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Abstract 

We study the distribution of employment growth when hiring responds more to bad shocks than 
to good shocks. Such a concave hiring rule endogenously generates higher moments observed in 
establishment-level Census data for both the cross section and the time series. In particular, both 
aggregate conditional volatility ("macro-volatility") and the cross-sectional dispersion of 
employment growth ("micro-volatility") are countercyclical. Moreover, employment growth is 
negatively skewed in the cross section and time series, while TFP is not. The estimated response 
of employment growth to TFP innovations is su ciently concave to induce signi cant skewness as 
well as movements in volatility of employment growth. 
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1 Introduction

There is ample evidence of countercyclical movement in both (i) conditional volatility of macro-

economic aggregates (“macro-volatility”) and (ii) cross sectional volatility of micro-level variables

from which macroeconomic aggregates are constructed (“micro-volatility”). For example, Figure 1

shows that sharp movements in aggregate employment growth around recessions coincide with high

dispersion of employment growth across firms measured by the interquartile range. More generally,

Bloom (2014) surveys the evidence on time variation in volatility.

It is an open question where changes in micro and macro volatility come from and why they

go together. The existing literature has largely focused on exogenous shocks to either micro or

macro volatility in isolation. One lesson from this approach is that the two volatilities need not

be related at all. Indeed, one set of models in the literature derives changes in the cross section of

firms’ decisions from changes in the volatility of idiosyncratic shocks, for example from volatility

changes of firm-level total factor productivity (TFP) shocks. Another set of models shows how

macro volatility may reflect a representative firm’s response to changes in the conditional volatility

of aggregate shocks. To the extent comovement is considered, it is typically derived from correlated

shocks to macro and micro volatilities in fundamentals.

This paper shows that an endogenous link between aggregate and cross sectional volatility

emerges naturally if firms respond asymmetrically to dispersed but correlated signals about prof-

itability. The key property is that hiring rules are concave: there is less hiring after good news

than there is firing after bad news. We use establishment level Census data to not only verify the

behavior of micro and macro volatility but also confirm other implications of concave hiring rules.

In particular, we document negative skewness of employment growth in both cross section and time

series. We further estimate the response of employment growth to TFP innovations and directly

establish concavity of that response as a robust stylized fact.

Our evidence suggests that time variation in higher moments of employment growth reflects

at least in part firms’ incentives to hire; it is not simply due to changes in higher moments of

shocks that firms are exposed to. Indeed, we show that our mechanism can generate quantitatively

important movements in the volatility and skewness of employment growth even if shocks are

homoskedastic. The distinction matters for interpreting labor market fluctuations. For example,

if incentives to hire are shaped by labor market policies, such policies also affect time variation in

volatility and the resulting welfare costs.

To see how our mechanism works, suppose that all firms receive signals about profitability, and

that aggregate shocks shift the mean of all firms’ signals. For example, a spell of bad aggregate

shocks generates signals that are worse on average. If hiring rules are concave, then the typical

firm’s response to its signal during a spell of bad aggregate shocks is stronger than during a spell

of good aggregate shocks. It follows that both macro and micro volatility of employment growth

are countercyclical. Indeed, firms’ stronger responses to bad signals generate not only stronger av-

erage responses – that is, sharper movements in aggregate employment growth – but also stronger

responses to idiosyncratic components in signals and hence higher cross sectional volatility. Impor-
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tantly, changes in volatility here derive only from firms’ endogenous nonlinear responses to mean

shifts, not from exogenous changes in volatility.

This paper uses minimal structure to capture the two key elements of the mechanism: a dis-

tribution of dispersed but correlated shocks (“signals”) and a concave hiring response to those

shocks. Our findings are thus compatible with several scenarios for what generates the two ele-

ments. One possible signal structure is that firms respond to firm-specific productivity innovations

that have both aggregate and idiosyncratic components.1 Alternatively, firms may receive noisy

private signals about profitability. They may care about those signals because they need to fore-

cast profitability; the dispersion of signals then depends in part on the dispersion of noise. The

difference between the two scenarios is not important for the basic mechanism.

Similarly, we do not take a stand on why adjustment is asymmetric. For one thing, the logistics

of the hiring process could directly make hiring more costly than firing: hiring new workers might

entail costly search, whereas firing is free. Financial market imperfections are another candidate:

investment in new workers may be held back by costs of external finance, whereas downsizing is not.

In both cases, regulation may matter for the strength of search and financial frictions, respectively.

At the same time, pecuniary adjustment costs to labor are not necessary for asymmetric adjustment.

An alternative story is based on information processing: if firm decision makers are averse to

Knightian uncertainty (ambiguity) and are uncertain about the quality of signals, then it is also

optimal to respond more to bad news.2

Asymmetric responses to dispersed signals generate a number of predictions beyond the comove-

ment of macro and micro volatility. To check those predictions, we rely on confidential Census data

on U.S. manufacturing establishments. The size of the Census databases allows detailed micro level

analysis of moments, controlling for time period, industry and other firm level properties. Figure

1 shows that micro and macro volatility behave as expected; in particular, the inter-quartile (IQ)

range increases by over 25% in the typical recession compared to a boom.

Our mechanism predicts that employment growth should be negatively skewed in both the cross

section and the time series. In the data, the cross section of employment growth is indeed negatively

skewed in all years, with an average skewness of −0.48. The asymmetry is significant: the average

firm that contracts (expands) employment exhibits a net firing (hiring) rate of 2.2% (1.5%). At

the same time, employment growth for the typical firm is negatively skewed in the time series.

For example, the employment-weighted average skewness is −0.38; results are robust to different

weighting schemes and subsamples.

In principle, negative skewness of employment growth could obtain either because firms re-

spond linearly (that is, symmetrically) to skewed (asymmetric) shocks, or because firms respond

1Firms may care about firms-specific productivity for technological reasons, even if they do not need to infer
aggregate productivity for decision making. Nevertheless, firm productivity effectively serves as a noisy signal of
aggregate productivity under this scenario.

2Intuitively, ambiguity averse firms evaluate hiring decisions as if taking a worst case assessment of future profits.
With ambiguity about signal quality, the worst case then depends on what the signal says: for a good signal, the
worst case interpretation is that it is noisy, whereas for a bad signal the worst case is that it is very precise. Updating
from ambiguous signals thus endogenously generates asymmetric actions.
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Figure 1: Time-varying employment volatility in the aggregate and in the cross-section
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Note: This figure plots aggregate employment growth in the manufacturing sector (left axis in blue) together with

the year-by-year inter-quartile range (orange, right axis) of employment growth rates across firms in the sample of

manufacturing establishments described in Section 3.

asymmetrically to (possibly even symmetric) shocks. One piece of evidence in favor of asymmetric

responses is the countercyclical movement of cross sectional dispersion – it would not follow from

skewness of shocks alone.3 More direct evidence can be obtained, however, by measuring specific

shocks and estimating firms’ employment responses to those shocks.

We estimate firm responses to innovations in TFP, as measured by the Solow residual. If

firms respond more (less) to bad (goods) signals about TFP, then bad (good) innovations to TFP

should go along with, on average, larger drops (smaller increases) in hiring. To check this, we

first construct establishment level Solow residuals and then run both nonparametric and nonlinear

parametric regressions of employment growth on TFP innovations, controlling in various ways for

other state variables that could be relevant to the firm.

We find that the relationship between employment growth and innovations to the Solow residual

is usually concave. On average, a firm faced with a typical negative (positive) TFP innovation

– which corresponds to 18% lower (higher) output holding inputs fixed – decreases (increases)

employment by 1.8% (1.2%). We find similar asymmetric hiring responses in the vast majority of

parametric and non-parametric specifications that we consider, conditioning in particular on size,

industry and time period. We conclude that at least one important source of shocks to firms,

3Indeed, if an aggregate shock shifts the mean of a skewed distribution of shocks and the employment response is
linear, the volatility of responses need not change at all.
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namely TFP innovations, is propagated via asymmetric adjustment in firm behavior.

The estimated coefficients suggest that concavity in firm responses is large enough to account

for sizable movements in volatility. For example, our parametric regressions imply that the cross

sectional IQ range of employment growth spikes up by at least 20% in a recession when the average

TFP is lower by a one standard deviation shock compared to a boom with a symmetric positive

aggregate TFP shock. We cannot expect that shifts in average TFP account for all the movements

in micro volatility, since firms in general experience other shocks as well. In particular, consistent

with the existing empirical literature, we document that the IQ range of TFP innovations is itself

countercyclical and that these micro-volatility shocks can generate about a 10% higher IQ range

in recessions. These results suggest that, while dispersion shocks may be important, shifts in

average TFP innovations that are transmitted through our recovered concave hiring function can

also play a quantitatively important role in accounting for the observed countercyclical volatility

of employment growth.

The estimated concave responses also contribute significantly to negative skewness in employ-

ment growth. In fact, the negative skew in employment growth stands in sharp contrast to the

fact that TFP innovations have a nearly symmetric but slightly positively skewed density. It can

therefore not be explained by a linear response to skewed TFP shocks. At the same time, the fitted

value of employment growth explained by the concave response to TFP exhibits cross sectional

negative skewness of −1.17. The average firm that contracts (expands) employment in response to

a TFP innovation exhibits a net firing (hiring) rate of 1.4% (0.8%).

At the industry level, we further show that variation in the degree of concavity for the estimated

response functions helps account for differences in the cross sectional negative skewness in employ-

ment growth. In particular, one might expect that industries with more concave hiring rules exhibit

more negative skewness in employment growth. To evaluate the degree of concavity, we construct

an index that measures how much of the variation in the non-parametrically estimated hiring func-

tion is contributed by its non-linear terms. We find that among 86 4-digit NAICS manufacturing

industries, those with a near-linear decision rule are almost not skewed at all while skewness drops

to −0.6 for those industries with the most concave hiring rules. We suggest that this concavity

index, measured on average at about 50%, can serve as a calibration target for models that produce

non-linear hiring functions.

The paper is structured as follows. Section 2 illustrates the mechanism using a simple organizing

framework. Section 3 introduces the data and describes the distribution of employment growth,

with an emphasis on negative skewness. Section 4 turns to the cross sectional relationship between

employment growth and TFP innovations and illustrates the quantitative effects of that asymmetric

relationship.

Related literature There is now a large literature on business cycle models with exogenous

shocks to idiosyncratic or aggregate volatility. On the one hand, Bloom (2009); Bloom et al. (2012);
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Christiano et al. (2014); Arellano et al. (2010); Berger and Vavra (2014); Vavra (2014); Schaal

(2012) derive implications of cross sectional risk shocks for business cycles, borrowing and lending,

consumption, price dispersion and the effectiveness of policy. On the other hand, Fernández-

Villaverde et al. (2011), Gourio (2012) and Basu and Bundick (2011) study the effects of changes in

conditional higher moments of aggregate TFP. Our paper does not formulate a full-fledged business

cycle model; our goal is to zero in on firms’ asymmetric response as a mechanism to connect micro

and macro volatility. We also emphasize that our mechanism is not incompatible with the presence

of exogenous volatility shocks – instead, we think of it as an amplification mechanism that would

be interesting to explore in the context of business cycle models.

While some studies draw connections between micro and macro moments, they look at different

stylized facts. For example, Carvalho and Gabaix (2013) show that the sectoral composition of the

U.S. economy could have contributed to the Great Moderation, holding fixed the distribution of

shocks within sectors. Our paper instead focuses on the business cycle frequency and heterogeneity

within industries. Nimark (2014) derives an endogenous link between large (positive or negative)

movements in aggregates and the dispersion of survey forecasts from a learning mechanism in which

outliers are more salient. While learning could help explain the adjustment behavior we emphasize,

it is critical for our mechanism that adjustment be larger for bad shocks, not simply for large shocks.

A recent literature has asked why dispersion in measured productivity is countercyclical. Kehrig

(2013) documents countercyclical TFP dispersion and explains it with cyclical entry/exit and over-

heads in production. Bachmann and Moscarini (2011); Kuhn (2014); Baley and Blanco (2014)

show how firms’ pricing decisions can lead to countercyclical measured productivity dispersion.

Decker et al. (2014) relate countercyclical productivity dispersion to cyclical investment in intangi-

ble production knowledge. While our paper shares with these studies an emphasis on endogenous

movements in micro volatility, our focus is on employment as well as on the connection between

micro and macro moments as well as the role of skewness.

Several recent papers have studied the macroeconomic effects of asymmetric firm decision rules,

in particular the resulting asymmetry in the business cycle itself. For example, George and Kuhn

(2014) consider costly capacity choice and investment irreversibilities and Ferraro (2013) studies a

search and matching framework with heterogeneous workers. They show that asymmetric responses

can help explain “deepness asymmetry” (deep recessions vs. meek booms) and “steepness asym-

metry” (rapid recessions vs. smooth booms) – concepts introduced Sichel (1993) and studied for

aggregate employment by McKay and Reis (2008).4 Our mechanism is consistent with asymmetry

of the business cycle and creates a connection between aggregate asymmetries and micro and macro

behavior of volatility and skewness.

4Negative skewness in growth rates of macroeconomic aggregates such as consumption and output is also important
in the recent literature on the effect of disasters for asset pricing, following Rietz (1988) and Barro (2006).
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2 Macro & micro moments with asymmetric adjustment

To illustrate the basic mechanism, the following minimal framework is sufficient. Consider hiring

decisions by a continuum of firms. Every firm receives a signal s about future profitability. Firms’

signals can be decomposed into a common component a and an idiosyncratic component ε:

s = a+ ε. (1)

The idiosyncratic component is independent and identically distributed across firms with mean zero

and distribution function Gε. We can thus think of (1) as representing both the distribution of an

individual firm’s signal and the cross sectional distribution of signals.

Firms respond to signals about future profitability by changing employment. Assume that all

firms follow the same decision rule

n = f (s) , (2)

where n denotes employment growth rate and the function f is smooth, strictly increasing and

strictly concave. The assumption of concavity reflects asymmetric adjustment: firms respond less

to good signals than to bad signals. We take asymmetric adjustment as given; it can be due, for

example, to an asymmetric hiring cost function through which it is more costly to hire than to fire.

Appendix B shows that it can be due to information processing, even if there are no adjustment

costs.

Our setup does not take a stand on the relationship between the signal and actual profitability

and is therefore compatible with several scenarios. One possibility is that there is some true

profitability innovation π, say, which itself has aggregate and idiosyncratic components, and firms

respond to private noisy signals about their own profitability. In this case, a would contain the

aggregate component of π plus correlated noise and ε would contain the idiosyncratic component

of π plus uncorrelated noise. The relative share of noise and “fundamental” is not important for

our argument. The function f describes both how beliefs are updated given the realized signal s

and the optimal employment choice given those updated beliefs.

In general, firm decisions may depend on state variables other than the signal on the next

innovation to profitability. For example, firms might respond differently to shocks depending on

fixed characteristics like industry, or variable characteristics like size, the level of profitability or

the deviation of employment from a target level. For now, these additional features of the firm

decision at a point in time are all subsumed in the function f . In other words, the class of firms

we study in this section is identical along all these dimensions.

In order to describe common shocks to firms, we condition on the aggregate component a. Let

Gn (n|a) and Gs (s|a) denote the conditional cdf’s of employment growth and signals, respectively,

given a. We will refer to high values of a as representing “good times,” that is, times when firms

on average receive good news about profitability. An implication of our assumptions is that the

conditional variance var (s|a) is independent of a, so good times are only reflected in a high mean

signal. This is helpful to zero in on the endogenous link between macro and micro volatility that is
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driven by asymmetric adjustment. We discuss interaction of asymmetric adjustment and exogenous

shifts in volatility further below.

2.1 Implications for micro and macro volatilities of employment

The main intuition for countercyclical volatilities can be seen in Figure 2. The top panel plots the

concave response function f , with the signal realization on the horizontal axis and employment

growth on the vertical axis. The bottom panel shows three densities of signal realizations gs (s|a),

distinguished by a shift in the mean signal. Taking the middle (blue) density as a reference point, a

shift to the left (red) density is an arrival of bad times, whereas a shift to the right (green) density

is an arrival of good times.

Figure 2: Employment growth and signals
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Note: Figure plots the (homoskedastic) distribution of signals about future profitability (bottom panel), once centered

around a negative aggregate mean signal (red), once around a neutral aggregate signal (blue) and once for a positive

aggregate signal (green). The top panel displays how the concave hiring rule (black) transforms symmetric and

homoskedastic signals into asymmetric and heteroskedastic employment responses.

The figure shows how asymmetric adjustment helps make both macro and micro volatility coun-
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tercyclical. Consider first macro volatility: the solid horizontal lines in the top panel represent mean

employment growth for the three densities. They show how bad news generate larger aggregate

responses: the change in aggregate growth in response to bad times (the difference between the

horizontal red and blue solid lines) is larger than the change in growth in response to bad times

(the difference between the horizontal green and blue solid lines).

To illustrate changes in micro volatility, the dotted lines in both panels show interdecile ranges

for signals (along the horizontal axis) and employment growth (along the vertical axis in the top

panel). The point here is that concavity of the response function accentuates dispersion in signals

in bad times while it attenuates it in good times. The countercyclical cross-sectional volatility

is easiest illustrated for interquantile ranges, but this property is inherited by other measures of

dispersion such as the cross-sectional variance.

Beyond the specific example of Figure 2, the properties of countercyclical macro and micro

volatility require only the signal structure and concavity of the response function. We summarize

this result in the following proposition, with proofs detailed in Appendix A:

Proposition 1 (Macro & micro volatilities) For any two aggregate shock realizations a < a′,

1. the sensitivity of the aggregate action with respect to the aggregate shock is higher at a:

d

dã
E [n|ã]

∣∣∣∣
ã=a

>
d

dã
E [n|ã]

∣∣∣∣
ã=a′

,

2. the cross sectional variance is higher at a:

var (n|a) > var
(
n|a′

)
,

3. the interquantile range for any two quantiles x and x is higher at a:

G−1
n (x|a)−G−1

n (x|a) > G−1
n

(
x|a′

)
−G−1

∆e

(
x|a′

)
.

Figure 3 shows the connection between micro and macro volatilities in simulated time series

data. The red dotted line is a particular sequence of aggregate news at, drawn from a symmetric,

homoskedastic distribution. For each realization of at, we compute the model implied aggregate

employment growth E [f (at + ε) |at] – shown as the solid blue line – and the interquartile range

of the cross sectional distribution G−1
n (.75|a) − G−1

n (.25|a) , shown as the solid green line. The

latter two (blue and green) lines move against each other, reflecting the countercyclicality of micro

volatility: the interquartile is wide when aggregate employment growth is low.

Moreover, comparison of the red and blue lines shows that the latter has larger movements when

employment growth is low, whereas the movements are quite similar when employment growth is

high. Asymmetric adjustment thus translates homoskedastic shocks into heteroskedastic responses

– if we measured the variance of aggregate employment growth over subsamples, we would obtain
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larger numbers in low growth periods. At the same time, the figure shows how asymmetric ad-

justment translates symmetric shocks into negatively skewed responses. This is another general

property of our setup to which we turn next.

Figure 3: Time-varying volatility and negative skewness in simulated data
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Note: This figure displays aggregate employment growth and the cross-sectional inter-quartile of employment growth

in simulated data. Downturns in aggregate employment are deep while upturns are mild thus creating negative time-

series skewness. In recessions the cross-sectional dispersion widens and, as highlighted by the blue circles, aggregate

volatility is higher than in booms.

2.2 Implications for micro and macro skewness of employment

Figure 2 above suggests that, if asymmetric adjustment connects micro and macro volatilities, it

also induces skewness in the cross section and the time series. In particular, the distribution of

employment growth responses should be more negatively skewed than the underlying distribution

of signals. We define skewness in the standard way as a ratio of third and second moments. For a

random variable x, we write

γ (x) =
E
[
(x− E [x])3

]
var (x)

3
2

. (3)

The following proposition states formally that a concave response function induces skewness.

Proposition 2 (Micro and macro skewness)

1. For any aggregate shock a the skewness of the cross sectional distribution of employment

growth, γ (n|a), is lower than that the skewness of the cross sectional distribution of signals,

γ (s|a).
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2. The skewness of aggregate employment growth, γ (E [n|a]), is lower than the skewness of the

aggregate signal γ (a).

Proposition 2 makes a statement about skewness in general, but it is silent on the cyclical

movements in skewness. It is then natural to ask whether asymmetric adjustment implies systematic

movements in skewness together with movements in micro volatility. To see that movements in

skewness are not implied by concavity alone, consider the example of a negative exponential response

function f (s) = −e−s and normally distributed noise. The conditional mean given a is e−a+ 1
2
var(ε)

and the kth centered moment conditional on a is given by

E
[
(f (s)− E [f (s) |a])k |a

]
= e−kaE

[(
−e−ε + e

1
2
var(ε)

)k]
.

It follows in particular that skewness as defined in (3) is independent of aggregate news a.

The special feature of the negative exponential response function is that curvature as mea-

sured by the coefficient of absolute risk aversion −f ′′ (s) /f ′ (s) is everywhere the same. The next

proposition provides a more general connection between curvature and skewness.

Proposition 3 (Cyclicality of skewness) For any two aggregate shocks a < a′, the skewness γ (n|a′)
of the cross sectional distribution of employment growth at a′ is higher than (lower than, equal to)

the skewness γ (n|a) of cross sectional distribution of employment growth at a if the coefficient of

absolute risk aversion −f ′′ (s) /f ′ (s) is decreasing in s (increasing in s, constant).

Intuitively, changes in skewness derive from changes in curvature in the relevant range of signals,

in contrast to changes in volatility that derive simply from changes in the slope of the response

function. It is therefore possible to have countercyclical volatility combined with countercyclical

skewness, that is, in bad times the distribution of employment growth can be more dispersed but less

negatively skewed. This is true for example if the response function is quadratic and thus exhibits

increasing absolute risk aversion. We conclude from these results that our basic mechanism does

not imply definite predictions about changes in cross sectional skewness over time.

2.3 Employment growth and innovations to the Solow residual.

The basic mechanism of asymmetric adjustment works whenever there is a distribution of firm-

specific signals that shifts in mean over the business cycle. Unfortunately, firms’ signals are not

directly observable. However, with some extra structure on what shocks firms respond to, we can

derive a relationship between those shocks and the distribution of employment growth.

We follow a large literature in focusing on shocks reflected in the firm’s Solow residual. In

particular, we assume that the detrended Solow residual, denoted by Zit , evolves according to an
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AR(1) process

Zit = ρZit−1 + zit

= ρZit−1 + uat + uit

where the innovation zit has both an aggregate (uat ) and an idiosyncratic (uit) component, both with

mean zero.

When firms make hiring decisions relevant for date t production, they observe past profitability

Zit−1 as well as a signal about the new innovation

sit = uat + uit + vat + vit (4)

where the idiosyncratic components are independent conditional on uat . In terms of the notation

used above, the aggregate news at here corresponds to the common shock uat plus the correlated noise

vat , while the idiosyncratic component ε subsumes both the idiosyncratic profitability innovation uit

and the idiosyncratic noise vit. Moreover, the firm’s decision will typically take into account Zit−1

as well as possibly the level of employment (that is, firm size), or other features of the production

function captured for example by the firm’s industry. Those characteristics are captured by the

function f .

Suppose an econometrician runs a nonparametric regression of employment growth nt+1 on the

innovation to the Solow residual. Suppose further that the econometrician controls for calendar

time, the role of industry and firm specific variables, allowing for nonlinear impact of those variables.

He will then recover the conditional expectation given the true innovation uat + uit:

g
(
uat + uit

)
= E

[
f(st)|uat + uit

]
. (5)

The only random variable in the expectation is the idiosyncratic noise vit. Both components of the

true innovation are fixed since they are observed by the econometrician, whereas the correlated

noise vat is fixed since it is common to all firms.

Suppose that the variance of the noise vit is independent of uat . The proof of Proposition 1,

part 1 then implies that the conditional expectation function g is concave (convex, linear) if the

response function f is concave (convex, linear). If the econometrician recovers a concave regression

line g, he can therefore rule out that the actual response function is linear or convex. A concave

regression line is evidence in favor of the asymmetric adjustment that underlies our mechanism.

We emphasize that this conclusion does not depend on homoskedasticity of the innovations uit. In

particular, it is true even if the variance of uit depends on uat , for example because innovations are

more dispersed in bad times.

Suppose now that the conditional variance of signals depends on the aggregate innovation uat .

In particular, one might expect that firms receive more precise signals in good times. A second
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order Taylor expansion of the regression line delivers

g
(
uat + uit

)
≈ f

(
uat + uit

)
+

1

2
f ′′
(
uat + uit

)
var

(
vit|uat + uit

)
.

The curvature properties of the average response g now reflect not only those of the decision rule f

but also the interaction of asymmetric adjustment (captured by the second derivative f ′′) and the

variance. Nevertheless, several properties of the relationship make looking at g informative. First,

concavity of g cannot be due to movements in signal precision alone. Indeed, if f is linear, then g

must also be (approximately) linear. Observing concave g is thus evidence of asymmetric adjust-

ment. Second, suppose that the decision rule is quadratic and the variance of noise is decreasing

and convex in uat , as would be the case if higher uat increases the number of iid signals observed by

the firm. It then follows that a convex (concave) decision rule implies a convex (concave) average

response. The converse holds if the curvature properties of the decision rule do not change over the

domain. We conclude that measuring a concave average response is thus indicative of a nonlinear

and concave decision rule under plausible assumptions.

3 Employment growth in cross section and time series

The concave decision rule illustrated in the previous section implies countercyclical volatility in the

cross-section and in the aggregate over time as well as negative skewness in the cross section and

over time. In this section, we first introduce our micro data sources and then check volatility and

skewness properties for the distribution of employment growth.

3.1 Data sources

We use confidential data on manufacturing establishments collected by the Census Bureau which

comprise the Annual Survey of Manufactures (ASM), the Census of Manufactures (CMF) and the

Longitudinal Business Database (LBD). Following the literature, we identify an establishment as

an individual decision maker, which from now on we call a firm. We combine the Census data with

industry-level data from several publicly available sources: price deflators from the NBER-CES

Manufacturing Industry Database (NBER-CES), various asset data from the the Capital Tables

published by the Bureau of Labor Statistics (BLS) and the Fixed Asset Tables published by the

Bureau of Economic Analysis (BEA). Unless otherwise noted, all datasets are at annual frequency.

From the Census of Manufactures (CMF) and the Annual Survey of Manufactures (ASM) we

construct a large dataset of plants in the U.S. manufacturing sector. This panel spans the years

1972-2011, which allows us to study business cycle properties over six recessions including the

“Great Recession” 2008/09. Every year, we observe about 55k establishments which total up to

2.1 million observations. We focus on the establishment as the unit of analysis and use the term

“establishment” and “firm” interchangeably as many other papers do. Since both technology and

employment are real phenomena taking place at the establishment level and since we do not focus
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on variables related to organizational matters of the (hierarchically higher) firm, this choice seems

natural to us. Most of the information contained in the non-Census datasets (BEA, BLS, NBER-

CES) other than the manufacturing data are merely needed to estimate productivity.5

We combine the ASM and the ASM portion of the CMF data (identified by establishment type

ET=0), so that we have a consistent longitudinal panel. By focusing on the ASM portion in all

years, we automatically eliminate all administrative observations (identified by AR=1) which are

imputed off industry means and thus corrupt moments of the distribution we are interested in.

We will consider the standard measure of employment growth: nit ≡ ∆ log(Lit). This choice is

helpful empirically as it is free of any specific metric. It is, however, not well-defined for firms that

just entered or that are exiting the sample. Entry/exit can be due to economic birth and death

of establishments or due to the rotation of the ASM sample in years ending with 4 and 9. Both

features are cyclical and thus not only affect the distribution in general, but have the potential

to affect the cyclicality of employment dispersion we are interested in. To check for robustness of

our results with respect to cyclical entry and exit, we additionally construct employment growth

rates as defined by Davis and Haltiwanger (1990)6 and confirm our results using their growth rate.

Note that this method is unable to distinguish between establishments that exit the economy or

establishments that continue to exit but drop out of the ASM sample.

3.2 Employment growth dynamics

We focus on the changes in a firm’s total employment (the sum of production and non-production

workers): nit ≡ ∆ log(Lit). We focus on hiring rather than hours worked because the data report

employment for all type of workers while hours worked are only reported for production workers.

This is not only a fraction of employment but it also reflects how the firm chooses overtime hours

relative to normal hours. Furthermore, a firm’s employment variables in the Census data are

considered of very high quality and there are virtually no missing values.

The asymmetric decision characterizing our model setup predicts that firms with negative signals

reduce employment strongly, but firms with positive signals increase employment only slightly.

As a consequence, this decision rule makes predictions about moments of the employment growth

distribution across firms as summarized by Propositions 1-3: First, employment growth rates should

be more spread-out when most firms receive negative signals, i.e. in recessions. Second, employment

growth should be negatively skewed on average. Third, this skewness is not necessarily cyclical.

To check for these data features, we compute the second and third moments of employment across

all firms in a given year and study the properties of the resulting annual time series which are

summarized in Table 1.

Cross-sectional employment dispersion

5For more details about the primary data and their transformation needed to estimate productivity, see the
description in the appendix to Kehrig (2013).

6This alternative measure of employment growth à la Davis/Haltiwanger is defined as ni DH
t = 2(Lit −Lit−1)/(Lit +

Lit−1) though Bloom et al. (2012) propose a variant where Lit is replaced by Lit+1.
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Table 1: Cross-sectional moments of employment growth

Moment IQRt StDt Skewnesst
Average across all years 0.167 0.252 −0.477
Average across NBER boom years 0.158 0.246 −0.495
Average across NBER recession years 0.200 0.272 −0.417
Great Recession 2008/09 0.214 0.291 −0.301

Corr(dEt, ...) −0.580∗∗∗ −0.622∗∗∗ −0.182
(0.143) (0.085) (0.126)

Corr(#boom qtrs/yeart, ...) −0.517∗∗∗ −0.336∗∗∗ −0.135
(0.097) (0.127) (0.112)

Corr(#boom qtrs/yeart−1, ...) −0.761∗∗∗ −0.554∗∗∗ −0.084
(0.071) (0.102) (0.148)

Avge. no. of observations/year 40, 400

Note: Data are averages of those moments of the cross-sectional employment distribution plotted in Figures 4 and

5. dEt denotes the growth rate of aggregate manufacturing employment, #boom qtrs/year denotes the number

of expansionary quarters in the entire U.S. economy as defined by the NBER. Standard errors for the correlation

coefficients are computed using a GMM procedure that corrects for heteroskedasticity and autocorrelation as in Newey

and West (1987) and is adapted from Hansen et al. (1988). Census disclosure rules require rounding the number of

observations to the nearest hundred.

Figure 4 displays the year-by-year evolution of the inter-quartile range (IQR) and the standard

deviation of the cross-sectional distribution of employment growth. Both of them show that firms

differ a lot in their employment changes: on average, the firm at the top quartile grows employment

by 16.7% more than the firm at the bottom quartile. The standard deviation across all firms is

25.2%. Both dispersion measures increase significantly in recessions. The inter-quartile range, for

example, reaches 20.0% on average around a NBER recession compared to an average 15.7% in

boom times.

In the Great Recession the IQR experienced its sharpest increase ever, rising by more than half

its normal value before again returning to its long-run average in 2011. The standard deviation

exhibits similar patterns. We also confirm that these patterns are present within 4-digit NAICS

industries in order to avoid our results being driven by cyclical composition changes between indus-

tries with different but constant long-run dispersion. We also confirm that employment-weighted

dispersion follows a similar pattern, so we know that outlier firms with very few employees are not

driving our results.

Cross-sectional employment skewness

Our mechanism predicts that the employment distribution should be negatively skewed. Firms

that shrink their employment should have an average rate of change that is larger in absolute

value than that of firms which grow employment. To check for this data feature, we compute two
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Figure 4: Dispersion of cross-sectional distribution of employment growth
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Note: This figure displays the unweighted year-by-year standard deviation and inter-quartile range of employment

growth across firms for all t=1973-2011. That is, StDt =
√

1/Nt
∑
i∈t(n

i
t − nt)2 and IQRt = nq75t − nq25t where nt

denotes the mean employment growth, Nt the number of firms and nqxt the x-percentile. Following common procedure

in the literature, we truncate the 1% tails of the overall panel to remove outliers and replace the 1997 dispersion values

by the average of its adjacent years. In 1997, sampling switched from SIC to NAICS industry codes which resulted in

a reclassification of some establishments into/out of manufacturing thus possibly corrupting cross-sectional moments.
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skewness measures across all firms in a given year and study the year-by-year properties of these

time series.

Figure 5: Skewness of cross-sectional distribution of employment growth
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Note: This figure plots the unweighted year-by-year skewness measures across of employment growth across all firms

for all t=1973-2011: 3rdMomentt = 1
N

∑N
i=1(nit − nt)

3 and Skewnesst = 3rdMomentt/StD
3
t . Further details as

described in the notes to Figure 4.

Figure 5 displays the historical evolution of the third centered moment and the coefficient of

skewness:

3rdMomentt =
1

N

N∑
i=1

(nit − nt)3

Skewnesst =
1
N

∑N
i=1(nit − nt)3[

1
N

∑N
i=1(nit − nt)2

]3/2

The measure Skewnesst is preferred because it is dimensionless in comparison to the measure

3rdMoment which depends on the average variance. We see that both measures are negative

throughout the sample, and the average coefficient of skewness is −0.477. This skewness is signifi-

cantly negative and can be interpreted using moments from the employment distribution displayed

in Table 1. Using these moments we simulate a cross-sectional distribution of employment growth

in an average year. An average skewness of −0.477 is then consistent with the average hiring firm

expanding employment by 1.5% and the average firing firm reducing employment by 2.2%. The
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negative cross-sectional skewness is a new fact7 and a key supporting element of our asymmetric

hiring rule. As we did above with the dispersion measures, we confirm that no outlier industry or

firms at the tails drive the negative employment skewness.

Neither measure displays clear cyclical behavior. While Table 1 suggests that skewness is slightly

countercyclical, the correlation coefficient with aggregate employment is not significantly different

from zero. Through the lenses of Proposition 3, the slight countercyclicality of skewness hints at

the shape of the hiring function: it suggests that the coefficient of risk aversion −f ′′/f is slightly

increasing in the signal. For example, a concave linear-quadratic function would deliver such a

cyclicality. The plausible presence of other unobserved shocks that influence hiring, even if also

associated with concave decision rules but of different shapes, may contribute to a complex cyclical

pattern of the cross-sectional skewness.

A firm’s employment dynamics over time

Our mechanism also implies that employment growth at the individual firm level should be

negatively skewed over time. We thus construct each firm’s time-series skewness and then average

over all firms to obtain the time series skewness of a “typical firm:”

FirmSkew =
1

N

N∑
i=1

Skewi

=
1

N

N∑
i=1

1

τ iT

τ iT∑
t=τ i1

(nit − ni)3

(V oli)3/2
(6)

where τ i1, τ
i
2, ..., τ

i
T indicate the periods where firm i is observed and V oli is the time series variance

of the firm’s employment growth. Panel A of Table 2 shows that employment growth of a typical

firm is indeed negatively skewed, employment contractions (relative to the long-run average growth

rate of the firm) are larger in absolute value than are employment expansions. This pattern is

particularly true for larger firms as the employment-weighted measure shows.

The second column of Table 2 shows that our panel comprises about 150k firms for which we

have enough observations to compute their time-series skewness. Naturally, data limitation due

to sampling and entry/exit have more bite when one tries to construct longitudinal moments of

individual firms. As a robustness check we limit our attention to a strongly balanced panel that

contains those 1,900 firms which both exist and are sampled continually from 1972 until 2009.8

If the ASM sample overrepresents young firms relative to old ones and the young firms tend to

grow smoothly while older ones shrink in a volatile fashion, then this could bias our firm skewness

7To the best of our knowledge, we are the first to document the negative skewness. Davis and Haltiwanger (1990)
present separate evidence supporting our new fact. About 35% of total job creation is caused by firms with strongly
positive employment growth (ni DH

t > 0.666) while strongly negative employment growth (ni DH
t < −0.666) accounts for

45% of job destruction. This suggests either that “strongly contracting” firms shrink employment more than “strongly
expanding” firms increase employment or that “strongly contracting” firms are larger than “strongly expanding” firms.

8We limit the sample to 2009 here since we want to compare the moments to those of TFP innovations which we
can only construct until 2009 due to data limitations.
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measure towards negative infinity and vice versa for the opposite patterns. Panel B shows that

continually sampled firms are even more negatively skewed than those in the full panel. This

suggests that the ASM sampling happens to miss those (few) years in a firm’s life when it contracts

a lot. Again, the employment-weighted skewness of the typical firm is more negative than the

unweighted skewness confirming our above conclusion that larger firms tend to exhibit a slightly

more asymmetric pattern as small firms.

Table 2: Time-series skewness of employment growth in a typical firm

Firm Skewness of... nit No. Firms

A. Full Sample
Unweighted −0.187 149,800
Employment-weighted −0.379 149,800

B. Balanced Panel
Unweighted −0.386 1,900
Employment-weighted −0.554 1,900

Note: Panel A. of this table displays the average time-series employment skewness of a firm as described in (6). That

is, we first compute the time-series skewness for each of those 149,800 firms for which we have at least five observations.

Then, we compute the average across those firm measures to get the time-series skewness for the “typical firm.” In

order to obtain the employment-weighted measures, we also compute the average employment stock for each firm and

weight each firm’s skewness measure by its employment share when computing the employment-weighted skewness of

the “typical firm.” Panel B. displays the same measures except restricted to those 1,900 firms that we observe in all 38

years from 1972-2009. Census disclosure rules require rounding the number of observations to the nearest hundred.

4 The joint distribution of employment and TFP

In this section we show that the firm level employment growth response to TFP shocks is concave.

We first construct innovations to the Solow residual, a measure of TFP, and then run regressions of

employment growth on those innovations, using both nonparametric and parametric specifications

that control for a battery of other variables. Finally, we evaluate the quantitative significance of the

estimated concavity and TFP innovations for the properties of employment growth distributions.

4.1 Solow residuals

Everything described in this subsection is done at the industry level to take into account that long-

run productivity growth and productivity persistence differs across industries. Unless otherwise

noted, we consider industries at the 4-digit NAICS level. This allows for enough specificities to

account for heterogeneity, but leaves us with enough observations in each industry to reliably

estimate our conjectured asymmetry relationship and related distributional moments.
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Deriving Solow residuals

We begin by deriving the Solow residual for every firm i and year t from the following standard

Cobb-Douglas production function (in logs):

yit = srit + βkkit + βllit + βmmi
t + βeeit

where yit is production (sales corrected for inventory changes and resales), kit, l
i
t, m

i
t, e

i
t are real

inputs of capital (structures and equipment), hours worked (production and non-production hours),

materials and energy, respectively, and srit is the Solow residual. The production elasticity of

production input X = k, l,m, e, labeled βX , is equated to the revenue share of factor X. This is

the only step where we define an industry at the 6-digit NAICS level, so the β’s are specific to the

6-digit industry.

Several advantages make this approach very suitable in our context. First, it is fairly free of

structural assumptions and thus very general: we only need to assume that firms maximize profits

and take factor prices as given. Using more involved structural estimates such as Olley and Pakes

(1996) and others would require us to make timing assumptions about the arrival of information

and the choice of inputs. Some of these would conflict with our own setup where choices are based

on current signals that herald future productivity.

Identifying long-run growth

We assume that Solow residuals contain an aggregate growth trend, a common and a firm-

specific fixed effect and a stationary component:

srit = gt+A+ αi + Zit (7)

where g denotes the long-run (industry-specific) growth rate, A initial technology level (which will

show up as long-run productivity differences across industries), αi a firm-specific fixed effect such

that
∑

i α
i = 0. The distribution of Zit over time is assumed to be stationary and have mean zero.

Ultimately, we will be interested in TFP shocks, that is, innovations to Zit . Given the assumptions

on Zit , we can identify g and A as follows

E [dsrt] = E
[
g + dZt

]
= g

E [srt] = gt+A+ E
[
Zt
]

where srt ≡ N−1
t

∑
i sr

i
t is the average Solow residual in t, dsrt its growth rate, Zt ≡ N−1

t

∑
i Z

i
t is

the common cyclical component of technology and Nt and is the number of firms in year t.

Identifying TFP innovations

To identify technology shocks, we assume that Zit follows an AR(1) over time: Zit = ρZit−1 +zit.
9

9We have also examined whether or not the stochastic productivity component follows a random walk with drift:
srit = αi + Zit = αi + g + Zit−1 + zit but the estimated residuals are clearly autocorrelated which suggests this model
is misspecified.
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After detrending the Solow residual in equation (7) and imposing the assumption of an AR(1) of

Zit , we get:

Xi
t ≡ srit − gt−A = αi + Zit = αi + ρZit−1 + zit

Xi
t = αi(1− ρ) + ρXi

t−1 + zit

= αi(1− ρ) + ρXi
t−1 + uat + uit. (8)

Then we can estimate the objects αi, ρ and zit in equation (8) with a panel fixed effects regression.10

Moments of the such-obtained technology shock measure can be found in Table 3. The standard

deviation of a TFP shock is 0.179 and so is, by coincidence, the inter-quartile range; this implies

that an establishment with a 1 standard deviation technology shock produces almost 20% more

output than the mean establishment.11 The distribution of TFP innovations is almost not skewed

at all. Employment growth is negative on average (the manufacturing sector shrank over time): a

manufacturing firm in the U.S. reduced its employment by 1.2% per year. Dispersion and negative

skewness have been discussed above.

Table 3: Summary Statistics

Moment TFP Innovation zit Employment Growth nit
Mean 0 −0.012
Std. Dev. 0.179 0.258
IQR 0.179 0.172
IDR 0.414 0.491
Skewness 0.065 −0.453
Observations 1, 536k 1, 536k

Note: Data moments for employment nit and TFP innovation zit of the pooled panel 1973-2009. Slight differences

between the employment dispersion and skewness measures in this table and those plotted in Figures 4 and 5 are due

to pooling both firms and year observations in this table.

4.2 Asymmetric shocks or asymmetric responses?

Given our estimated TFP shocks, we ask to what extent negative skewness of employment growth

is simply due to skewness in those shocks. In principle, skewed TFP could generate skewed em-

10The fixed effect causes a well-known bias in the estimates of (8). Monte Carlo studies suggest the bias with 37
periods should be rather small. To check for robustness of our results, we also estimate (8) as suggested by Arellano
and Bond (1991) and Blundell and Bond (2000); the resulting measure of TFP innovations is not only extremely
similar to the one we obtain, the resulting employment growth-TFP innovation relationship is equally asymmetric;
these results are detailed in the Appendix C, see in particular Table 9.

11Given our estimated shock process in equation (8), the cross-sectional standard deviation of TFP levels (as
opposed to the above-reported TFP innovations) will be 0.289 in a given year. This compares nicely to Syverson
(2004) who estimates the cross-sectional inter-quartile range in the average industry to be 0.290 (measure “Total
factor prod. 2” in Table 1); note that the inter-quartile range and standard deviation in our sample have basically
the same value. In a similar procedure, we compute the inter-decile range of TFP levels to be 0.675 which is very
close to 0.651 estimated by Syverson (2004).
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ployment growth even if firms’ decision rules are linear. This subsection shows, however, that this

possibility can be ruled out based on both cross section and time series evidence.

First, consider the summary statistics of cross sectional TFP innovations and employment

growth displayed in Table 3. The distribution of TFP innovations is not skewed negatively; the

coefficient of skewness is positive and close to zero. In fact, the density of TFP innovations is close

to symmetric, as shown by the histogram in Figure 6.

Table 4: Time-series skewness of TFP innovations and employment growth in a typical firm

Firm Skewness of... Variable No. Firms
zit nit

A. Full Sample
Unweighted +0.047 −0.187 149,800
Employment-weighted +0.027 −0.379 149,800

B. Balanced Panel
Unweighted +0.037 −0.386 1,900
Employment-weighted +0.041 −0.554 1,900

Note: This tables displays the same time series skewness averaged across all firms as described in the notes to Table

2. The TFP innovation zit is defined in (8).

Second, Table 4 compares the skewness of firm level TFP and employment in the time series

dimension. It shows that the TFP innovations, z, do not exhibit negative skewness. At the same

time, employment is clearly negatively skewed. We see this as evidence that the observed negative

skewness of a firm’s employment growth does not result from TFP innovations that are negatively

skewed over time.

4.3 Employment and TFP: non-parametric evidence

We now examine the average response of employment growth to TFP innovations. We start with

a nonparametric approach. Its key advantage is flexibility in the shape of the relationship between

employment growth and TFP – we only require that the response function is smooth. A disadvan-

tage of a nonparametric approach is that it is hard to control for other state variables that may

be relevant to the firm in a similarly flexible way. We address this issue here by running many

nonparametric regressions that condition on firm properties as well as time periods. We return to

the issue of controls below when we run parametric regressions.

The decision rule f(·) from Section 2 relates employment growth n to a contemporaneous signal

s that carries information about future productivity, so employment precedes TFP innovations by

one period. To map this setup into Census data, we use the fact that TFP innovations in year

t are computed from the flow values (output, materials consumption etc.) during the year, while

the employment stock reflects quarterly snapshots for production workers and annual snapshots

(in March) for non-production workers. A large portion of employment stock in year t is therefore

decided in the previous year t − 1 based on the signal in t − 1 which reflects information about
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the TFP innovation in t. As a result, employment growth in the data should respond to TFP

innovations measured in the same period.12

Concave responses: an example plot and summary statistics

As a representative example of our nonparametric regressions, Figure 6 displays the non-

parametrically estimated employment response given technology shocks of mid-sized firms (union of

the fourth and fifth octile) in the machinery industry (NAICS 333) in the years 1985-1990. This is

a subsample that accounts for some differences across industries, size and time, yet it leaves enough

observations to reliably estimate the employment growth-TFP innovation relationship.

Figure 6: Employment growth and TFP innovations
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Note: Non-parametric regression of employment growth on TFP innovations for mid-sized firms in the Machinery

industry (NAICS 333), years 1985-1990. We condition on size and, a five-year time period and a specific industry to

avoid composition driving an observed concavity.

The non-parametric estimate is displayed on the right scale (in dark blue). The solid line displays the mean estimate,

dashed lines standard error bands. Employment growth has been cleansed of a time trend. TFP innovations are

obtained as described in Section 4.1, and their density is displayed on the left scale (in gray). Indicated data points

display employment growth at a typical positive/negative (+1/−1 standard deviation) technology shock relative to

no shock.

The estimated regression line corresponds to the function g(·) in Section 2.3, which reflects the

12One margin which a firm might use to faster adjust its employment to signals are temporary production workers.
According to Ono and Sullivan (2013), however, the share of temporary workers makes up less than 5% of the
production workers and they find evidence that temporary workers are usually hired to substitute regular production
workers when the firm expects permanently lower output in the future.
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recovered employment growth given technology innovation zit = uat + uit. The solid dark blue line

displays the mean employment change. We can clearly see that employment growth responds more

strongly to negative TFP innovations than to positive ones. Furthermore, one can see that the

shape of the asymmetry is strictly concave over the domain of TFP innovations.

To quantify the strength of the asymmetry and to report results across many industry size

classes and time periods, we use three sets of summary statistics. First, we compare the slope of

the nonparametric regression line, at +1/ − 1 standard deviation around the mean. A concave

response function exhibits a smaller slope above the mean. For example, in Figure 6, the marginal

employment response at a positive standard deviation TFP shock is 2.4% while at a negative

standard deviation TFP shock it is 17.5%.

Second, we compare the differences between employment growth at one standard deviation above

(below) the mean to mean employment growth. This metric represents the difference between

responses to a good and bad shock of ”typical size”; it does not rely on local behavior at two

specific points. As with the first pair of statistics, a larger value for a positive shock indicates

concave response. For example, in Figure 6, a typical positive TFP innovation (z = +0.179) leads

to about 0.7% more hiring compared to a firm that received no TFP innovation (z = 0). This

contrasts with a stronger −1.8% employment contraction of a firm after a typical negative TFP

innovation (z = −0.179). As the standard error bands show, this difference in the average responses

is statistically significant at the 95% level.

Our final statistic captures the increase in volatility contributed by nonlinearity in the estimated

employment response function g:

φg ≡ 1− g′ (0)2 var(z)

var (g(z))
(9)

If the estimated function g is close to linear and g (z) is thus a scaled copy of TFP z, then φg is

close to zero. In contrast, for concave g, the variance of g (z) is larger than that of g′ (0) z, and φg

is positive. For example, Figure 6 implies that φg = 0.489; almost half of the variation in g(z) thus

comes from concavity of the decision rule.13 This number is similar to the average φg = 0.451 that

we obtain below – in this sense, the subsample of firms shown in the plot is a good representation

of the asymmetry in the overall population.

Concavity is pervasive across time, industry and size

To show that concavity is a robust fact, we partition the data into subsamples that condition

on size, industry and time period, only one control at a time. This procedure limits the subsamples

to be analyzed to 37 (= eight time periods + eight size bins + 21 industries) compared to 1,344

(= 8× 8× 21). Table 5 summarizes our findings.

We report the slope of the hiring policy at −1 standard deviation versus the slope at +1 standard

13By itself, the statistic φg measures the contribution of nonlinearity rather than concavity; for example φg > 0
could be generated by convexity in g. At the same time, when the other statistics indicate concavity, φg is useful to
gauge the effect of concavity on volatility.
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Table 5: Asymmetry across Time and Size

(I) (IIa) (IIb) (IIIa) (IIIb)
Std. Dev. Empl. growth elasticity Empl. growth diff. (in %)
of TFP wrt TFP of firm at... betw. mean and firm at...

Sample Innovation −1 StDev +1 StDev −1 StDev +1 StDev

All 0.179 0.10 0.03 –1.1 0.6

1972-75 0.171 0.10 0.09 –1.4 1.2
1976-80 0.158 0.09 0.06 –1.1 0.8
1981-85 0.169 0.20 0.14 –1.9 0.7
1986-90 0.174 0.11 0.01 –1.0 0.4
1991-95 0.170 0.08 0.02 –0.9 0.4
1996-00 0.186 0.04 0.02 –0.5 0.3
2001-05 0.196 0.03 –0.06 –0.4 0.0
2006-09 0.216 0.03 –0.06 –0.0 0.4

Size Bin 1 (small) 0.206 0.40 –0.30 –4.4 –2.5
Size Bin 2 0.187 0.20 0.01 –1.3 0.3
Size Bin 3 0.183 0.06 0.04 –0.8 0.5
Size Bin 4 0.178 0.06 0.04 –0.7 0.6
Size Bin 5 0.173 0.07 0.05 –0.9 0.8
Size Bin 6 0.170 0.06 0.04 –0.7 0.6
Size Bin 7 0.173 0.03 0.03 –0.5 0.5
Size Bin 8 (large) 0.180 0.01 0.16 –0.4 0.6

Note: Analogously to Figure 6 we non-parametrically estimate detrended employment growth as a function of TFP

innovations for each sample denoted in the left column. We then evaluate the slope of the non-parametric estimate at

+1 and −1 standard deviation in Columns (IIa) and (IIb). Column (IIIa) displays how much a firm with a negative

StD technology innovation shrinks employment relative to a firm without a TFP innovation; column (IIIb) does the

same for a firm that experienced a positive standard deviation technology innovation.
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deviation and the absolute values relative to the mean establishment. If the concave hiring rule was

merely an artifact of composition, we would see symmetric responses in (some) subsamples. But the

overall asymmetry of employment growth remains. Table 5 displays the slope of the employment

growth function at −1/+1 standard deviation technology shock as well as the employment growth

level at −1/+1 standard deviation technology shock vis-à-vis the mean.

The evidence suggests that with the exception of very large establishments the basic asymme-

try is evident in all subsamples and thus largely independent of the chosen controls (time, size,

industry). That almost all cuts of the data still exhibit the asymmetric employment growth-TFP

innovation relationship is reassuring and informative at the same time. 14 While almost all subsam-

ples exhibit the asymmetry, the quantitative magnitudes of employment responses after positive

and negative TFP innovations are different. Mindful of these quantitative differences, the evidence

presented in Table 5 points us towards those factors we have to control for when we want to examine

this asymmetry more closely.

4.4 Employment and TFP: parametric evidence

The nonparametric approach of the previous section has the advantage of being mostly free from

any assumptions about the sign and shape of the relationship. At the same time, the concave shape

as displayed for example in Figure 6 can be approximated quite well by a parsimonious parametric

form. Doing so also helps to flexibly control for other state variables that could be relevant to the

firm without falling prey to the curse of dimensionality or loosing tractability.

In the following, we study the shape of the employment growth-TFP innovation asymmetry and

run the following regression

nit = βζζit + βtimet+ βZZit−1 + βLlit + c (10)

where t is a time trend, Zit−1 the lagged TFP level (reflecting our assumption of TFP following an

auto-regressive process), lit the logarithm of employment and c a constant. ζit is a function of the

technology innovation aimed at a capturing any possible asymmetries. We examine the following

specifications

βζζit =



β1zit + β2(zit)
2 Specification (I): concave,

β1zit + β2(zit)
2 + β3(zit)

3 Specification (II): non-monotonic asymmetry,

β1zit + β2zitI
{
zit < 0

}
Specification (III): piece-wise linear,

β1zit + β2(zit)
2I
{
zit ≥ 0

}
Specification (IV): linear-concave.

Specification (I) implies that employment growth is increasing and concave (increasing and

convex) in TFP innovations if β1 > 0, β2 < 0 (β1 > 0, β2 > 0), specification (II) allows for more

14Appendix C further shows that an asymmetric hiring rule is not an artifact of composition effects caused by firm
life cycle patterns or by labor-saving capital-embodied technological change.

27



T
a
b
le

7:
E

m
p

lo
y
m

en
t

A
sy

m
m

et
ry

–
p

ar
am

et
ri

c
sp

ec
ifi

ca
ti

on
s

R
eg

re
ss

io
n
s

(I
/V

):
n
i t

=
β

0
+
β
i
+
β

1
t

+
β

2
Z
i t−

1
+
β

3
li t

+
β

4
z

+
β

5
z

2

R
eg

re
ss

io
n
s

(I
I/

V
I)

:
n
i t

=
β

0
+
β
i
+
β

1
t

+
β

2
Z
i t−

1
+
β

3
li t

+
β

4
z

+
β

5
z

2
+
β

6
z

3

R
eg

re
ss

io
n
s

(I
II

/
V

II
):

n
i t

=
β

0
+
β
i
+
β

1
t

+
β

2
Z
i t−

1
+
β

3
li t

+
β

4
z

+
β

7
z
I{
z
<

0
}

R
eg

re
ss

io
n
s

(I
V

/V
II

I)
:

n
i t

=
β

0
+
β
i
+
β

1
t

+
β

2
Z
i t−

1
+
β

3
li t

+
β

4
z

+
β

8
z

2
I{
z
>

0}

A
.

U
n
w

ei
gh

te
d

R
eg

re
ss

io
n

(I
)

(I
I)

(I
II

)
(I

V
)

E
x
p
la

n
a
to

ry
q
u
a
d
r.

cu
b
ic

p
ie

ce
-w

is
e

n
eg

.
li
n
ea

r
va

ri
a
b
le

s
li
n
ea

r
p

os
.

q
u

ad
r.

z
0
.0

82
7
**

*
0
.0

95
9
*
**

0.
03

47
**

*
0.

11
48

**
*

(0
.0

0
1
9
)

(0
.0

0
2
7
)

(0
.0

0
3
4
)

(0
.0

0
2
5
)

z
2

–
0.

09
9
8*

*
*

–
0
.0

95
6
**

*
(0

.0
0
6
2
)

(0
.0

0
6
3
)

z
3

–
0.

09
0
1*

*
*

(0
.0

1
6
3
)

z
×
I{
z
<

0
}

0.
09

47
**

*
(0

.0
0
5
7
)

z
2
×
I{
z
≥

0
}

–0
.1

84
9*

**
(0

.0
1
0
6
)

T
re

n
d

–0
.0

0
33

*
*
*

–
0.

00
3
3*

*
*

–0
.0

03
3*

**
–0

.0
03

3*
**

(0
.0

0
0
1
)

(0
.0

0
0
1
)

(0
.0

0
0
1
)

(0
.0

0
0
1
)

Z
i t−

1
0
.0

28
2
*
**

0.
0
2
78

*
*
*

0.
02

81
**

*
0.

02
76

**
*

(0
.0

0
1
4
)

(0
.0

0
1
4
)

(0
.0

0
1
4
)

(0
.0

0
1
4
)

li t
0.

2
9
65

*
*
*

0.
29

6
6*

*
*

0.
29

66
**

*
0.

29
66

**
*

(0
.0

0
2
0
)

(0
.0

0
2
0
)

(0
.0

0
2
0
)

(0
.0

0
2
0
)

C
o
n
st

a
n
t

–1
.2

88
7
*
**

–1
.2

8
84

*
**

–1
.2

85
3*

**
–1

.2
88

8*
**

(0
.0

3
8
6
)

(0
.0

3
8
5
)

(0
.0

3
8
6
)

(0
.0

3
8
5
)

S
am

p
le

A
S
M

A
S
M

A
S
M

A
S

M
N

1
,5

36
k

1
,5

36
k

1,
53

6k
1,

53
6k

R
2

0
.1

68
0
.1

68
0.

16
7

0.
16

8

P
os

.
R

es
p

.
+

1
.1

6
%

+
1
.3

6
%

+
0
.6

2%
+

1.
46

%
N

eg
.

R
es

p
.

−
1.

8
0
%

−
1
.9

7%
−

2
.3

1%
−

2.
05

%
D

iff
.

si
gn

.?
Y

es
∗∗
∗

Y
es
∗∗
∗

Y
es
∗∗
∗

Y
es
∗∗
∗

B
.

E
m

p
lo

y
m

en
t-

w
ei

gh
te

d
R

eg
re

ss
io

n
(I

)
(I

I)
(I

II
)

(I
V

)
q
u

ad
r.

cu
b

ic
p

ie
ce

-w
is

e
n
eg

.
li
n

ea
r

li
n

ea
r

p
os

.
q
u
ad

r.

0.
07

75
**

*
0.

10
05

**
*

0.
03

73
**

*
0.

11
08

**
*

(0
.0

0
5
3
)

(0
.0

0
9
3
)

(0
.0

1
4
7
)

(0
.0

0
5
1
)

-0
.0

93
4*

**
–0

.0
88

1*
**

(0
.0

1
9
0
)

(0
.0

1
9
8
)

–0
.1

68
5*

**
(0

.0
4
4
0
)

0.
07

95
**

*
(0

.0
2
1
7
)

–0
.1

98
0*

**
(0

.0
2
5
4
)

–0
.0

02
**

*
–0

.0
02

**
*

–0
.0

02
**

*
–0

.0
02

0*
**

(0
.0

0
0
2
)

(0
.0

0
0
2
)

(0
.0

0
0
2
)

(0
.0

0
0
2
)

0.
01

62
**

*
0.

01
54

**
*

0.
01

61
**

*
0.

01
56

**
*

(0
.0

0
3
4
)

(0
.0

0
3
5
)

(0
.0

0
3
4
)

(0
.0

0
3
4
)

0.
19

06
**

*
0.

19
06

**
*

0.
19

06
**

*
0.

19
05

**
*

(0
.0

1
4
8
)

(0
.0

1
4
8
)

(0
.0

1
4
8
)

(0
.0

1
4
7
)

–1
.2

39
7*

**
–1

.2
40

5*
**

–1
.2

38
0*

**
–1

.2
39

6*
**

(0
.1

0
9
9
)

(0
.1

1
0
0
)

(0
.1

1
0
8
)

(0
.1

0
9
3
)

A
S
M

A
S
M

A
S

M
A

S
M

1,
50

1k
1,

50
1k

1,
50

1k
1,

50
1k

0.
12

58
0.

12
59

0.
12

57
0.

12
59

+
1
.0

6%
+

1.
38

%
+

0.
64

%
+

1
.3

2%
−

1
.6

1%
−

1.
90

%
−

2
.0

1%
−

1
.9

1%
Y

es
∗∗
∗

Y
es
∗∗

Y
es
∗∗
∗

Y
es
∗∗
∗

N
o
te
:

*
,

*
*
,

*
*
*

si
g
n
ifi

ca
n
tl

y
d
iff

er
en

t
fr

o
m

0
a
t

th
e

1
0
%

,
5
%

,
1
%

le
v
el

,
re

sp
ec

ti
v
el

y.

28



flexibility in fitting non-monotone relationships, specification (III) assumes a linear relationship,

but has potentially different slopes for positive and negative innovations, specification (IV) is linear

for negative innovations and concave for positive ones. We omit a specification where negative

innovations enter in concavely and positive ones linearly as that could be thought of as the difference

between specifications (I) and (IV).

For each specification (I)-(IV) we run a fixed effects panel regressions to account for persistent

firm-specific factors in hiring. Since the non-parametric analysis above suggested that larger firms

have a less asymmetric hiring policy, we also run a set of the same panel regressions (I)-(IV)

weighting each observation by its average employment. This should tell us if the quantitative

relevance of asymmetric hiring goes away if we consider such a “relevance-based” hiring policy.

Table 7 displays the estimates of a FE panel regression. As expected, TFP innovations have

a positive effect on hiring and negative innovations reduce hiring. Ignoring the non-linear terms,

a typical positive (negative) TFP shock increases (reduces) employment growth by 1.5 percentage

points. But we do find considerable evidence for hiring asymmetries: Across all specifications,

employment contractions after negative TFP shocks are larger in absolute value than expansions

after a similarly sized positive TFP shock. In the first three rows, all estimates of the non-linear

terms are statistically significant. To assess if an actual employment expansion is significantly

different from an employment contraction, we evaluate the typical employment response at +1/−1

standard deviation TFP innovation: βζ × ±StD(ζit). The rows “Pos. Resp.” and “Neg. Resp.”

at the bottom of Table 7 display this typical employment response. For example, the unweighted

estimates for specification (I) imply an employment response after a positive TFP innovation of

0.0827× 0.18− 0.0998× 0.182 = 1.16%.

We label responses as significantly asymmetric at the X% level if the point estimate for a positive

response lies outside the X% confidence interval of the symmetric negative response and vice versa.

Across all specifications we observe that the hiring asymmetry is significant at least at the 95%

level and that the hiring asymmetry is quantitatively relevant: the typical negative response is at

least 1.5 times as strong in absolute value as the typical positive response and varies from −1.8%

to −2.3%. The fit of all specifications seems fairly similar as suggested by a similar R2.

The employment-weighted regressions overall imply the same results. The hiring asymmetry is

statistically significant and quantitatively almost as sizable as the one implied by the unweighted

regression (it’s smaller by about a tenth).

We conclude by discussing the other controls. We include the lagged TFP level because the same

TFP shock has probably a different employment effect at a higher TFP level than at a lower one,

especially since our regression setup considers the more persistent effects captured by changes in the

employment growth rate. The lagged TFP level does enter positively which confirms out intuition.

Employment matters positively for hiring which reflects the fact that large firms tend to hire more

in general. As the negative coefficient on the time trend suggests, the already negative employment

growth rate in the manufacturing sector is accelerating over time – probably a consequence of

increased outsourcing of manufacturing jobs abroad.
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4.5 Comparing skewness and concavity across industries

Given estimated hiring functions for each 4-digit NAICS industry, we now ask whether those func-

tions relate to cross-sectional skewness at the industry level. In general, it is tricky to interpret

the connection between industry moments and concavity of the TFP response. Indeed, the TFP

response reflects only the response to TFP whereas industries may also differ in the properties of

TFP and other shocks. For example, cross sectional dispersion may be higher in some industry not

because asymmetry is stronger, but simply because the shocks in that industry are larger.

Nevertheless, there is a sense in which a negative relationship between our asymmetry measure

and skewness is interesting evidence. Indeed, suppose our prior belief is that other shocks tend to

be symmetric (as is TFP) and that the response to other shocks is concave because downwards

adjustments are generally easier than upwards adjustments. Seeing a more concave response to

TFP go along with more negative skewness in employment growth then supports our mechanism.

For the industry comparison, we use the 86 NAICS-4 digit industries in our data and focus on

φg as a measure of asymmetry. According to the proposed mechanism, we expect to see φg vary

negatively with cross-sectional “relative skewness,” that is, the difference between cross-sectional

skewness of employment growth and that of TF innovations. Although TFP innovations are essen-

tially not negatively skewed in any industry, we still want to avoid making inference from employ-

ment skewness that could stem from skewness of the underlying shocks.15 Table 11 in the appendix

reports the detailed industry-level asymmetry and cross-sectional relative skewness which we also

plot in Figure 7.

The scatter plot confirms our prediction: Symmetric industries (φg close to 0) have a coefficient

of skewness of −0.2 on average while industries with a very asymmetric hiring rule (φg close to unity)

have a coefficient of skewness that is three times as large. In industries at the symmetric end of

the distribution, the average hiring (firing) firm increases (reduces) employment by 1.5% (−1.75%)

while these numbers change to +1.5% (−2.5%) in the most asymmetric industries. We weigh each

industry by its employment share at the beginning of the sample to make sure we consider“relevant”

industries equivalently. The correlation between industry asymmetry and industry relative skewness

is −0.326 (0.141) which is significant at the 95% level. This negative relationship is robust to

dropping outlier industries and choosing different weighting schemes such as the share of shipments

rather than employment.

4.6 Quantitative significance

In this section we ask if shifts in average TFP together with the estimated concave hiring response

function can generate quantitatively relevant movements in micro and macro volatility, as well as

significant negative skewness across firms and over time. The propositions in Section 2 proved that

the concave hiring rule and average TFP shocks will deliver all these results qualitatively. We will

now investigate the quantitative relevance of the concave hiring rule. While our focus on TFP

15All our results presented in this section continue to hold when we focus on employment skewness alone.
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Figure 7: Industry Evidence: Hiring Asymmetry and Employment Patterns
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Note: The figure plots the cross-sectional skewness of employment growth relative to that of TFP shocks against the

asymmetry of the hiring rule (φg) within that NAICS-4 digit industry. The correlation coefficient between asymmetry

and cross sectional skewness is −0.326∗∗ (0.141) in the employment-weighted specification and amounts to −0.284∗∗∗

(0.105) in the unweighted scatter plot.

limits the analysis to only one of the shocks experienced by firms, and can therefore not account

for all fluctuations in volatilities, TFP shocks are nevertheless an important source of heterogeneity

across firms that we can measure. We thus derive ballpark estimates of their contribution to the

empirically observed moments of employment growth distribution discussed in Section 3.

In addition to investigating the effects of concave hiring under first-moment shocks to TFP,

our setup can also be used to study the impact of second moment shocks, i.e. cross sectional

“uncertainty shocks” as proposed by Bloom (2009). In fact, the countercyclical movement in firm

variables has been used to motivate such uncertainty shocks, which recently have attracted a lot of

attention as a potential cause of business cycles. One of our exercises is then to combine negative

first moment shocks with cross sectional uncertainty shocks to the distribution of TFP, as it has

been done by most researchers in the uncertainty literature (see for example Bloom et al. (2012);

Schaal (2012); Vavra (2014); Arellano et al. (2010)).

Notation follows the general setup of Section 2. Let sit denote the signal received by firm i.

For the benchmark specification discussed here, we assume that sit simply equals the measured

TFP innovation at the firm level, denoted by zit as in Section 4. The effect of noise in signals is

considered in Appendix C.4. There, we show that additional dispersion across firms due to noisy

signals generally enhances the effects of a concave response on volatility movements and skewness;

the results here can thus be viewed as a lower bound.

Under the benchmark specification, correlation of signals across firms is due to the aggregate
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innovation uat , whereas all dispersion is due to an idiosyncratic innovation uit :

sit = uat + uit. (11)

We assume that the innovations are mutually uncorrelated and normally distributed: uat ∼ N
(
0, σ2

a

)
and uit ∼ N

(
0, σ2

i

)
. This functional form assumption simplifies the calculations; it is motivated

by the evidence on symmetric TFP distributions in Section 4. Based on the estimated volatilities

above, we choose σa = 0.041 and σi = 0.174. When we assess the impact of pure uncertainty shocks,

we need to calibrate the cross-sectional variance of idiosyncratic technology shocks separately for

booms and recessions. We find that the distribution of technology shocks is about 7% more spread-

out in recessions than in booms. This is slightly less than Bloom et al. (2012) who consider only

a sample of long-lived establishments and find 13% more spread in recessions than booms.16 To

be sure, we carry out the quantitative analysis of uncertainty shocks both with our calibration and

that consistent with Bloom et al. (2012).

For the benchmark experiments, we use the linear-quadratic hiring response:

nit = f(sit) = asit − b
(
sit
)2

(12)

where a = 0.0827 and b = 0.0998 are the estimated response coefficients taken from Specification

(I) in Table 7. Since sit contains no additional noisy signals on zit, the recovered hiring function

indeed corresponds to the underlying f(sit) rather than its conditional expectation. We thus com-

pute moments of the cross-sectional and time series distributions of fitted employment growth f(sit)

by feeding the signals through this hiring function. Table 8 displays the results of all three shock

processes: aggregate shocks only (rows 1.), cross-sectional uncertainty shocks only with our cal-

ibration (rows 2.a) and with the calibration of Bloom et al. (2012) (rows 2.b) and both shocks

combined when they are perfectly negatively correlated (rows 3.). We contrast two sets of results:

Panel B. displays the effects of shocks transmitted through a linear hiring rule, Panel C. those of

the concave hiring rule displayed above. This comparison illustrates how concavity amplifies the

effects of second-moment shocks which by themselves have to potential explain some data features.

We have also conducted these quantitative exercises using the non-parametric hiring rule dis-

played in Figure 6. The quantitative effects using that rule are slightly stronger than the ones

obtained using the parametric hiring rule. We omit presenting them here because they are specific

to the sample underlying Figure 6.

16This number is constructed from Table 1, column 1 in Bloom et al. (2012). They also find a higher long-run
dispersion of TFP shocks than we do; as shown in Section 4.1 our dispersion is roughly consistent with the one found
in Syverson (2004).
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Table 8: Moments of employment growth with different shocks

Cross-sect. disp. Cross-sect. skewness moments Time series
IQR(ni|ua=−σa)
IQR(ni|ua=σa)

n(ui=−σi|ua=0)
n(ui=σi|ua=0)

γ
(
nit|uat = 0

)
FirmSkew(n)

(I) (II) (III) (IV)

A. Data 1.267 −1.687 −0.477 −0.386

B. Linear Hiring Rule: n = αz ∀α ∈ R

1. Aggregate shocks only 1 −1 0 0

2.a Uncertainty shocks only* 1.070 −1 0 0
(our calibration)

2.b Uncertainty shocks only* 1.130 −1 0 0
(Bloom et al. (2012))

3. Correlated aggr. shocks 1.070 −1 0 −0.048
and uncertainty shocks

C. Concave Hiring Rule: n = 0.0827z − 0.0998z2

1. Aggregate shocks only 1.220 −1.533 −1.177 −1.037

2.a Uncertainty shocks only* 1.070 −1.533 −1.177 −1.161
(our calibration)

2.b Uncertainty shocks only* 1.130 −1.533 −1.177 −1.441
(Bloom et al. (2012))

3. Correlated aggr. shocks 1.305 −1.533 −1.177 −1.075
and uncertainty shocks

*no aggregate business cycles here; “Rec” = more dispersed ui distribution across firms

Moments of the employment growth distribution are defined in equation (13) for column (I), equa-
tion (15) for column (II), equation (14) for column (III), equation (16) for column (IV).
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Countercyclical cross-sectional dispersion

Given our linear-quadratic setup and the shock processes that we calibrate to our data, we can

compute the theoretical inter-quartile range across firms:

IQR(nit) ≡ ni 75
t − ni 25

t

= a(ui75
t − ui25

t )− b
[(
ui75
t

)2 − (ui25
t

)2
+ 2uat

(
ui75 − ui25

t

)]
= (2a− 4buat )u

i75
t

= (2a− 4buat )
[√

2σi erf−1(2× 0.75− 1)
]

where the penultimate line used the symmetry of the ui distribution and the last line the normality.

The ratio of the inter-quartile range in recessions versus booms is then

IQR(ni)Rec

IQR(ni)Boom
=

2a− 4buaRec

2a− 4buaBoom
σReci

σBoomi

. (13)

To make our numbers comparable to the empirical boom-bust analysis in Section 3, we identify

recessions as times of a typical negative aggregate TFP shock, uaRec = −σa, and vice versa for

booms. As equation (13) demonstrates, the interquartile range will depend on the degree of con-

cavity in the hiring function as captured by b (relative to a), the aggregate shocks ua and the

idiosyncratic dispersion of shocks σi.

Not surprisingly, a purely linear rule (b = 0) will produce a boom-bust ratio of the IQR that

mirrors cyclical changes in the shock dispersion σi. Uncertainty shocks by themselves increase

the IQR by 7% (13% if adopting the calibration in Bloom et al. (2012)) in recessions, but fall

short of the 26.7% increase observed in the data. A concave hiring rule, in contrast, makes a big

difference: feeding aggregate shocks alone through the concave hiring rule increases the IQR by

22%. Combining negative aggregate shocks with cross-sectional uncertainty shocks increases the

IQR by 30.5% which is slightly stronger than in the data. Feeding only uncertainty shocks through

the concave rule while keeping the aggregate shock at zero only marginally increases employment

dispersion as seen in the standard deviation.17

Negatively skewed cross-sectional distribution

We can again compute the cross-sectional skewness of employment growth. As in the empirical

section, we focus on the long-run average skewness across firms; so we evaluate the skewness at

ua = 0:

γ
(
nit|uat = 0

)
=
E(n− En)3

[StD(n)]3
= − 6a2bσ4

i + 8b3σ6
i[

a2σ2
i + 2b2σ4

i

]3/2 . (14)

17Strictly speaking, the IQR – in fact, any inter-quantile range – does not respond at all if ui are distributed normally.

But other dispersion moments, such as the standard deviation, StD(ni) =
[
a2σ2

i − 4abuaσ2
i + 4b2(ua)2σ2

i + 2b2σ4
i

]1/2
,

do.
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With a linear hiring rule (b = 0), there would not be any skewness even with uncertainty shocks that

were capable of explaining the countercyclical dispersion above. This is because the cross-sectional

distribution of shocks is always symmetric and its linear transformation will also be symmetric. But

the estimated concave hiring function induces significant negative skewness in fitted employment

growth. The skewness of TFP innovations is zero in this example, consistent with the near symmetry

of TFP innovations in the data. In contrast, the coefficient of skewness for employment growth

γ(nit|uat = 0), as defined in (14), is equal to −1.177 when evaluated at the mean aggregate shock

ua = 0. As an alternative way of representing the degree of negative skewness, we compare the

firing at a typical negative idiosyncratic technology shock to the hiring at a positive technology

shock:
E(ni|ui = −σi, ua = 0)

E(ni|ui = σ, ua = 0)
=
−aσi − bσ2

i

aσi − bσ2
i

. (15)

The long-run average value of−1.533 is the same across all variants of technology shocks (because we

evaluate it in the long-run equilibrium) and comes close to the empirical value of −1.687 indicated

in Table 6 (Columns (IIIa) and (IIIb) at the bottom). Typical firing is thus about 1.5 times

as aggressive as the typical hiring. In a model with a linear decision rule, or equivalently with

symmetric responses to good and bad signals, the measure in (15) equals −1 by construction.

Negatively skewed time series distribution

To evaluate negative skewness in the time series of firm employment growth, we simulate a panel

of firms that corresponds to what we observe in the data and document in Table 4. 1,900 firms18

are simulated over T = 37 years 10,000 times for each of the three specifications of the technology

process. We then compute the time-series skewness of the resulting nit, which for each firm has

a time-series mean ni and time-series volatility V oli, and take the average of this skewness over

N = 1, 900 firms, the cross-sectional size of our balanced panel:

FirmSkew =
1

N

N∑
i=1

1

T

T∑
t=1

(nit − ni)3

(V oli)3/2
. (16)

As before, a linear hiring rule will result in no skewness at all if the economy is just hit by aggregate

shocks or just by uncertainty shocks. This is because the overall signal has a symmetric distribution

centered at zero. The linear hiring rule will then produce an employment growth distribution that is

similarly symmetric and centered at zero. Only when negative aggregate shocks are correlated with

uncertainty shocks, will the linear hiring rule produce a very moderate negative skewness of −0.048

which reflects the negative skewness of the composite signals in that specification: sit = uat + uit

where Cov(uat , σ
i
t) < 0.19

18We prefer to compare the model-implied time-series skewness with the balanced panel since we do not account
for entry/exit in this quantitative simulation, a factor that seems to be a cause for the weak negative skewness for
the full panel reported in Table 4.

19We have operationalized this as follows: the standard deviation of cross-sectional shocks is a negative linear
function of the realization of the aggregate shock uat with an intercept at the long-run average idiosyncratic dispersion:
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If technology shocks hit the concave hiring rule, however, any variant of shocks will produce a

significant negative skewness that slightly exceeds the negative skewness in the data.

Appendix C.4 redoes the above calculations under various alternative specifications. In par-

ticular, we show that the benchmark specification produces statistics that are more conservative

than alternatives in which we add noise to the signal in (11), as in formula (4). The main rea-

son is that the additional noise increases the volatility of the firm-specific signals, which produces

stronger effects through the concavity of the hiring rule and thus results in statistics that are larger

in absolute value.20

To summarize, the implied properties of the cross-sectional and time-series distributions of

employment growth, conditional only on the measured dispersed TFP innovations and the estimated

linear-quadratic concave hiring rule, are in line with what we document empirically using the raw

data for employment growth. This suggests that one mechanism, namely an asymmetric hiring

response to dispersed signals, has the quantitative potential to explain these properties jointly and

endogenously.

σit = σi−ξuat . ξ is chosen such that the ratio of the cross-sectional shock dispersion in recessions to booms corresponds

to that in the data:
σi|ua=−σa
σi|ua=σa

= 1.07.
20We have also explored an alternative piece-wise linear function, as estimated for Specification (III) in Table 7, for

which we also find stronger quantitative significance. Appendix C.4 details these various alternative specifications.
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A Proofs for Section 2

Proof of Proposition 1. Part 1. Write the derivative of aggregate employment growth at the
point a as

d

dã
E[f(s)]|ã=a =

d

dã

∫
f(ε+ ã)g(ε)dε |ã=a =

∫
f ′(ε+ a)g(ε)dε.

Since f ′′ < 0, we have that for every realization of ε,

a′ > a⇒ f ′(a′ + ε) < f ′(a+ ε).

Part 2. Define the function

h (a) := var (f (s) |a) = E
[
f (s)2 |a

]
− E [f (s) |a]2 .

Then we have

h′ (a) = 2
(
E
[
f (s) f ′ (s) |a

]
− E [f (s) |a]E

[
f ′ (s) |a

])
= 2cov

(
f (s) , f ′ (s) |a

)
which is negative for all a since f is strictly increasing in s and f ′ is strictly decreasing in s.

Part 3. The conditional cdf of employment growth at some point f̄ can be written as

Gf
(
f̄ |a
)

= Pr
(
f (a+ ε) ≤ f̄

)
= Pr

(
a+ ε ≤ f−1

(
f̄
))

= G
(
f−1

(
f̄
)
− a
)
.

The inverse conditional cdf is therefore

G−1
f (x̄|a) = f

(
a+G−1 (x̄)

)
.

An increase in a now means shifting the pair of points a + G−1 (x) and a + G−1 (x̄) at which we
evaluate f by the same amount; concavity then means the interquantile range shrinks.�

Proof of Proposition 2. The proof uses the following result (Theorem 3.1 in van de Geer
and Wegkamp (2011)).

Lemma. Let x denote a random variable, φ denote a nonconstant convex function, µj(y) denote
the jth centered moment and σ(y) the standard deviation of a random variable y. Then for all
k = 1, 2, ..., provided the moments exist, we have

µ2k+1 (x)

σ2k+1 (x)
≤ µ2k+1 (φ (x))

σ2k+1 (φ (x))
.

Part 1. Define φ (x) = f−1 (x) − a. If x represents the distribution of s, then φ (x) represents
the distribution of ε. The function φ is convex by concavity of f , and the result follows directly
from the lemma.
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Part 2: Write aggregate employment growth as a function of aggregate news

g (a) = E [f (a+ ε) |a] .

The function g is also concave. Indeed, for any a 6= a′,

g
(
λa+ (1− λ) a′

)
= E

[
f
(
λa+ (1− λ) a′ + ε

)
|λa+ (1− λ) a′

]
= E

[
f
(
λ (a+ ε) + (1− λ) (a′ + ε

)
|λa+ (1− λ) a′

]
> λE

[
f (a+ ε) |λa+ (1− λ) a′

]
+ (1− λ)E

[
f
(
a′ + ε

)
|λa+ (1− λ) a′

]
= λE [f (a+ ε) |a] + (1− λ)E

[
f
(
a′ + ε

)
|a′
]

= λg (a) + (1− λ) g
(
a′
)

where the last line uses the fact that ε is independent of a.
Define now φ (x) = g−1 (x). If x represents the distribution of aggregate employment growth

E [f (a+ ε) |a], then φ (x) represents the distribution of a. Since φ is convex, the result follows
directly from the lemma.

Proof of Proposition 3.
Define y = f (a′ + ε) and x = f (a+ ε). The random variable x represents the cross sectional

distribution at a, whereas the random variable y represents the cross sectional distribution at a′.
Since f is strictly increasing, we can write y = φ (x), where

φ (x) = f
(
a′ − a+ f−1 (x)

)
.

By the lemma in the proof of Proposition 2, skewness is higher at a′ if φ is convex. The first
and second derivatives are

φ′ (x) =
f ′
(
a′ − a+ f−1 (x)

)
f ′ (f−1 (x))

> 0

φ
′′

(x) =
f ′
(
f−1 (x)

)
f ′′
(
a′ − a− f−1 (x)

)
− f ′

(
a′ − a− f−1 (x)

)
f ′′
(
f−1 (x)

)
f ′ (f−1 (x))3 .

Since f ′ > 0 and f ′′ < 0, we have φ′′ (x) > 0 if and only if

−
f ′′
(
a′ − a− f−1 (x)

)
f ′ (a′ − a− f−1 (x))

< −
f ′′
(
f−1 (x)

)
f ′ (f−1 (x))

.

This is true if absolute risk aversion is decreasing everywhere. The relationship between in-
creasing absolute risk aversion and lower skewness follows by reversing the inequalities.

B A model with asymmetric information processing

Here we present a simple model based on information processing under ambiguity that delivers
asymmetric hiring decision rules. There is a continuum of firms that at the beginning of each
period get an idiosyncratic noisy signal about end-of-period productivity zit. After observing the
signal, each firm chooses employment in a competitive labor market, where the wage is w. At the
end of the period, productivity is realized. Thus the firm problem is a repetition of static hiring
decisions based on a signal-extraction problem within the period.
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Firm i’s log productivity is described as

zit = uat + uit − 0.5
(
σ2
a + σ2

u

)
where uat is an aggregate shock, normally distributed with mean a and variance σ2

a, and uit is an
idiosyncratic, firm-specific shock, normally distributed with mean 0 and variance σ2

u. The variances
σ2
a and σ2

u are constant over time and known to the firm. The end-of-period profit is

exp
(
zit
) (
Lit
)α − wLit

where Lit is employment chosen by firm i. The noisy signal about firm’s i productivity is

sit = zit + σeε
i
t

where εit is a standard normal innovation, iid across time and firms. The key mechanism through
which this simple signaling model generates asymmetries is to assume that firms are ambiguous
about the information precision of their signals. In particular, similarly to the model used in Epstein
and Schneider (2008), we assume that each firm is ambiguous about the value of σe and has a set
of beliefs given by

σe ∈ [σε, σε]

The objective of the firm is choose Lit to maximize the multiple priors utility:

max
Lit

min
[σε,σε]

(
Lit
)α
Eσe

[
exp

(
zit
)
|sit
]
− wLit

where the minimization operator reflects the firm’s ambiguity-aversion. Faced with uncertainty
over the signal-to-noise ratio, the ambiguity-averse firm acts as if the worst-case σe characterizes
the true DGP. The worst-case σe minimizes the conditional expectation of end-of-period profits,
which are only a function of the expected zit conditional on the observed signal sit. Details and
axiomatic foundations for the multiple priors utility are provided in Gilboa and Schmeidler (1989)
for the static case and in Epstein and Schneider (2003) for the dynamic version.

Because of the normality of innovations, the problem above is equivalent to

max
Lit

min
[σε,σε]

exp

[
Eσe

(
zit|sit

)
+

1

2
varσe

(
zit|sit

)] (
Lit
)α − wLit. (17)

To characterize the optimal solution, it is analytically helpful to define the relative precision of
signal γt as a function of a given σ2

e,t:

γt =
var(zit)

var(zit) + σ2
e,t

.

After observing the signal, the posterior conditional mean and variance of zit are given by

E
(
zit|sit

)
= γt

[
sit +

1

2
var(zit)

]
− 1

2
var(zit)

var
(
zit|sit

)
= (1− γt) var(zit).
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The firm problem in (17) then simplifies to

max
Lit

min
[σε,σε]

exp
(
γts

i
t

) (
Lit
)α − wLit.

The solution to this problem results in a hiring policy that is based on the worst case precision
γ∗t characterized by:

Lit =
[α
w

exp
(
γ∗t s

i
t

)] 1
1−α

; γ∗t =

{
γ if sit < 0

γ if sit ≥ 0.
(18)

The interpretation of the optimal solution is that the firm acts as if the signal precision is high for
bad news and low for good news. The employment decision is then to maximize expected profits
under the worst-case precision γ∗t . This results in an asymmetric hiring decision rule such that
the firm that receives a negative signal sit = −x contracts its employment by more than it would
expand it if the firm would have received a positive signal of the same magnitude, sit = x.

C Robustness

C.1 Alternative TFP measures

Our preferred measure for TFP shocks – the one used in producing Figures 6 and 7 as well as
Tables 5 and 7 – is obtained by estimating the fixed-effects panel model in equation (8). The fixed
effect causes a well-known bias in the estimated parameters and TFP innovations. Though Monte
Carlo studies suggest the bias in a long panel like ours should be quite small (see Nickell (1981)),
we re-estimate equation (8) using the instrumenting proposed by Arellano and Bond (1991) and
Blundell and Bond (2000). The resulting measure of TFP innovations is not only extremely similar
to the one we obtain in the fixed effects panel regression, the resulting employment growth-TFP
innovation relationship is equally asymmetric. If the previously observed asymmetric hiring rule
were a mere artifact of biased estimates of TFP innovations, then using the bias-corrected TFP
innovations should yield a symmetric estimate of the hiring rule. This re-estimated hiring rule21 is
presented in Table 9 which shows that the hiring rule is still asymmetric and similar to the results
presented in Table 7.

C.2 Further analysis of composition effects

The asymmetric hiring rule we estimated previously could be an artifact of composition. We
consider two of the most plausible ones: labor-saving capital investment and credit constraints in
a firm’s early life cycle.

As for the first, the logic runs as follows: firms that receive a positive technology shock might
invest in new more productive machinery that requires less labor input thus muting employment
growth after positive shocks. But after negative technology shocks firms might simply fire work-
ers and divest machinery thus pronouncing an employment contraction after negative technology
shocks. If that was true, then our observed asymmetry would be caused by firms that upgrade their
technology. We therefore re-estimate our preferred linear-quadratic specification only for firms that
do not simultaneously invest large amounts (which we identify as possibly labor-saving). Following
the literature, we define a large investment project as exceeding an investment rate of 0.20. If our

21For simplicity we focus on our preferred specifications (I) and (II) from Table 7, but the asymmetry continues to
hold in other other specifications.
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Table 9: Alternative Measures of TFP Innovations

Regressions (I)/(III): nit = β0 + βi + β1t+ β2Z
i
t−1 + β3l

i
t + β4z + β5z

2

Regressions (II)/(IV): nit = β0 + βi + β1t+ β2Z
i
t−1 + β3l

i
t + β4z + β7zI {z < 0}

Arellano-Bond Blundell-Bond
(I) (II) (III) (IV)

Explanatory quadr. piece-wise quadr. piece-wise
variables linear linear
z 0.0715*** 0.0143*** 0.0746*** 0.0127***

(0.0018) (0.0029) (0.0018) (0.0029)

z2 -0.0851*** -0.0896***
(0.0035) (0.0046)

z × I{z < 0} 0.1162∗∗∗ 0.1186∗∗∗

(0.0045) (0.0046)

Trend -0.0032*** -0.0032*** -0.0032*** -0.0032***
(0.0001) (0.0001) (0.0001) (0.0001)

Zit−1 0.0252** 0.0251** 0.0273** 0.0273**
(0.0015) (0.0015) (0.0014) (0.0014)

lit 0.2972*** 0.2972*** 0.2963*** 0.2963***
(0.0020) (0.0020) (0.0020) (0.0020)

Constant -1.3019*** 1.2961*** 1.2999*** 1.2941***
(0.0389) (0.0389) (0.0389) (0.0389)

Sample ASM ASM ASM ASM
N 1,536k 1,536k 1,536k 1,536k
R2 0.1688 0.1688 0.1684 0.1684
Pos. Resp. +1.42% +0.39% +1.34% +0.33%
Neg. Resp. −2.68% −3.56% −2.57% −3.44%
Diff. sign.? Yes∗∗∗ Yes∗∗∗ Yes∗∗∗ Yes∗∗∗

*, **, *** significantly different from 0 at the 10%, 5%, 1% level, respectively.
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asymmetry was a mere artifact of this labor-saving capital upgrade, the asymmetry would disap-
pear. Column (I) in Table 10, however, confirms that the asymmetry is still present, significant and
quantitatively close to what we estimated before, even for firms that do not upgrade their capital
stock by large amounts.

Second, we want to check if the observed asymmetry is driven by life-cycle dynamics. Young
firms that receive positive technology shocks might not hire as many new employees as they want
because they probably face credit constraints to dispose over working capital or finance necessary
investments that go along an overall expansion. Thus constraints for firms at the early stages
of their life cycle that tend to rely more on credit have a muted TFP shock-employment growth
relationship. Naturally, credit constraints are one-sided, which means that firms that intend to fire
after negative technology shocks need less working capital and capital, so they fire one-for-one. If
all asymmetry was driven by such life0cycle patterns that are possibly linked to credit constraints,
we should not see any asymmetric hiring for “mid-age” firms, that is firms three years or more after
their creation and three years or more before their death.22 Column (II) in Table 10 shows that
the asymmetry does not disappear when focusing on mid-age firms.

We thus conclude that compositional effects driven by a firm’s capital goods upgrade and a
firm’s life-cycle growth and decline are not responsible for the observed asymmetric hiring rule.

22We identify death in the data as exit in the Longitudinal Business Database rather than disappearance from our
main manufacturing sample.
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Table 10: Is Asymmetry Driven by Labor-Saving Capital Investment? By Life-Cycle Patterns?

Regressions (I)-(II): nit = β0 + βi + β1t+ β2Z
i
t−1 + β3l

i
t + β4z + β5z

2

(I) (II)
Explanatory no large mid-age
variables investments establishments

z 0.0750*** 0.0759***
(0.0019) (0.0018)

z2 -0.1415*** -0.1459***
(0.0064) (0.006)

Trend -0.0025*** -0.0022***
(0.0001) (0.0001)

Zit−1 0.0247*** 0.0311***
(0.0015) (0.0014)

lit 0.3010*** 0.2983***
(0.0020) (0.0020)

Constant -1.3628*** -1.4048***
(0.0391) (0.0387)

Sample ASM i
k < 0.2 ASM mid-age

N 1,406k 1,421k
R2 0.178 0.190

Pos. Response +0.89% +0.89%
Neg. Response −1.79% −1.82%
Diff. sign.? Yes∗∗∗ Yes∗∗∗

Note: *, **, *** significantly different from 0 at the 10%, 5%, 1% level, respectively.
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C.3 Industry-level asymmetry and employment patterns

We redo regression (10) at the four-digit NAICS industry level to recover the asymmetry as in the
body of the paper. We then compute the moments of the employment growth distribution for that
same industry: long-run dispersion, dispersion difference between boom and recession years and
long-run skewness. As displayed in Figure 7, industries with a more asymmetric response to news
display higher long-run dispersion, more countercyclical dispersion and more negative skewness.

Table 11: Industry Asymmetry and Industry Employment Patterns

NAICS-4 Asymmetry Rel. XS Employment
φg Skewness Share

3111 0.986 –0.881 0.003
3112 0.274 –0.723 0.004
3113 0.067 –0.458 0.004
3114 0.264 –0.333 0.012
3115 0.996 –0.741 0.011
3116 0.830 –1.177 0.015
3117 0.533 –0.545 0.002
3118 0.747 –0.288 0.015
3119 0.614 –0.028 0.007
3121 0.930 –0.556 0.012
3122 1.000 –0.582 0.004
3131 0.321 –1.367 0.008
3132 0.437 –1.186 0.024
3133 0.380 –0.769 0.004
3141 0.693 –0.579 0.006
3149 0.383 –0.079 0.005
3151 0.966 –1.450 0.011
3152 0.826 –0.617 0.066
3159 0.000 –0.100 0.002
3161 0.509 –0.795 0.002
3162 0.790 –1.033 0.012
3169 0.039 –0.732 0.004
3211 0.359 –0.760 0.009
3212 0.305 –0.542 0.006
3219 0.016 –0.310 0.018
3221 0.901 –0.796 0.013
3222 0.547 –0.056 0.022
3231 0.905 –0.154 0.031
3241 0.462 –0.380 0.008
3251 0.651 –0.443 0.015
3252 0.399 –0.447 0.009
3253 0.232 –0.456 0.003
3254 0.289 –0.063 0.008
3255 0.567 –0.400 0.005
3256 0.433 –0.178 0.007
3259 0.547 –0.417 0.008

continued . . .
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NAICS-4 Asymmetry Rel. XS Employment
φg Skewness Share

3261 0.374 –0.081 0.023
3262 0.617 –0.099 0.014
3271 0.505 –0.724 0.006
3272 0.294 0.264 0.010
3273 0.487 –0.572 0.012
3274 0.513 –0.127 0.001
3279 0.399 –0.159 0.006
3311 0.072 –0.506 0.028
3312 0.515 –0.353 0.004
3313 0.745 –0.582 0.006
3314 0.178 –0.970 0.007
3315 0.355 –0.513 0.018
3321 0.267 –0.219 0.009
3322 0.405 –0.185 0.004
3323 0.437 –0.358 0.019
3324 0.028 –0.458 0.009
3325 0.298 –0.108 0.006
3326 0.326 –0.331 0.004
3327 0.000 –0.006 0.014
3328 0.099 –0.187 0.006
3329 0.267 –0.234 0.022
3331 0.537 –0.345 0.017
3332 0.483 –0.374 0.011
3333 0.000 –0.421 0.007
3334 0.505 –0.302 0.011
3335 0.432 –0.053 0.014
3336 0.141 –0.086 0.010
3339 0.497 –0.324 0.018
3341 0.970 –0.314 0.009
3342 0.408 –0.275 0.013
3343 0.421 –0.605 0.005
3344 0.010 –0.338 0.019
3345 0.600 –0.427 0.026
3346 0.870 –0.722 0.001
3351 0.614 –0.407 0.005
3352 0.577 –0.291 0.009
3353 0.418 –0.270 0.015
3359 0.398 –0.499 0.013
3361 0.347 –0.377 0.020
3362 0.327 –0.365 0.007
3363 0.204 0.078 0.039
3364 0.399 –0.291 0.035
3365 0.390 –0.199 0.003
3366 0.386 –0.482 0.010

continued . . .
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NAICS-4 Asymmetry Rel. XS Employment
φg Skewness Share

3369 0.643 –0.132 0.002
3371 0.142 –0.281 0.018
3372 0.468 0.082 0.006
3379 0.152 –0.221 0.002
3391 0.883 0.197 0.008
3399 0.175 –0.180 0.028

Average 0.451 –0.409 0.012

Std. Deviation 0.265 0.323 0.010

Raw corr. 1 –0.283** 0.039
with φg (0.110) (0.120)

Weighted corr. 1 –0.326** 0.204
with φg

C.4 Alternative specifications for quantitative significance

In this appendix we report results based on alternative specifications to the benchmark signal
structure and parametric function of equations (11) and (12), respectively. In Table 12 we collect
the moments defined in section 4.6. The first two columns give their informal and formal description.
Column (M1) reports values for the benchmark specification. The rest of the remaining columns
are based on alternative model specifications to be introduced below.

One extension is to allow for noise in the idiosyncratic signal. More specifically, as in equation
(4), we write the general representation of the signal as

sit = uat + vat + uit + vit

where vat and vit are the common and idiosyncratic components of the noise distributed as vat ∼
N
(
0, σ2

v,a

)
and vit ∼ N

(
0, σ2

v,b

)
, respectively. We parametrize each of the variances of the noise

through the implied signal to noise ratios

κx =
σ2
x

σ2
x + σ2

v,x

for both the aggregate and idiosyncratic components, i.e. x = a, b. Allowing for noise in the
signals means that the econometrician recovers the conditional expectation g

(
zit
)

= E
[
f(sit)|zit

]
,

as defined in equation (5). We discuss some of the conclusions that can be drawn about f(sit)
based on the observed g

(
zit
)

in Section 2.3. In this context however, we maintain for expositional
purposes the assumption that f(sit) is still given by the linear-quadratic function in (12), with the

same coefficients β1 and β2 as those estimated for the estimated g
(
zit
)

= β1zit + β2
(
zit
)2
. Thus, in

the experiments reported below, allowing for noise amounts to maintaining the same decision rule
while increasing the variance of either the idiosyncratic component, uit + vit, or the aggregate one,
given by uat + vat .

In column (M2), we set κa = κb = 0.5, so that the variance σ2
v,a = σ2

a and σ2
v,b = σ2

i . We observe
that all statistics increase as we have essentially made both types of shocks more volatile. The
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larger volatility will have larger effects through the same curvature of the hiring rule. In column
(M3), we keep κa = 1, so that there is no aggregate noise, but activate κb = 0.5. We see that the
properties of cross-sectional and time series skewness are the same as in column (M2) since the
amount of idiosyncratic variance is the same. The cyclicality of the cross-sectional dispersion is
very similar to the benchmark case, with a very small difference caused by the larger variance of
idiosyncratic noise. Lastly, in column (M4) we revert to κb = 1 and keep κa = 0.5. Similarly to the
above logic, the cross-sectional and time series skewness are the same as the benchmark case while
the cyclicality of the cross-sectional dispersion is larger.

A final alternative specification that we investigate is to change the hiring decision rule to a
piece-wise linear function in which employment growth continues to respond stronger to bad than
to good signals. We maintain the benchmark assumption of no additional noise in the signal as in
equation (11) and consider the decision rule

f(sit) = β1
pws

i
t + β2

pws
i
tI
{
sit < 0

}
where the coefficients β1

pw and β2
pw equal 0.0347 and 0.0947, respectively, as estimated for spec-

ification III in Table 7. Column (M5) reports the results for this case. We see that the main
qualitative features are maintained and that the piece-wise linear function in general produces
stronger quantitative effects.

Table 12: Quantitative significance of estimated concavity of hiring decision rule

Distribution Moment (M1) (M2) (M3) (M4) (M5)
Description Statistic

XS dispersion cyclicality ln
[
IQR(nit|uat=−σa)

IQR(nit|uat=σa)

]
22% 32% 23% 31% 36%

XS skewness γ(nit|uat = 0) −1.17 −1.55 −1.55 −1.17 −1.01

Average firing and hiring
E(nit|nit<0,uat=0)

E(nit|nit≥0,uat=0)
−1.73 −2.15 −2.15 −1.73 −2.72

TS skewness 1
N

∑N
i=1

1
T

∑T
t=1

(nit−ni)3
(V oli)3/2

−1.12 −1.49 −1.49 −1.12 −0.99

Note Column 1 and 2 give the informal and formal description of the distribution moments, where XS refers to

cross-section and TS to time series. Column (M1) the corresponding values for the benchmark specification. Column

(M2) refers to the alternative specification with noise, where κa = κb = 0.5; (M3) with κa = 1, κb = 0.5 (M4) with

κa = 0.5, κb = 1 and (M5) is the piece-wise linear model without noise.
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