
 
 
 
 

Firm Dynamics and Assortative Matching 
 
 

by 
 
 

Leland D. Crane* 
U.S. Census Bureau 

 
 
 
 
 
 
 
 
 
 
 

CES 14-25  May, 2014 
 

The research program of the Center for Economic Studies (CES) produces a wide range of 
economic analyses to improve the statistical programs of the U.S. Census Bureau. Many of these 
analyses take the form of CES research papers. The papers have not undergone the review 
accorded Census Bureau publications and no endorsement should be inferred. Any opinions and 
conclusions expressed herein are those of the author(s) and do not necessarily represent the 
views of the U.S. Census Bureau. All results have been reviewed to ensure that no confidential 
information is disclosed. Republication in whole or part must be cleared with the authors. 
 
To obtain information about the series, see www.census.gov/ces or contact Fariha Kamal, Editor, 
Discussion Papers, U.S. Census Bureau, Center for Economic Studies 2K132B, 4600 Silver Hill 
Road, Washington, DC 20233, CES.Papers.List@census.gov. 

mailto:CES.Papers.List@census.gov


Abstract 
 

I study the relationship between firm growth and the characteristics of newly hired workers. 
Using Census microdata I obtain a novel empirical result: when a given firm grows faster it hires 
workers with higher past wages. These results suggest that productive, fast-growing firms tend to 
hire more productive workers, a form of positive assortative matching. This contrasts with prior 
research that has found negligible or negative sorting between workers and firms. I present 
evidence that this difference arises because previous studies have focused on cross-sectional 
comparisons across firms and industries, while my results condition on firm characteristics (e.g. 
size, industry, or firm fixed effects). Motivated by the empirical findings I develop a search 
model with heterogeneous workers and firms. The model is the first to study worker-firm sorting 
in an environment with worker heterogeneity, firm productivity shocks, multi-worker firms, and 
search frictions. Despite this richness the model is tractable, allowing me to characterize 
assortative matching, compositional dynamics and other properties analytically. I show that the 
model reproduces the positive firm growth-quality of hires correlation when worker and firm 
types are strong complements in production (i.e. the production function is strictly log-
supermodular).  
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1 Introduction

Do fast growing firms hire different workers from slow growing or shrinking firms?
How do firm recruitment strategies vary with employment growth? Do more
productive workers match with more productive firms? I address these questions
empirically and theoretically. Using linked Census microdata I document a new
fact, that faster growing firms hire better workers. This suggests positive sorting
of workers across firms, a result that has been elusive in the empirical literature. I
extend the search and sorting model of Shimer and Smith (2000) to include multi-
worker firms, productivity shocks, and firm growth. Once solved the extended
model turns out to be highly tractable and yields analytical comparative statics.
The model tightly links firm employment growth to productivity and the quality of
hires, and I show that the empirical correlation can be reproduced if the production
function exhibits strong complementarities between firm and worker types.
My focus is on how workers of differing productivity sort across firms in a non-
random way. Textbook search models (e.g. Pissarides (2000) Chapter 1) assume
homogenous workers and firms in order to focus on the number of workers em-
ployed, rather than the exact sorting of workers across jobs. Many authors have
extended the bare bones model to capture heterogeneity in worker productivity or
firm productivity, but less often both. This has been partially due to the difficul-
ties of measuring sorting empirically and modeling it in a tractable way. However,
significant dispersion in productivity across workers and firms has been well doc-
umented, and there is abundant anecdotal evidence of workers and firms sorting
according to productivity. This evidence suggests that worker-firm sorting has
potentially significant consequences both empirically and in terms of welfare.
Recently, the increased availability of matched employer-employee data and the
seminal contribution of Abowd, Kramarz and Margolis (1999) (AKM hereafter)
have brought renewed interest to measuring and modeling sorting in the labor
market. AKM jointly estimate worker and firm fixed effects from linked wage
data. The estimated worker and firm effects may be interpreted as estimates of
worker and firm productivity. Attention has centered on the question of positive
assortative matching. Under positive assortative matching, or assortative match-
ing for short, the best workers match with the best firms and the worst workers
match with the worst firms. Negative assortative matching obtains when the
worst workers match with the best firms, and the best workers with the worst
firms. Perhaps surprisingly, AKM and the large subsequent empirical literature
found mixed evidence of positive assortative matching. Authors have proposed a
number of explanations, including match effects, limited mobility bias, and non-
monotonicity of wages in firm productivity. All three may be serious issues, and
it appears infeasible to simultaneously correct the AKM estimator along all these
dimensions.
In this paper I use a different methodology and reach different conclusions. I find
that, conditional on observable firm characteristics, faster growing firms tend to
hire more productive workers. This suggests a kind of positive assortative match-
ing, where fast growing and more productive firms match with more productive
workers. My results contrast with much of the previous literature. The different
results are due to a difference in methodologies. In my baseline specifications I
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condition on a variety of firm characteristics, including industry, size, and firm
fixed effects. The positive correlation changes dramatically when firm character-
istics are not controlled for. Without firm characteristics the relation between
firm growth and worker quality is highly nonmonotonic with a maximum around
zero growth. This result echoes the findings in the previous literature, which have
generally not conditioned on firm characteristics, and found mixed evidence of
positive sorting.
I attribute these differences to segmentation in the labor market. When I condi-
tion on firm characteristics I implicitly compare firms to very similar firms, which
are likely to inhabit similar labor markets.1 Thus the baseline specifications, con-
trolling for industry and other characteristics, pick up positive sorting within each
segment of the labor market. The best doctors work for the best hospitals, the
best pilots work for the best airlines, and so on. When I do not control for firm
characteristics I am comparing nurses to pilots and hospitals to airlines. Given the
significant differences in technology and human capital between sectors it is pos-
sible that sorting patterns between sectors differ from those within sectors. This
argument suggests that while assortative matching may be the norm within any
given labor market, the distribution of workers and firms across markets need not
be assortative. Informally, intuition about assortative matching is based more on
examples of specific industries or occupations, rather than economy-wide match-
ing patterns. Thus it need not be surprising that I find evidence of positive sorting
within narrow markets, but neither I nor the related literature find clear evidence
of positive sorting across the entire economy.2

A second important difference between my work and the previous literature is that
I focus on firm employment growth. There is little, if any, previous research on how
the quality of hires changes as a firm’s employment growth varies. Firm growth is
important to understand in its own right, but also serves as a plausible proxy for
firm productivity. The measurement of firm productivity is critical for studying
assortative matching. Recent papers have argued that the AKM fixed effects do
not necessarily capture firm productivity. In my data I cannot measure produc-
tivity directly, so I propose firm growth as a proxy for firm productivity. This
connection is supported by the extensive literature showing that more productive
firms tend to grow relative to their less productive peers (See Bartelsman and
Doms (2000), Foster et al. (2001), Foster et al. (2013) and the related literature).
Firm growth also has the advantages of being trivial to compute and exhibiting

1Controlling for industry, size and location clearly narrow the scope of comparison towards
a single labor market. Including firm fixed effects makes the scope of comparison a single firm
(using only time variation). This may seem to be a different kind of approach from controlling
for industry, size, etc. However, we can interpret firm fixed effects as controlling for unobserved
firm characteristics. It is highly doubtful that firm characteristics observable in the data are
sufficient to precisely identify the labor market the firm faces. Under the assumption that firms
do not jump between markets often, firm fixed effects are an effective means to proxy the firm’s
market in the absence of more detailed firm characteristics.

2A closely related issue is whether we can meaningfully rank workers and firms in disparate
markets according to productivity. It is straightforward to construct at least a partial order of
doctors or of pilots, but more difficult to compare productivity across occupations. When skill is
multi-dimensional the assortative matching model is not appropriate, since it presumes a scalar
worker (or firm) productivity variable. A generalized Roy model may be more appropriate when
comparing different sectors.
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significant time variation. Previous studies have abstracted from firm productivity
dynamics, and thus do not use exploit the time dimension when studying sorting.
The presence of time variation also allows me to use firm fixed effects as controls
in some specifications.3

In addition, I use lagged worker wages to measure worker quality rather than
AKM worker fixed effects. This is again motivated by questions regarding the
consistency of the AKM fixed effects. Using lagged worker wages raises a number
of potentially serious measurement issues, which I address in Section 2. Chief
among these concerns is that on the job search generates a correlation between
lagged and current wages independent of any worker productivity effects. I discuss
this issue in detail in Section 2 and argue that this problem can be overcome by
focusing on workers hired from nonemployment, as I do.
Motivated by the empirical findings, I develop a theory of sorting with search fric-
tions and productivity shocks. My focus is on characterizing equilibrium matching
patterns within a single market, and finding conditions under which (1) better
workers match with better firms, (2) better workers match with faster growing
firms. The model incorporates costly search, wage bargaining, ex-ante hetero-
geneity in worker and firm productivity, productivity shocks, and multi-worker
firms. To my knowledge this is the first paper to characterize sorting in such an
environment. Despite its richness the model is tractable, and I analytically derive
restrictions on the production function which ensure that in equilibrium faster
growing firms hire better workers, reproducing the empirical findings. The argu-
ment requires two steps. First, I show that strong production complementarities
between worker and firm type (i.e. strict log-supermodularity of the production
function) ensure positive assortative matching: better workers match with better
firms. Second, I show that under positive assortative matching better firms are
also faster-growing. This point, while intuitive, is not trivial to prove when work-
ers are heterogeneous. Taken together these results imply a positive correlation
between firm growth and the quality of hires as well as assortative matching by
types.
An important feature of my model is that firms can employ multiple workers,
whereas Shimer and Smith (2000) and others focus on single worker firms, or firms
that cannot freely post additional vacancies. This difference turns out to matter
a great deal. The reason is that when firms can post additional vacancies they
have no opportunity cost of hiring a given worker. A central feature of the Shimer
and Smith (2000) model is that both parties face a tradeoff between matching
immediately or waiting for a better partner. If firms can employ multiple workers,
they can hire a given worker today and continue searching (posting vacancies) in
subsequent periods. This, along with linear production, eliminates the opportunity
cost of hiring of for firms that are in contact with workers, greatly simplifying the
analysis. This tractability allows me to explore other aspects of the model. I show

3A potential concern with using employment growth to proxy productivity is that produc-
tivity growth may be caused by or concurrent with downsizing of the workforce. In such a case
employment growth and productivity would be negatively correlated. While there is no doubt
that there are examples of this phenomenon, it seems unlikely that productivity-enhancing down-
sizing is more common than newly-productive firms adding to their workforce. This is one area
for future research.
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analytically how quality of newly hired workers relates to the quality of incumbent
workers at a firm, and how changing the frequency of productivity shocks changes
matching patterns. These implications have not been well studied in the literature,
and represent avenues for future research.
This paper also addresses the question of recruiting intensity. The recent work of
Davis et al. (2013) has called into question some of the basic assumptions of the
workhorse search model. They find that fast growing establishments tend to fill
their job openings more quickly. This is at odds with the textbook search theory,
which assumes the vacancy fill rate is exogenous to the firm and consequently
employment growth is linear in vacancy postings at the firm level. The conclusion
of Davis et al. (2013) is that firms are using other margins to attract workers,
besides simply posting more vacancies. These margins may include advertising
intensity, selectivity, or wage offers. The results in this paper show that selectivity
does indeed change with firm growth, but not in the direction one might expect:
faster growing firms hire better workers on average. The theory reconciles the two
empirical results through the wage margin. According to the theoretical model, a
faster growing firm is willing to pay higher wages to all workers. Under positive
assortative matching this allows the firm to attract high-type workers, while they
continue to hire low type workers at the same time. Thus, faster growing firms
fill vacancies faster by offering better wages and hiring more of the workers they
meet.

1.1 Literature Review

The empirical literature on assortative matching in the labor market has developed
quickly since Abowd et al. (1999). They used linked employer-employee data,
similar to mine, to estimate worker and firm fixed effects. For example, if wijt is
the log wage of worker i at firm j in period t and xit is a vector of time-varying
worker characteristics, an AKM regression has the form

wijt = xitβ+ θi+ψj + εijt

where εijt is an error term and θi and ψj are worker and firm fixed effects that can
be estimated under some mild identification assumptions. The estimated worker
fixed effect θ̂i measures how much more or less the worker is paid relative to his
coworkers (holding xit constant). The firm fixed effect ψ̂j measures the aver-
age wage premium the firm pays, compared to other firms. If θi reflects worker
productivity and ψj firm productivity then the empirical correlation Corr

[
θ̂i, ψ̂j

]
measures whether good workers match with good firms. If Corr

[
θ̂i, ψ̂j

]
is large

and positive, then productive workers tend to end up at productive firms. If is
it close to zero then workers are not strongly sorted across firms. AKM found
Corr

[
θ̂i, ψ̂j

]
to be small and negative. Subsequent work (see Abowd et al. (2002),

Susana Iranzo and Tosetti (2008), Andrews et al. (2008), Woodcock (2008), Lopes
de Melo (2013)) largely confirmed AKM’s finding in other data sets, finding neg-
ative or small positive correlations between worker and firm effects. These results
have been especially puzzling given our tacit intuition that positive sorting is the
norm, as least in some markets.
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Many criticisms have been made of the AKM methodology as applied to sort-
ing. Researchers have corrected the AKM methodology to address three major
issues: Andrews et al. (2008) and Andrews et al. (2012) study limited mobility
bias, Woodcock (2008) takes account of match effects, while Lopes de Melo (2013)
addresses nonmonotonicity of wages in firm type.4 See also Abowd et al. (2012),
who interpret the AKM fixed effects in the context of Shimer (2005)’s directed
search model. Each of these papers uses a variant of the AKM methodology cor-
rected for some possible biases, while abstracting from the other issues. It appears
infeasible to correct the AKM estimator for all three issues simultaneously. Non-
monotonicity of wages has received the most attention in the literature, perhaps
reflecting a belief that it is a more serious problem than limited mobility bias and
match effects. In an important contribution, Lopes de Melo (2013) shows that
when the data is generated from a search model such as Shimer and Smith (2000),
the AKM firm fixed effects are poor proxies for firm productivity. However, esti-
mated worker effects appear to accurately reflect worker productivity. Lopes de
Melo (2013) shows that in Brazilian data workers with high fixed effects tend to
work in firms with other high fixed effect workers. In other words, workers are
clustered with similar coworkers. This implies a kind of sorting, but without ac-
curate firm productivity data we cannot tell how the workers are sorting. It might
be that the best workers are clustered at the worst firms, or workers may be clus-
tered according firm characteristics unrelated to firm productivity. To summarize,
there are several potentially serious problems with using the AKM fixed effect
methodology to study sorting. These issues have been addressed separately, but
their interactions have not been explored. Correcting for the most serious issue,
nonmonotonicity of wages, comes at the cost of only being able to study clustering
of workers with similar coworkers, instead of studying sorting of workers across
firms of different productivity.
Here I contribute to the literature by proposing an alternative way to identify
sorting. I use firm growth to proxy firm productivity and lagged worker wages to
proxy worker productivity. These measures have the advantages of being directly
observable in the data. In my specifications I find evidence of positive sorting
that is independent from the criticisms of the AKM fixed effect methodology. Of
course, I face other measurement issues of my own, which I address in Section 2.
Other researchers have departed from the AKM methodology and used other data
to identify sorting. Bartolucci and Devicienti (2012) use firm balance sheet data
to measure firm type directly. Lise et al. (2013) present an original strategy, using
a method of simulated moments estimator to measure sorting from longitudinal
worker data without links to firm data. They argue that assortative matching
can be identified from the profile of worker wages after a spell of unemployment.
Intuitively, workers exiting unemployment tend to be mismatched, and the cross
sectional distribution of wages will be compressed. As time passes job to job
transitions should result in better wages for all workers. If sorting is important
then then productive workers should experience more wage growth, as the degree
of mismatch is reduced. Then assortative matching may be identified by the

4Eeckhout and Kircher (2011), Lise et al. (2013), Hagedorn et al. (2012) and Bagger and
Lentz (2012) also discuss nonmonotonicity of wages, but do not propose any correction to the
AKM methodology.
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spreading out of wages across workers after an unemployment spell. Since they
rely on worker side data only, they use the structure of their model to infer the sign
and strength of assortative matching. To keep the model tractable they are forced
to abstract from human capital accumulation, which may also produce a spreading
out of wages. In contrast, I exploit the matched nature of my data to measure
sorting in an arguably more direct fashion. My proxy for worker productivity is a
lagged moving average of wages, which allows human capital to evolve over time.
In addition, Lise et al. (2013) abstract from firm growth, which is part of my focus.
In closely related work, Bagger and Lentz (2012) propose a structural search model
and estimate it on linked Danish data. The model is based on Lentz (2010), where
worker search intensity is endogenous. With complementarities in production,
high productivity workers gain more from searching on the job, and consequently
search more intensely and tend to match with better firms faster. Firm dynamics
and productivity shocks are not modeled. Their estimation of the model requires
a large number of auxiliary models and moments. My work complements theirs by
focusing on directly observable moments in the data and presenting an alternative
theoretical model. While Bagger and Lentz (2012) focus on search intensity and
search while employed, I focus on transitions from unemployment and the role of
firm dynamics.
The theoretical literature on assortative matching has grown along with the ap-
plied literature. In his influential study, Becker (1973) examined assortative
matching in the context of a frictionless marriage model with transferable util-
ity. Shimer and Smith (2000), Shi (2001), Shimer (2005), Atakan (2006), and
Eeckhout and Kircher (2010) reexamine Becker’s results under various kinds of
search frictions, while maintaining the assumption of one-to-one matching and no
productivity dynamics. Usually stronger forms of complementarities are needed to
ensure sorting when agents face search frictions. In my theoretical work I extend
the widely used model of Shimer and Smith (2000) to incorporate multi-worker
firms and firm productivity shocks. I find that introducing multi-worker firms
considerably simplifies some of the technical complications in Shimer and Smith
(2000), allowing me to characterize matching patterns and derive comparative
statics in a straightforward fashion. Lentz (2010) and Bagger and Lentz (2012)
discuss a similar tractability result in a different model, but do not address the firm
dynamics that are my focus. Lise and Robin (2013) and Eeckhout and Kircher
(2012) also allow for multi-worker firms, but again abstract from idiosyncratic
firm dynamics. Lise et al. (2013) allow for match productivity shocks in a sorting
model, but do not present analytical results and do not use data that (directly)
measures firm dynamics. To summarize, I contribute to this fast-growing liter-
ature by modeling sorting with multi-worker firms that experience productivity
shocks, and deriving analytical results.
A relatively new literature studies how firms fill job openings. Davis et al. (2013)
document that faster-growing firms fill their vacancies more quickly. This suggests
that growing firms are using other margins to attract workers, besides just posting
more job openings. Kaas and Kircher (2011) develop a theoretical directed search
model, where growing firms post higher wages to attract homogeneous workers
more quickly. Belzil (2000) documents that faster growing firms do indeed seem
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to pay identical workers higher wages.5 Brown and Matsa (2012) show that job
postings of financially distressed firms attract fewer and less qualified applicants,
suggesting that a shrinking, distressed firm will have to wait longer to fill its
vacancies. In this paper I develop a related point, that fast growing firms hire
better workers. By itself, this does not address vacancy fill rates. But my theory
implies that fast growing firms pay better wages (similar to Kaas and Kircher
(2011), albeit in a random search context) and are thus able to hire more of the
workers they meet, increasing the speed with which vacancies fill.
Firm employment growth is the first difference of firm size, so my work on firm
growth is related to the extensive literature on firm size and wages (see Brown and
Medoff (1989) and Abowd et al. (1999), Oi and Idson (1999) and Gordanier (2012)
among others). This literature has typically found that larger firms pay more and
employ better workers, according to a variety of measures. This is consistent with
my finding that faster growing firms (i.e. firms that are getting larger) hire better
workers. However I find that the firm size and firm growth effects are distinct,
since the growth effect survives the inclusion of firm fixed effects and controls
for (beginning of period) firm size. In contrast, firm size effects are imprecisely
estimated and ambiguously signed in this specification. This pattern suggests that
part of the positive worker quality-firm size correlation found in the literature is
due to unobserved time-invariant firm characteristics, rather than a firm’s size
at any particular point in time. This is consistent with models in the literature
where firm size proxies productivity, opportunities for workers to specialize, or
other unobserved characteristics.
Finally, there has been some attention devoted to the hiring policies of start-
ups (see Dahl and Klepper (2007)) and high-growth firms (see Coad et al. (2011)).
These papers study the correlation between indicators of a firm’s long run prospects
(long run growth, for example) and the characteristics of their hires. In other words
they study primarily cross-sectional differences in hiring. In contrast, my focus is
on within firm variation in growth and worker productivity. In addition, I empha-
size the need for nonparametric methods to accurately identify the relationship
between growth and quality of hires. Some of the most interesting findings in
Section 2.4 are highly nonlinear relations that would not be detected in a linear
specification.

2 Empirics

My interest is in the relationship between firm growth and the productivity of new
hires. I will show that when a given firm grows faster, it hires more productive
workers. The productivity of the new hires is a characteristic of the workers
themselves, not the firm they are hired into. To identify this phenomenon I need
to measure firm growth and the productivity of newly hired workers. In addition,
the data allow me to control for a number of observable and unobservable firm
characteristics. Controlling for firm characteristics is critical to properly measuring
the ceteris paribus impact of a change in firm growth on the quality of hires.

5Belzil uses Danish administrative data on matches and wages. The LEHD, which I use,
only has quarterly earnings (and no hours data) so I cannot replicate Belzil’s wage results.
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I take the quality of new hires to be the dependent variable, and regress it on firm
growth and a vector of controls. The empirical specification has the form

Qj,t =m(gj,t) +βZj,t+ εj,t

where Qj,t is a measure of the productivity of new hires at firm j in period t, gj,t
is the employment growth rate of firm j in period t, Zj,t is a vector of control
variables, and εj,t is the error term. The vector β are the coefficients on the
controls and m(·) is an unknown function to be estimated. The function m(·)
summarizes the relationship between firm growth and the quality of hires, so it is
the focus of what follows.
The main research question is what happens to Qj,t when gj,t changes, holding
all else constant. Thus it is important that Zj,t include extensive controls for
firm characteristics. The data I use includes industry, location, size and some
other firm information. However, there is likely to be a large amount of unob-
served firm heterogeneity imperfectly correlated with these characteristics. This
cross-firm heterogeneity in growth rates and Qj,t will bias any estimate of m(·).
Motivated by this concern I include firm fixed effects in my main specifications.
These specifications use only within firm variation to identify m(·), and are thus
robust to unobserved cross sectional heterogeneity. Inclusion of firm fixed effects
brings the empirical specification closer to the thought experiment of the ceteris
paribus impact of a change gj,t on Qj,t.
It is straightforward to construct a firm employment growth variable, gj,t, from
the data. More complicated is the construction of Qj,t, the productivity of new
hires. In this context worker productivity are those characteristics that make
the worker more productive regardless of job. Thus Qj,t does not include match-
specific productivity, or characteristics that are only valued by a narrow range of
jobs. In the theoretical part of this paper I capture productivity by assuming that
a higher “type” worker produces more on any given job than a low type worker.
Thus, high type (high productivity) workers have an absolute advantage in all
jobs. This simple setup ensures that the ranking of workers is unambiguous, and
is widely used in the literature.
Intuition and the models discussed in Section 1.1 suggest that high productivity
workers should earn more on average. If a worker produces more in all jobs, he
ought to earn at least as much as a lower productivity worker. Then a worker’s
average earnings are a noisy proxy for his productivity. My measure of the quality
of hires is based on this idea. I build the quality of hires variable in two steps.
First, I construct a productivity measure for each worker in each period. Since my
data are quarterly this gives me a measure of a worker’s productivity in each quar-
ter. This measure is essentially a backward looking moving average of earnings.
Second, I find the set of workers hired by firm j in quarter t, and average their
productivity measure. This gives me the average productivity of workers hired by
the firm in that quarter.
Formally, let

qi,t = 1
8

8∑
k=1

earni,t−k (1)

where qi,t is the worker’s measured quality, and earni,t−k is the worker’s total
earnings (in all jobs) in quarter t− k. qi,t is thus a two year lagged moving
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average of earnings. I have experimented with longer and shorter moving averages
and found no significant effect on my results. Longer horizons for the moving
average reduce the noise from search frictions, unpaid leave, and firm-level shocks.
However, when there is human capital accumulation (and depreciation) the most
recent earnings are the best indicators of current productivity. The eight quarter
horizon was chosen to balance these two concerns.
Let Hj,t be the set of workers hired by firm j in period t. Then my quality of hires
variable can be written as

Qj,t = ln
 1
|Hj,t|

×
∑
i∈Hj,t

qi,t

 .
This is simply the log average of qi,t over the set of hires. In practice I will
use several variants of Qj,t to address concerns about measurement and selection.
These variants are denoted by superscripts.

2.1 Nonparametric Estimation

Given gj,t, Qj,t and Zj,t I am prepared to estimate m(·). As will be made clear
in the results section m(·) is highly nonlinear, so a linear regression is inappropri-
ate. Here I follow Davis et al. (2013) and reformulate the problem as a dummy
variable regression. Intuitively, the idea is to partition the domain of m(·) into
narrow intervals (one percentage point wide in my application) and create indica-
tor variables for each interval, or bin. An indicator variable is set to 1 if gj,t falls
into the bin and zero otherwise. Then I regress Qj,t on the full set of indicator
variables and Zj,t. The coefficient on a given indicator is then the sample average
of m(·) within that bin conditional on Zj,t.6 Plotting the bin coefficients yields
an estimate of m(·) on a discretized domain. where fi are dummy coefficients
to be estimated. All reported regressions are weighted by the number of hires.
Unweighted and employment weighted results are similar.

2.2 Measurement and Selection Issues

Before turning to the data and results, there are several potential measurement
problems that must be addressed. I show how alternative samples and dependent
variables can be used to avoid some measurement problems. Where there are not
good alternatives, I present evidence that the problems are not too severe in the
data.
Recall that Qj,t is the log average of worker’s earnings in all quarters, regardless
of whether they were employed. In other words, it captures average earnings, not

6This formulation is similar to but distinct from more standard nonparametric methods,
such as kernel regression. I am using comprehensive administrative data and include firm fixed
effects in my regressions, which can result in millions of fixed effects. Under these circumstances
estimating ordinary least squares requires special procedures. Estimating a kernel regression
in the presence of this many fixed effects would not be feasible without additional specialized
software. Ultimately, the dummy variable regressions are a convenient way to capture the shape
of the relationship.
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average earnings while employed. This choice is motivated by the fact that the
extensive margin contains information about a worker’s productivity. If a worker
is unable to find a job, it tells us he may not be a high quality employee. In
addition, in theoretical models average lifetime earnings are monotone increasing
in worker productivity, but earnings while employed may not be. However, if
shocks unrelated to worker productivity (e.g. health shocks or fertility) move the
worker in and out of employment, then average earnings may not be an accurate
proxy for productivity. To examine this possibility I use a measure of worker
quality that excludes nonemployment. As an alternative to qi,t I define

qFQi,t =
∑8
k=1 earn

FQ
i,t−k∑8

k=1 1
{
earnFQi,t−k > 0

}
where earnFQi,t is the earnings of the worker in jobs that lasted all of quarter
t. Thus, periods of nonemployment and partial employment are excluded. The
corresponding quality of hires measure is

QFQj,t = ln

 1
|HFQ

j,t |
∑

i∈HF Q
j,t

qFQi,t

 (2)

where HFQ
j,t is the subset of hires that had at least one quarter of full quarter

employment in the previous two years. I report regressions using both all quarter
earnings and full quarter earnings.7 While the magnitudes of the effects differ, the
qualitative patterns are insensitive to the choice of variables.
Relatedly, note that qi,t will be a poor measure of productivity for new entrants
to the full time labor force. Recent high school or college graduates will have zero
or low lagged earnings for reasons unrelated to their desirability as workers. To
mitigate this problem I only consider hires of workers aged 26 or older. The results
are not sensitive to dropping this restriction, or replacing it with a requirement
that the worker have positive earnings two or more years before being hired.
Next, there is a clear endogeneity issue when the worker’s wages depend on the
firm they work for. For example, if fast growing firms pay more, then wages of
current employees will be positively correlated with firm growth, even if there are
no differences in worker productivity. This concern motivates my use of a lagged
moving average to measure the quality of new hires. Qj,t contains only wages
from periods t− 1 and earlier, before the workers were hired by firm j. Thus
fluctuations in firm j’s wages do not directly contaminate Qj,t.
However, we might be concerned about the workers’ previous employers. qi,t is a
function both of a worker’s inherent productivity as well as their luck in the labor
market. As emphasized by the voluminous wage dispersion literature,8 workers of

7Both QF Q
j,t and Qj,t involve taking a logarithm of earnings, so observations where the firm

only hires zero-earnings workers are dropped. It might be wondered whether this creates a selec-
tion problem. Alternative specifications suggest that this is not a serious problem. In particular,
the empirical results are largely unchanged when I use the raw average of worker earnings as the
dependent variable. The same applies for the inverse-hyperbolic sine transformation.

8See Mortensen (2003) and the literature reviewed therein. Burdett and Mortensen (1998)
and Moscarini and Postel-Vinay (2013) each present models where homogeneous workers are
paid differently.
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identical productivity may be paid different wages depending on which employers
they find. Equally productive workers will have different qi,t because they had
different previous employers, and have spent different durations in nonemploy-
ment. Thus we should think of qi,t as measuring the worker’s true productivity
plus some noise. Measurement error alone in qi,t will not likely cause serious bias,
since qi,t goes into the dependent variable in my regressions.9 But with on the
job search there is reason to think that a worker’s lagged wage, including the
“luck” component, influences his choice of whether to be hired. In particular,
if a worker has a continuing job in period t− 1, his wage at that job can act
as a reservation wage: workers will refuse any offer below what they currently
earn. If firm wages are positively correlated with firm growth (as Belzil (2000)
documents) then only a fast growing firm will be able to hire the worker away
from the current employer. This means that the occurrence of a hire depends on
the worker’s t− 1 wage, including any luck component of the wage. Thus, faster
growing firms will hire more workers from high wage firms, regardless of worker
productivity. This creates a positive correlation between firm growth and Qj,t,
independent of any true differences in worker productivity. To address this issue
I restrict attention to hires from nonemployment.10 Nonemployed workers do not
have a current wage to act as a threat point, and so their choice of whether to be
hired is a function of their productivity, not their (random) current employer. All
the empirical results reported below calculate Qj,t and QFQj,t on the subset of hires
that came from nonemployment. Results including job-to-job hires (not reported)
are qualitatively similar.
Variation in the reservation wage is another possible concern. It may be that
workers with high lagged wages have higher reservation wages even after entering
nonemployment. This could be because the worker falsely believes, based on their
previous luck, that they can find another high wage job easily (see Hogan (2004)).
Or it could simply be that some workers value leisure more, and so demand higher
wages. These mechanisms will induce a positive correlation between lagged earn-
ings while employed and firm growth, since only high growth, high wage firms
can meet the reservation wages of these workers. But these mechanisms would
also induce a weaker or negative correlation between lagged all quarters earnings
and firm growth, since the more selective workers would spend more time unem-
ployed. My empirical results run opposite to this prediction. I find that both all
quarters earnings and full quarters earnings are positive functions of firm growth,
and that all quarters earnings increase faster than full quarter earnings. Thus,
while I cannot rule out variation in reservation wages, my results are inconsistent
with reservation wages being the dominant force relating firm growth to measured

9Qj,t is a nonlinear transformation of qi,t, so measurement error is not entirely innocuous.
But note that the hire occurs at a large firm hiring multiple workers simultaneously. As more
workers are hired, (uncorrelated) measurement error averages out of 1

|Hj,t|
×
∑

i∈Hj,t
qi,t before

the log transformation.
10The LEHD data I use only include data on employment status, not search activity. Thus

I cannot distinguish between unemployed workers and those out of the labor force. All workers
without jobs are taken together as nonemployed. Information on search activity would be useful
for my purposes, but not critical. Recent work has shown that while self-reported search activity
does predict future employment status, the link is noisy and unstable over time. Workers who
exit the labor force are more likely to have low productivity, which my quality measure qi,t will
capture.
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worker quality.

2.3 Data and Sample

I use the linked employer-employee data from the Longitudinal Employer-Household
Dynamics (LEHD) program at the U.S. Census Bureau. These files are derived
from state level unemployment insurance records, which require firms to report
quarterly wage and salary earnings of each covered employee to the state unem-
ployment agencies. The main LEHD files consist of these earnings records, along
with worker identifiers and firm identifiers. Limited worker and firm characteris-
tics are also included. The worker identifiers are consistent across firms, time and
states, so it is possible to identify the same worker at different points in time, or at
different firms. The firm identifier, called a state employer identification number
(SEIN) is similarly consistent across time, allowing me to follow an SEIN over
time. I will use the SEIN as my firm concept in this paper.11

Importantly, the LEHD files cover the vast majority of private non-farm jobs.
Estimates put the coverage of such jobs at 96%. The main exclusions are federal
workers, agricultural workers, and the self-employed. I draw firm (SEIN) data from
six states: DE, IL, OH, IN, WI, VT. Importantly, when I construct worker earnings
histories I draw on data from all states participating in the LEHD. This means
that if a worker moves from New York and is hired by a firm in Chicago I include
their New York earnings history in qi,t. My sample period runs from 2000:Q1
through 2008:Q2, the last quarter of data available in the research snapshot I use.
The results are not sensitive to the inclusion of the Great Recession.
I use as broad a sample as possible. In the reported results I only drop quarters
where a given firm enters or exits, since there is good reason to think that selec-
tivity and growth are determined by other factors in those quarters. The results
are qualitatively unchanged when much more stringent restrictions are imposed.
The construction of firm growth, hires from nonemployment and other variables
requires some data processing. The main issue is accounting for the fact that the
LEHD variables are reported quarterly, so they do not necessarily approximate
high frequency, point-in-time data. For example, the raw LEHD earnings records
for a quarter include all workers employed for any duration at a given firm in
a given quarter. This does not necessarily reflect the firm’s actual employment
at any point in time during the quarter. The solution is to define “beginning of
quarter” and “end of quarter employment”.12 In quarter t the beginning of quarter
employment is the number of workers observed to work at the firm both in t− 1
and t. End of quarter employment is the number of workers employed both in

11The SEIN identifies the reporting entity for UI purposes. In single unit firms, the SEIN
is synonymous with the firm. However, multi-unit firms may have several SEINs, and each
SEIN may include several establishments (though the same establishment is never a part of two
SEINs). Thus, a SEIN falls somewhere in between an establishment and a firm. My results
are qualitatively unchanged if I restrict the sample to include only SEINs that did not report
a change in the number of establishments. This sample restriction brings the data as close as
possible to an establishment definition.

12See http://lehd.ces.census.gov/doc/QWI_101.pdf for further documentation, and the use
of these concepts in public-use data.
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Variable Mean Std.
Dev.

Hires Rate 0.17 0.25
Separation Rate 0.17 0.24
Employment Growth Rate 0.00 0.19
NE share of hires 0.53 0.22
EE share of hires 0.22 0.20

Table 1: Worker Flows

t and t+ 1. These measures more or less reflect firm employment on the first
and last day of the quarter. Additional data processing details are in Appendix
Appendix A.
Table 1 presents employment weighted summary statistics on worker flows in my
sample. As has been well documented, these flows are large: a firm typically
hires and separates 17% of its workforce over the course of a quarter. The exact
values are somewhat lower than those reported in Lazear and Spletzer (2013)
(who use similar data), in part because I exclude entry and exit quarters. Average
employment growth is indistinguishable from zero. This is partially a reflection
of the states in the sample, and again partially due to my exclusion of entry and
exit quarters. Importantly, the standard deviation of employment growth is 19
percentage points. To exclude outliers I will focus on the interval between -30%
and 30% growth in my graphical results.
The last two rows of Table 1 report the share of hires that come from nonem-
ployment (NE Hires) and from other jobs (EE Hires). NE hires account for 53%
of total hires, while EE hires account for 22%.13 The remainder are hires that
could not clearly be assigned to either of these categories. The shares of hires
from nonemployment and employment are roughly in line with those reported by
Fallick and Fleischman (2004) and Bjelland et al. (2011).
Table 2 reports summary statistics for the characteristics of new hires. The top
two rows summarize the main dependent variables in the regressions: log average
earnings (Qj,t) and log average full quarter earnings (QFQj,t ). Recall that these
are logged averages of newly hired workers’ lagged wages. They are calculated
using only hires from nonemployment, to mitigate the selection concerns raised
in Section 2.2. The sample average of Qj,t is 8.06, while the average of QFQj,t
is 8.82. The difference between the two implies that, roughly speaking, average
earnings while employed are 80% greater than average total earnings. Turning
to the last two rows, this difference is clearly attributable to the fraction of time
workers spend employed. “Fraction of Quarters Employed” is the average fraction
of quarters a new hire had any employment. Like Qj,t and QFQj,t , this fraction is
calculated on the 8 quarter lagged window. “Fraction of Quarters Fully Employed”
is the fraction of quarters the worker held a job throughout the entire quarter. The
means show that newly hired workers (from nonemployment) spent between 40%

13Some of these are workers who held a job for several periods, then were hired at a new firm
but continued working at their old job. I exclude these workers for the same reason I exclude
EE hires, to avoid the selection effect of lagged wages.
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and 57% of the past 2 years at work. This explains the significant differences in
the levels of Qj,t and QFQj,t , since only Qj,t includes time spent nonemployed.

Variable Mean Std.
Dev.

Qj,t 8.06 1.03
QFQj,t 8.82 0.70
Fraction of Quarters Employed 0.57 0.21
Fraction of Quarters Fully Employed 0.40 0.18

Table 2: Characteristics of New Hires

2.4 Results

In my baseline specifications I estimate m(·) using Qj,t and QFQj,t as the dependent
variables. In Zj,t I include an extensive set of controls, including location (state),
industry, quarter, interactions of all three, flexible controls for firm size, interacted
industry and seasonal dummies, and firm fixed effects.14 After these controls are
included, m(·) is identified by within firm variation that is not correlated with
aggregate, industry or location effects. Figure 1 plots the estimates of m(·) using
Qj,t and QFQj,t as the dependent variables. The horizontal axis is firm employment
growth, restricted to the [-30%,30%] interval. The vertical axis measures Qj,t (All
Quarter Earnings) and QFQj,t (Full Quarter Earnings). The estimates of m(·) have
been normalized to average zero on the interval [-30%,0].15

For both specificationsm(·) is relatively flat when growth is negative, but increases
when growth is positive. Both relationships are overwhelmingly statistically sig-
nificant. The t-statistic for the average slope on the [-30%,30%] interval is 9.37 for
QFQj,t and 40.98 for Qj,t. Thus the positive average relationships shown in Figure
1 are significant well beyond conventional thresholds.
In terms of magnitudes, the results for Qj,t imply that when a firm goes from
zero growth to 30% growth they hire workers with roughly 9% higher lagged
earnings. Using QFQj,t , the same change in employment growth leads to a 2%
increase in lagged full quarter earnings. While both are statistically significant,
the magnitude of the effect for Qj,t is larger. This is due to the inclusion of
nonemployment. When a firm grows more quickly, they not only hire workers
with higher wages in their old jobs (the QFQj,t results), but they also hire workers
who have experienced less nonemployment.

14Firms change industries, so industry is not perfectly collinear with the firm fixed effects.
The interactions of industry with other variables are decidedly not collinear with firm fixed
effects.

15For ease of presentation Figure 1 shows the three bin moving average of m(·), rather than
the raw estimate. This has the effect of smoothing the relationship slightly, but this effect is
quantitatively and qualitatively insignificant.
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Figure 1: Baseline Specification

It might have been expected that increased firm growth would be associated with
lower quality of hires, as growing firms exhaust their pool of potential employees
and are forced to lower hiring standards. The results in Figure 1 show this is
decidedly not the case. Instead, the results appear to support positive assorta-
tive matching. Firms which grow more quickly are presumably more productive,
and are observed to be hiring more productive workers. In other words better
workers sort themselves into more productive firms. As discussed earlier, the em-
pirical literature has had difficulty identifying assortative matching. This paper
contributes to that literature by showing evidence of assortative matching from a
novel specification.
The results in Figure 1 and the associated t-tests establish that, conditional on
the control variables (Zj,t), faster growing firms hire better workers. Now I turn to
the importance of the control variables, in order to understand whether the posi-
tive growth-quality of hires correlation holds in the cross section. Figure 2 plots
the estimated m(·)’s when no control variables are included. It is apparent that
the relationship is highly non-monotonic. These estimated m(·)’s imply that low
absolute values of growth are associated with better quality hires. Large positive
or negative values of growth are associated with lower quality hires, with positive
values having somewhat better average quality. A linear regression confirms that
the average relationship on this interval is still positive and statistically signifi-
cant, despite the non-monotonicity. Taken together, Figures 1 and 2 show that
controlling for firm characteristics and other factors matters a great deal. Omit-
ting controls would lead to the conclusion that the absolute value of growth is the
most important factor influencing the quality of hires at a given firm. But this is
not the case. The correct comparison in Figure 1 shows a monotone increasing
relation between growth and quality of hires, once all else is held constant.
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Figure 2: No Controls

Figures 1 and 2 are extreme cases. Figure 2 has no controls, while Figure 1
includes controls for many firm characteristics, as well as seasonal, industry-level
and aggregate fluctuations. There are many possible intermediate specifications,
some of which I discuss in Appendix Appendix B. As more controls are added, the
results look less like Figure 2 and more like the baseline specification. Controls for
aggregate and industry level fluctuations are relatively unimportant. In contrast,
firm fixed effects and controls for firm size and interacted industry-period-location
dummies are critical in explaining the difference between Figures 1 and 2. These
are all firm characteristics. The interpretation is simple: as more firm charac-
teristics are included, the specification is closer to the ideal of holding all else
constant.

2.5 Discussion

The empirical results demonstrate the importance of conditioning on firm charac-
teristics. Without firm controls the relation between growth and quality of hires is
ambiguous and non-monotonic. This echoes the results in the assortative match-
ing literature, where AKM-style regressions find little correlation between worker
type and firm type. AKM regressions typically do not condition on firm size, in-
dustry or other firm characteristics, so all inter-industry or cross-size variation is
loaded into the estimated fixed effect. In addition, AKM-style regressions cannot
include firm fixed effects as controls, since the firm fixed effect is the variable of
interest.16 In this way the AKM models are similar to my specification without

16Mortensen et al. (2010) extend the AKM methodology to estimate worker fixed effects and
firm-year fixed effects. With firm-year effects it would be possible to use time variation to study
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controls, where all inter-industry or cross-size variation is included. My specifica-
tion without controls can be seen as an indirect replication of the typical AKM
result: when no firm characteristics are conditioned on, there is little evidence of
assortative matching.
The importance of firm characteristics may reflect segmentation in the labor mar-
ket. When I condition on firm characteristics I implicitly compare firms only to
very similar firms, which are likely to inhabit similar labor markets. This holds
for firm fixed effects as well, under the assumption that firms do not change mar-
kets over time. Thus the baseline specifications, controlling for industry and other
characteristics, pick up positive sorting within each segment of the labor mar-
ket. The best doctors work for the best hospitals, the best pilots work for the
best airlines, and so on. When I do not control for firm characteristics I am
comparing doctors to pilots and hospitals to airlines. Firms in different markets
may hire different workers and have different growth patterns for technological or
other reasons. The comparison of Figures 1 and 2 suggests that markets with
low firm volatility (growth near zero) are markets with higher quality workers. In
this paper I do not seek to explain the differences between labor markets, or the
entire joint distribution of firm growth and worker productivity. Rather I focus on
the new fact that within markets (i.e. conditioning on firm characteristics), there
does appear to be assortative matching. Based on my results, the AKM method-
ology may find different results when firm effects are estimated conditional on firm
characteristics.

3 Theory

In this section I describe a general model that can account for the positive firm
growth-quality of hires correlation described in Section 2. The model captures the
intuition that if worker and firm productivity, are complementary in production
then fast growing, highly productive firms should tend to hire more productive
workers. Thus the model tightly links assortative matching to firm growth and
the quality of hires. The model extends the influential work of Shimer and Smith
(2000) to include multi-worker firms, idiosyncratic firm productivity shocks, and
firm dynamics. Once solved, the extended model turns out to be highly tractable
and yields analytical comparative statics. I derive sufficient complementarity con-
ditions that ensure assortative matching and allow the model to replicate the
observed growth-quality of hires correlation. Previously Shimer and Smith (2000)
and Lentz (2010) have derived sufficient conditions for assortative matching, but
their models abstracted from firm dynamics.
In the model workers and firms are characterized by a scalar type, interpreted
as productivity. Search is random, and when workers and firms match the wage
is determined by generalized Nash bargaining. Only unemployed workers search,
though the qualitative results are unchanged if search while employed is allowed.

sorting while controlling for a time-invariant firm fixed effect. This is a potentially promising
approach but it faces the same problems as the original AKM approach, as described in Section
1.1.
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I also allow firms to employ multiple workers by posting costly vacancies. Pro-
duction is linear, so firm size is a function of the convex vacancy posting costs.
The most important feature of my model is that firms can employ multiple workers,
whereas Shimer and Smith (2000) and others focus on single worker firms, or firms
that cannot freely post additional vacancies. This difference turns out to matter
a great deal. The reason is that when firms can post additional vacancies (and
production is linear), they have no opportunity cost of hiring a given worker. A
central feature of the Shimer and Smith (2000) model is that both parties face
a tradeoff between matching immediately or waiting for a better partner. By
contrast, in my model, firms can hire a given worker today and continue searching
(posting vacancies) in subsequent periods. This eliminates the opportunity cost of
hiring for firms that are in contact with workers, greatly simplifying the analysis.
A similar point is made by Lentz (2010) in a different context.
Section 3.1 introduces the model and derives the worker and firm decision rules.
Section 3.2 briefly summarizes the steady-state equilibrium. In Section 3.3 I fur-
ther characterize the worker’s acceptance choices, and derive sufficient conditions
for assortative matching. In Section 3.4 I turn to firm type and firm growth. In
the body of the paper I skip some details of the firm’s problem and sometimes fo-
cus on a model without productivity shocks, for the sake of exposition. Appendix
Appendix C fully analyzes the firm’s problem, and Appendix Appendix D ana-
lyzes sorting under productivity shocks. All results in the body of the paper carry
through in the model with productivity shocks. Omitted proofs may be found in
Appendix Appendix E.

3.1 Environment

Workers and firms are risk neutral. Worker types are indexed by x. Firm types
are indexed by y. Without loss of generality, I can assume that x ∈ [0,1] and
y ∈ [0,1].17 Let l(x) be the mass of workers of type x, and let h(y) be the density
of firm types. I normalize the mass of firms to unity, but allow the total mass of
workers to vary. When a worker and firm are matched, their per-period output
is F (x,y) > 0. I assume h, l and F are twice continuously differentiable. I also
assume F1 > 0 and F2 > 0, so that higher types have absolute advantage over low
types.
Each firm potentially employs a continuum of workers. Production of each worker-
firm pair is independent of the firm’s workforce. Let N (x) be the mass of workers
of type x working at a firm in a given period. Then total output at the firm is

Y =
ˆ 1

0
N (x)F (x,y)dx

Within any match, the wage w(x,y) is negotiated via Nash bargaining. Firms
choose the level of vacancies to post each period. Each period some matches end
due to exogenous separation shocks. Other matches end endogenously, when the
worker and firm find it is more profitable to separate.

17See Hagedorn et al. (2012) for a discussion of normalizing agent types in this type of model.

19



The main objects of interest are the acceptance sets. In equilibrium, each worker
type x will be willing to match with a subset of firm types y. Let A(x)⊂ [0,1] be
the firm types that worker type x accepts offers from. The complement Ac(x) =
[0,1]\A(x) is the rejection set. Upon meeting, a worker and firm directly observe
each other’s types.

3.1.1 Productivity Shocks

Firm type, or productivity, is not constant over time. Each period there is a
probability p that a given firm draws a new productivity value. The new value is
drawn from the exogenous density h(y). Note that when there is no firm exit, the
density of firm types is given by h(y) as well. Conditional on drawing a new type,
the new type is independent of the firm’s old type (and everything else). A low
value of p implies that productivity is more persistent. This process is a tractable
way to model a persistent, mean-reverting process. It has been used by Mortensen
and Pissarides (1994), Lise et al. (2013) and Elsby and Michaels (2013) among
others.

3.1.2 Timing

Time is discrete. Within a period, the timing of events is as follows:

1. At the beginning of period t firm type y is realized.

2. Exogenous separations occur. Separated workers cannot search within the
same period. They enter the matching market in t+ 1.

3. Firms choose vacancy levels. Unemployed workers search, and meetings
occur. Workers and firms who meet choose who they are willing to match
with, anticipating the wage bargain and the future path of productivity.

4. Nash wage bargaining. After bargaining but before production either party
can dissolve the match, resulting in endogenous separations.

5. Production occurs. Wages and unemployment benefits are paid. Consump-
tion occurs.

3.1.3 Value Functions

In this section I briefly derive the firm and worker value functions. I describe
the firm’s problem in detail in Section Appendix C. Each period the firm posts
vacancies v subject to a strictly convex, increasing, and differentiable cost func-
tion c(v), where c(0) = 0 and limv→0 c′(v) = 0. Endogenous vacancy posting is
important in what follows. Let J(y) be the marginal net value of a vacancy to
a type y firm, inclusive of posting costs. Since the firm is always free to adjust
the number of vacancies, in equilibrium it must be that J(y) = 0. Otherwise the
firm could profit by increasing or decreasing their postings. Let J(x,y) be the
firm’s match surplus when paired with a type x worker, at the bargaining stage.
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It will turn out that J(x,y) is the value both for newly formed matches as well as
for continuing matches. If the match were to yield negative surplus for the firm
(J(x,y) < 0), the firm could immediately dissolve the match and obtain a payoff
of zero. Thus J(x,y) ≥ 0 always. Assuming that J(x,y) > 0 the firm does not
dissolve the match, and J(x,y) can be written

J (x,y) = F (x,y)−w (x,y) + (1− s)(1−p)βJ (x,y)

+(1− s)pβ
ˆ
A(x)

h(y′)J
(
x,y′

)
dy′ (3)

where w (x,y) is the wage, and s is the exogenous separation probability. Linearity
of production implies that the value of a match is independent of the firm’s other
workers. The firm value is composed of three terms. The first, F (x,y)−w (x,y), is
within-period production less wages. The next two terms represent continuation
values. In the next period a separation shock arrives with probability s and a firm
productivity shock arrives with probability p. If neither shock occurs (probability
(1− s)(1−p)) the match remains unchanged, and the firm gets the discounted
value βJ (x,y). Alternatively, if the productivity shock does arrive, the firm’s
productivity changes to y′. If y′ ∈ A(x) the match continues to be acceptable to
the worker and continues, with the firm receiving J (x,y′). The match is termi-
nated if the separation shock arrives or the productivity shock makes the match
unacceptable to the worker. In either case the firm is left with nothing.
Let U (x) be the value of an unemployed worker, and let W (x,y) be the value
of that worker when matched with a type y firm. The value of unemployment
satisfies

U (x) = β

ˆ
A(x)

f (y)W (x,y)dy+β

(
1−
ˆ
A(x)

f (y)dy
)
U (x) . (4)

Here f(y) is the arrival rate of offers from type y firms. Search is undirected
so f(y) is independent of worker type. If a worker receives an acceptable offer,
he exits unemployment and receives continuation value W (x,y). Otherwise the
worker continues in unemployment. The worker receives a flow payoff of zero while
unemployed. This assumption is made only for convenience.18

Turning to W (x,y), assuming that y ∈ A(x) so the match is acceptable and
W (x,y)> 0, the value of employed worker is

W (x,y) = w (x,y) + (1− s)(1−p)βW (x,y)

+(1− s)pβ
ˆ
A(x)

h(y′)W
(
x,y′

)
dy′

+(1− s)p
(

1−
ˆ
A(x)

h(y′)dy′
)
βU (x)

+sβU (x) . (5)

This equation is similar to the firm value J , with the exception that the worker
receives the value U (x) when the match is dissolved. Within the period an em-
ployed worker receives the flow wage w (x,y). If the match continues, the worker

18If the worker does derive utility from unemployment b > 0, all matching and sorting results
carry through unchanged for the net production function F̃ (x,y) = F (x,y)− b.
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receives W (x,y) or W (x,y′) depending on the productivity shock. Otherwise the
worker goes into unemployment. If neither the separation nor the productivity
shock arrive, the worker receives the continuation value W (x,y). If the match is
acceptable the worker remains at the firm, with value W (x,y′). If it is not accept-
able the worker separates into unemployment. Finally, the exogenous separation
shock moves the worker into unemployment with probability s.

3.1.4 Wage Bargaining

It will be convenient to define the worker surplus:

S (x,y) =W (x,y)−U (x) .

This is the gain to the worker of being matched with a type y firm. Each pe-
riod the worker and firm split the match surplus according to (generalized) Nash
bargaining:

(1−η)S (x,y) = ηJ (x,y) (6)

where η ∈ [0,1] is the worker’s bargaining power. In equilibrium matches form, or
remain intact, if and only if the total surplus is positive

J (x,y) +S (x,y)> 0.

Some rearrangement of these equations yields expressions for the wage, the worker
surplus and the firm surplus:

Fact 1. Given a worker’s acceptance set A(x), the wage satisfies

w (x,y) = ηF (x,y) + (1−η)β
ˆ
A(x)

f
(
y′
)
S
(
x,y′

)
dy′ (7)

the marginal value of a worker is

J (x,y) = θ (1−η)
(
F (x,y)−β

ˆ
A(x)

f
(
y′
)
S
(
x,y′

)
dy′
)

(8)

+θ(1− s)pβ
ˆ
A(x)

h(y′)J
(
x,y′

)
dy′.

and the worker surplus is

S (x,y) = θη

(
F (x,y)−β

ˆ
A(x)

f
(
y′
)
S
(
x,y′

)
dy′
)

+θ (1− s)pβ
ˆ
A(x)

h(y′)S
(
x,y′

)
dy′ (9)

where θ = 1
1−(1−s)(1−p)β > 0.

Proof. See the Appendix.
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The expressions (7), (8) and (9) are fairly standard. In equation (7), we see that
the bargained wage is a weighted average of current production and β

´
A(x) f (y′)S (x,y′)dy′,

which is proportional to the worker’s value of unemployment U (x). This is the typ-
ical result in Nash bargaining models. Equations (8) and (9) show that the agents
split production less the worker’s threat point, F (x,y)−β

´
A(x) f (y′)S (x,y′)dy′,

in accordance with the bargaining parameter η. Finally, note that the future val-
ues of productivity do not appear in the wage expression, even though the wage
bargain is forward looking. This is due to the choice of the productivity process.

3.1.5 Acceptance Sets

Equation (9) defines the worker surplus in terms of the worker acceptance set A(x)
as well as the surplus from other jobs, S (x,y′). My goal is to obtain an expression
for the acceptance sets. To this end, I eliminate S (x,y′) from the right hand side
of (9) by substitution:

Fact 2. The worker surplus can be written as

S (x,y,A) = θη

F (x,y)−βθ
´
A(x) [ηf(y′)− (1− s)ph(y′)]F (x,y′)dy′

1 + θβ
´
A(x) [ηf(y′)− (1− s)ph(y′)]dy′

 (10)

which is a continuous function of (x,α,A).

Proof. See the Appendix.

Here I write S as a function of A to emphasize its dependence on the worker’s
acceptance decisions. At this stage I make no assumptions on A (such as opti-
mality). Equation (10) has an intuitive interpretation. The worker’s surplus is
proportional to the term in square brackets. The first part, F (x,y), is the pro-
ductivity of the match. Obviously, surplus should be increasing in production, all
else held constant. The second term captures both the probability of productivity
shocks and worker’s opportunity cost of matching with other firms. Consider what
happens when we eliminate productivity shocks by setting p= 0:

S (x,y,A) = θη

F (x,y)−
βθη
´
A(x) f(y′)F (x,y′)dy′

1 + θβη
´
A(x) f(y′)dy′

 .
The final term inside the brackets is a biased weighted average of net production
in alternative jobs, where the weights are the meeting probabilities f(y′). Without
productivity shocks, the ratio is the worker’s opportunity cost: matching with a
type y firm today precludes matching with another firm in A(x) until the job ends
exogenously. An increase in F (x,y′) increases the opportunity cost of matching
with y, and naturally decreases S (x,y,A).
Equation (10) allows me to begin characterizing the acceptance sets. First, note
that current firm productivity only enters this expression through the initial
F (x,y) term. F2 > 0 then implies S2 > 0, so worker surplus is strictly increas-
ing in firm type, regardless of worker type x or their choice of acceptance set.
This is a strong result, summarized in the following proposition.
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Proposition 1. Under the assumed productivity process all workers rank firms
the same: S (x,y,A) is monotone increasing in y for all x and A. All workers
prefer high y firms to low y firms.

Increasing surplus implies that equilibrium acceptance sets will be intervals defined
by a lower threshold:

A(x) = {y|y > y (x)} (11)
where y (x) is the threshold firm type for worker x. Knowing that the A(x) are
intervals, with all workers preferring high y to low x firms, simplifies analysis
considerably. Instead of considering acceptance sets which are arbitrary subsets
of [0,1], I now focus on finding the thresholds y(x). This result is a consequence of
allowing firms to employ multiple workers and post multiple vacancies, along with
linear production as in Bagger and Lentz (2012). When a vacancy matches with a
worker, the firm can post another vacancy the next period at the same cost. Thus
the firm faces no opportunity cost of matching. Match surplus is production less
the opportunity costs of the worker and firm, so when firms have no opportunity
cost (or more generally, no variation in opportunity cost) it is natural that workers
prefer higher type firms. In the models of Shimer and Smith (2000), Lopes de Melo
(2013), and Hagedorn et al. (2012) firms and workers are treated symmetrically,
in that matching with a partner precludes any other productive activity, at least
until the match exogenously dissolves. The result is that firms, like workers,
vary in their opportunity cost of matching, and this two-sided selectivity leads to
potentially complicated acceptance patterns.19

So far I have treated the acceptance set A(x), or equivalently y(x), as exogenous.
Now I solve for the worker’s optimal y(x). Note that in equilibrium a worker will
accept a job if and only if it yields positive surplus, given their acceptance set:
S (x,y,A)> 0. Thus the optimal threshold y (x) must satisfy

S (x,y (x) ,A(x)) = 0 if y (x)> 0 (12)
S (x,0, [0,1]) > 0 if y (x) = 0 (13)

The first case is of primary interest. If the threshold y (x) is on the interior,
then the surplus at the marginal firm must equal zero. Otherwise the worker
would do strictly better by lowering his threshold and accepting more offers. It
is possible that all jobs offer positive surplus. Then we are in the second case,
where A(x) = [0,1], i.e. the worker accepts all jobs. Then it must be the case that
the lowest ranked job still provides surplus. Substituting (10) into (12) and (13),
imposing (11) and rearranging yields

F (x,y (x)) + θβ (1− s)p
ˆ 1

y(x)
h(y)(F (x,y)−F (x,y (x)))dy =

βθη

ˆ 1

y(x)
f(y)(F (x,y)−F (x,y (x)))dy if y (x)> 0 (14)

19My assumption is potentially more restrictive, but allows for tractable analysis. It is also
motivated by the fact that in reality firms are large. The vast majority of workers are employed
at multi-worker firm, not single worker firms.
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F (x,y (x)) + θβ (1− s)p
ˆ 1

y(x)
h(y)(F (x,y)−F (x,y (x)))dy ≥

βθη

ˆ 1

y(x)
f(y)(F (x,y)−F (x,y (x)))dy if y (x) = 0 (15)

Thus equations (14) and (15) are necessary conditions that y(x) must satisfy. In-
tuitively, the left hand side of (14) is the value of matching with a firm of type
y (x) immediately, and the right hand side is the value of waiting for another
acceptable offer. Matching with y (x) yields utility proportional to F (x,y (x))
for some duration. Once matched, there is also the possibility of a productiv-
ity shock, captured by the second term on the left hand side. Roughly speak-
ing, an increase in firm type to y > y (x) increases the utility of the worker by
F (x,y)−F (x,y (x)). On the right hand side, the benefit of waiting is the dis-
counted expected difference between production at y (x) and production at an
alternative: βθη

´ 1
y(x) f(y)(F (x,y)−F (x,y (x)))dy.

As stated above, (14) and (15) are necessary conditions that an optimal y (x) must
satisfy. It turns out that they are sufficient conditions as well. This is because the
left hand side of (14) is increasing in y (x), while the right hand side is decreasing.
This means that at most one point satisfies the system. The following proposition
formalizes the argument.

Proposition 2. The worker’s optimal threshold y(x) is the unique solution to
equations (14) and (15).

Proof. See the Appendix.

Discussion

Consider the worker’s acceptance choice in equation (14) when there are no pro-
ductivity shocks (p= 0):

F (x,y (x)) = βθη

ˆ 1

y(x)
f(y)(F (x,y)−F (x,y (x)))dy. (16)

This condition is formally identical to the reservation wage expression for a model
of sequential search with an exogenous wage offer distribution. These models
were first studied by McCall (1970), Gronau (1971) and Mortensen (1970). The
version I use can be found in Mortensen (1986) and Rogerson et al. (2005). In
this model there is a single worker type and an exogenous wage offer distribution.
Each period an unemployed worker searches for a job, drawing wage offers from
the distribution f̄(w). Jobs end with probability s each period. Then the values
of unemployment U and employment W (w) are

U = β

ˆ w̄

w∗
W (w)f̄(w)dw+β

(
1−
ˆ w̄

w∗
f̄(w)dw

)
U

W = w+β(1− s)W +βsU
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where w∗ is the worker’s choice of reservation wage and w̄ is the upper support
of the offer distribution. This leads to the following expression for the reservation
wage:20

w∗ = β

1−β

ˆ w̄

w∗
f̄(w) [w−w∗]dw. (17)

Comparing this with equation (16) we see that the two decision rules have the
same form, with the reservation wage w∗ replacing the “reservation match quality”
F (x,y (x)) in equation (17). It is interesting that the two decision rules should
be so similar, given that wages are endogenous in my model. The similarity is
a result of Nash bargaining and allowing firms to post multiple vacancies. Nash
bargaining ensures that the wage is an additive function of a worker effect and
a firm effect, as we can see in equation (7). Vacancy posting along with linear
production implies that firms do not have an opportunity cost of hiring, so the firm
effect in the wage equation is proportional to F (x,y). If there were an opportunity
cost, as in Shimer and Smith (2000), the firm effect would be F (x,y) less the value
of the firm’s vacancy. Thus, my model can be interpreted as a general equilibrium
extension to the McCall (1970) model, which retains the same simple decision
rules as the partial equilibrium model. The advantage of the current model is that
it allows for comparisons between different worker types, which will be taken up
in Section (3.3).

3.1.6 Vacancy Posting

The results in this section and the next are not strictly necessary for understanding
the assortative matching results in Section 3.3. The interested reader may skip
directly to that part of the paper.
The firm posts vacancies at a convex cost until the expected value of an additional
vacancy is zero. Formally, this means

c′(v) =
ˆ 1

0
q(x)J(x,y)dx.

This is derived explicitly from the firm’s problem in Section Appendix C. The left
hand side is the marginal cost of a vacancy, and right hand side is the expected
marginal value of the vacancy. J(x,y) is the value to the firm of meeting a type
x worker, and q(x) is the probability the vacancy attracts such a worker within
the period. The right hand side simply integrates this value across worker type.
Using the Nash bargaining solution this marginal condition can be written

c′ (v) = (1−η)
η

ˆ 1

0
q(x)S(x,y)dx

Recalling that c(v) is strictly convex, I can invert c′(v) and arrive at an explicit
expression for v:

v (y) = c′−1
(

(1−η)
η

ˆ 1

0
q(x)S(x,y)dx

)
. (18)

20See Rogerson et al. (2005) and Mortensen (1986) for explicit derivations and discussion.
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Recall from Section 3.1.5 that S (x,y) is increasing in y. This means that a higher
type firm has a higher return to matching with a given worker. Then equation
(18) implies that better firms post more vacancies: v′(y) > 0. This is a natural
prediction, and turns out to be useful in Section Appendix D for characterizing
assortative matching under productivity shocks.

3.1.7 Meeting and Matching

To close the model, I formalize the relationship between vacancies, unemployment,
and the meeting rates f(y) and q(x). I make the standard “balanced meeting”
assumption for random search models. The sorting results in Section 3.3 do not
depend on the details of the matching technology, as long as search is random.
Let u(x) be the mass of unemployed type x workers. Then total unemployment is
U =
´
u(x)dx, and I can define ũ(x) = u(x)

U as the density of unemployed workers.
Let v(y) be the vacancy posting of a type y firm, and recall that h(y) is the mass
of type y firms in the economy. Then total vacancy posting is V =

´
v(y)h(y)dy

and I can define ṽ(y) = v(y)h(y)
V as the share of vacancies that are posted by type

y firms.
Following the literature, I assume that the total number of meetings between
workers and firms in a period is given byM (U,V ), an increasing, concave, linearly
homogenous meeting function. The meeting function takes total unemployment
and total vacancies as inputs, and gives the total number of contacts between
workers and firms.
I assume that each worker contacts at most one vacancy, and each vacancy contacts
at most one worker. This implies

M (U,V )≤min{U,V } .

Contacts are made in a random, fashion. Thus each worker has an equal prob-
ability of making a contact, which is given by M(U,V )

U . Likewise, each vacancy
has a probability M(U,V )

V of making a contact. Conditional on a worker making a
contact, the vacancy is drawn at random from the population of vacancies. Thus,
the arrival rate of type y vacancies for a searching worker is given by

f(y) = M (U,V )
U

ṽ(y). (19)

Symmetrically for vacancies I have

q(x) = M (U,V )
V

ũ(x) (20)

where q(x) is the probability a vacancy contacts a type x worker.

3.2 Equilibrium

In a steady state equilibrium the mass of unemployed workers of each type must
remain constant over time. This requires that the outflows from unemployment
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equal the inflows:

u(x)
ˆ 1

y(x)
f(y)dy = (l(x)−u(x))

s+ (1− s)p
ˆ y(x)

0
h(y)dx

 ∀x.

For a given x, the left hand side is the stock of unemployed times the rate at which
they meet acceptable jobs. The right hand side is the mass of employed workers
times the combined rate of endogenous and exogenous separations. This can be
rearranged to yield

u(x) =

(
s+ (1− s)p

´ y(x)
0 h(y)dx

)
l(x)(

s+ (1− s)p
´ y(x)

0 h(y)dx
)

+
´ 1
y(x) f(y)dy

∀x (21)

which makes clear that u(x) is a continuous function of f(y) and y(x).
In addition to balancing worker flows, a steady state general equilibrium requires
that (1) worker acceptance choices are made optimally, (2) vacancy posting deci-
sions are made optimally and (3) meeting rates are consistent with the meeting
function and the stocks of unemployed and vacancies. The exogenous parameters
are the scalars β,s,p,η and the functions l(x), h(y) and F (x,y). The endogenous
objects are y(x),v(y),f(y), q(x) and u(x), which are jointly determined by equa-
tions (14), (15), (18), (19), (20), and (21). I reproduce the equilibrium conditions
below, with intermediate notation eliminated.
First is the worker’s acceptance set choice, for all x:

F (x,y (x)) + θβ (1− s)p
ˆ 1

y(x)
h(y)(F (x,y)−F (x,y (x)))dy =

βθη

ˆ 1

y(x)
f(y)(F (x,y)−F (x,y (x)))dy if y (x)> 0 (22)

F (x,y (x)) + θβ (1− s)p
ˆ 1

y(x)
h(y)(F (x,y)−F (x,y (x)))dy ≥

βθη

ˆ 1

y(x)
f(y)(F (x,y)−F (x,y (x)))dy if y (x) = 0. (23)

Equations (22) and (23) define y(x) as a function of other model objects. Some
additional algebra shows that y(x) is a continuous function of f(y), a fact which
will be useful in showing existence of an equilibrium. Next is the firm’s vacancy
decision:

v (y) = c′−1

(1−η)θ
ˆ 1

0
q(x)

F (x,y)−βθ
´ 1
y(x) [ηf(y′)− (1− s)ph(y′)]F (x,y′)dy′

1 + θβ
´ 1
y(x) [ηf(y′)− (1− s)ph(y′)]dy′

dx
 ∀y.

(24)
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Note that equation (24) defines v(y) as a continuous function of q(x), f(y) and
y(x). Finally, recall the meeting rates

f(y) =
M
(´ 1

0 u(x)dx,
´ 1

0 v(y)h(y)dy
)

´ 1
0 u(x)dx

v(y)h(y)´ 1
0 v(y)h(y)dy

∀y (25)

q(x) =
M
(´ 1

0 u(x)dx,
´ 1

0 v(y)h(y)dy
)

´ 1
0 v(y)h(y)dy

u(x)´ 1
0 u(x)dx

∀x. (26)

Equations (25) and (26) define f(y) and q(x) as continuous functions of u(x) and
v(y).
Expressions (21), (22), (23), (24), (25) and (26) define a mapping of the endoge-
nous objects {y(x),v(y),f(y), q(x),u(x)} into new values {y′(x),v′(y),f ′(y), q′(x),u′(x)}.
Under some regularity conditions, the continuity of the mapping ensures that a
fixed point theorem can be applied, so an equilibrium exists. In matching models
the sticking point in proving equilibrium existence is usually showing that the
steady state flows equation defines a continuous mapping from acceptance sets to
the masses of searchers (see Shimer and Smith (2000), Nöldeke and Tröger (2009)
and Smith (2011)). In my setup this is not an issue, because (21) and (24) ex-
plicitly solve for the masses of unemployed and vacancies as a function of other
variables. In general the model may have multiple equilibria. Unfortunately, this
is a common feature of models with two-sided heterogeneity and search.21

3.3 Assortative Matching

In this section I analyze the sorting of workers across firms. I focus on deriving
sufficient conditions for positive and negative assortative matching. Intuitively,
positive assortative matching means that better workers tend to match with better
firms. In the context of my model, positive assortative matching is equivalent to
y′ (x)≥ 0 ∀x. That is, better workers (higher x) set their threshold firm type y(x)
higher. Similarly, negative assortative matching is equivalent to y′(x)≤ 0 ∀x. The
case of no sorting is also of interest, and in my model this translates to y′(x) = 0 ∀x.
The empirical pattern in Section 2 relates firm growth to worker type. In this
section I derive a condition, strict log-supermodularity, under which better firm
types hire better worker types. In Section 3.4 I show that under strict log-
supermodularity better firms are also faster growing. Together, the firm type-
worker type and firm type-growth relations imply that firm growth and quality of
hires are positively correlated, reproducing the empirical results.
In what follows I use the worker’s threshold condition to derive an expression
for y′(x). The sign of y′(x), and thus the nature of sorting, depend on the sign
of a simple expression that compares match production at the marginal firm to
expected production at firms in the acceptance set. The expression can be unam-
biguously signed when production F (x,y) is strictly log-supermodular or strictly
log-submodular, as described below. These are sufficient conditions for positive

21See Sattinger (1995), Shimer and Smith (2000) and Lopes de Melo (2013).
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and negative assortative matching, respectively. Interestingly, these sufficient con-
ditions rely only on the production function, and not the distribution of agent types
or any other parameter. In this sense they are similar to the sorting conditions
derived by Becker (1973), Shimer and Smith (2000), Lentz (2010) and Eeckhout
and Kircher (2010) in the context of other models. Given that the sorting con-
ditions are independent of agent distributions and other parameters, it might be
asked whether weaker sufficient conditions can be found. I show that any weaker
sufficient conditions must depend on the distribution of types. Specifically, if the
production function is not strictly log-supermodular or submodular one can find
distributions of agents that lead to non-assortative matching.
For simplicity I focus on the case of no productivity shocks: p = 0. All of the
intuition and results carry over to the case in which productivity shocks occur,
but at the cost of additional notation and technicalities. I prove the main results
for the general model in Appendix Appendix D.
Consider the worker’s threshold condition (14) when there are no productivity
shocks:

F (x,y (x))
(

1 +βθη

ˆ 1

y(x)
f(y)dy

)
−βθη

ˆ 1

y(x)
f(y)F (x,y)dy = 0 (27)

This expression implicitly defines y(x) in terms of x, F (x,y), and the other pa-
rameter values. As a consequence (27) can also be used to derive an expression
for y′(x). While this expression is cumbersome, it shows that the sign of y′(x),
and thus the nature of sorting, depend only on a simple condition, shown below.

Proposition 3. When the worker’s choice of y(x) is given by (27), y′(x) > 0 if
and only if ˆ 1

y(x)
w (y) F1 (x,y)

F (x,y) dy >
F1 (x,y (x))
F (x,y (x)) (28)

and y′(x)< 0 if and only if
ˆ 1

y(x)
w (y) F1 (x,y)

F (x,y) dy <
F1 (x,y (x))
F (x,y (x)) , (29)

where w(y) = f(y)F (x,y)´ 1
y(x) f(y)F (x,y)dy

> 0, and
´
y(x)w(y) = 1.

Proof of Proposition 3. Equation (27) implicitly defines y(x), so differentiating it
I can obtain an expression for y′(x). Applying the implicit function theorem I
have

y′(x) =−
F1 (x,y (x))

(
1 +βθη

´ 1
y(x) f(y)dy

)
−βθη

´ 1
y(x) f(y)F1 (x,y)dy

F2 (x,y (x))
(
1 +βθη

´ 1
y(x) f(y)dy

) (30)

The denominator is always positive, so the sign of y′(x) depends only on the
numerator, implying y′(x)> 0 if and only if

βθη

ˆ 1

y(x)
f(y)F1 (x,y)dy > F1 (x,y (x))

(
1 +βθη

ˆ 1

y(x)
f(y)dy

)
.
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Dividing this expression by (27) I arrive at
´ 1
y(x) f(y)F1 (x,y)dy´ 1
y(x) f(y)F (x,y)dy

>
F1 (x,y (x))
F (x,y (x))

which can be rearranged to yield equation (28) as desired. A symmetric argument
shows that equation (29) follows as well.

In equation (28) F1(x,y(x))
F (x,y(x)) reflects the marginal change in output at the marginal

firm type when we increase the worker type. The term
´ 1
y(x)w (y) F1(x,y)

F (x,y) dy reflects
the expected change in productivity at firms in the acceptance set when we increase
worker type. If output at the the marginal firm increases more than at the average
accepted firm, the relative value of waiting for better offers is lower, and the worker
lowers the acceptance threshold y(x). Alternatively, if expected productivity at
accepted firms increases more than productivity at the marginal firm, the worker
prefers to wait for better offers and raises the acceptance threshold. In this case
we have (locally) positive assortative matching, and y′(x)> 0.
Having shown that satisfying equation (28) is equivalent to assortative match-
ing, the question is under what conditions does (28) hold? Clearly, a suffi-
cient condition is that F1(x,y)

F (x,y) be increasing in y. Then any weighted average´ 1
y(x)w (y) F1(x,y)

F (x,y) dy must exceed the value F1(x,y(x))
F (x,y(x)) . The economic interpretation

of this condition is straightforward. When F1(x,y)
F (x,y) is increasing in y, it means that

output is more sensitive to worker type at high y firms. Increasing worker type
increases output the most at the highest y firms, encouraging the worker to raise
the acceptance threshold and generating positive assortative matching.

The condition ∂
∂y

F1(x,y)
F (x,y) > 0 is equivalent to strict log-supermodularity. In partic-

ular, a differentiable, positive, increasing function is strictly log-supermodular if
and only if its logarithm is supermodular:

∂2

∂x∂y
lnF (x,y)> 0

which is equivalent to
∂

∂y

F1 (x,y)
F (x,y) > 0

as asserted. Returning to equation (29), it is clear that ∂
∂y

F1(x,y)
F (x,y) < 0 ensures

y′(x) < 0, so matching is negative assortative. In turn ∂
∂y

F1(x,y)
F (x,y) < 0 is equivalent

to strict log-submodularity:

∂2

∂x∂y
lnF (x,y)< 0.

Finally, equations (28) and (29) imply there is no sorting, y′(x) = 0, if and only if
∂
∂y

F1(x,y)
F (x,y) = 0. These results are summarized in the following Proposition.
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Proposition 4. Consider the economy with no productivity shocks. Matching
is positive assortative, y′(x) > 0, if F is strictly log-supermodular. Matching is
negative assortative, y′(x)< 0 if F is strictly log-submodular. There is no sorting
if ∂

∂y
F1(x,y)
F (x,y) = 0.

Proposition 4 provides sufficient conditions for positive and negative assortative
matching. Note that the conditions depend only on the production function F .
They are independent of the distribution of agent types as well as the other pa-
rameters of the economy. A natural question is whether these conditions are the
minimal ones that ensure assortative matching, or whether weaker conditions may
suffice. The following Proposition shows that strict log-supermodularity is neces-
sary for positive assortative matching, in the sense that if F is not globally strictly
log-supermodular we can find a distribution of vacancies that ensures y′(x) < 0
somewhere.

Proposition 5. If there exists y∗ and x∗ such that ∂2

∂x∂y lnF (x∗,y∗) < 0, then
there exists a set of meeting rates f(y) such that y′(x∗)< 0.

Proof. See the Appendix.

The strategy of proof is to adjust the meeting rates f(y) to keep the worker’s
threshold constant at y∗ = y(x), but make sure sorting is (locally) negative. Keep-
ing in mind that ∂2

∂x∂y lnF (x∗,y∗)< 0, there is some y∗∗ > y∗ such that F1(x∗,y∗)
F (x∗,y∗) >

F1(x∗,y∗∗)
F (x∗,y∗∗) . If f(y∗∗) is large enough, the worker will expect to meet type y∗∗
firms much more often than any alternative. The increased weight on y∗∗ means
that the behavior of F around(x∗,y∗∗) dominates sorting decisions. Appealing to
Proposition 3 then shows that y′(x∗)< 0, as desired.
Similar to other assortative matching results, my conditions on the production
function are sufficient for any values of the other parameters and distributions,
and are the weakest conditions on the production function that ensure assortativity
for all other parameter values. If we consider a restricted set of type distributions,
or other parameters, it may be possible to find alternative necessary and sufficient
conditions. This is left for future work.

3.3.1 Discussion

This paper is one of many to study the theory of sorting in a search environment.22

The two papers most similar to this one are Shimer and Smith (2000) and Eeckhout
and Kircher (2010). While neither allow for productivity shocks, the models can
still be compared. In the random search model of Shimer and Smith (2000),
positive assortative matching requires supermodularity not only of lnF but also
of lnF1, lnF2 and lnF12.23 Thus my log-supermodularity requirement is weaker
than theirs. This can be attributed to my allowing multiple worker firms. In

22See Shimer and Smith (2000), Shi (2001), Shimer (2005), Atakan (2006), Eeckhout and
Kircher (2010), Lentz (2010) and Eeckhout and Kircher (2012).

23While Shimer and Smith (2000) do not discuss supermodularity of lnF , Eeckhout and
Kircher (2010) show that their conditions, along with monotonicity, imply log-supermodularity.
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Shimer and Smith (2000) firms have an opportunity cost of matching, which is
increasing in firm type. This tends to make high type firms less attractive to
workers, since the higher firm opportunity cost comes out of the worker’s wages.
In my model the workers get a constant share of match output (plus a function
of the worker opportunity cost). This makes high type firms more attractive, and
encourages high type workers to wait for high type firms.
Eeckhout and Kircher (2010) work in a directed search framework. They derive
root-n supermodularity as a sufficient condition for positive assortative matching.
This condition requires that the n’th root of the production function be positive,
where n is the elasticity of substitution of the matching function. They show
that root-n supermodularity is always weaker than log-supermodularity, and thus
weaker than the requirements of Shimer and Smith (2000). This is due to the
differences between directed and random search. See Eeckhout and Kircher (2010)
for an illuminating discussion of these differences, and the relation of their result
to that of Shimer and Smith (2000). My condition, while weaker than Shimer and
Smith’s, is still stronger than root-n supermodularity. This is because my model
is one of random search, while Eeckhout and Kircher (2010) study directed search.

3.4 Firm Growth and the Quality of Hires

In Section 3.3 I showed that strict log-supermodularity ensures assortative match-
ing between worker types and firm types: high type firms hire better workers. To
link these results to the empirical results in Section 2, I need a connection between
firm type and firm growth. Intuitively, if high type firms tend to grow faster, then
strictly log-supermodular match production will lead to a positive firm growth-
quality of hires correlation, as seen in the data. On the other hand, if there is a
weak or ambiguous correlation between firm type and firm growth then the assor-
tative matching condition in Section 3.3 will be irrelevant for understanding the
firm growth-quality of hires correlation.
It is natural to think that high type firms will tend to be faster growing: the results
in Sections 3.1.6 and 3.3 show that under strict log-supermodularity better firms
both post more vacancies and hire more workers per vacancy. In practice, the
relationship between firm growth and firm quality is complicated. Higher type
firms tend to post more vacancies and hire more workers. Ceteris paribus, this
increases growth rates. However, a high type firm will also tend to be larger to
begin with and have larger outflows of workers, both of which reduce growth rates.
Sorting out these effects is complicated by the heterogeneity of the workforce,
which causes firms to occasionally hire a substantial number of workers while
simultaneously separating a large portion of their incumbent workers. This can
happen in the model when a there is a negative productivity shock.
To show that firm growth is positively correlated with firm type (and therefore
worker type), it suffices to show that a stochastic dominance property holds. Let g
be the (random) growth rate of a firm, and let Fg(g|y) be the CDF of growth rates
conditional on the firm being of type y. Assume for the moment that if y′ > y,
then Fg(·|y′) dominates Fg(·|y) (in the sense of first order stochastic dominance).
Such a dominance property implies that firm type and firm growth have a positive
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correlation coefficient, which is the desired result. So the main problem is to prove
dominance.

Proposition 6. Assume that matching is positive assortative. Then Fg(·|y′) dom-
inates Fg(·|y) whenever y′ > y.

Proof. See the Appendix.

The argument has three parts

• Step 1: Show that firm growth g(y,m) is an exact function of current
productivity y and a set of state variables m, where m includes the time
elapsed since the last shock and the employment distribution at the time of
the shock. In addition, h(y|m) = h(y).

• Step 2: Show that g1(y,m) is positive.

• Step 3: Use the population distribution ofm and y to show that g1(y,m)> 0
is a sufficient condition for Fg(·|y′) to dominate Fg(·|y) whenever y′ > y.

The specification of the productivity process helps in Step 1. Step 2 follows in part
from Proposition 7 (see below), which helps pin down the compositional dynamics
of employment by worker type.
An alternative approach would be to work with the distribution of firm types con-
ditional on growth. This might appear more natural, since the empirical results
are stated in terms of worker types conditional on firm growth. However, it turns
out there is not necessarily any stochastic dominance between the type distribu-
tions conditional on growth. This necessitates working with growth conditional
on firm type to prove dominance and therefore a positive correlation between firm
growth and the quality of hires.

3.4.1 Discussion

I have shown that the model implies a positive correlation between firm growth
and quality of hires if production is strictly log-supermodular. The same condition
implies positive assortative matching, so the pattern documented in Section 2 can
be taken as indirect evidence for assortative matching between workers and firms.
This paper is the first to characterize matching analytically in an environment
with firm growth and productivity shocks. One difficulty is that in such a rich
environment the connection between firm growth and productivity can become
unclear. Proposition 6 proves that a positive connection between firm growth and
productivity does indeed hold within the model.
As noted earlier, Lopes de Melo (2013), Eeckhout and Kircher (2011) and others
have shown that AKM fixed effects are inconsistent when the data generating
process is a model along the lines of Shimer and Smith (2000). Their critique does
not apply to my model. Allowing firms to post multiple vacancies ensures there
is no opportunity cost to hiring, so the wage is monotone increasing in firm type.
Then fixed effects estimation should recover the firm types accurately. If my model
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is correct there is a puzzle: why do I find assortative matching in Section 2, when
AKM and others find none? As I have discussed, one possibility is that assortative
matching obtains only within narrow labor markets, while sorting across the whole
economy is more ambiguous. Another possibility is that my results are based
on firm growth while the fixed effects results assume a constant firm effect over
the sample period. If productivity shocks are not too persistent, so that time-
averaged productivity is close to the unconditional expectation of productivity
for most firms, then we would expect fixed effects regressions to reveal relatively
little sorting. The reason is that while there is sorting between worker and firm
types, the firm fixed effect is an average of firm productivity over the sample.
This suggests an alternative identification strategy, which would jointly estimate
worker effects and firm-year effects as in Mortensen et al. (2010). Allowing the
firm effect to vary over time would get rid of the averaging problem.

3.5 Additional Results

Besides addressing the empirical correlation between firm growth and the quality
of hires, the model can be used to derive additional results. Here I discuss three
broad sets of results.

3.5.1 Vacancy Filling Rates

The model can be used to study the relationship between firm growth and how
quickly vacancies fill. Recall from Proposition 1 that each worker prefers high type
firms to low type firms. This implies that vacancies at high type firms fill more
quickly, since a larger share of workers are willing to match with high type firms.
This, along with Proposition 6, means that within the model faster growing firms
also fill their vacancies more quickly.
This fact relates to the recent work of Davis et al. (2013). They find empirically
that fast growing establishments tend to fill their job openings more quickly. This
is at odds with the textbook search theory, which assumes the vacancy filling rate
is exogenous to the firm and consequently employment growth is linear in the
vacancy rate at the firm level. The conclusion of Davis et al. (2013) is that fast
growing firms are using other margins to attract workers, besides simply posting
more vacancies. My model and the empirical results point to a particular channel.
High growth firms are more productive, and are able to hire selective high type
workers. The increased wages associated with a positive productivity shock allow
the firm to attract workers that would otherwise reject an offer from the firm. In
this way the firm hires more of the workers it meets, reducing vacancy durations.

3.5.2 Compositional Dynamics

Conditional on positive assortative matching, we can say something about the
dynamics of worker composition at the firm.
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Proposition 7. Assume that matching is positive assortative: y′(x) > 0. At a
given firm, the growth rate of employment of type x workers

gt(x) = Nt(x)−Nt−1(x)
0.5(Nt(x) +Nt−1(x)) (31)

is weakly increasing in x, as long as Nt(x)> 0.

Proof. See the Appendix.

This result can be understood as follows. Fix a worker type x. When y falls below
y(x), a firm cannot hire any type x workers, and all incumbent type x workers
leave. If y later rises above y(x) the firm begins hiring type x workers again, and
the growth rate is high because the initial stock is low. On the other hand, if y
has been greater than y(x) for a long time there will be a larger stock of type
x workers at the firm. This implies the growth rate of type x workers will be
lower. Better workers have higher thresholds y(x), so the firm is more likely to
have dipped below the threshold more recently.
These dynamics lead to another interesting result:

Corollary 1. The quality of new hires at a firm is always (weakly) better than the
quality of incumbents, in the sense of first order stochastic dominance.

Proof. Follows immediately from Proposition 7.

Since better workers have faster growth rates at a firm, it follows that the quality
of new hires dominates the quality of incumbents. This holds regardless of whether
the firm is growing or shrinking, since a negative shock leads the best workers to
leave. So although the quality of new hires may be lower than that of incumbents
one period ago, the quality is higher than those who remain. Consideration of
separations leads to another result.

Proposition 8. The quality of separating workers is always (weakly) better than
the quality of incumbents, in the sense of first order stochastic dominance.

Proof of Proposition 8. Separations are a mix of exogenous separations, at rate
s, and endogenous separations in response to productivity shocks. Exogenous
separation rates are constant across worker types, so if there is not a negative
productivity shock the distribution of separations matches the distribution of in-
cumbents. If there is a negative productivity shock then the best incumbents
separate, and the distribution of separators will dominate the distribution of in-
cumbents.

Given that both hires and separators are better than incumbents, we might ask
whether we can order hires and separators relative to each other. This turns out
not to be possible. If there is a good productivity shock, hires will be better than
separators, since all separations will be exogenous. If there is a negative shock the
opposite will hold.
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3.5.3 Dynamics and Selectivity

Section 3.3 showed that the sufficient conditions for assortative matching are in-
dependent of the existence or frequency of productivity shocks. In this section
I study worker selectivity and its relation to productivity shocks, under the as-
sumption of positive assortative matching. I show that reducing the persistence
of shocks makes workers less selective. Formally, the level of y(x) is decreasing in
p.

Proposition 9. Let f(y) be fixed. Under positive assortative matching, a reduc-
tion in p reduces y(x) for all x.

This is a partial equilibrium result: it depends on f(y) being held constant. In re-
ality, different values of p would induce different unemployment rates and vacancy
postings, changing f(y).24 Nonetheless, the result provides some strong intuition
for how productivity shocks shape matching decisions and sorting. The effect of
more frequent shocks is to make firms more similar to each other, since the ex-
pected duration of current productivity is shorter. Since firms are effectively more
similar to each other, each worker is willing to accept more firm offers and y(x)
declines. As p increases, all workers move toward accepting all offers25.

4 Conclusion

This paper contributes to the theory and empirics of worker-firm sorting. On
the empirical side, I document a previously unknown relationship between firm
growth and the quality of hires: when a given firm grows faster it hires more
productive workers. This relationship survives corrections for selection bias and
the endogeneity of wages. Under the assumption that faster growing firms are
more productive this pattern implies positive assortative matching. This evidence
of assortative matching stands in contrast to the mixed results in the literature
following Abowd et al. (1999). An important caveat is that when I do not condi-
tion on firm characteristics, I do not find evidence of assortative matching. This
mirrors the results in the AKM literature, which do not typically control for firm
characteristics. I argue that firm characteristics proxy for the labor market a firm
faces. While assortative matching may be the norm within a given industry or
occupation, it need not characterize cross-market variation in firm productivity,
worker productivity, and wages. Thus my baseline results suggest positive sorting
within labor market segments, while my alternative specification (and perhaps the
AKM regression) captures the more ambiguous relationships that hold between
markets.

24There is a special case in which this result holds exactly in general equilibrium. In the special
case of a quadratic meeting function M = UV , the values f(y) depend only on the number of
vacancies posted, not on the number of unemployed. If vacancy costs are highly convex, say
c(v) = limz→∞ vz then vacancies per firm are constant, and f(y) will be invariant to changes in
p.

25In this discrete time model, workers may still not accept all offers when p = 1. This is
because a very low value of y, even for one period, may be enough to deter matching. However,
the same model can be set in continuous time with no change in sorting results. In continuous
time, the arrival rate of shocks can be driven to infinity, and workers accept all jobs in the limit.
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Motivated by the empirical results, I develop a tractable model of worker-firm
sorting within a single market. The model’s tractability allows me to analyti-
cally characterize sorting, as well as firm compositional dynamics and the effect
of productivity shocks on sorting. The model’s central equilibrium condition, the
worker’s first order condition, corresponds exactly to a model of sequential search
with an exogenous wage distribution. I show that the model reproduces the posi-
tive correlation between firm growth and the quality of hires when worker and firm
types are strong complements in production (i.e., the production function satisfies
strict log-supermodularity). This result extends the results of Becker (1973) on
complementarity and assortative matching to an environment with productivity
shocks and firm growth.
There are many possibilities for future research. One obvious direction is to ex-
amine business cycle behavior. Since the Great Recession, there has been renewed
interest in the composition of the unemployed and how hiring recovers after a
downturn. Mueller (2012) shows that composition of the unemployed becomes
better in recessions. Davis et al. (2013) and Davis et al. (2012) study the role of
employer recruiting intensity in the Great Recession. These studies point to a role
for worker and firm heterogeneity in understanding aggregate dynamics.
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A Data

In constructing worker and job flows I follow generally follow the definitions used
in official LEHD data products.26 The first task is defining firm employment. As
noted in the main text, the total number of workers with earnings at firm j in
quarter t does not necessarily reflect the firm size at any point in time. A firm with
high turnover will have many workers over the course of a quarter, even though
it only had a few employees at each point in time. To get around this issue I use
beginning of quarter employment and end of quarter employment. Beginning of
quarter employment in quarter t is the number of workers who reported positive
earnings at firm in both t− 1 and t. Intuitively, this means that the worker was
at the firm on the first day of quarter t. It is possible that the worker separated
during t−1 and was rehired sometime later in quarter t, but this is not a serious
concern overall. Similarly, end of quarter employment is the number of workers
with positive earnings at the firm in both quarters t and t+ 1. These workers
are likely to have been employed on the last day of quarter. Thus beginning of
quarter employment and end of quarter employment serve as two “point in time”
estimates of firm size. Letting bopj,t and eopj,t denote the two point in time
measures, I define firm employment growth using the conventional Davis et al.
(1998) formula

gj,t = eopj,t− bopj,t
0.5(eopj,t+ bopj,t)

.

A.1 Full Quarter Earnings

Recall my definition of qFQi,t :

qFQi,t =
∑8
k=1 earn

FQ
i,t−k∑8

k=1 1
{
earnFQi,t−k > 0

} .
The intention here is to measure the worker’s average earnings per quarter while
employed. The difficulty is that when a worker is hired or separated within a
quarter I do not observe how much of the quarter they were employed for. The
solution is to look for cases where I can reasonably confident that the worker
was employed the entire quarter. In particular, if a worker is observed at firm
j in period t− 1, t and ,t+ 1 it is likely they were employed at j continuously
throughout period t. I follow this logic in calculating earnFQi,t :

earnFQi,t = earni,t×1{earni,t−1 > 0}×1{earni,t > 0}×1{earni,t+1 > 0} .

A.2 Hires

I emphasize the importance of focusing on hires from nonemployment. Here again
I must take account of the quarterly nature of the data. If a worker is observed

26See http://lehd.ces.census.gov/doc/QWI_101.pdf and the related documentation for more
information on public-use LEHD data.
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to have worked at several firms in a quarter it is difficult to determine which jobs
were concurrent, which jobs ended before others began, and whether there were
any nonemployment spells in the quarter.
A hire occurs when a worker has positive earnings at firm j in quarter t, but zero
earnings at j in quarter t− 1. This implies that at some point in quarter t the
worker was hired at j. If the worker has positive earnings only at j in quarter
t−1 we may assume that they were nonemployed prior to being hired.27 Thus, to
measure hires from nonemployment (NE) I use only workers who were hired in t
and had exactly one job in t.
Measuring job to job hires (EE) also requires some assumptions. I consider a
hire to be an EE hire if the worker (1) was hired in t, (2) had another job that
continued from t−1 into t, and (3) no jobs from t−1 continued into t+1. These
restrictions allow for job overlap or periods of nonemployment during t, but do not
allow the worker’s old jobs (from t−1) to continue beyond the transition quarter.
This measure doubtless includes some transitions that included nonemployment
between jobs. It also excludes job to job flows involving very short duration jobs.
These concerns are not not too serious for me, since I only use the EE measures
as a comparison for the NE measure. I have also tried several variations on these
definitions and found no significant differences in the results.

B Additional Empirical Results

Here I present results from some intermediate specifications which include some
of the controls from the baseline specification. First, Figure 3 plots the estimated
m(·)’s when I only include size controls. These estimates fall somewhere in between
Figure 1 and Figure 2. Apparently controlling for size brings us closer to the
“within firm” specification, but does not eliminate the non-monotonicity seen in
Figure2.

27The LEHD data are based on employer payroll records, which are organized (within the
employer) by pay period. Since pay periods may vary across employers it is in principal possible
that a worker could make a job-to-job transition near the first day of a quarter, but only be
recorded at a single employer in each quarter. This problem is attenuated by the short duration
of pay periods relative to a calendar quarter.
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Figure 3: Size Controls Only

Next, Figure 4 adds firm fixed effects industry-season controls to the size con-
trols. The results are much closer to the baseline specification, especially for all
quarter earnings (Qj,t). Both relations are on average positive and statistically
significant. Qualitatively, the combination of firm fixed effects and size controls is
enough to bring the results close to the the much richer baseline specification. A
natural question is whether the firm fixed effects are truly necessary. Firm fixed
effects are a convenient way to absorb all time invariant heterogeneity, but they
might just proxy for data moments that are observable. In Figure 5 I experiment
with a specification that is similar to the baseline specification, except that the
firm fixed effects are replaced with a set of variables reflecting the firm’s average
worker and job flows. In particular, I include the mean and standard deviation
of employment growth, the hires rate, and the separations rate over the observed
lifetime of the firm. These six variables vary across firms but not over time, and
capture the firm’s average level and volatility of worker and job flows. Thus, they
capture some characteristics that would have been picked up by a firm dummy.
In Figure 5 we see that this modified regression does produce a nearly monotone
relationship between the variables, though the shape of the relation is quiet dif-
ferent from Figure 1. This suggests that while the worker/job flow variables are
useful controls, they do not substitute for the firm fixed effects.
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Figure 4: Size Controls and Firm Fixed Effects
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Figure 5: All Controls Except Firm Fixed Effects (Including Average Flows)

C The Firm’s Problem

The firm’s profit maximization problem is
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π (N−1 (x) ,y) = max
N(x),v

{ˆ 1

0
N (x) [F (x,y)−w (x,y)]dx− c(v) (32)

+β(1−p)π ((1− s)N (x) ,y)

+βp
ˆ 1

0
h(y′)π

(
(1− s)N (x) ,y′

)
dy′
}

subject to

0 ≤ N (x)≤N−1 (x) +v · q (x) ∀x (33)
y ∈ A(x) if N(x)> 0 ∀x. (34)

Turning to (33) first, N−1 (x) : [0,1]→ R+ is the inherited stock of workers from
the previous period, q (x) : [0,1]→R+ is the arrival rate of workers of each type, v
is the firm’s vacancy postings (a choice variable) and N (x)is the workforce in the
current period (another choice variable). The constraint simply states that current
employment of type x workers must be no greater than surviving employment from
the past, N−1 (x), plus new recruitment v ·q (x). Note that the firm posts a single
set of vacancies for all worker types.
The second constraint (34) imposes that the firm must be in the acceptance set
of any worker they employ. If the worker did not find the match acceptable, they
would depart into unemployment before production began.
In the profit maximization problem (32) the firm takes last period’s employment
and their current type as state variables. The firm chooses current employment
and vacancy posting, taking the bargained wages w (x,y) as given. Within the
period, the firm enjoys profits net of wages F (x,y)−w (x,y) from each worker,
and pays the convex vacancy posting cost c(v). If a productivity shock does not
arrive the firm has discounted continuation value βπ ((1− s)N (x) ,y), where s is
the exogenous separation rate. If a shock does arrive the firm gets the expected
value β

´ 1
0 h(y′)π ((1− s)N (x) ,y′)dy′.

The Lagrangian for the firm’s problem is

π (N−1 (x) ,y) =
ˆ 1

0
N (x) [F (x,y)−w (x,y)]dx− c(v)

+β(1−p)π ((1− s)N (x) ,y)

+βp
ˆ 1

0
h(y′)π

(
(1− s)N (x) ,y′

)
dy′

+
ˆ 1

0
µ(x)(N−1 (x) +v · q (x)−N(x))dx.

Assume that y ∈ A(x). Then the match yields positive surplus, and the hiring
constraint will bind. In this case the FOC with respect to N(x) is

F (x,y)−w (x,y) +β(1−p)(1− s) dπ
dN∗

+βp(1− s)
ˆ 1

0
h(y′) dπ

dN∗
dy′−µ(x) = 0.
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Next, note that by the envelope condition

∂π (N−1 (x) ,y)
∂N−1 (x) = µx (35)

so when y ∈ A(x) I can use the FOC to write

∂π (N−1 (x) ,y)
∂N−1 (x) = F (x,y)−w (x,y) (36)

+(1− s)(1−p)β∂π (N∗ (x) ,y)
∂N∗ (x)

+(1− s)pβ
ˆ 1

0
h(y′)∂π (N∗ (x) ,y′)

∂N∗ (x) dy′.

On the other hand, if y /∈ A(x) then worker separates from the firm before pro-
duction occurs. This implies

∂π (N−1 (x) ,y)
∂N−1 (x) = 0 if y /∈ A(x) (37)

Taking equations (36) and (37) together for y ∈ A(x) I have

∂π (N−1 (x) ,y)
∂N−1 (x) = F (x,y)−w (x,y)

+(1− s)(1−p)β∂π (N∗ (x) ,y)
∂N∗ (x)

+(1− s)pβ
ˆ
A(x)

h(y′)∂π (N∗ (x) ,y′)
∂N∗ (x) dy′

Which is identical to equation (3) when we set ∂π(N−1(x),y)
∂N−1(x) = J(x,y). This shows

how we can formally derive equation (3) from the firm’s problem. Taking the FOC
with respect to v I have

c′(v)−
ˆ 1

0
q(x)µ(x)dx= 0.

The left hand side of this equation is the value of a vacancy. Optimality dictates
that this be set to zero. Using equation 35 I can write

c′(v) =
ˆ 1

0
q(x)J(x,y)dx.

D Assortative Matching with Productivity Shocks

Consider the worker’s threshold condition (14):

F (x,y (x))−βηθ
ˆ 1

y(x)
[ηf (y)− (1− s)ph(y)] [F (x,y)−F (x,y (x))]dy = 0(38)

The following generalizes Proposition 3 to the case with productivity shocks.
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Proposition 10. When the worker’s choice of y(x) is given by (38), y′(x)> 0 if
and only if ˆ 1

y(x)
w∗ (y) F1 (x,y)

F (x,y) dy >
F1 (x,y (x))
F (x,y (x)) (39)

and y′(x)< 0 if and only if
ˆ 1

y(x)
w∗ (y) F1 (x,y)

F (x,y) dy <
F1 (x,y (x))
F (x,y (x)) , (40)

where w∗(y) = [ηf(y)−(1−s)ph(y)]F (x,y)´ 1
y(x)[ηf(y)−(1−s)ph(y)]F (x,y)dy

and
´ 1
y(x)w

∗(y) = 1.

Proof. Equation (38) implicitly defines y(x), so differentiating it I can obtain an
expression for y′(x). Applying the implicit function theorem I have

y′(x) =−
F1 (x,y (x))−βηθ

´ 1
y(x) [ηf (y)− (1− s)ph(y)] [F1 (x,y)−F1 (x,y (x))]dy

F2 (x,y (x))
(
1 +βηθ

´ 1
y(x) [ηf (y)− (1− s)ph(y)]dy

) .

It is easy to show that the denominator is positive by substituting in for θ. So the
sign of y′(x) depends only on the numerator, implying y′(x)> 0 if and only if

βθη

ˆ
y(x)

[ηf (y)− (1− s)ph(y)]F1 (x,y)dy >

F1 (x,y (x))
(

1 +βθη

ˆ 1

y(x)
[ηf (y)− (1− s)ph(y)]dy

)

Dividing this expression by (38) I arrive at
´ 1
y(x) [ηf (y)− (1− s)ph(y)]F1 (x,y)dy´ 1
y(x) [ηf (y)− (1− s)ph(y)]F (x,y)dy

>
F1 (x,y (x))
F (x,y (x))

Setting w∗(y) = [ηf(y)−(1−s)ph(y)]F (x,y)´ 1
y(x)[ηf(y)−(1−s)ph(y)]F (x,y)dy

I have equation (39)

ˆ 1

y(x)
w∗ (y) F1 (x,y)

F (x,y) dy >
F1 (x,y (x))
F (x,y (x))

as desired. A symmetric argument yields equation (40).

Note that the weights w∗(y) may be negative if f(y) is small and h(y) is large.
The sorting results summarized in Proposition 4 relied on the weights w(y) being
positive. To generalize Proposition 4 I need to show a single-crossing property
holds for w∗(y). This requires two intermediate results.
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Result 1 First, I need to show
ˆ 1

y(x)
[ηf (y)− (1− s)ph(y)]F (x,y)dy > 0. (41)

That is, although [ηf (y)− (1− s)ph(y)]F (x,y) may take negative values, the in-
tegral is always positive at an optimal threshold y(x). To see this, rearrange (38)
to get

F (x,y (x))
(

1 +βηθ

ˆ 1

y(x)
[ηf (y)− (1− s)ph(y)]dy

)
=

βηθ

ˆ 1

y(x)
[ηf (y)− (1− s)ph(y)]F (x,y)dy.

I have already argued in the proof of Proposition 10 that the term in parentheses
is greater than zero, which then implies that the right hand side is positive, so
equation (41) holds.

Result 2 Second, I need to show that there exists ȳ such that

[ηf (y)− (1− s)ph(y)]< 0 ⇐⇒ y < ȳ. (42)

That is, [ηf (y)− (1− s)ph(y)] has a single-crossing property, and is strictly pos-
itive above some threshold. To see this recall that h(y) is not only the density
of productivity shocks but is also the density of firm types (this follows from the
nature of the productivity process). Then I can write f(y) = M(U,V )

U
h(y)v(y)

V , where
v(y) is the number of vacancies posted by a type y firm and V is the aggregate
number of vacancies. Using this I factor out h(y) from the expression:

[ηf (y)− (1− s)ph(y)] = h(y)
[
η
M (U,V )

U

v(y)
V
− (1− s)p

]

Next, recall from Section 3.1.6 that vacancy posting v(y) is increasing in y.
This shows that

[
ηM(U,V )

U
v(y)
V − (1− s)p

]
will turn positive once and only once,

proving (42). Intuitively, the difference between f(y) and h(y) is the number of
vacancies posted per firm. More productive firms post more vacancies, so it is
understandable that above a threshold the difference ηf (y)− (1− s)ph(y) will be
positive.
Finally, taking equations (41) and (42) together, it is clear that the weights w∗(y)
also satisfy the same single crossing property:

w∗(y)< 0 ⇐⇒ y < ȳ. (43)

Given that w∗(y) satisfied this condition, I can show a useful result.

Lemma 1. Let w∗(y) satisfy equation (43) and
´ b
a w
∗(y) = 1. If g(y) is increasing

and positive then ˆ b

a
w∗(y)g(y)> g(a)
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and if g(y) is decreasing and positive then
ˆ b

a
w∗(y)g(y)< g(a)

Proof. Say that g(y) is increasing and positive. Then I want to show
ˆ b

a
w∗(y)(g(y)−g(a))> 0.

Note that g∗(y) = g(y)− g(a) is increasing and non-negative. Then the desired
condition can be written as:

ˆ b

ȳ
w∗(y)g∗(y) >

ˆ ȳ

a
(−w∗(y))g∗(y).

where −w∗(y) is a positive weight for y < ȳ. Recall that
´ b
a w
∗(y)dy = 1, so

ˆ b

ȳ
w∗(y)>

ˆ ȳ

a
(−w∗(y))

ˆ b

ȳ
w∗(y)g∗(ȳ)dy >

ˆ ȳ

a
(−w∗(y))g∗(ȳ)dy

Since g∗(y) is increasing I have
´ b
ȳ w
∗(y)g∗(y)>

´ b
ȳ w
∗(y)g∗(ȳ)dy and

´ ȳ
a (−w∗(y))g∗(ȳ)dy >´ ȳ

a (−w∗(y))g∗(y). Putting these all together I have
ˆ b

ȳ
w∗(y)g∗(y)>

ˆ ȳ

a
(−w∗(y))g∗(y)

as desired.

Substituting g(y) = F1(x,y)
F (x,y) in Lemma 1, it is clear that ∂

∂y
F1(x,y)
F (x,y) > 0 is sufficient

for positive assortative matching in the generalized model. The conditions for
negative sorting and no sorting follow from analogous arguments. I summarize
the generalized results below.

Proposition 11. Consider the general model with productivity shocks. Matching
is positive assortative, y′(x) > 0, if F is strictly log-supermodular. Matching is
negative assortative, y′(x)< 0 if F is strictly log-submodular. There is no sorting
if ∂

∂y
F1(x,y)
F (x,y) = 0 .

E Omitted Proofs

Proof of Fact Fact 1: First I derive an expression for S (x,y). Rearranging (4) I
can write

U (x) = β

ˆ
A(x)

f (y)S (x,y)dy+βU (x)
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and rearranging equation (5) I have

W (x,y) = w (x,y) +βW (x,y)− [s+ (1− s)p]βS (x,y)

+(1− s)pβ
ˆ
A(x)

h(y′)S
(
x,y′

)
dy′

Putting these together I have

S (x,y) = w (x,y) + (1− s)(1−p)βS (x,y)

+(1− s)pβ
ˆ
A(x)

h(y′)S
(
x,y′

)
dy′

−β
ˆ
A(x)

f (y)S (x,y)dy. (44)

Next, note that the bargaining equation (6) implies J (x,y) = 1−η
η S (x,y). Using

this in equation (3) yields

J (x,y) = F (x,y)−w (x,y) + (1− s)(1−p) 1−η
η

βS (x,y)

+(1− s)p1−η
η

β

ˆ
A(x)

h(y′)S
(
x,y′

)
dy′. (45)

Combining (44), (45), the Nash bargaining equation and rearranging I have

w (x,y) = ηF (x,y) + (1−η)β
ˆ
A(x)

f (y)S (x,y)dy (46)

Using this in the worker surplus expression I have

S (x,y) = θη

(
F (x,y)−β

ˆ
A(x)

f (y)S (x,y)dy
)

+θ (1− s)pβ
ˆ
A(x)

h(y′)S
(
x,y′

)
dy′ (47)

where θ = 1
1−(1−s)(1−p)β . Similarly, the equation 45 yields

J (x,y) = θ (1−η)F (x,y)− θηβ
ˆ
A(x)

f (y)J (x,y)dy

+θ(1− s)pβ
ˆ
A(x)

h(y′)J
(
x,y′

)
dy′.

Proof. Start with equation (9):

S (x,y) = θη

(
F (x,y)−β

ˆ
A(x)

f (y)S (x,y)dy
)

+θ (1− s)pβ
ˆ
A(x)

h(y′)S
(
x,y′

)
dy′
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Rearranging this yields

S (x,y) = θηF (x,y)

+θβ
ˆ
A(x)

[
(1− s)ph(y′)−ηf(y′)

]
S
(
x,y′

)
dy′ (48)

Multiplying by [(1− s)ph(y)−ηf(y)] and integrating I haveˆ
A(x)

[(1− s)ph(y)−ηf(y)]S (x,y)dy =

θη

ˆ
A(x)

[(1− s)ph(y)−ηf(y)]F (x,y)dy{ˆ
A(x)

[(1− s)ph(y)−ηf(y)]dy
}
θβ

ˆ
A(x)

[
(1− s)ph(y′)−ηf(y′)

]
S
(
x,y′

)
dy′

Which implies
ˆ
A(x)

[(1− s)ph(y)−ηf(y)]S (x,y)dy =
θη
´
A(x) [(1− s)ph(y)−ηf(y)]F (x,y)dy

1− θβ
´
A(x) [(1− s)ph(y)−ηf(y)]dy

And substituting this into (48)

S (x,y) = θηF (x,y)

−θη
θβ
´
A(x) [ηf(y)− (1− s)ph(y)]F (x,y)dy

1 + θβ
´
A(x) [ηf(y)− (1− s)ph(y)]dy

which is the desired result.
Continuity: S fails to be continuous only when 1−θβ

´
A(x) [(1− s)ph(y)−ηf(y)]dy=

0. For this to hold it must be that

1−βθ (1− s)p
[ˆ

A
h(y)dy

]
≤ 0.

After some rearranging this becomes

1−β (1− s) +β (1− s)p
(
1−

[´
Ah(y)dy

])
1−β (1− s)(1−p) ≤ 0.

Note that
[´
Ah(y)dy

]
≤ 1, so this is clearly a contradiction. So I have shown that

1−βθ
[´
A ((1− s)ph(y)−ηf (y))dy

]
> 0, and thus S is continuous.

Proof. Step 1 shows that there are never two points satisfying (14). Steps 2 and
3 show that (14) has a solution if and only if y (x) is not a solution.
Step 1: There is at most one solution to (14). The derivative of the right
hand side is

∂

∂y∗
βθη

ˆ 1

y∗
f(y)(F (x,y)−F (x,y∗))dy =

−βθηF2 (x,y∗)
ˆ
y∗
f(y)dy < 0
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And the derivative of the left hand side is

∂

∂y∗

[
F (x,y∗)− b+ θβ (1− s)p

ˆ 1

y∗
h(y)(F (x,y)−F (x,y∗))dy

]
=

F2 (x,y∗)
[
1− θβ (1− s)p

ˆ
y∗
h(y)dy

]

To see that
[
1− θβ (1− s)p

´ 1
y∗ h(y)dy

]
is positive, substitute in for θ to get

[
1− θβ (1− s)p

ˆ 1

y∗
h(y)

]
=

1−β (1− s)
´ 1
y∗ h(y)dy

1−β (1− s)(1−p) > 0.

Thus the left hand side of (14) is strictly decreasing and the right hand side is
strictly increasing, so there is at most one solution.
Step 2: If there is no solution to (14) then (15) must hold. First, let

z (y∗) = (F (x,y∗)− b) + θβ (1− s)p
ˆ 1

y∗
h(y)(F (x,y)−F (x,y∗))dy

r (y∗) = βθη

ˆ 1

y∗
f(y)(F (x,y)−F (x,y∗))dy

From Step 1 we know that

z′ (y∗) > 0
r′ (y∗) < 0

Note that

z (1) > 0
r (1) = 0

Then, since z and r are continuous, the only way to have no solution to (14) is to
have

z (x)> r (x) ∀x.
This implies z (0)> r (0), which is equivalent to (15) so I am done.
Step 3: If (15) holds then (14) has no solution. Reversing the logic from
Step 2, if z (0)> r (0) then z (x)> r (x) ∀x, so (14) cannot hold.

Proof of Proposition 5. The goal is to show that if F is not strictly log-supermodular
then matching is not necessarily positive assortative. I start by assuming that

∂2

∂x∂y
lnF (x∗,y∗)< 0 (49)

for some x∗and y∗, and then show that I can pick f(y) to make y′(x∗)< 0. First,
note that under these conditions we can find y∗∗ > y∗ such that

F1 (x∗,y∗)
F (x∗,y∗) >

F1 (x∗,y∗∗)
F (x∗,y∗∗) . (50)
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This will be used in the final step of the proof. Now I argue we can set f(y)
such that y(x∗) = y∗, and then show we can adjust f(·) to put more weight on
y∗∗. It is trivial to show that there exist many meeting rate functions f(·) such
that y(x∗) = y∗, so I simply assuming that we have f(·) such that the optimally
condition (27) holds:

F (x,y∗)
(

1 +βθη

ˆ 1

y∗
f(y)dy

)
−βθη

ˆ 1

y∗
f(y)F (x,y)dy = 0. (51)

Next, define

f̄ =
ˆ 1

y(x)
f(y)dy (52)

And define ȳ as the solution to

F (x, ȳ) =
´ 1
y∗ f(y)F (x,y)dy´ 1

y∗ f(y)dy
(53)

Note that ȳ > y∗. ȳ is the firm type that yields the expected match production
within the acceptance set, while f̄ is the probability the gets an acceptable offer.
Then I can write

F (x,y∗)
(
1 +βθηf̄

)
−βθηf̄F (x, ȳ) = 0. (54)

This can be interpreted as the indifference condition of a counter factual problem.
Say there is only one firm type ȳ, and the worker gets offers with probability f̄ .
Obviously the worker accepts the offers and the decision problem is trivial. But,
we can also examine what would happen if the worker were offered a one time
chance to match with an alternative firm type y. Then this condition says that
y∗ is the lowest acceptable alternative firm type. Equivalently, we could imagine
there is a measure zero population of firms with y 6= ȳ, and that the worker has
to define their acceptance set on these alternatives as well.
Rearranging I have

f̄ = F (x,y∗)
βθη (F (x, ȳ)−F (x,y∗)) .

Now define a new function

f̄(y) = F (x,y∗)
βθη (F (x,y)−F (x,y∗)) (55)

That is, f̄(y) is the total arrival rate necessary to ensure the worker’s reservation
type is y∗ when all offers (except a set of measure zero) are of type y. f̄(y) is
well defined for all y > y∗, and in particular f̄(y∗∗) exists. In words, we can find
an offer arrival rate that ensures the worker’s reservation productivity is y∗ when
almost all firms are type y∗∗.
Equation (55) presumes a point mass of firms at type y. The results in Proposition
3 relied on continuous, differentiable densities. This is not a serious gap, since we
can approximate the point mass as the limit of a sequence of smooth densities. The
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critical point here is that F is twice continuously differentiable. This means that
∂2

∂x∂y lnF (x,z)< 0 implies ∂2

∂x∂y lnF (x,z′)< 0 for some neighborhood U around z.
Then we can replace the point mass at z with a density that accumulates on U .
Recall from Proposition 3 that y′(x∗)> 0 if and only if

ˆ 1

y∗
w (y) F1 (x∗,y)

F (x∗,y) dy >
F1 (x∗,y∗)
F (x∗,y∗) (56)

where
w(y) = f(y)F (x,y)´ 1

y∗ f(y)F (x,y)dy
> 0. (57)

Clearly, if f (y∗∗)� f (y) then w (y∗∗)�w (y) as well. Under these circumstances
ˆ 1

y∗
w (y) F1 (x∗,y)

F (x∗,y) dy ≈
F1 (x∗,y∗∗)
F (x∗,y∗∗) <

F1 (x∗,y∗)
F (x∗,y∗) (58)

The inequality shows that y′(x∗)< 0, so we are done.

Proof of Proposition 6. The proof has three steps.
Step 1: Growth is an exact function of current y and a set of state
variables m that satisfy h(y|m) = h(y). Consider a firm in period t. The firm’s
growth rate is defined as

gt = 2Et−Et−1
Et+Et−1

Where Et is total employment, measured in the production stage. Et satisfies the
law of motion Et =Ht+(1−st)Et−1, whereHt is total hires and st is the separation
rate. We observe st > s only when there is a negative productivity shock, leading
to endogenous separations. Recall also that total hires Ht = H(yt) is a function
only of current productivity yt: both the number of vacancies posted and the
acceptance decisions of workers only depend on yt. Assuming yt = yt−1 = yt−2 and
working recursively, we can write

Et =H(yt)(1 + (1− s)) + (1− s)2Et−2

and assuming that y = yt has been constant since period t− j we have

Et =H (y)
i=j−1∑
i=0

(1− s)i+ (1− s)jEt−j . (59)

Thus Et is an exact function of (1) current productivity y, (2) the duration of
the current productivity regime j, and (3) employment at the start of the regime
Et−j . Note that Et−j is not independent of y: if y is very low, we expect Et−j
to be low as well, since productivity changed to y at the beginning of period t− j
or earlier. This means any high type worker will have separated before Et−j is
measured.
In what follows, I assume that a productivity shock arrived at the start of period
t− j, and there has been no subsequent shock. Let N : [0,1]→ R+ be the firm’s
employment distribution in period t− j − 1. That is, the firm employed N(x)
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workers of type x in the production stage of period t−j−1. If the shock does not
cause any separations then

Et−j = H(y) + (1− s)Et−j−1

= H(y) + (1− s)
ˆ 1

0
N(x)dx.

´ 1
0 N(x)dx gives total employment at the end of period t− j− 1. At the start of
t−j, productivity changes to y and exogenous separations occur. So hiring is given
by H(y) and separation by

´ 1
0 N(x)dx. In the general case, where endogenous

separations may occur, the law of motion is

Et−j =H(y) + (1− s)
ˆ x(y)

0
N(x)dx. (60)

Here x(y) is the highest worker type that is willing to work for type y firm. The
integral makes clear that any high type workers, x > x(y), separate from the firm
at the start of t− j. Putting (59) and (60) together I have

Et =H (y)
i=j∑
i=0

(1− s)i+ (1− s)j+1
ˆ x(y)

0
N(x)dx.

Thus, Et is an exact function of y,j and N(x). Note y is independent of N(x)
and j: since N(x) is only a function of lagged productivity values, it contains no
information about y. In particular, the conditional density of y, h(y|j,N(x)) is
equal to the unconditional density h(y). Letting m= (j,N(x)), I am done.
Step 2: g1(y,m) is positive. Define

E∗t−j =
ˆ x(y)

0
N(x)dx. (61)

where x(y) and N(x) are defined in Step 1. E∗t−j is the mass of workers that
remain at the firm after the productivity shock, but before exogenous separations
occur. Using this notation I can write period t employment as be employment

Et =H
i=j−1∑
i=0

(1− s)i+ (1− s)jE∗t−j

where H is the level of hiring for a type y firm. Differencing I have

Et−Et−1 = (1− s)j−1 (H− sE∗t−j)
so the growth rate is

g = 2rj−1 H− sE∗t−j
H
[∑i=j−2

i=0 ri+∑i=j−1
i=0 ri

]
+E∗t−j [rj + rj−1]

where r = (1− s). Substituting in equation (61) and H =
´ x(y)

0 H(x)dx I have

g = 2rj−1
´ x(y)

0 H(x)dx− s
´ x(y)

0 N(x)dx´ x(y)
0 H(x)dx

[∑i=j−2
i=0 ri+∑i=j−1

i=0 ri
]
+
´ x(y)

0 N(x)dx [rj + rj−1]
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Differentiating this expression with respect to y, I find that g′ > 0 if and only if

x′(y) H(x(y))− sN(x(y))
H(x(y))

[∑i=j−2
i=0 ri+∑i=j−1

i=0 ri
]
+N(x(y)) [rj + rj−1]

>

x′(y)
´ x(y)

0 H(x)dx− s
´ x(y)

0 N(x)dx´ x(y)
0 H(x)dx

[∑i=j−2
i=0 ri+∑i=j−1

i=0 ri
]
+
´ x(y)

0 N(x)dx [rj + rj−1]

Under the assumption of positive assortative matching, x′(y) is positive and can
be canceled on both sides. Note that the remaining term on the left hand side is
the growth rate of type x(y) workers at the firm, while the right hand side is the
growth rate of total employment at the firm. Appealing to Proposition 7, we see
that the left hand side must be larger, so we are done.
Step 3: g1(y,m) > 0 implies Fg(·|y′) dominates Fg(·|y) whenever y′ > y.
Using the results in Step 1, I can write the distribution of growth conditional firm
type as

Fg (g|y) =
´
m,y 1{g(y,m)< g}×1{y∗ = y}dF (m,y∗)´

m,y 1{y∗ = y}dF (m,y∗)

Where F (m,y) is the joint CDF of m and y and Fg (g|y) is the CDF of growth
rates conditional on y. Using the fact that h(y|m) = h(y) this simplifies to

Fg (g|y) =
ˆ
m

1{g(y,m)< g}dF (m) (62)

From equation (62) it is clear that increasing y reduces Fg (g|y) if g1(y,m) > 0.
This means that Fg (·|y′) dominates Fg (g|y) whenever y′ > y, so I am done.

Proof of Proposition 7. Define j(x) by

yt−j(x) ≤ y(x)
yt−i > y(x) ∀i > j(x).

That is, t− j(x) is the most recent period when the firm’s productivity was below
the worker’s acceptance threshold. This implies that Nt−j(x)(x) = 0, so I can write
employment in t as the accumulation of surviving hires since t− j(x):

Nt(x) =
i=j(x)−1∑
i=0

(1− s)iHt−i(x). (63)

Plugging this expression into the growth rate formula I have

gt(x) = 2 Ht(x)− s∑i=j(x)−1
i=1 (1− s)i−1Ht−i(x)

Ht(x) + (2− s)∑i=j(x)−1
i=0 (1− s)i−1Ht−i(x)

(64)

Clearly, a ceteris paribus increase in j(x) reduces gt(x), This comes about through
two channels. A higher j(x) means there has been more time for the firm to
accumulate workers, so the denominator of (31) is larger. Second, the larger stock
of type x workers implies higher level of separations, reducing the numerator. The
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final step is to note that Ht(x) = q(x)v(yt): hires of type x workers equals the
arrival rate q(x) times the number of vacancies posted, v(yt). Substituting in this
expression, the q(x) cancel leaving

gt(x) = 2 v(yt)− s
∑i=j(x)−1
i=1 (1− s)i−1v(yt−i)

v(yt) + (2− s)∑i=j(x)−1
i=0 (1− s)i−1v(yt−i)

. (65)

This makes clear that changing x changes gt(x) only through j(x), and not through
any differences in hiring subsequent to t−j(x). Under positive assortative match-
ing, increasing x lowers j(x), so gt(x) increases in x.
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