositions in the context of aggregate labor productivity.
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measure understates reallocation’s contribution by an average of almost 7% per year (In fact, using
the OP methodology, aggregate productivity has declined in India over the first decade of the 21st
century). Using the OP decomposition on census data from the U.S., Chile, Colombia, and Slovenia
finds that reallocation’s contribution to growth was close to zero (0.1%, -0.19%, -0.06%, and 0.29%
per year, respectively), but using the marginal product definition the reallocation gains were much
higher except Slovenia (respectively 1.11%, 2.37%, 5.78%, and 0.13% per year)

In the next section, we describe formally how the issues we discuss can arise using value added
or TFP residuals. We then describe the data used in the paper for each of the five countries, and
our results in those settings.

2 Calculating Productivity Growth

In this section, we first develop three strategies for calculating growth in productivity due to
reallocation, in line with BKS (Value-Added), Sividasan and HMN (Olley-Pakes), and our preferred
strategy, following Petrin and Levinsohn 2012 (P-L). We then show in different model economies
- one with intermediate inputs, the other with distortions in relative prices - that only the P-L
approach consistently correctly estimates reallocation growth.

2.1 Gross-Output vs. Value-Added Production Functions

We now show how value-added production functions count all reallocation from intermediate inputs
as technical efficiency growth. Consider a continuous-time single-good economy with a representa-
tive agent that allocates output either to (intermediate) input use in production or to consumption.
Let Q denote gross output, C = Q−M denote the amount of output left for consumption after M
units of it are used in production, and let utility be given as U(C) = C. The production function
is given as

Q = f(M,ω)

with ω denoting technical efficiency, ∂f
∂M > 0, and ∂2f

∂M2 < 0. The opportunity cost of using another
unit of M in production is a unit of consumption so the optimal M satisfies ∂f(M,ω)

∂M = 1, that is,
the M where the (value of the) marginal product is equated with the cost of the input.

At any instant the additional output going to consumption is given by dC = dQ− dM . Totally
differentiating the production function and plugging in then gives

dC = ∂f

∂M
dM + ∂f

∂ω
dω − dM = ∂f

∂ω
dω + ( ∂f

∂M
− 1)dM. (1)

WhenM is optimal growth in consumption arises only when technical efficiency increases; there are
no gains from reallocating output between consumption and production. However, if the level of M
were such that ∂f(M,ω)

∂M > 1, then utility can be increased by reallocating output from consumption
to production. True instantaneous growth from reallocation of dM(= −dC) > 0 is given by
( ∂f∂M − 1)dM. If we used a value-added production function to estimate the growth from technical
efficiency we get dV (= dC) = dQ− dM , and technical efficiency when this reallocation takes place
will be overstated by( ∂f∂M − 1)dM.
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2.2 Marginal Products of Inputs vs. TFP residuals and Olley-Pakes Realloca-
tion

Reallocation growth measurement based on TFP residuals can be misleading, because TFP resid-
uals and marginal products of inputs are not generally equal. If distortions & productivity are
uncorrelated, the TFP of a plant is uninformative about the effect that subsidy would have on
aggregate TFP (Restuccia and Rogerson 2008).

To illustrate this point, we use a simplified form of the Hsieh-Klenow setup. Consider a single-
good economy with two plants that convert labor and capital into output via the production
functions

Qi = ωi l
βl
i k

βk
i , i = 1, 2

with ωi denoting plant-level technical efficiency, ω1 > ω2, and βl+βk < 1. At the output-maximizing
allocation of labor (l∗1, k∗

1, l
∗
2, k

∗
2) marginal products of inputs are equated across plants for each input

x
∂Q1(l∗1, k∗

2)
∂x

= ∂Q2(l∗2, k∗
2)

∂x
x = l, k,

with the more productive plant 1 using more inputs in equilibrium than plant 2.
Now suppose that wedges similar to those in Hsieh and Klenow (2009) exist, where the wedges

- whatever economic distortion may be causing them - can be represented by the more productive
plant 1’s output being subsidized at rate τ1 and plant 2’s output being taxed at rate τ2. Wages
and rental rates are assumed to be fixed. Plant 1 will use too many inputs and plant 2 will use
too few. Let (l∗i + ∆li(τi), k∗

i + ∆ki(τi)) represent the distorted input levels of labor and capital at
plant i. If these economic distortions are removed then the resulting change in plant i’s output is
given by integrating over the marginal products of inputs

∆Qi =
ˆ l∗i

l∗i +∆li(τi)

ˆ k∗i

k∗
i +∆ki(τi)

∂Q2
i (l, k)
∂l∂k

dk dl.

Aggregate output increases by ∆Q1 +∆Q2, which is the difference between the gained output from
plant 2 and the lost output from plant 1.

The Olley-Pakes index of aggregate productivity growth uses a definition of productivity growth
that is not directly based on changes in industry value added. Instead it is based on looking at the
change in output share-weighted TFP residuals in the industry:∑

i

sitωit −
∑
i

sit−1ωit−1 (2)

where in practice ωit is the estimated TFP residual (technical efficiency) at plant i at time t . This
leads to the OP decomposition of

∑
i sitωit −

∑
i sit−1ωit−1 which is given as

∆ω̄t + [
∑

(sit − s̄t)(ωit − ω̄t)−
∑

(sit−1 − s̄t−1)(ωit−1 − ω̄t−1)]. (3)

The first term is the change in the unweighted averages of technical efficiency at time t minus the
change in unweighted averages of technical efficiency at time t-1 and is referred to as the “real

4



productivity” or “technical efficiency” term. The term in brackets is interpreted as the reallocation
term and measures whether the covariance between TFP residuals and output shares is increasing
over time.

What does Olley-Pakes report as aggregate productivity growth from reallocation in this Hsieh-
Klenow example? If we let ∆si denote the change in output share and ω̄ = ω1+ω2

2 then Olley-Pakes
reallocation is defined as

∆s1(ω1 − ω̄) + ∆s2(ω2 − ω̄) < 0,

so despite output increasing due to the removal of the wedges, Olley-Pakes-measured reallocation
decreases because ∆s1 < 0, (ω1 − ω̄) > 0,∆s2 > 0, and (ω2 − ω̄) < 0. The reason is that TFP
residuals and marginal products of inputs are negatively correlated. Overall Olley-Pakes aggregate
productivity growth decreases because OP technical efficiency change is equal to zero: ω̄ − ω̄ = 0,
and the sum of OP technical efficiency and OP reallocation equals OP total aggregate productivity
growth.4

3 Aggregate Productivity Growth and Reallocation

We start by illustrating the Petrin and Levinsohn (2012) decomposition of aggregate productivity
growth (APG) in a setting with no intermediate inputs or capital. In Section 2.2 we generalize
the setup. In both cases, APG is constructed such that, holding capital and labor use constant,
aggregation of plant-level changes in technical efficiency and input reallocation add up to changes
in final demand .

3.1 One-input Economy

There are N plants in the economy each producing a single good with a single input, labor l.
Production technologies are given by

Qi(li, ωi),

with ωi denoting the level of plant i’s technical efficiency. With no intermediate inputs total output
at plant i that goes to final demand is just Qi. Assuming a common wage W and letting Pi denote
the price of plant i’s output, APG is the difference between the change in aggregate final demand
and the change in aggregate costs:

APG ≡
∑
i

PidQi −
∑
i

Wdli, (4)

By totally differentiating Qi(li, ωi) one can see that (4) decomposes to:

∑
i

Pi
∂Qi
∂ωi

dωi +
∑
i

(Pi
∂Qi
∂l
−W )dli. (5)

The first term, the sum of each firm’s productivity growth times the value of extra output each
4Note that the average share both before and after the wedges are removed is equal to 1/2 and technical efficiencies

do not change, so those terms just difference out.
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firm could produce given a marginal improvement in its productivity,represents the total gains
from technical efficiency changes. The second term, the change in labor use by each firm times
the difference in the marginal revenue and marginal cost of production, represents reallocation
growth.In the case where a small amount of labor reallocates from j to i, so dli = −dlj , aggregate
output would change by the difference in the value of marginal products of inputs between i and j:

Pi
∂Qi
∂l
− Pj

∂Qj
∂l

.

In the case that labor reallocates across plants but total labor is held constant (
∑
i dli = 0), the

change in aggregate output from reallocation is given by

∑
i

Pi
∂Qi
∂l

dli.

3.2 General Setup

We now extend the model in the previous section to include multiple primary inputs (such as
different types of labor and capital) as well as intermediate inputs. The production technology is
now given by Qi(Xi,Mi, ωi), where Xi = (Xi1, . . . , XiK) is the vector of K primary input amounts
used at plant i and Mi = (Mi1, . . . ,MiJ) is the vector representing, for plant i, the amount of each
plant j’s output used as an intermediate input.5 The total amount of output from plant i that goes
to final demand Yi is

Yi = Qi −
∑
j

Mji,

where
∑
jMji is the total amount of i’s output that serves as intermediate input within plant i

and across other plants j 6= i. The change of i’s output that goes to final demand is therefore
dYi = dQi−

∑
j dMij . APG is again defined as the difference between the change in aggregate final

demand and the change in aggregate costs, and in this generalized setup is equal to:

APG ≡
∑
i

PidYi −
∑
i

∑
k

WikdXik, (6)

where Wik equals the unit cost to i of the kth primary input and dXik is the change in the use of
that primary input at plant i.6

Equation (6) decomposes as:

∑
i

∑
k

(Pi
∂Qi
∂Xk

−Wik)dXik +
∑
i

∑
j

(Pi
∂Qi
∂Mj

− Pj)dMij +
∑
i

Pi
∂Qi
∂ωi

dωi, (7)

5Here we suppress their fixed cost term for transparency.
6In the general setup from Petrin and Levinsohn (2012), the path of primary and intermediate inputs and

productivity shocks for plant i is given as Zit = (Xit, Mit, ωit), t ∈ [0, 1]. For the entire economy they write
Zt = (Z1t, Z2t, . . . , ZNt). Given Zt, output quantities are determined by the production technologies and Qt =
(Q1t(Z1t), . . . , QNt(ZNt)). Prices are assumed to be uniquely determined by Qt, given as Pt = (P1t(Qt), . . . , PNt(Qt)),
and similarly for primary input costs Wt = (W1t(Zt), . . . , WKt(Zt))). Yit can then be directly calculated for all i and
t ∈ [0, 1].
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where ∂Qi
∂Xk

and ∂Qi
∂Mj

are the partial derivatives of the output production function with respect to the
kth primary input and the jth intermediate input respectively, dMij is the change in intermediate
input j at plant i.

∑
i Pi

∂Qi
∂ωi

dωi is again the gain from technical efficiency changes and reallocation
is now given as ∑

i

∑
k

(Pi
∂Qi
∂Xk

−Wik)dXik +
∑
i

∑
j

(Pi
∂Qi
∂Mj

− Pj)dMij .

where the reallocation terms include a value of marginal product term and an input cost term for
each plant and every primary and intermediate input.7 We now turn to estimation.

3.3 Estimation

In the data, APG can be expressed as the weighted sum of establishment-level growth rates in value
added minus the establishment-level growth rates in primary inputs and is given as

APG =
∑
i

Dv
i dlnV Ai −

∑
i

∑
k

svikdlnXik, (8)

with Dv
i = V Ai∑

i
V Ai

(the value-added Domar weight) and the cost share for the kth primary input

given as svik = WikXik∑
i
V Ai

. For estimation, we work with both gross output and value added production
functions. We write the gross output production function as

ln(GOi) =
∑
k

εiklnXik +
∑
j

εijdlnMij + lnωi, (9)

with εik and εij denoting the elasticities of gross output with respect to primary and intermediate
inputs, respectively. Establishment-level gross output technical efficiency is given as lnωi. APG
can then be decomposed as∑

i

Di

∑
k

(εik − sik)dlnXik︸ ︷︷ ︸
Reallocation of Labor and Capital

+
∑

i

Di

∑
j

(εij − sij)dlnMij︸ ︷︷ ︸
Reallocation of Intermediates

+
∑

i

Didlnωi︸ ︷︷ ︸
Technical Efficiency

. (10)

where Di = PiQi∑
i
V Ai

are gross output Domar weights and sik = PikXik
PiQi

and sij = PijMij

PiQi
are output

shares for primary and intermediate inputs. Aggregate growth arising from the reallocation of
primary inputs and intermediates inputs are given by

∑
iDi

∑
k(εik−sik)dlnXik and

∑
iDi

∑
k(εij−

sij)dlnMij , respectively. Growth from aggregate technical efficiency is given by
∑
iDidlnωi. We

write the valued added production functions as

ln(V Ai) =
∑
k

εviklnXik + lnωvi , (11)

7If there are widespread increasing returns to scale (IRTS), the analysis here would call that reallocation. Based
on our data from the U.S., Chile, Colombia, and Slovenia, we observe constant returns to scale or decreasing returns
to scale in most cases, and for more than half of those industries we reject the null hypothesis that an industry
exhibits IRTS.
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with εvik denoting the elasticity of (value-added) output with respect to the primary inputs, and
the establishment-level value-added technical efficiency given as lnωvi . In this case, APG can then
be decomposed as ∑

i

Dv
i

∑
k

(εv
ik − sik)dlnXik︸ ︷︷ ︸

Reallocation of Labor and Capital

+
∑

i

Dv
i dlnω

v
i︸ ︷︷ ︸

Technical Efficiency

. (12)

Aggregate growth arising from the reallocation of primary inputs is given by
∑
iD

v
i

∑
k(εvik −

sik)dlnXik and growth from aggregate technical efficiency is given by
∑
iD

v
i dlnω

v
i . In equation

(12), any growth from reallocation of intermediates will be incorrectly measured as growth from
aggregate technical efficiency.

Equation (8) can be estimated directly from discrete-time data using Tornquist-Divisia approx-
imations.8 We estimate production function parameters for each SIC 4-digit industry for U.S.
manufacturing, for each SIC 3-digit industry for Chile and Colombia, and NACE 2-digit industry
code for Slovenia. In all cases, we use the proxy method from Wooldridge (2009) that modifies
Levinsohn and Petrin (2003) to address the simultaneous determination of inputs and productivity.9

We estimate production function parameters in equation (9) separately for each 3-digit industry
for the Indian data using cost shares, as in BKS (2013) In the gross output case, the estimate of
plant-level technical efficiency is

l̂nωit = ln(GOit)−
(
ε̂jP lnL

P
it + ε̂jNP lnL

NP
it + ε̂jK lnKit + ε̂jE lnEit + ε̂jM lnMit

)
,

where ε̂j· denote the estimated elasticities of gross output with respect to the inputs in industry
j. We use Tornquist-Divisia approximations for each term in equation (10).10 As regressors, we
use three primary inputs and two intermediate inputs: production (blue-collar) workers LPit , non-
production (white-collar) workers LNPit , capital Kit , energy Eit , and materials Mit .

In the value added case, the estimate of establishment-level technical efficiency is

l̂nωvit = ln(V Ait)−
(
ε̂vjP lnL

P
it + ε̂vjNP lnL

NP
it + ε̂vjK lnKit

)
,

where ε̂vj· denote the estimated elasticities of value added with respect to the inputs in industry j.

4 Data

This section describes our plant-level manufacturing data from India, the U.S., Chile, and Colombia,
and firm-level data from Slovenia.

8We chain-weight to update prices on an annual basis (they are included in the Domar weights). For example,
AP G =

∑
i
D

v
it∆lnV Ait −

∑
i
Dv

it

∑
k

sv
ikt∆lnXikt where D

v
it is the average of establishment i’s value-added share

weights from period t−1 to period t, ∆ is the first difference operator from period t−1 to period t, sikt is the average
across the two periods of establishment i’s expenditures for the kth primary input as a share of establishment-level
value-added.

9The approach is robust to the comment by Ackerberg, Caves, and Frazer (2015) and is one line of code in Stata.
10For the reallocation terms we use the approximations

∑
i
Dit

∑
k
(εik − sikt)∆lnXikt and

∑
i
Dit

∑
j
(εij −

sijt)∆lnMijt. For the technical efficiency term we use
∑

i
Dit∆lnωit.
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Indian Manufacturing Data For India, we use plant-level data from the Annual Survey
of Industries (ASI) from 1999-2010, which are an annual survey of Indian manufacturing plants
conducted by the Indian Ministry of Statistics. The ASI sampling frame includes all registered
factories (who are collectively responsible for around 80% of total manufacturing output in India)
employing 10 or more workers using power or 20 or more workers without using power, and surveys
about 50,000 plants in each year, and designed to be representative at the state by 4-digit industry
level. Plants above a time-varying employment threshold (100 to 200 workers) are surveyed every
year (as are plants who are rare in their state/industry block). The remaining plants are sampled
randomly.1112 Plant-level variables collected in the ASI include: (1) values of output, materials,
and fuels (as well as the change in their respective inventories), (2) the book value of fixed assets,
which we treat as the stock of capital, (3) employment and wages for white collar workers and all
other employees, and (4) industry codes, and (5) plant-level longitudinal identifiers. All values are
deflated following Alcott et. al. (2015)

The ASI is the same survey data that BKS (2013) use — we use 1999-2010, whereas BKS used
1980-2007. Sivadasan (2009) and HMN (2011) use the ASI for subsets of BKS’s sample period. To
facilitate comparison with BKS (2013), we use three samples that BKS employ. The first sample
is “All ASI,” in which we have all plant-year observations in the ASI for which we can measure
an annual growth rate–i.e., plants that appear in any two consecutive years in our sample period:
about 19,000 to 38,000 plants in each year. The second sample is the “census” sample: the firms
who are supposed to be surveyed each year. The third sample is the “Large Plants” sample, for
plants with more than 200 employees — these plants are surveyed every year (and, since BKS did
not have access to longitudinal identifiers, are the ones who are easiest to match over time given
only firm characteristics), and contains about 4,000 to 8,000 plants in each year. To give a sense of
the difficulty of tracking smaller plants without the identifiers, our “All ASI”’s employment totals
are 1.5 to 3.3 million larger than the employment totals for BKS’s “All ASI” samples in each year
that our samples overlap, but for our “Large Plants” sample the employment totals are within 2%
of BKS’s employment for every year. Since the ASI is a repeated cross section, we consider only
continuing plants for our APG decomposition - there is a large contribution coming from plants
either entering or leaving the sample each year, but that mostly does not reflect true economic
activity.

U.S. Manufacturing Data For the United States,we use plant-level data from the Census
Bureau’s Annual Surveys of Manufactures, from 1976-1996. To construct our variables, we follow
the detailed description in the data appendix of Petrin, White and Reiter (2011). Here we provide
a brief description of the variables. For labor, we observe production worker hours and production
worker wages, the average number of production workers, total employment, and total salaries and
wages. For capital, we observe book values of assets and capital expenditures. We use industry

11Firms are guaranteed to be surveyed on a rotating basis - for instance every 3 years - where the gap between
years is decreasing in firm size. Depending on the budget each year, additional firms are randomly sampled. The
sampling weights are provided.

12Due to the nature of the sampling, if we included all plants in our estimation a substantial portion of aggregate
productivity growth would be misclassified as being due to “entry.” To avoid this issue, for each year, we only include
plants who were surveyed in the previous year.
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deflators and depreciation rates from the BEA and the perpetual inventory method to construct
capital stocks from these measures. Our measure of nominal gross output is the total value of
shipments. For intermediate inputs, we use measures of energy and materials. For energy, we use
the sum of the cost of fuels and purchased electricity. For materials inputs, we use the total cost
of materials minus energy costs. Value added is gross output minus materials and energy. We use
industry-level deflators from the NBER-CES Productivity Database to convert from nominal to
real values, and calculate elasticities using cost shares.

Chilean and Colombian Manufacturing Data The Chilean and Colombian data are
annual and span the periods of 1979-95 and 1977-91, respectively. Here we provide a brief overview
of these data. Numerous other productivity studies use them, and we refer interested readers to
those papers for a more detailed data description.13The Chilean data, provided by Chile’s Instituto
Nacional de Estadistica (INE), are unbalanced panels and cover all manufacturing plants with at
least 10 employees. The Colombian data from the Annual Manufacturing Survey, provided by
Colombia’s Departamento Administrativo Nacional de Estadistica (DANE), are also unbalanced
panels and cover all plants for the years 1977-82 and the plants with at least 10 employees for
the years 1983-91. In both data sets, plants are observed annually and they include a measure
of nominal gross output, two types of labor, capital, and intermediate inputs, including fuels and
electricity. Labor is the number of person-years hired for production, and plants distinguish between
their blue- and white-collar workers. Liu (1991) documents the method for constructing the real
value of capital for the Chilean data, and we use the same method for the Colombian data.14 We
use double-deflated value added for Chilean results and single-deflated value added for Colombia
because intermediate input deflators are not available there.

Slovenian Manufacturing Data For Slovenian data, we use the annual accounting data
provided by the Slovenian Statistical Office and other sources from 1994 through 2004. Our data
are an unbalanced panel and cover all manufacturing firms.We use single-deflated value added
because no intermediate input deflator is available. The Slovenian data are distinct from other
data we use in that it is firm-level data and not plant-level data and there exists both a firm-level
deflator and a capacity utilization rate for a subset of firms.

As an ex-socialist country, Slovenia went through extensive changes in its economic system
starting in 1988. The deregulation of entry in 1988 allowed the setup of privately owned firms and
resulted in expansion of private businesses. In addition, price and wage liberalization took place
during the period of 1987-93. The process of privatization of state-owned firms started in 1994 and
continued throughout the 1990s. For this reason, several empirical studies of productivity dynamics

13See Liu (1991), Liu (1993), and Levinsohn and Petrin (2003) for the Chilean data and Roberts (1996) for the
Colombian data.

14For the Chilean data, the real value of capital is a weighted average of the peso value of depreciated buildings,
machinery, and vehicles. We assume each has a depreciation rate of 5%, 10%, and 20%, respectively. Some plants
don’t report initial capital stock, although they record investment. When possible, we used a capital series that they
report for a subsequent base year. For a small number of plants, they don’t report capital stock in any year. We
estimated a projected initial capital stock based on other reported plant observables for these plants. We then used
the investment data to fill out the capital stock data.
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have used Slovenian data.15

5 Results

Columns 1-5 of Table 1 present the annual growth rates of value-added, primary inputs costs
(production worker labor, non-production worker labor, and capital), and aggregate productivity
growth for the Indian data. Aggregate productivity growth is defined as column 1 less the sum
of columns 2-4. Value added growth in India averaged 7% per annum, although the total amount
spent on primary inputs increased by 1.16%. Figure 1 shows a graph of the annual growth rates
of aggregate value-added and aggregate productivity (equation 6) for all Indian manufacturing
plants (All ASI) from 2000-2010. The difference between the two is the sum of the growth rates of
primary input costs. As the graph shows, P-L aggregate productivity growth is highly correlated
(ρ = .98)with the growth of value added as most of the fluctuations in aggregate productivity are
primarily associated with fluctuations in value-added.

Table 2 presents the decomposition of APG by technical efficiency and reallocation measures.
Reallocation of intermediates makes a large contribution, responsible for an average of 3.75% growth
a year– over 85% of the total amount of reallocation, and over 60% of overall productivity growth.
Calculating technical efficiency growth without taking into consideration gaps between intermedi-
ates’ revenue shares and elasticities (column 6) overstates its true contribution (column 2) by a
factor of three.

Table 3 compares the P-L decomposition to the commonly used Olley-Pakes measure. Only the
P-L approach adds up to the total productivity gains. Following Olley-Pakes leads to a calculation
that the productivity of the average plant in India decreased over the time period, and the covariance
of size and productivity increased by an average of only .15%. The correlation of annual estimated
OP and P-L productivity gains is −.06, and the correlation of the annual gains from reallocation
is −.58.

In Table A4, we show the equivalent annual averages for Table 3 using not only cost-shares
to measure production function elasticities, but also OLS and Wooldridge’s (2009) modification
of Levinsohn and Petrin (2003), using both energy and materials and proxies. The results for
P-L are fairly consistent across strategies - using W-LP suggests more reallocation than do cost
shares, while the OP results are sensitive to the choice of estimator. In Table A5, we show that our
decompositions are reasonably similar if instead of using all Indian plants, we use either of the two
samples in BKS: firms with over 200 employees, and firms who de jure were meant to be surveyed
each year (the “census” sample).

Figure 2 decomposes P-L aggregate productivity growth. In most years, reallocation contributes
the most, and reallocation of intermediates is more important than that of primary inputs.

Table A1 summarizes aggregate value added and primary input growth for the U.S., Chile,
Colombia, and Slovenia. Using the APG measure, most of the countries’ manufacturing sectors
experienced significant productivity growth over the respective sample periods: 1.95%, 2.67%,
3.73%, and 4.25% per year in the U.S., Chile, Colombia, and Slovenia, respectively.

15See, for example, de Loecker and Kornings (2006) and Bartelsman, Haltiwanger, and Scarpetta (2010).
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Table A2 summarizes the APG decomposition for the U.S., Chile, Colombia, and Slovenia.
As in the Indian manufacturing sector, reallocation of materials plays a large role in measured
aggregate productivty growth in all countries but Slovenia – respectively .63%, 1.33%, 2.26%, and
-0.57%. Brandt et al. (2012) implicitly find a similar pattern in China, since the difference between
reported average annual technical efficiency gross rates for value-added (7.95%) and that for gross
output (2.85%) is 5.11% a year.

Table A3 compares the APG and OP decomposition measures. The OP measures of total
produtivity growth – 0.11% per year for the U.S., −0.23% per year for Chile, 0.09% for Colombia,
and 0.37% for Slovenia – are lower than their APG counterparts everywhere, in particular the
latter three countries. The OP measure understates total reallocation by 1.01%, 2.56%, 5.84% and
−0.16% in the respective countries.

6 Conclusions

Recent studies have found that reallocation of resources across plants played surprisingly little
role in the large increase in aggregate productivity in India in recent years. We argue that these
findings may be an artifact of the way these studies measure the contributions of technical efficiency
growth and reallocation. Using data from five countries — India, the U.S., Chile, Colombia, and
Slovenia — we show that ignoring reallocation of intermediate inputs significantly understates the
contribution of reallocation in aggregate productivity growth, and correspondingly overstates the
role of within-plant technical-efficiency growth. In these five countries using TFP residuals instead
of marginal products of inputs underestimates the contribution of reallocation. Our findings have
broader implications for the class of reallocation estimators including Baily, Hulten, and Campbell
(1992), Griliches and Regev (1995), Olley and Pakes (1995), and Foster, Haltiwanger, and Krizan
(2001) and all of their derivatives. We find that reallocation made a large contribution to aggregate
productivity growth in the Indian manufacturing sector in recent years, thus resolving the mystery
of India’s manufacturing growth. The findings in BKS, therefore may be reversed, with reallocation
accounting for over half of APG versus the under 10% contributed by primary inputs.
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Table 1: Percentage Growth Rates of Value-Added,
Primary Input Costs and Aggregate Productivity

All Indian Manufacturing Plants, 2000–2010.
(1) (2) (3) (4) (5)

Value Production Non-production Capital APG
Year Added labor costs labor costs costs
2000 -1.22 -0.48 -0.14 0.09 -0.70
2001 4.50 -0.33 -0.15 0.39 4.59
2002 6.74 0.09 -0.08 0.54 6.19
2003 0.09 -0.55 -0.07 -0.70 1.40
2004 14.38 0.48 0.16 0.85 12.88
2005 10.90 0.18 0.08 0.64 10.00
2006 20.31 0.36 0.22 0.94 18.80
2007 9.13 0.71 0.33 1.84 6.25
2008 -0.05 0.14 0.18 1.36 -1.73
2009 3.42 0.01 0.02 1.50 1.89
2010 8.61 0.45 0.12 1.59 6.45
mean 6.98 0.10 0.06 0.82 6.00
s.d. 6.62 0.41 0.16 0.74 6.10

Note: (1) - (2) - (3) - (4)= (5)
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Table 2: Aggregate Productivity Growth Decompositions
All Indian Manufacturing Plants, 2000–2010

APG decomposition: (1) = (2) + (3)
(1) (2) (3) = (4) + (5) (6)=(2)+(5)

Aggregate Technical Reallocation Technical
Productivity Efficiency Total Primary Intermediate Efficiency

Year Growth (Value Added)
2000 -0.70 -1.84 1.14 0.39 0.75 -1.09
2001 4.59 5.48 -0.89 0.29 -1.18 4.30
2002 6.19 3.72 2.47 0.30 2.17 5.90
2003 1.40 0.20 1.20 0.43 0.77 0.97
2004 12.88 5.50 7.38 0.77 6.61 12.11
2005 10.00 8.25 1.76 0.63 1.13 9.38
2006 18.80 15.54 3.26 0.61 2.66 18.19
2007 6.25 -6.48 12.74 1.03 11.71 5.23
2008 -1.73 -8.25 6.52 0.60 5.92 -2.33
2009 1.89 -0.89 2.78 0.09 2.69 1.80
2010 6.45 -2.30 8.75 0.62 8.13 5.83
mean 6.00 1.72 4.28 0.52 3.76 5.48
s.d. 6.10 6.86 4.06 0.26 3.86 6.00

Note: Column 1 is the Petrin-Levinsohn (P-L) (2012) measure of aggregate
productivity growth. Columns 2 and 6 are P-L technical efficiency growth using,
respectively, gross output production functions and value-added production
functions, respectively. Columns 4 and 5, respectively demonstrate
the contributions of the reallocation of primary and intermediate inputs to APG
growth. Column 3 is the sum of columns 4 and 5, showing the total contribution
of reallocation. Output elasticities are estimated by revenue shares. Each column
approximates a continuous-time measure of growth using discrete-time data.
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Table 3: Aggregate Productivity Growth Decompositions
Petrin-Levinsohn vs. Olley-Pakes

Average Annual Percentage Growth Rates
Aggregate Productivity Growth Contributions from...

(1) (2) (3) (4) (5)
OP OP

APG Technical Technical Reallocation Reallocation
Efficiency Efficiency Total

Year
2000 -0.70 -1.84 1.14
2001 4.59 5.48 0.39 -0.89 2.84
2002 6.19 3.72 0.70 2.47 -2.69
2003 1.40 0.20 -2.36 1.20 -0.53
2004 12.88 5.50 -4.25 7.38 -7.58
2005 10.00 8.25 -0.59 1.76 11.05
2006 18.80 15.54 -1.08 3.26 2.84
2007 6.25 -6.48 -0.17 12.74 -6.15
2008 -1.73 -8.25 -1.97 6.52 2.07
2009 1.89 -0.89 -3.96 2.78 0.11
2010 6.45 -2.30 0.36 8.75 -0.55
mean 6.00 1.72 -1.29 4.28 0.14
s.d. 6.10 6.86 1.79 4.06 5.22

Note: Column 1 is Aggregate Productivity Growth. Columns 2 and 3
show the contribution of technical efficiency growth for, respectively,
P-L and OP. Columns 4 and 5 show the contribution of reallocation,
again respectiely for P-L and OP. Output elasticities are estimated by
revenue shares. Each column approximates a continuous-time measure
of growth using discrete-time data.
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Table A1: Percentage Growth Rates Per Year,
Value-Added, Primary Input Costs and Aggregate Productivity,
The U.S., Chilean, Colombian, and Slovenian Manufacturing.

(1) (2) (3) (4) (5)
Value Production Non-production Capital APG

Country Added labor costs labor costs costs
U.S. 1.71 -0.36 -0.03 0.15 1.95
Chile 3.10 0.29 0.01 0.13 2.67

Colombia 3.61 0.09 -0.34 0.13 3.73
Slovenia 5.76 0.37 0.05 1.10 4.25
Note: See Table 1 for details.

16



T
ab

le
A
2:

A
gg

re
ga
te

P
ro
du

ct
iv
it
y
G
ro
w
th

D
ec
om

po
si
ti
on

s
T
he

U
.S
.,
C
hi
le
an

,
C
ol
om

bi
an

,
an

d
Sl
ov
en

ia
n
M
an

uf
ac
tu
ri
ng

A
PG

de
co
m
po

sit
io
n:

(1
)
=

(2
)
+

(3
)
+

(6
)

(1
)

(2
)

(3
)

=
(4
)

+
(5
)

(6
)

(7
)=

(2
)+

(5
)

A
gg

re
ga

te
Te

ch
ni
ca
l

R
ea
llo

ca
tio

n
Fi
xe
d

Te
ch
ni
ca
l

Pr
od

uc
tiv

ity
Effi

ci
en

cy
To

ta
l

Pr
im

ar
y

In
te
rm

ed
ia
te

C
os
ts

Effi
ci
en

cy
G
ro
w
th

(V
al
ue

A
dd

ed
)

U
.S
.

1.
95

0.
84

1.
11

0.
48

0.
63

1.
47

C
hi
le

2.
67

-0
.2
2

2.
37

1.
04

1.
33

0.
51

1.
11

C
ol
om

bi
a

3.
73

0.
09

5.
78

3.
52

2.
26

-2
.1
2

2.
35

Sl
ov
en

ia
4.
25

3.
36

0.
13

0.
70

-0
.5
7

0.
76

2.
78

N
ot

e:
Fo

r
C
hi
le
,C

ol
om

bi
a,

an
d
Sl
ov
en

ia
,w

e
us
e
G
ro
ss

O
ut
pu

t
Pr

od
uc

tio
n
Fu

nc
tio

ns
es
tim

at
ed

by
W
oo

ld
rid

ge
m
od

ifi
ca
tio

n
of

Le
vi
ns
oh

n
an

d
Pe

tr
in

es
tim

at
or

(2
00

3)
.

Fo
r
ot
he

r
de

ta
ils
,s

ee
Ta

bl
e
2.

17



Table A3: Aggregate Productivity Growth Decompositions
Petrin-Levinsohn vs. Olley-Pakes

Average Annual Percentage Growth Rates
Aggregate Productivity Growth Contributions from...

(1) (2) (3) (4) (5)
OP OP

APG Technical Technical Reallocation Reallocation
Efficiency Efficiency Total

Country
U.S. 1.95 0.84 0.01 1.11 0.10
Chile 2.67 -0.22 -0.05 2.37 -0.19

Colombia 3.73 0.09 0.16 5.78 -0.06
Slovenia 4.25 3.36 0.09 0.13 0.29

Note: See Table 3 for details
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Table A4: Indian Mean Aggregate Productivity Growth Decompositions
Petrin-Levinsohn vs. Olley-Pakes

Robustness to Production Function Estimation
Aggregate Productivity Growth Contributions from...

(1) (2) (3) (4) (5)
OP OP

APG Technical Technical Reallocation Reallocation
Efficiency Efficiency Total

Elasticities:
Cost-Shares 6.00 1.72 -1.29 4.28 0.14

OLS 5.82 0.72 0.22 5.10 -0.06
Wooldridge LP-Energy 7.53 1.56 11.78 5.97 3.73
Wooldridge LP-Materials 7.37 1.31 -1.03 6.06 0.34
Note: Production functions are estimated using the method in the columns.
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Table A5: Indian Mean Aggregate Productivity Growth Decompositions
Petrin-Levinsohn vs. Olley-Pakes

Robustness to Sample
Aggregate Productivity Growth Contributions from...

(1) (2) (3) (4) (5)
OP OP

APG Technical Technical Reallocation Reallocation
Efficiency Efficiency Total

Sample
All Firms 6.00 1.72 -1.29 4.28 0.14

>200 Employees 4.84 1.00 -1.43 3.84 -0.29
“Census” Sample 5.23 1.42 -1.64 3.82 -0.08
Note: Production functions are estimated using within-sample cost-shares
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Figure 1: Value Added and Aggregate Productivity Growth, Indian Manufacturing

Note: This figure plots the aggregate estimated productivity growth measures from Table 3

Figure 2: Aggregate Productivity Growth from Reallocation, Decomposed by Source

Note: This figure decomposes reallocation and technical efficiency’s contribution to growth
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