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Abstract 
 

Adaptive Design methods for social surveys utilize the information from the data as it is 
collected to make decisions about the sampling design. In some cases, the decision is either to 
continue or stop the data collection. We evaluate this decision by proposing measures to compare 
the collected data with follow-up samples. The options are assessed by imputation of the 
nonrespondents under different missingness scenarios, including Missing Not at Random. The 
variation in the utility measures is compared to the cost induced by the follow-up sample sizes. 
We apply the proposed method to the 2007 U.S. Census of Manufacturers. 
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1 Introduction

Adaptive designs use auxiliary information to tailor and update the sampling scheme through-
out a survey. This information may include administrative records; paradata, that is data
about collecting the responses, such as details about where and how the interviews took place;
and the actual survey data as they are collected. With these extra information available,
the agencies conducting surveys can change strategies of collecting the data to improve the
sample representativeness while allocating resources more efficiently (Miller, 2013; Finamore
et al., 2013). Some of these changes affect the strategies applied to individuals, e.g., using
different contact means or targeting underrepresented groups, but they can also apply to the
entire sample, such as stopping the data collection. This later application is the subject of
this paper.

The concept of adaptive designs originated in clinical trial studies, where different treat-
ments are considered depending on characteristics of the patient and responses to previous
treatments (Murphy, 2003) to increase response rates and avoid nonresponse bias. Some
of these methods that consider different strategies for each individual were extended and
applied to survey methodology in order to increase response rates and sample representa-
tiveness, e.g. R-indicators and partial R-indicators (Wagner, 2008; Schouten et al., 2009,
2011, 2012).

∗DISCLAIMER: Any opinions and conclusions expressed herein are those of the author(s) and do not
necessarily represent the views of the U.S. Census Bureau. All results have been reviewed to ensure that no
confidential information is disclosed.
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Data collected at initial phases also can be used to guide decisions applied to general
features of the survey design, not only to individually tailored strategies. For example, the
agency can decide to stop data collection depending on the amount of information already
recorded and the costs of completing data collection. The benefits of stopping data collection
include reducing the total cost and releasing results earlier, but it only makes sense if the
data quality and inference are not sacrificed to undesirable levels. The quality of data can be
assessed by information measures based on quantities of interest and their estimated changes
at each survey phase. Some stopping rules for surveys with multiple waves are proposed by
Rao et al. (2008) and Wagner and Raghunathan (2010) for binary response variables. In both
methods, the nonrespondents are imputed under the assumption that they follow the same
distribution as the respondents; that is, the data are missing at random (MAR) (Rubin,
1976). In many sample surveys and observational studies, the ignorability assumption is
invalid, so that standard methods for multiple imputation can produce unreliable estimates.
For that reason, it is useful and important to develop methods for missing not at random
(MNAR) data. As examples, Greenlees et al. (1982) proposes an imputation method for
nonignorable response mechanism by considering a regression model with censoring, and
Diggle and Kenward (1994) present a modeling approach for longitudinal data sets with a
nonignorable dropout process.

We propose a method for handling nonignorable missingness when making multiple im-
putation of multivariate continuous data. To capture distributional features that this type
of data may have, we use a mixture of multivariate normal distributions and a truncated
Dirichlet process prior distribution. We fit the model to the set of observed data, resulting
in an estimate of the respondents’ distribution. When the data are missing not at random,
we need a different distribution for the nonrespondents, following a pattern mixture model
approach. To propose distributions for the nonrespondents, we alter the probabilities of the
mixture components, keeping fixed the location and scale parameters. We inflate cluster
probabilities to generate more points from that region, and deflate them to do the oppo-
site, yielding a new distribution for the imputation. We then perform sensitivity analysis
by examining different sets of altered probabilities. Since that is the main step of the im-
putation method, we developed an R application to implement the process of selecting new
probabilities. The user selects new probabilities by setting the values on “sliders” for each
components. The application automatically generates data from the specified distribution,
and shows plots and summary statistics to be used for the sensitivity analysis.

Consider an ongoing survey that is being evaluated at a certain point in time to decide
whether it is worth continue collecting data, or to stop it and impute the nonrespondents
from what has been observed so far. This decision depends on the quantity and quality
of the data that were already recorded, how different the nonrespondents are from the re-
spondents, and how any differences could impact the inference results. To facilitate such
decision-making, we propose some utility measures to estimate the change in the results
under different missingness scenarios. Each scenario reflects one possibility for the missing-
ness pattern, ranging from the MAR case, where the imputed data are generated from the
same distribution as the respondents, to other cases of nonignorable missingness. For each
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scenario considered by the analyst, we propose calculating the utility measures and the cost
for various follow-up sample sizes. As the sample size increases, the utility measures are
naturally getting better, but the cost also increases. Thus, the decision rule will depend
on the trade-off between these measures. With the values of utility and cost measures for
different sample sizes and under different missingness scenarios, the agency can make an
informed decision about stopping the data collection.

We describe our approach of adaptive design with imputation methods in Section 2. We
describe the methodology used to fit the model to the observed data in Section 2.1, and to
generate imputed data sets under MNAR in Section 2.2. We describe the steps to evaluate
the adaptive design in Section 2.3. We define the utility and cost measures in Section 2.4 and
Section 2.5, respectively. The method is exemplified by an application to the U.S. Census of
Manufactures in Section 3. Additional discussion appears in Section 4.

2 Methodology

2.1 Mixture model

Imputation of the missing data is an important part of the adaptive design approach we
propose, as we generate completed survey data under different scenarios. These scenarios
can include Missing at Random (MAR) data, as well as Missing Not at Random (MNAR).
The model has also to be flexible to capture different patterns of the multivariate contin-
uous data, such as multi modality, skewness and correlation. The mixture of multivariate
normal distributions is a natural choice, since with a sufficient number of components, it can
approximate well any distribution. With a nonparametric prior in a Bayesian framework
(Ferguson, 1973, 1983; Escobar and West, 1995; West et al., 1994), we can provide more
flexibility and improve the density estimation (Müller and Mitra, 2013).

Let Y = (Y1, . . . ,Yn)′ denote the p variables of the n respondents. Denote by zi ∈
{1, . . . , K} the indicator of which component the i-th observation belongs to with probability
πk = P (zi = k), where i = 1, . . . , n and k = 1, . . . , K < ∞. Within each component, Y
follows a multivariate normal distribution with mean µk and variance Σk:

yi|zi,µ,Σ ∼ N(µzi ,Σzi) (1)

zi|π ∼ Multinomial(π1, . . . , πK). (2)

We standardize each dimension of Y to facilitate modeling.There are two alternatives for
the prior specification of µ and Σ. The first is the conjugate prior, with

µk|Σk ∼ N(µ0, h
−1Σk) (3)

Σk ∼ InverseWishart(f,Φ), (4)

where f is the degrees of freedom and Φ = diag(φ1, . . . , φp) with φj ∼ Gamma(aφ, bφ) for
j = 1, . . . , p. We set µ0 = 0, since the variables are standardized, f = p + 1 to ensure a
proper posterior distribution, and h = 1 for convenience. The second alternative has the
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same prior as (3) for µ, but instead we set the covariance matrices to Σk = σIp, for all k
and for a specified value of σ > 0. The value of σ controls the tightness of the clusters.
In the remaining of this paper, we will use this approach with the fixed covariances, since
some preliminary results suggest this approach provides more flexibility for the imputation
models.

Following the stick-breaking representation of a truncated Dirichlet process (Sethuraman,
1994; Ishwaran and James, 2001), we define the mixture weights as

πk = vk
∏

g<k(1− vg) for k = 1, . . . , K (5)

vk ∼ Beta(1, α) for k = 1, . . . , K − 1; vK = 1 (6)

α ∼ Gamma(aα, bα). (7)

The hyperparameters are set following the same specification of Kim et al. (2014), with
aα = bα = 0.25 to allocate the probabilities to the first few components.

2.2 Imputation methods

The model in (1)–(7) can be used to impute values for the missing observations. The imputed
values are simulated from the posterior predictive distribution within the Gibbs sampler. If
we use the estimated values of (π,µ,Σ) on the predictive distribution, the imputed values
are generated from the same distribution as the observed data when the data are assumed
to be MAR. We will use the estimated (µ,Σ) and specify new mixture probabilities π∗ to
generate imputed values from a distribution different than the observed. This is done when
the data are assumed to be MNAR, and π∗ reflects the assumptions about the missingness
pattern.

The model also can be used to fill in the missing data caused by item nonresponse, when
some of the variables are observed, and by unit nonresponse, when none of the variables are
observed. In both cases, y is sampled from the conditional distribution given the posterior
samples of the parameters.

For item nonresponse, we impute the missing variables for each unit from the conditional
normal distribution given the observed variables. For this case, we assume that the cause
for nonresponse is not related to the missing responses, that is, the item nonresponses are
MAR given the observed variables. At each MCMC iteration, after updating π, µ and Σ,
we sample the cluster indicators zi from the multinomial distribution. Then, conditioning
on the cluster indicator and on the observed parts, we can impute the missing parts for each
incomplete observation from the corresponding conditional normal distribution.

For unit nonresponse, we impute the entire vector of variables for the nmis completely
missing respondents from the posterior predictive distribution. In this case, there is no
partial information about the location of the responses. Here, we assume that the values are
MNAR. We use the samples of µ(t) and Σ(t) from the model fit to the observed data, and
specify new mixture probabilities π∗. For i = 1, . . . , nmis, we sample

zi|π∗ ∼ Multinomial(π∗1, . . . , π
∗
K) (8)

ỹi|zi,µ(t),Σ(t) ∼ N(µ(t)
zi
,Σ(t)

zi
). (9)
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Since we need to identify the components to choose the new probabilities, we propose
ranking the clusters post-simulation based on their distance δ to the origin, i.e., δorig = µ′µ,
or to the minimum value with δmin = (µ−ymin)′(µ−ymin), where ymin = (mini(y1), . . . ,mini(yp)),
with mini(yv) = min(y1v, . . . , ynv) for all variables v = 1, . . . , p. Thus, if we want to impute
more data with higher response values, we can inflate the probabilities of the top ranked
clusters, and the reverse if we want to generate more data with lower response values. This
criterium is defined to facilitate the identification of the clusters, thus it can be defined
differently depending on the range of the data.

We also summarize the posterior samples by choosing the MCMC iteration with largest
posterior value (Fraley and Raftery, 2007). For each iteration, we evaluate the posterior given
the sampled values for the parameters and the sample of the complete observed and imputed
Y . Then, we select the iteration with maximum posterior value (MAP) to summarize the
samples. This is done to simplify the task of setting π∗ to just one cluster allocation, since
this allocation can change from iteration to iteration.

Choosing π∗ determines which components the nonrespondents are more likely to be-
long to, and specifies the new pattern for the imputed data. The values in π∗ are chosen
by analyzing the posterior summary of the clusters, and adjusting the values to obtain the
desired pattern for the imputed values. For example, analysts can set π∗k = 0 for clusters
in regions that should not have imputed data according to their beliefs about the the non-
ignorable missingness. On the other hand, analysts can increase the probability of clusters
where they believe there should be more imputed data than what was observed. The closer
the probabilities π∗ remain to the posterior samples of π, the closer the data are to MAR.

Specifying the entire vector of probabilities might be complicated in some situations,
particularly with large p. To facilitate the process of setting π∗, we developed the NIMC
(Nonignorable missigness Imputation for Multivariate Continuous data) tool. The NIMC is
an R (R Core Team, 2013) application developed with the shiny package (RStudio and Inc.,
2014), where the probabilities can be altered by setting values on sliders for each component.
The sliders start with the estimated probabilities of π(t) for a given iteration t as default
values, such as the MAP iteration, and the user selects the factors to be applied to each
probability. The slider values are renormed to sum to one so the resulting mixture model
in (??) is a proper density. Using the renormed probabilities, the application automatically
generates synthetic data following the model described in (8)–(9), so that the analyst can
change π∗ to get the desired distributions.

The application presents some tabs with the results of the imputation. The main tab
includes pairwise scatterplots of the imputed and observed data, and the 95% quantile ellipses
of the fitted clusters. We include the plot with the log transformed and standardized data,
on the scale in which the model was fit, and the plot with the data on its original scale.
For the latter, the user has an option to choose between the raw data and the data with
the log transformation to help visualize skewed distributions. To help with the visual aspect
of the scenario assessment, a second tab includes summary statistics for the observed and
imputed data separately, and the merged completed data set. The summary statistics are
also calculated for the standardized and original data. The user can select the summary
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statistics, depending on the variables being analyzed. These measures, in combination with
the scatterplots, provide different perspectives to help the analyst make decisions about the
sensitivity analysis. As a baseline, we include correlations between the response variables
and descriptive statistics for the marginal variables, with quantiles, means, minimum values
and maximum values. Finally, when the imputation results are satisfactory, the completed
data set on the original scale can be visualized and downloaded in the third tab.

2.3 Adaptive Design

Let us consider an ongoing survey which is going to be evaluated at a certain point in time.
The goal is to decide if it is worth spending any more resources collecting more data, or if
what has been collected so far is adequate to enable inferences for population quantities. This
decision is based on the trade-off between the improvement in the data representativeness
and the increase in cost of collecting more data.

We denote by N the intended size of the entire sample. After the first wave of data
collection, this sample is partitioned into the respondents, who have at least one of the
variables recorded, and the nonrespondents, who did not provide any response to the survey
yet. To deal with the item nonresponse among the respondents, we follow the first approach
described in Section 2.2 and impute the missing values assuming MAR conditioned on the
observed values.

We consider two options to obtain a completed data set of size N . The first option is to
stop collecting data and impute the missing data based on the information available from
the observed data. We fit the multivariate mixture model described in Section 2.1 to the
nR respondents denoted by DR. The remaining nNR nonrespondents in set DNR are then
imputed based on this model, as seen in Figure 1. The imputation at this stage can be
done under scenarios of either MAR or MNAR, depending on the purpose of the completed
data. When generating a completed data set to be released for general analysis, the missing
data are probably going to be imputed assuming MAR. When doing sensitivity analysis
to evaluate the impact of missingness patterns, we consider different possible scenarios,
including MNAR. We show some different scenarios in the results in Section 3.

The second option is to collect nF more observations to form a follow-up sample, DF .
The set of nNF cases that are still missing after the follow-up sample are denoted by DNF .
The mixture model is fit again, either to all the observations in (DR + DF ) or just DF , as
seen in Figure 2(a) and 2(b) respectively. These alternatives correspond to the belief that
the nonrespondents in DNF are more similar to the entire set of observations or just to the
latest wave. It may be beneficial to use (DR +DF ) when nF is too small to support reliable
modeling.

The choice in Figure 2(a) is appropriate if DR and DNR come from the same distribution
and the latter is MAR. Here, DF is a random sample of the nonrespondents, and DNF should
be imputed from the same distribution as all the data that was observed so far. It also makes
sense to follow 2(a) if DR and DNR have different distributions, but DF comes from the
same distribution of DR, and the differences in the distributions are reflected on a MNAR
imputation model. The choice in Figure 2(b) makes more sense if it is believed that DR and
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DR

DNR

Imputation

nR

nNR

N = nR + nNR

Figure 1: Imputation diagram if decide to stop data collection

DNR come from different distributions, DF is a random sample of the nonrespondents, and
DNF should be imputed based only on the distribution of the follow-up sample.

The decision between the two options represented in Figures 1 and 2 depends on the
trade-off between utility and cost of collecting more data. In order to evaluate the utility
of what has been collected so far, we propose comparing some utility measures for different
follow-up sample sizes and under different missingness scenarios via sensitivity analysis.

With the data collected on the first survey wave, we fit the multivariate mixture model
from Section 2.1 to the observed values. After the convergence of the MCMC and the
selection of the iteration with maximum posterior value, we summarize the model estimate
with the selected MAP posterior samples of the mixture parameters. The imputed values
due to item nonresponse are also selected from the MAP iteration. Combined with the
actual recorded values, they form the set DR that is going to be used in all the imputation
scenarios.

With the fitted cluster allocation, the next step is to consider some plausible missingness
scenarios for sensitivity analysis. This is done by specifying new probabilities π∗ to reflect
different distributional patterns for the nonrespondents. To facilitate this step, we developed
the NIMC (Nonignorable missingness Imputation for Multivariate Continuous data) appli-
cation. The NIMC application provides an interface where the user can set the values of π∗

with sliders for each component, and immediately see pairwise scatterplots and summary
statistics of the observed and imputed data.

The scenarios can include the MAR case as a baseline, as well as other MNAR cases that
are reasonable for the survey context. An example of a MNAR case is when the probabilities
in π∗ are increased for the top ranked clusters to reflect a larger proportion of missing data
with larger responses.

These scenarios are used to compare the impact on inferences of different sizes of follow-
up samples, starting from what has been observed so far, and progressing as the follow-up
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DR

DF

DNF

Imputation

nR

nF

nNF

N = nR + nF + nNF

(a)

DR

DF

DNF

Imputation

nR

nF

nNF

N = nR + nF + nNF

(b)

Figure 2: Imputation diagrams if decide to collect follow-up sample

sample size increases. As nF increases, inferences on the MAR case are not expected to
change as much as on the MNAR case. If the impact on the inferences is significant, the
agency might decide that it is worth collecting more data. If even in an extreme MNAR
scenario the impact is not significant, then the agency might decide to stop data collection.

We describe now the data sets that will be used to evaluate these impacts. Define
nMAX as the maximum sample size that can be collected given a total budget or a time
restriction. We consider sampling different proportions of the maximum sample size, such
that nF = δ × nMAX where nF is the follow-up sample size and δ ∈ [0, 1]. Define mP as
the number of multiple imputations we generate when imputing to create the “population”
according to the missingness scenario, and mF as the number of multiple imputations we
generate when imputing the remaining data after the follow-up sample.

We denote by Ω = (π∗(1), . . . ,π∗(S)) the set of probabilities of each scenario to be con-
sidered. For each value of π∗(s) ∈ Ω, with s = 1, . . . , S, we do the following procedure:

1. Generate mP completed hypothetical populations (P (s,1), . . . , P (s,mP )) by multiply im-
puting all the non-respondents with the fitted model and the probabilities π∗(s). The
observed values DR are common to all s. The imputed values for each hypothetical
population are denoted by D̃

(s,j)
NR , such that P (s,j) = DR ∪ D̃(s,j)

NR , for j = 1, . . . ,mP .

2. For each value of δ under consideration, and for each j = 1, . . . ,mP :

(a) Obtain a random sample of size nF from each D̃
(s,j)
NR . Denote this follow-up sample

set by D
(s,j)
F,δ .

(b) Fit new mixture models to one or both:

i. DR ∪D(s,j)
F,δ
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ii. D
(s,j)
F,δ

depending on the option selected from Figure 2(a) and Figure 2(b).

(c) Based on the posterior samples of the new mixture models and assuming MAR,
generate mF multiply imputed values for the nNF observations that are still miss-
ing. The imputed cases are denoted by D̃

(s,j,l)
NF,δ , with l = 1, . . . ,mF . The completed

data sets are denoted by D̃
(s,j,l)
δ = DR ∪D(s,j)

F,δ ∪ D̃
(s,j,l)
NF,δ .

(d) Compare the sets P (s,j) and
(
D̃

(s,j,1)
δ , . . . , D̃

(s,j,mF )
δ

)
with the utility measures de-

scribed next.

We generate these multiple draws to account for the uncertainty due to the missing data
on each stage of the process. The uncertainty from selecting the follow-up sample could
also be considered with repeated sampling of D

(s,j)
F,δ . However, this source of uncertainty is

already accounted for with a reasonable number mP of multiple imputations.

2.4 Utility measures

The decision of stopping the data collection depends critically on the amount of information
that has been collected so far. This information can be measured by the difference in
inferences based on what was observed and inferences with a larger sample, under different
missingness hypothesis. If the observed sample size is small and the non-respondents have
an extremely different distribution than what was recorded, then the impact of a follow-up
sample on the estimates is going to be bigger than if the initial sample was larger or the
non-respondents were closer to be missing at random.

Consider the two complete data sets generated in Section 2.3: P (s,j), the hypothetical
population for scenario s and imputation j; and each D̃

(s,j,l)
δ , the completed data set consid-

ering the follow-up sample for imputation l. We consider the following measures to compare
the similarities between P (s,j) and D̃

(s,j,l)
δ .

2.4.1 Measure τ :

Let Ȳ
P (s,j)
v =

∑N
i=1 Y

P (s,j)
i,v /N denote the marginal mean of each variable v = 1, . . . , p com-

puted from the data set P (s,j), and let Ȳ
D,δ(s,j,l)
v =

∑N
i=1 Y

D,δ(s,j,l)
i,v /N denote the marginal

mean of each variable v = 1, . . . , p computed from the data set D̃
(s,j,l)
δ . Similarly, let σ̂

P (s,j)
v

and σ̂
D,δ(s,j,l)
v denote the standard deviations for each variable v from the data sets P (s,j) and

D̃
(s,j,l)
δ , respectively. For each variable v = 1, . . . , p, compute

tδ(s,j,l)v =

(
Ȳ
P (s,j)
v − Ȳ D,δ(s,j,l)

v

)
√[(

σ̂
P (s,j)
v

)2
+
(
σ̂
D,δ(s,j,l)
v

)2
]
/2

N

. (10)
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Let the summary measure be

τ δ(s,j,l) =
1

p

p∑
v=1

∣∣tδ(s,j,l)v

∣∣ , (11)

for each value of δ, scenario s, population j, and imputation l.

2.4.2 Measure θ:

We also define a measure based on the Mean Absolute Percentage Error, a measure used to
measure the percentage error between forecasts and observed values. Here, we consider the
average percentage difference between Ȳ

P (s,j)
v and Ȳ

D,δ(s,j,l)
v , with respect to Ȳ

P (s,j)
v . Thus,

the summary measure is

θδ(s,j,l) =
1

p

p∑
v=1

∣∣∣∣∣ Ȳ P (s,j)
v − Ȳ D,δ(s,j,l)

v

Ȳ
P (s,j)
v

∣∣∣∣∣ , (12)

for each value of δ, scenario s, population j, and imputation l.

2.4.3 Measure ρ:

Since these measures are focused on the marginal differences, characteristics of the mul-
tivariate data may not be captured. Woo et al. (2009) propose global measures of data
utility to compare multivariate distributions of two data sets, in an attempt to quantify the
dissimilarity between a masked data set and an original confidential data set that cannot
be released. They found that a measure based on propensity scores is the most promising
to reflect characteristics of the entire distribution for different types of data, while being
computationally feasible to implement.

Propensity scores are used in observational studies for matching covariate characteristics
and reduce the impact of confounding factors between groups when inferring treatment
effects. The propensity score is defined as e(x) = P (T = 1|x), the probability of being
assigned to be on the treatment group T given the variables x. Woo et al. (2009) propose
calculating the propensity score on the merged data set consisting of the original and the
masked data. The treatment response T is the indicator for the synthetic data, and the
propensity score is estimated for each unit in the merged data set. The similarity between
the two groups is assessed by the distribution of the estimated propensity scores and how
close they are to 0.5, the reference for indistinguishable groups.

The model specified to estimate the propensity scores has a great impact on this measure.
The common approach is to use simple logistic regression of the treatment indicator on the
covariates, which assumes a linear relationship between the link function and the covariates.
Woo et al. (2008) propose a more flexible approach by using generalized additive models
(GAM) instead of the standard logistic regression. The linear component of the regression
is replaced by a flexible additive function:

logit
(
e(x)

)
= log

(
e(x)

1− e(x)

)
= α + f1(x1) + · · ·+ fp(xp), (13)
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where each fj(xj) is a smooth function of xj, for example regression splines. This model
outperforms the logistic regression and facilitates the modeling of non-liner relationships.
However, as in the logistic regression, the results are dependent on the variables and interac-
tions that are included in the model. The recommendation remains to include the covariates
believed to be related to the “treatment” indicator.

We define the measure ρ based on the propensity score (Woo et al., 2009) estimated with
GAM (Woo et al., 2008), with the covariates as all the response variables y = (y1, . . . , yp)

included as main effects. The two data sets to be compared, P (s,j) and D̃
(s,j,l)
δ , are merged

together. The set P (s,j) receives an indicator variable T = 1, while D̃
(s,j,l)
δ has T = 0.

The logistic model is fit on the response variable T , for the merged data set of size 2N .
The predicted values of each observation êi should be around 0.5 if the two data sets are
comparable. The overall measure is given by

ρδ(s,j,l) =

∑2N
i=1(êi − 0.5)2

2N
, (14)

for each value of δ, scenario s, population j, and imputation l. If the distributions are equal,
ρ is close to zero. On the other extreme, if the two distributions are very distinct, then
ρ ∼ 1/4.

As nF increases, the two data sets intersect more and, obviously, all the measures will
decrease. Therefore, the interest is on their relative values compared between the different
follow-up sample sizes and for the different scenarios. Together with the cost measures, the
agency conducting the survey can make a decision about stopping data collection.

2.5 Cost measure and decision rule

Together with the utility measures described above, with a measure cost, one can make the
decision about the follow-up sample and its size. We propose obtaining the results with a
set of different values of nF , calculating the utility measures (τ, θ, ρ) and estimating the cost
of collecting the additional sample. With this information, the agency can decide how much
it is willing to spend for the utility improvements. The values can be explored with a table
or plot, as we show in Section 3.

Denote by CF the total cost of the follow-up sample, C0 the fixed cost regardless of the
sample size, and c the cost of selecting, measuring and processing each of the nF follow-up
sample units. For our purposes of creating a decision rule for adaptive design, we consider
sufficient to estimate the cost with a linear function of the sample size. More complex cost
functions are discussed in Groves (2004). The total cost is estimated by

CF = C0 + (c× nF ). (15)

We note that the maximum sample size nMAX , defined and used in Section 2.3, can be
obtained by solving for nF in (15) given the total budget available.
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3 Illustration with Census of Manufactures Data

We demonstrate now the proposed approach using data from the 2007 U.S. Census of Manu-
factures (CMF). The original data consist of responses collected from forms sent to companies
representing all U.S. locations and manufacturing industries. The form queries include in-
formation about sales, employees and payroll of the businesses. As in many other large
scale surveys, the CMF faces the problem of missing data, from both item and unit non-
response. Because of this, the U.S. Census Bureau spends resources trying to reduce the
nonresponse rates during data collection, for example, by resending the forms, or allocating
Census consultants to work specifically with some of the largest companies. Thus, the CMF
could potentially benefit from an adaptive survey design to stop data collection earlier. This
would not only reduce the cost of the survey, but it can also be beneficial for users with data
released sooner.

The CMF was the main motivating case for the proposed adaptive design methodology
with nonignorable missingness. This is because the data are collected and processed in waves
during the year, depending on when each firm sends its form. With this temporal pattern, it
is natural to think about evaluating the survey design at certain time points, e.g., monthly or
quarterly. This pattern is also a mechanism that can lead to missing not at random data. It
can happen, for example, if smaller companies tend to not send their forms on time. If that
is the case, with our imputation model, we can inflate the probabilities of bottom-ranked
clusters to impute more data with lower response values. This and some other scenarios
are reasonable assumptions to consider when making sensitivity analysis, as we demonstrate
here.

In order to investigate the missingness patterns and apply our imputation method, we
focus on some variables of the CMF. The variables are total value of shipments (TVS), total
employment (TE), and salary/wages (SW). The selected industry is ready-mix concrete
manufacturing, which is a homogeneous industry since most of their business is based on a
single product.

For illustration, we consider as observed data all the units that had at least one reported
value among the three variables of interest and that had a valid response date. Some observa-
tions met the first criterion, but there was no response date available on file for miscellaneous
reasons, which could include the case of late respondents that sent their information after
some processing deadline. We consider these cases as missing data, and impute their entire
vector of responses after fitting the mixture model in (1)–(7) to the observed data.

We selected three scenarios to consider for the sensitivity analysis. The first is the MAR
case, with the estimated probabilities π, as a baseline. The second is the MNAR case with
higher probabilities for bottom ranked clusters, to generate small response values. The third
scenario is the opposite MNAR case, with higher probabilities for top ranked clusters. This
is included in the sensitivity analysis as the worst case scenario, since larger companies will
have more impact in some summary statistics. With the NIMC application, we specified
the values of the probabilities and obtained Ω = (π∗(MAR),π∗(bottom),π∗(top)) corresponding
to three scenarios described above. The values of π∗ for each scenario can be seen in the
legends of Figure 3, Figure 4 and Figure 5.
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We considered δ = (0, 0.25, 0.5, 0.75, 1), that is, collecting follow-up samples with 0%,
25%, 50%, 75% and 100% of nMAX . For this example, we set nMAX = nNR, assuming
the budget and time available are enough to attempt to collect all nonrespondents. For
each scenario, first we created mP = 10 complete hypothetical populations. Then, for each
population P (s,j) and for each value of δ, we obtained the follow-up sample D

(s,j)
F,δ . We fit two

new mixture models to: (i) the observed data set and the follow-up sample
(
DR ∪D(s,j)

F,δ

)
;

and to (ii) the follow-up sample only
(
D

(s,j)
F,δ

)
. With the posterior samples from the new

mixture models, we create mF = 5 complete data sets through multiple imputation of the still
remaining nonrespondents. For all scenarios, we calculated the utility measures ρ, τ and θ as
described in Section 2.4. Each measure is summarized by the mean and standard deviation
of the individual values from mP population repetitions and the mF multiple imputations.

We do not include values for the cost measure due to disclosure limitations of the CMF
data, per request of the Census Bureau. The cost measure in (15) is a linear function of nF ,
and thus, a linear function of δ. Thus, we believe it is sufficient to present the results based
on δ for the purpose of sensitivity analysis and comparison of the different scenarios.

In Figure 3, we see the pairwise scatterplots of the results of the MAR scenario for the
concrete industry. The axes of all the scatterplots were removed to prevent disclosure of
information about the magnitude of the data. The mixture model resulted in 17 nonempty
components plotted by the colored circles in the upper diagonal plots. From the estimated
probabilities in the legend, we can see that most of the weight is concentrated in less than half
of the clusters. The black points in the lower diagonal plots are imputed assuming MAR. In
Figure 4, we can see the imputation results of the second scenario, with higher probabilities
for bottom ranked clusters. Because of this pattern on the probabilities, there are more
imputed points on the lower tails of the data. In Figure 5, we can see the imputation results
of the opposite scenario, with higher probabilities for the top ranked clusters.

In Table 1, we can see the utility measures of the MAR scenario for the concrete industry,
with the two approaches for the new mixture model. In Table 2, we have the results for the
MNAR scenario with higher probabilities for bottom ranked clusters, and in Table 3, we
have the results for the MNAR scenario with higher probabilities for top ranked clusters.
As expected, in all cases the measures decrease as δ increases. When δ = 1, we sample all
the units and there is no need to fit the model again and impute more data. Thus, the two
populations being compared, P (s,j) and D̃

(s,j,l)
δ , are the same and the utility measures are

equal to zero. When δ = 0, we do not collect any more data, so there is no follow-up sample
to fit the model on the second approach.

The MAR scenario is the baseline and the measures are relatively small, since the two data
sets being compared should come from very similar distributions. In the MNAR scenarios,
the values from the model fit with just the follow-up sample in Table 2(b) and Table 3(b)
are smaller than the values from the model fit with the observed data. This is expected,
since the distribution of the nonrespondents of the first wave, plotted as the black points
in Figure 4 and Figure 5, is very different than the distribution of the respondents, plotted
as the gray points. The second approach, therefore, creates data sets D̃

(s,j,l)
δ that are more
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similar to the populations P (s,j).
The measures are also compared with the plots in Figure 6. In these plots, we can

compare the decrease of the measures between the different scenarios. The model fit with
the observed data and the follow-up sample, plotted on the left column, resulted in very
distinct measures for the scenarios. On the right column, the model fit with just the follow-
up sample resulted in overlapping measures that are much smaller than with the first option.
This confirms that the two options are generating different completed data sets, and that
using the model with just the follow-up sample is better when the data are MNAR. The
values of θ, the measure based on the mean absolute percentage error, with the model fit
with just the follow-up sample are larger for the MAR scenario than for the other scenarios.
This could be caused by the instability of the percentage error when the values are close to
zero, one of the drawbacks of the mean absolute percentage error. If the data are MAR,
there is not much gain with a follow-up sample. If the data are MNAR, there is a significant
utility improvement in collecting 25-50% more data. Beyond that, the utility increase might
be not worth the increase in the cost.

With the utility measures and the cost of the follow-up samples, the agency should be
able to make a decision about the survey. However, we can also make a decision based on a
more formal method. As an example, let us consider the sample size that minimizes the sum
of variance plus cost, as suggested by Groves (2004). In our case, we replace the variance by
one of the utility measures, so that we minimize the measure of how far the imputed data are
from the population. We choose the measure ρ̄ to capture this overall distance between the
data sets better, since the other measures are based on the distance between the marginal
means. For the cost, we will use δ.

To make the variance and cost be on the same scale, Groves (2004) transforms the cost
by multiplying it by a constant λ. Since in our illustrative example the proxy for cost, δ,
is already on a fixed scale from 0 to 1, we will transform the values of ρ̄ to be on the same
scale by subtracting the minimum and dividing by the maximum at each scenario. Then,
we select the follow-up sample size that minimizes the sum of this transformed ρ̄ and δ.
These cases are highlighted in bold in Table 1, Table 2 and Table 3. We note that under
this transformation, the extreme cases of δ = 0 and δ = 1 are equivalent. The agency can
consider other decision rules to guide the next stages of the survey.

14



Table 1: Summary of utility measures with the results for the Concrete industry from the
2007 CMF, for the MAR imputation scenario. The results highlighted in bold correspond
to the follow-up sample size that minimized the sum of cost and the transformed measure
ρ̄. ∗The values of ρ̄ (sd) should be multiplied by 10−5.

(a) New mixture model fit to observed data and follow-up sample
(
DR ∪D

(MAR)
F,δ

)
δ ρ̄ (sd)∗ τ̄ (sd) θ̄ (sd)

0 3.465 (1.823) 0.372 (0.242) 0.255 (0.229)
0.25 2.514 (1.258) 0.290 (0.139) 0.185 (0.110)

0.5 1.970 (1.045) 0.235 (0.119) 0.139 (0.082)
0.75 0.886 (0.348) 0.144 (0.091) 0.094 (0.075)

1 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

(b) New mixture model fit to follow-up sample only
(
D

(MAR)
F,δ

)
δ ρ̄ (sd)∗ τ̄ (sd) θ̄ (sd)

0 – – –
0.25 6.858 (3.299) 0.424 (0.273) 0.279 (0.183)
0.5 3.662 (1.547) 0.313 (0.144) 0.224 (0.123)

0.75 1.251 (0.573) 0.188 (0.092) 0.130 (0.074)
1 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
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Figure 3: Pairwise scatterplots with the results for the Concrete industry from the 2007
CMF, for the MAR imputation scenario. Observed points are plotted as gray hollow circles.
The black filled circles on the lower diagonal are the imputed points. The colored circles on
the upper diagonal are the 95% quantile ellipses of the fitted clusters, with color intensity
proportional to the mixture probabilities.
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Figure 4: Pairwise scatterplots with the results for the Concrete industry from the 2007
CMF, for the MNAR imputation scenario with higher probabilities for bottom ranked clus-
ters. Observed points are plotted as gray hollow circles. The black filled circles on the
lower diagonal are the imputed points. The colored circles on the upper diagonal are the
95% quantile ellipses of the fitted clusters, with color intensity proportional to the mixture
probabilities.
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Figure 5: Pairwise scatterplots with the results for the Concrete industry from the 2007
CMF, for the MNAR imputation scenario with higher probabilities for top ranked clusters.
Observed points are plotted as gray hollow circles. The black filled circles on the lower diag-
onal are the imputed points. The colored circles on the upper diagonal are the 95% quantile
ellipses of the fitted clusters, with color intensity proportional to the mixture probabilities.

18



Table 2: Summary of utility measures with the results for the Concrete industry from the
2007 CMF, for the MNAR imputation scenario with higher probabilities for bottom ranked
clusters. The results highlighted in bold correspond to the follow-up sample size that min-
imized the sum of cost and the transformed measure ρ̄. ∗The values of ρ̄ (sd) should be
multiplied by 10−5.

(a) New mixture model fit to observed data and follow-up sample
(
DR ∪D

(bottom)
F,δ

)
δ ρ̄ (sd)∗ τ̄ (sd) θ̄ (sd)

0 117.986 (12.423) 5.395 (0.396) 0.958 (0.046)
0.25 60.020 (6.602) 3.866 (0.273) 0.691 (0.038)
0.5 24.628 (4.492) 2.401 (0.275) 0.422 (0.039)

0.75 6.260 (1.712) 1.231 (0.184) 0.220 (0.031)
1 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

(b) New mixture model fit to follow-up sample only
(
D

(bottom)
F,δ

)
δ ρ̄ (sd)∗ τ̄ (sd) θ̄ (sd)

0 – – –
0.25 12.833 (5.391) 0.642 (0.284) 0.122 (0.063)
0.5 3.828 (1.896) 0.312 (0.136) 0.059 (0.026)

0.75 1.460 (0.661) 0.201 (0.111) 0.037 (0.023)
1 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
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Table 3: Summary of utility measures with the results for the Concrete industry from the
2007 CMF, for the MNAR imputation scenario with higher probabilities for top ranked clus-
ters. The results highlighted in bold correspond to the follow-up sample size that minimized
the sum of cost and the transformed measure ρ̄. ∗The values of ρ̄ (sd) should be multiplied
by 10−5.

(a) New mixture model fit to observed data and follow-up sample
(
DR ∪D

(top)
F,δ

)
δ ρ̄ (sd)∗ τ̄ (sd) θ̄ (sd)

0 411.057 (19.222) 8.732 (0.285) 1.415 (0.049)
0.25 197.266 (12.833) 6.278 (0.269) 1.026 (0.037)
0.5 80.489 (12.273) 4.057 (0.282) 0.668 (0.046)

0.75 16.758 (2.476) 1.910 (0.155) 0.315 (0.026)
1 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

(b) New mixture model fit to follow-up sample only
(
D

(top)
F,δ

)
δ ρ̄ (sd)∗ τ̄ (sd) θ̄ (sd)

0 – – –
0.25 12.567 (7.297) 0.541 (0.271) 0.088 (0.049)
0.5 4.731 (2.617) 0.311 (0.177) 0.054 (0.030)

0.75 1.451 (0.820) 0.171 (0.092) 0.029 (0.017)
1 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
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Figure 6: Summary of utility measures for the three scenarios considered for the Concrete
industry from the 2007 CMF. The results for ρ, τ and θ are on the first, second and last
row, respectively. The plots on the right column contain the results with the model fit to
observed data and follow-up sample, while the plots on the right contain the results with
the model fit to follow-up sample only. The faded points are the individual values for each
multiple imputation. 21



The results confirm that when the data are missing at random, the best results are
obtained with the observed data set and follow-up sample. If the nonrespondents are missing
not at random, it is better to use the second proposed approach: if collecting a follow-up
sample, use this to fit a new mixture model and impute the remaining data. In the MNAR
cases, we can see from the tables and plots for both industries that collecting a follow-up
sample of 25%-50% of the nonrespondents, can result in utility measures similar to the
MAR case. Comparing these values and considering the linear cost increase alongside with
the increase in the follow-up sample size, the agency can make their decision about how to
proceed with data collection.

4 Conclusions

We present an approach for adaptive survey designs using methods for imputation of mul-
tivariate continuous data with nonignorable missingness. During an ongoing survey, the
agency can decide to stop data collection or obtain follow-up samples based on the infor-
mation that has been collected so far. This decision is based on the representativeness of
the respondents, and how the nonrespondents can affect the inference results. In the case of
interrupting data collection and imputing the missing data, we can reduce costs and allocate
resources more efficiently.

We also propose an imputation method, which estimates the observed data distribution
with a Dirichlet process mixture of multivariate normals. The model is flexible to capture
many distributional features of the observed data, and can be easily modified to reflect
different distributions for imputation of the nonrespondents in case of nonignorable missing-
ness. With the development of the NIMC application, the user can easily generate several
scenarios to be compared through sensitivity analysis.

Our method is appropriate for sensitivity analysis, and provides a framework to evaluate
the impact of extreme scenarios on the results of the imputation. The NIMC application
facilitates the process of creating different imputation scenarios, which is an important part
of the adaptive design method that we developed. By comparing the scenarios, the user can
evaluate the costs and benefits of collecting more data. These benefits can be quantified by
the utility measures that we propose, based on propensity scores and marginal statistics of
the variables of interest, for different sample sizes.

If the decision is to stop data collection after considering the measures under different
scenarios, the nonrespondents have to be imputed for release of a completed data set. In
that case, the user might consider using external information or even a different imputation
model. For example, in the CMF there are some data available from administrative records
about employment, sales and payroll, collected from other sources, such as the Internal
Revenue Service (IRS). These administrative records are highly correlated to the actual
recorded responses. Thus, they could be modeled jointly with the variables of interest. The
missing data can then be imputed conditioned on these other variables, similarly to the item
nonresponse imputation that we described in Section 2.2. Here, we assume that given other
variables, the missing items are missing at random. A natural extension of this method is
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to enable imputation for nonignorable item nonresponse. Another direction for future work
is to consider nonresponse in the follow-up sample, which would arise in practice.
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