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Abstract 

 
Between 1990 and 2008, air pollution emissions from U.S. manufacturing fell by 60 percent 

despite a substantial increase in manufacturing output. We show that these emissions reductions 
are primarily driven by within-product changes in emissions intensity rather than changes in output 
or in the composition of products produced. We then develop and estimate a quantitative model 
linking trade with the environment to better understand the economic forces driving these changes. 

Our estimates suggest that the implicit pollution tax that manufacturers face doubled between 1990 
and 2008. These changes in environmental regulation, rather than changes in productivity and 
trade, account for most of the emissions reductions. 
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1 Introduction

Between 1990 and 2008, emissions of the most common air pollutants from U.S. manufacturing fell by 60

percent, even as real U.S. manufacturing output grew substantially. Figure 1 shows just how stark these

environmental improvements have been. Between 1990 and 2000, the real value of U.S. manufacturing output

grew by a third even as manufacturing’s emissions of major regulated air pollutants like nitrogen oxides,

particulate matter, sulfur dioxide, and volatile organic compounds fell on average by 35 percent. After 2000,

growth in real manufacturing output slowed, even while manufacturing pollution emissions fell another 25

percentage points relative to 1990 levels.

Research suggests at least three possible explanations for these substantial improvements in U.S. air

quality. First, U.S. manufacturing trade has grown substantially (Autor, Dorn, and Hanson, 2013; Pierce

and Schott, 2016). When polluting industries like steel or cement move abroad, total U.S. pollution emissions

may fall. Second, federal and state agencies require firms to install increasingly e↵ective pollution abatement

technologies. Some research directly attributes national changes in air quality to the Clean Air Act and

to other environmental regulations (Henderson, 1996; Chay and Greenstone, 2005; Correia, Pope, Dockery,

Wang, Ezzati, and Dominici, 2013). Third, if manufacturers use fewer inputs each year to produce the same

outputs and pollution is related to inputs, then annual productivity growth could improve air quality. In

support of this third explanation, Figure 2 shows a clear negative relationship between plant-level pollution

per unit of output and total factor productivity in U.S. manufacturing; as total factor productivity rises,

pollution per unit of output falls.1

The goal of this paper is to better understand the underlying forces that have caused changes in pollu-

tion emissions from U.S. manufacturing. We do this in two complementary ways. We begin by decomposing

changes in manufacturing emissions into changes due to the total scale of manufacturing output, the compo-

sition of products produced, and the pollution intensity of a given set of products. This data-driven exercise

exploits newly available, administrative data on product-level emissions intensities that a↵ords additional

granularity relative to the existing literature. While the statistical decomposition delivers clear conclusions,

it lacks the ability to uncover the primitive economic forces driving emissions reductions.

We complement this decomposition with a quantitative model of pollution emissions in U.S. manufac-

turing. The model consists of firms endogenously choosing investments in pollution abatement to avoid a

tax on pollution emissions. Production and pollution abatement choices depend on environmental regu-

lation, productivity, and trade costs. The model weaves together elements of workhorse models from the

international (Melitz, 2003) and environmental (Copeland and Taylor, 2003) literatures. While the model

is highly stylized, it has several attractive features—it has explicit and simple theoretical microfoundations

from which all the analysis is derived; it accounts for imperfect competition and can accommodate various

market structures; it incorporates firm entry, exit, and cross-firm reallocation; it requires few parameters

that can be estimated using reduced-form regressions; it can analyze a wide variety of counterfactuals; and

it can account for many general equilibrium forces in settings where partial equilibrium, program evaluation

methods may be able to deliver less insight.

1This graph focuses on nitrogen oxides (NOx) emissions, though graphs for other pollutants look similar.
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We then combine the model with administrative plant-level data from the U.S. Census Bureau and EPA

with two main objectives. First, we use intermediate results from the model, combined with actual pollution

abatement and emissions decisions, to back out the implicit tax per unit of pollution emissions that firms

face. U.S. federal, state, and local environmental regulations take many overlapping forms: command-

and-control technology standards, cap-and-trade programs, and many others.2 Our quantitative exercise

yields a closed form expression for the overall regulatory burden from these disparate and overlapping

environmental policies, allowing us to observe how this measure has changed over time. The second main

objective of the quantitative exercise is to evaluate a range of counterfactuals, such as how pollution emissions

would have evolved if air pollution regulation had remained unchanged after 1990. Many researchers in

environmental economics and international trade use quantitative models to forecast the future—they study

untested policies such as a global 10 percent decrease in all trade barriers or a national carbon tax. Unlike

such work, this paper uses a model to interpret the past—it quantifies how di↵erent kinds of economic

shocks (environmental regulation, productivity, and trade costs) led to observed changes in actual pollution

emissions. Similar general equilibrium decompositions have been used to understand the causes of the

collapse of trade around the Great Recession and the changes in between-group wage inequality (Burstein,

Morales, and Vogel, 2017; Eaton, Kortum, Neiman, and Romalis, 2016).

Our results suggest that changes in the scale of manufacturing output or changes to the composition

of products produced cannot explain trends in pollution emissions from U.S. manufacturing between 1990

and 2008. Instead, decreases in pollution per unit of output within narrowly defined product categories

explain almost all of the changes in emissions over this time. We then show that the model-driven measure

of the pollution tax rate that rationalizes observed pollution emissions and abatement decisions – a scalar

measure of the stringency of environmental regulation – more than doubled for most pollutants between

1990 and 2008. We find broadly similar increases in regulation across all the main pollutants the Clean

Air Act regulates (“criteria pollutants”), but we find no increases in an unregulated pollutant, CO2, over

this time period. Lastly, we find that this increasing stringency of environmental regulation accounts for

most of the 1990-to-2008 decrease in pollution emissions from U.S. manufacturing. Despite the plant-level

relationship between pollution and productivity documented in Figure 2, and similar relationships found in

related literature (Bloom, Genakos, Martin, and Sadun, 2010; Martin, 2011; Holladay, 2016), we find that

changes in U.S. productivity have had smaller e↵ects on U.S. pollution emissions at the economy-wide level.

This paper departs from the literature in four primary ways. First, it provides new evidence on why

pollution from U.S. manufacturing is declining. Some research relates national changes in pollution emissions

to three channels: changes in the aggregate level of manufacturing output, changes in the composition of

output across manufacturing industries, and changes in the pollution emitted per unit output within an

industry (Levinson, 2009). Research describes these channels as scale, composition, and technique. The

methodology behind our statistical decomposition resembles this work, but detailed administrative data

2Berman and Bui (2001) describe the entire menu of local air quality regulations facing manufacturing firms around Los
Angeles, finding 11 local air quality regulations for petroleum refining and 46 for manufacturing (a count which excludes state
and federal regulations). Most of the manufacturing policies apply to only a few industries each. The analysis includes the
years 1979 to 1993. Los Angeles has among the most stringent air quality regulations in the country. We thank Eli Berman and
Linda Bui for sharing details of these regulations.
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allow us to extend previous analyses to look within physical products and not merely within industries.3

This added granularity helps address previous concerns regarding the inability of industry level data to

distinguish between changes in the within-industry reallocation of production towards cleaner products and

industry-level reductions in emissions intensity (Koo, 1974; Gamper-Rabindran, 2006; Ederington, Levinson,

and Minier, 2008; Levinson, 2009). More importantly, the conclusion of previous research that pollution per

unit output within industries is falling (i.e., pollution is declining due to the ”technique” e↵ect) is silent

on deeper economic causes. Pollution per unit output is an endogenous outcome of the global economy

that numerous possible forces could explain. We use a quantitative model to relate changes in pollution

to policy-relevant choices like trade costs and environmental regulation. Our analysis of this quantitative

model suggests that environmental regulation accounts for much of the decline in pollution.

A second contribution of this study is to quantify the change in the overall regulatory burden, or shadow

price of pollution, that manufacturing firms face due to local and national air pollution regulations. We

find that this price more than doubled between 1990 and 2008 for most air pollutants we study, but we find

no increase in the shadow price of CO2. While analyzing the overall regulatory burden a↵ecting firms does

not prescribe a single law or policy lever, it does explain what all the hundreds of regulations have added

up to, which is a question of central importance. Previous model-based attempts to measure regulatory

stringency have required equating energy expenditures with pollution, then backing out regulatory costs

from cost function estimates (van Soest, List, and Jeppesen, 2006).

Third, this paper estimates, for the first time, a parameter that has played a central role in environmental

economics models for at least 30 years—the elasticity governing a firm’s tradeo↵ between production and

pollution abatement (Siebert, Eichberger, Gronych, and Pethig, 1980; Copeland and Taylor, 2003). This

parameter has equivalent interpretations as the Cobb-Douglas cost share of pollution taxes in production

or, alternatively, as the elasticity of pollution emissions with respect to productivity.

Lastly, this paper develops a flexible and tractable approach to analyzing economy-wide changes in

pollution. Research studying changes in pollution typically uses quasi-experimental regressions, industrial

organization models, or macro-trade models (Copeland and Taylor, 1994; Fabra and Reguant, 2014; De-

schenes, Greenstone, and Shapiro, 2017; Isen, Rossin-Slater, and Walker, 2017; Keiser and Shapiro, 2017).4

Quasi-experimental studies can isolate the e↵ect of individual policies one-at-a-time, but regulators have

implemented dozens of overlapping pollution regulations over the last 20 years, many of which have not

been analyzed with policy evaluation tools and have no natural comparison group. Industrial organization

models have rich industry-specific detail but typically do not study an entire segment of the economy, like all

of manufacturing, or account for general equilibrium forces. Theoretical, macro-trade models have provided

considerable insight but have generally resisted estimation. Our methodology builds on tools from a recent

trade literature sometimes described as “structural gravity” (Costinot and Rodriguez-Clare, 2014), though

the application to environmental questions has been limited (Shapiro, 2016; Cherniwchan, Copeland, and

3Throughout the paper, we use “product” to describe 1,440 5-digit Standard Industrial Classifications (SIC), “industry” to
describe the 455 4-digit SIC codes, and “sector” to describe the 17 aggregations of 2-digit International Standard Industrial
Classification (ISIC) codes this paper’s quantitative model analyzes.

4Some research describes a model of the environment and trade and then estimates linear regressions where the explanatory
variables proxy for important variables in the theory (Antweiler, Copeland, and Taylor, 2001). We take a literal interpretation
of the model by estimating its primitive parameters and then solving for equilibrium outcomes given a vector of inputs.
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Taylor, 2017). A nascent literature explores the environmental implications of models of heterogeneous firms

(Bajona, Missios, and Pierce, 2012; Andersen, 2016), though does not analyze the models quantitatively.

The analysis of firm heterogeneity reflects growing evidence that firms di↵er dramatically in their produc-

tivity and pollution levels, even within narrowly defined industries (Lyubich, Shapiro, and Walker, 2018).

We study the specific counterfactual of explaining historic changes in pollution. Our approach, however,

is versatile enough to evaluate prospective environmental policies or design optimal environmental policy.

One of our goals is to make clear how similar approaches could be used to study a range of environmental

questions.

The rest of the paper proceeds as follows. Section 2 presents a statistical decomposition in order to

break down aggregate emissions trends in our data, while also highlighting the frontier of what we are able

to say with the data alone. Section 3 outlines our trade-environment model. Section 4 discusses the data,

and Section 5 discusses how we estimate the parameters. Section 6 presents the main results, and Section 7

discusses alternative explanations and additional robustness concerns. Section 8 concludes.

2 A Statistical Decomposition of U.S. Emissions 1990-2008

Much economic research interprets national changes in industrial air pollution via three pathways (Copeland

and Taylor, 1994; Grossman and Krueger, 1995). One is a change in the scale of real output. The second is

a change in the composition of production from products that require little pollution emissions to produce,

like “household furniture,” to products that require substantial pollution emissions to produce, like “carbon

black.” The third is a change in the production technique used to produce a single product, which could

decrease a product’s pollution emissions per unit of output.

We begin by presenting a statistical decomposition of manufacturing pollution emissions using newly

developed administrative data on manufacturing plant-product-year output from 1990 to 2008. The Census

of Manufacturers and the Annual Survey of Manufacturers collect sub-industry, product-level output data,

at the plant-product-year level. We use this information to illustrate whether changes in the total scale

of output or changes in the composition of products produced are able to explain the observed reductions

in air pollution emissions. Our focus on products rather than industries is unique to the literature and is

meant to capture the fact that even within a fairly narrow industry code (e.g., 4-digit Standard Industrial

Classification (SIC) code), many products di↵er significantly in their emissions intensities. Previous research

has explored trends in manufacturing pollution emissions using industry level data. The previous literature

has acknowledged that a limitation of industry level production data is the inability to distinguish changes in

the reallocation of production towards cleaner products from industry-level “technique” based reductions in

emissions intensity (Koo, 1974; Gamper-Rabindran, 2006; Ederington, Levinson, and Minier, 2008; Levinson,

2009). For example, while all of U.S. manufacturing contains 455 4-digit SIC codes, the product trailer

from the Census and Annual Survey of Manufacturers allows us to perform this decomposition using 1,440

products. This granularity allows us to quantify by how much the scale of output versus the types of products

produced can explain the observed reductions in manufacturing air emissions.
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Consider the following representation of total manufacturing pollution, denoted Z:

Z =
X

s

zs =
X

s

xses = X
X

s

ses (1)

Total manufacturing pollution Z equals the sum of pollution from each manufacturing product s, zs. A

manufacturing product in our setting can be thought of as a sub-industry classification, where for example,

SIC 3312 (blast furnaces and steel mills) is subdivided into 24 di↵erent products ranging from steel wire

(33125) to cold rolled sheets and strip (excluding metallic coated and electrical) (33127).5 Alternatively,

we can write manufacturing pollution as equal to the total output of a product xs multiplied by a product-

specific emissions factor es. We can also represent manufacturing pollution emissions as the total output

shipped by all manufacturing industries, X, multiplied by the sum of each product’s share of total output,

s ⌘ xs/X, times an emissions coe�cient reflecting pollution per dollar of output shipped of that product

(es ⌘ zs/xs). In vector notation, we have

Z = X0e

where  and e are S ⇥ 1 vectors containing the market shares of each of the S products and their pollution

intensities, respectively. Totally di↵erentiating then dividing through by Z yields three terms representing

the scale, composition, and technique e↵ects:

dZ

Z
=

dX

X|{z}
scale

+
d

|{z}
composition

+
de

e|{z}
technique

(2)

Taking the decomposition in equation (2) to the data requires annual data on total pollution, total output,

each product’s contribution to output, and each product’s emissions intensity. Pollution and total output

come from the EPA’s National Emissions Inventory (NEI) and the Census of Manufacturing, respectively.

We construct product-level output shares in each year using the product trailer from the Census and Annual

Survey of Manufacturers. In order to construct product-level emissions factors, we match the National

Emissions Inventory to the Annual Survey of Manufacturers in 1990 via name and address string matching.

Appendix C.1 describes the string matching process in more detail.

It is useful to distinguish plant- from product-level data. The NEI reports emissions for each plant while

the Census reports output for each product within a plant. For single-product plants, the NEI reports

emissions at the product level. For multi-product plans, we apportion plant-level emissions to products

according to those products’ revenue shares within the plant, using year 1990 data.6,7 We take the total

emissions attributable to each product in 1990 and divide by the total product shipments in 1990 to construct

5Output at the five-digit SIC level is the most disaggregate data available for all plants in the Census and Annual Survey of
Manufacturers.

6Allocating inputs to products based on their revenue shares, an analogous approach, is standard in the productivity literature
(Foster, Haltiwanger, and Syverson, 2008; Collard-Wexler and De Loecker, 2015). We discuss alternative approaches below.

7Previous research has used the World Bank’s Industrial Pollution Projection System (IPPS) for emissions intensities. The
IPPS data provides a list of emissions intensities by four-digit Standard Industrial Classification (SIC) codes (Hettige, Martin,
Singh, Wheeler, and Mundial, 1995; Levinson, 2009). Levinson (2014) constructs industry-level emissions intensities using the
NBER-CES productivity database combined with raw NEI data.
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emissions intensities.8 We then use these 1990 product-level emissions intensities to project the scale and

composition e↵ects forward in time, holding technology (i.e., our emissions intensities) constant at 1990

emissions rates. The decomposition allows us to observe what emissions would have looked like in 2008 if

firms still produced products with 1990 emissions intensities. Appendix C.2 describes the underlying data.

Figure 3 illustrates the resulting statistical decomposition for nitrogen oxide emissions (NOx). Appendix

Figure A1 shows graphs for other pollutants, which have similar patterns, and Panel A of Appendix Table A1

shows numbers corresponding to these graphs. The top solid line in Figure 3 depicts the total real value

of manufacturing shipments, where each industry’s output is deflated by the NBER-CES industry specific

price index and then totaled. We scale total output so it equals 100 in 1990. This line summarizes what

emissions would have been if emissions rates and product composition had been fixed at their 1990 levels.

The middle dashed line plots NOx emissions that would have occurred if emissions intensities had remained

fixed at 1990 levels but the composition of output across manufacturing products had equaled observed,

historical values. The bottom dotted line plots actual NOx emissions from manufacturing, as reported by

the NEI. The bottom line implicitly summarizes the joint result of changing the scale, composition, and

technique of manufacturing production over this time period.

The statistical decomposition leads to several conclusions. First, the dotted line shows that actual NOx

emissions fell by almost 50 percent. Second, the proximity of the solid and dashed lines shows that the

composition between manufacturing products that emit high and low amounts of pollution has not changed

much over time. Third, the solid and dashed lines each show that if the pollution intensity of industries had

not changed, NOx emissions would have risen by 20 to 30 percent. Finally, the gap between the solid line

on top and dotted line at bottom shows that changes in the pollution intensity of individual products (i.e.,

“technique”) explains why NOx emissions fell by 50 percent rather than rising by 30 percent.

Appendix Figure A2 compares the results from the product-level decomposition to those that stem from

more aggregate, industry level data of the sort used in Levinson (2009). Perhaps surprisingly, the additional

granularity a↵orded by the product-level data provides little additional scope for compositional changes

relative to the conclusions from the industry-level decomposition. Put another way, this analysis suggests

that there was little or no change in the composition across products within industries that can account for

the decrease in pollution.

As mentioned above, we do not observe plant-product-year emissions for plants that produce multiple

products. Instead, we divide up a plant’s emissions among products using product revenue shares. It is

worth considering whether allocating plant-level emissions to product-level output using revenue shares can

partly explain the similarity of the product and industry-level analyses. The best way to investigate the

sensitivity of our product-level decomposition to this issue is to use the subset of plants that produce a single

product, and for which apportionment of plant-level emissions to plant-product level output is no longer an

issue. The results, listed in Panel B of Appendix Table A1, yield qualitatively similar conclusions to those

from our preferred method.9

8We deflated total product output by industry-year specific price indices, from the NBER-CES database, scaled so year
2008=1.

9An an alternative exercise, we used the full sample of plants, but apportioned plant-level emissions to plant-product level
output equally for all products within a plant (e.g., for a three-product plant, one-third of plant-level emissions are assigned to
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This relatively clear conclusion, that most reductions in emissions are driven by within-product changes

in emissions intensity, echoes previous findings in the literature, albeit with more granular data. The data,

however, are relatively silent on what might be causing these changes. The rest of the paper investigates the

underlying economic forces driving these patterns in the data. If more productive plants emit less pollution

per unit output, then product-level productivity growth could explain these patterns. Alternatively, changes

in trade costs like the introduction of NAFTA or China’s WTO ascension may have caused a reallocation of

production away from unproductive and polluting firms toward more productive and perhaps less polluting

firms that produce the same product. Lastly, increases in environmental regulatory stringency may also

explain these reductions. The subsequent analysis focuses on interpreting the observed changes in the

technique e↵ect, rather than on assessing the lack of changes in composition e↵ects. One possibility is

that the most important drivers of changes in manufacturing composition are not strongly correlated with

pollution intensity. This is an intriguing question we leave for future work.

The quantitative model, which fills the remainder of this paper, makes di↵erent and arguably stronger

assumptions than this statistical decomposition. The advantage of these stronger assumptions is an ability to

explore how environmental regulation, productivity, and trade contribute to the environmental improvements

documented in Figures 1 and 3. The disadvantage is that these assumptions only roughly approximate reality.

We discuss ways in which these assumptions can be relaxed in future research. The reader interested in

additional detail on specific components of this model is referred to Copeland and Taylor (2003), Costinot

and Rodriguez-Clare (2014), and Melitz and Redding (2014).

3 Model of Heterogeneous Firms with Endogenous Pollution Abatement

We describe a model of firm entry, production, trade, and pollution abatement, which is designed to reflect a

stylized description of polluting industries. In the model, firms di↵er in their productivity levels, which leads

these firms to di↵er in their pollution abatement investments and ultimately pollution emissions. The model

accounts for endogenous changes in firm entry, exit, production, and export decisions in a tractable way that

yields analytical solutions and allows us to analyze counterfactuals. Like all models, this approach seeks

to reflect systematic patterns across firms while recognizing that some strict assumptions which enhance

tractability, like monopolistic competition and constant elasticity of substitution (CES) utility, are not

literally accurate descriptions of firms and consumers.

The model has a straightforward economic environment. We analyze a world of two countries (US and

Foreign), each with a representative agent. Each country has one productive factor (“labor”) which is

inelastically supplied. The following three subsections explain the model’s assumptions; present compar-

ative statics for pollution intensity; and describe methodology for analyzing counterfactuals. Appendix B

summarizes notation and shows more detailed derivations of results shown here.

each product). The results, listed in Panel C of Appendix Table A1, are also qualitatively similar to the main results.
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3.1 Model Assumptions

1. Preferences. The representative agent in destination country d has the following utility function:

Ud =
Y

s

0

@
"
X

o

Z

!2⌦o,s

qod,s (!)
�s�1
�s d!

# �s
�s�1

1

A
�d,s

(3)

Equation (3) describes CES utility across product varieties within a sector and Cobb-Douglas preferences

across sectors. The representative agent allocates expenditure across varieties of goods ! from the measure

⌦o,s of goods produced by sector s in origin county o. The parameter �d,s represents the share of country d’s

expenditure devoted to sector s, where
P

s �d,s = 1. The variable qod,s (!) represents the quantity of variety

! goods in sector s which are shipped from origin country o to destination country d. The country subscripts

in qod,s(!) reflect the fact that the consumer price of a product, and thus its quantity consumed, depend

on its production and trade costs, and hence on its country of origin; a given good is produced in only one

country. The sector-specific parameter �s > 1 represents the elasticity of substitution across varieties.

The assumption of CES utility, which is common in trade and macroeconomic research, implies that

consumers experience decreasing marginal utility from consuming a given variety and increasing utility in

the total measure of varieties. We assume this utility function because it provides a simple way to account

for di↵erent varieties within a sector while leading to parsimonious aggregate descriptions of production and

trade flows across countries and sectors.10

2. Firms and Market Structure.

A competitive fringe of entrepreneurs may choose to pay the sunk entry cost f e
o,s to draw a productivity

' from some productivity distribution. After observing the productivity draw, an entrepreneur who decides

to produce must pay a separate fixed cost. Firms engage in monopolistic competition so that conditional on

choosing to operate, an entrepreneur chooses prices pod,s and abatement investments ⇠ to maximize profits:

⇡o,s (') =
X

d

⇡od,s (')� wof
e
o,s, (4)

where ⇡od,s (') = pod,s (') qod,s (')� wolod,s (') ⌧od,s � to,szod,s (') ⌧od,s � wdfod,s

We assume the productivity distribution is Pareto, with cumulative distribution function

G('; bo,s) = 1� (bo,s)✓s

'✓s
(5)

The location parameter bo,s describes a country’s productivity, while the shape parameter ✓s describes the

dispersion of productivity draws within a sector s. For simplicity, we drop the variety notation ! and index

a firm by its productivity '. The firm sells qod,s(') = (1 � ⇠)'lod,s(') units. The profit function ⇡od,s(')

10Research finds that non-CES utility functions, such as the linear demand system, translog utility, and certain generalizations
which can allow for endogenous markups can be described as part of the same “gravity” family of models. While this implies
that their measures of the gains from trade are closely related, these structures do not always obtain the kind of tractable closed-
form relationships we use here (Melitz and Ottaviano, 2008; Feenstra and Weinstein, 2017; Arkolakis, Costinot, Donaldson, and
Rodriguez-Clare, Forthcoming).
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involves several terms. A consumer in destination d pays price pod,s (') for goods from firm '. Each firm

receives revenue pod,s (') qod,s (') and requires lod,s (') units of productive labor at wage wo to produce goods

for sending to destination d. A fraction of this labor 1 � ⇠ is used to produce output and the remaining

fraction ⇠ to abate pollution. Each firm pays the pollution tax to,s per ton on zod,s (') tons of pollution

emitted for producing goods shipped to destination d. Firms face iceberg trade costs, so ⌧od,s � 1 units

must be shipped for one unit to arrive (hence, the firm produces ⌧od,s(')qod,s(') in order to sell qod,s(')). A

firm that chooses to enter the destination market d must pay the fixed cost fod,s. Domestic trade costs are

normalized so ⌧oo,s = foo,s = 1. We assume that pollution tax revenues are lost to rent-seeking. While this

assumption is made for simplicity, the considerable sums that corporations spend to lobby on energy and

environmental legislation give one basis for it. Finally, we assume that ✓s > (�s�1)(1�↵s) so that entrants

have finite expected profits; later we verify that this assumption actually holds for the parameter values

we estimate. The parameter ↵s governs by how much pollution emissions intensity responds to pollution

abatement and is described in more detail when we explain the model’s third assumption.

We assume this market structure for several reasons. Many industries like cement and steel that have

substantial pollution emissions are also concentrated and have barriers to entry (Ganapati, Shapiro, and

Walker, 2016). By accounting for fixed entry costs and sector-specific markups, our assumptions reflect a

stylized version of polluting sectors. At the same time, this approach accounts for firm entry and exit and

for reallocation of productive factors and output across firms. Finally, the Pareto technology distribution

has plausible theoretical microfoundations (Gabaix, 1999; Luttmer, 2007) and provides a good fit to the

empirical firm distribution, at least in the upper tail (Axtell, 2001; Eaton, Kortum, and Kramarz, 2011).11

It is useful to clarify the di↵erence between firm-level and sector-level productivity in this model, and

the relevance of environmental regulation to each. An entrepreneur may draw a productivity ' representing

the number of units of output produced per worker involved in production. A sector in a country has a

productivity level bo,s describing the central value of the distribution of ' levels from which entrepreneurs

draw. Our use of “productivity” generally refers to bo,s, though our references to an an individual firm’s

productivity refer to '. One related concept that is commonly discussed and could respond to environmental

regulation in this model is the number of workers per unit of output in a firm, qod,s(')/lod,s(') = '(1� ⇠).

This depends on environmental regulation since regulation increases the share of factors ⇠ allocated to

abatement rather than to producing output.12

3. Pollution. Firms produce pollution emissions with the following technology:

zod,s(') = (1� ⇠)1/↵s 'lod,s(') (6)

11 Most of the literature following Melitz (2003) and using parametric distributions assumes that technology has a Pareto
distribution. A few studies explore other productivity distributions, including the lognormal (Head, Mayer, and Thoenig, 2014)
and bounded Pareto (Feenstra, 2014). Some research suggests that the Pareto distribution provides a more accurate fit to the
distribution of U.S. firms than the lognormal does (Axtell, 2001).

12In principle, one could imagine that some firms comply with environmental regulation by increasing their overall productivity
levels, which is a version of the Porter (1991) hypothesis. Empirical support for this idea has been mixed (Greenstone, List, and
Syverson, 2012; Ambec, Cohen, Elgie, and Lanoie, 2013). Like much of the literature on heterogeneous firms, this static model
rules out such channels: a firm’s productivity level ' is its fixed attribute and cannot respond to economic forces, though the
measure of entrepreneurs choosing to form firms can respond to such forces.
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We assume pollution regulations are stringent enough that all firms engage in some abatement. Equation (6)

states that pollution is an increasing function of output and a decreasing function of abatement. It is

essentially the pollution production technology adopted in Copeland and Taylor (2003), except that it

incorporates the role of productivity ' and allows the pollution elasticity ↵s to di↵er by sector. The extent

to which a sector is “dirty” here depends on a primitive attribute of each industry (↵), which can reflect the

sector’s production technology, its inputs, or other features.

Modeling emissions in this way is appealing because several sensible and seemingly di↵erent ways of

describing pollution turn out to be equivalent to equation (6). As we show later, ↵ represents the elasticity

of pollution emissions intensity with respect to pollution abatement intensity. Pollution emissions intensity

is measured as units of pollution emitted per unit of output, and pollution abatement intensity is measured

as abatement expenditures divided by total factor costs. We also show that pollution emissions in this

model can be described as another factor of production in a Cobb-Douglas production technology, and in

this interpretation ↵ is the Cobb-Douglas share for pollution emissions. Copeland and Taylor (2003) discuss

other equivalent interpretations of this model of abatement.

These points give conceptual reasons for equation (6), but we emphasize that it plays a critical role in our

analysis. Our approach to recovering an important elasticity and our analysis of counterfactuals both rely

on output being a Cobb-Douglas function of pollution and productive factors (see Section 5). Without this

Cobb-Douglas relationship, which follows from Assumptions 2 and 3, it would be more di�cult to analyze the

model quantitatively.13 While this kind of tractability is one reason why most of the relevant environmental

literature has used this functional form, another is perhaps more important. Theory and evidence do not give

clear guidance on how to think about pollution emissions in a firm’s environmental decisions. Is pollution a

second output, on which firms are taxed via environmental regulation? Or is pollution best thought of an

input to production, which has a price due to environmental regulation? Or alternatively, should we think

of firms as optimizing standard production decisions subject to a constraint on pollution emissions? An

advantage of this Cobb-Douglas framework is that it does not require choosing one of these interpretations

as correct and the others as incorrect, since in this framework these interpretations are equivalent.

Equation (6) shows that for an operating firm, pollution emissions decline when the firm reallocates

productive factors to abatement investments. However, the model more broadly accounts for a variety of

ways in which firm and consumer behavior a↵ect pollution emissions – firm entry, exit, production, and trade

in this model can all respond to environmental regulation, and all of these forces can interact to determine

pollution emissions.14

13This Cobb-Douglas assumption appears in the analysis through two channels. First, it directly leads to the first-order
condition for abatement in equation (8). This first-order condition is what drives the role of the abatement elasticity ↵s in
subsequent results, including the free entry condition in equation (9), the equilibrium equations in changes in equations (10) and
(11), and the expressions for competitiveness shocks in equations (18) and (20). This first-order condition also determines the
expression for shocks to environmental regulation, in equation (22). The second channel by which this Cobb-Douglas assumption
a↵ects the analysis is through providing a simple regression equation to estimate the abatement elasticity, in equations (15) and
(16).

14The pollution technology assumption implies constant returns to scale in pollution abatement. A model with increasing
returns to scale in abatement would have di↵erent structure (see e.g., Forslid, Okubo, and Ultveit-Moe 2011). We considered
the implications of such a model but chose not to pursue it for two reasons. First, the importance of fixed costs for abatement
technologies is empirically unknown. Scale economies could be positive for capital investments like scrubbers, zero for fuel-
switching like low-sulfur coal, and negative due to principal-agent issues for management innovations. Second, prices in such
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4. Competitive Equilibrium. Consumers maximize utility; firms maximize profits; and in each country,

labor supply equals labor demand:

Lo = Le
o + Lp

o + Lt
o + Lm

o + Lnx
o (7)

A country’s labor supply Lo is allocated to five uses: paying the fixed cost to draw a productivity (Le
o);

engaging in production, including pollution abatement (Lp
o); paying pollution taxes (Lt

o); paying market

entry costs (Lm
o ); and paying for net exports (Lnx

o ). Pollution taxes require labor because we assume these

are real resources lost to rent seeking. Net exports (i.e., trade imbalances) require labor because they

represent a transfer of real resources between countries.

This completes our description of the model, and we now turn to analyze its implications.

3.2 Comparative Statics

One motivation for the model is the conclusion of Section 2 that most of the change in pollution during the

period 1990-2008 came from emitting less pollution per unit of output, i.e., from lower pollution intensity or

the technique e↵ect. We now show that in this model, each of the three main shocks we consider – pollution

taxes, productivity, and trade liberalization – decreases pollution intensity within a sector. This implies

that any of these three channels could explain the decrease in pollution intensity.

Additional notation helps explain this result. Let io,s(') ⌘
P

j zoj,s(')/
P

j qoj,s(') denote the pollution

intensity of a firm with productivity ', defined as the physical units of pollution emitted per physical unit

of output. Let Io,s ⌘ Zo,sPo,s/Ro,s denote the pollution intensity of a sector, defined as the physical units

of pollution emitted per real unit of output. The term Po,s represents the sectoral price index, Zo,s is total

emissions, and Ro,s is total revenue. Let Ao,s ⌘ Eo,sP �s�1
o,s index market size, where Eo,s is expenditure.

Finally, let �od,s denote the share of country d’s expenditure in sector s which is purchased from country o,

which also measures openness to trade. Appendix B.2 and Appendix B.3 derive expressions for the price

index and for sectoral expenditure shares.

Proposition 1. Pollution intensity of a firm is locally decreasing in productivity. Pollution intensity of a

sector is locally decreasing in pollution taxes, in productivity, and in trade liberalization.

Proof. For a firm with productivity ', pollution intensity and its derivative are

io,s(') =
↵s

'1�↵s

(to,s)↵s�1(wo)1�↵s

(↵s)↵s(1� ↵s)1�↵s

P
j ⌧

1��s
oj,s Ad,sP

j ⌧
��s
oj,s Ad,s

@io,s(')

@'
= (↵s � 1)

io,s(')

'

Noting that ↵s 2 (0, 1) and that ', io,s(') > 0 implies the conclusion. Sector-level pollution intensity and

a model depend directly on market size, and market size appears in the equilibrium conditions in ways that prevent us from
backing out shocks and undertaking the decomposition this paper reports.
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its derivatives are

Io,s =
↵s

to,s

�s � 1

�s
Po,s

@Io,s
@to,s

=
Io,s
to,s

[↵s�oo,s � 1]

@Io,s
@bo,s

= � (1� ↵s)
Io,s
bo,s

�oo,s
@Io,s
@⌧do,s

=
Io,s
⌧do,s

�do,s

@Io,s
@fdo,s

=
1� ↵s

✓s

✓
✓s

(�s � 1)(1� ↵s)
� 1

◆
Io,s
fdo,s

�do,s

The facts that ↵s 2 (0, 1), �oo,s 2 [0, 1], and Io,s, to,s > 0 imply the conclusion @Io,s/@to,s < 0. We conclude

@Io,s/@bo,s < 0 since all terms in that expression are positive except the leading minus sign, and we conclude

@Io,s/@⌧do,s > 0 for any country pair with nonzero trade and trade costs since Io,s, ⌧do,s,�do,s > 0. Finally,
@Io,s
@fdo,s

> 0 since all terms in it are positive; we assume (and verify empirically) that ✓s > (�s�1)(1�↵s). ⌅

The economics underlying Proposition 1 are informative. For an individual firm, productivity a↵ects

pollution intensity through abatement decisions. Solving the firm’s profit-maximization problem for the

optimal share ⇠ of factors invested in abatement gives the following first-order condition:

1� ⇠ =

✓
wo

'to,s

↵s

1� ↵s

◆↵s

(8)

Productivity decreases a firm’s pollution intensity in Proposition 1 because it increases abatement invest-

ments in this first-order condition. More productive firms charge lower prices, implying that the ratio of

pollution taxes to output prices increases with productivity.15 We focus on firm-level results only for pro-

ductivity since this is the only term in io,s(') (and the only primitive attribute in the model) which varies

across firms within a sector.

For an entire sector, pollution taxes also decrease pollution intensity. This can be seen from the de-

nominator of the expression for Io,s in the proof, and also in the first-order condition (8). Pollution taxes

make firms redirect productive resources to abatement, which makes the sector’s pollution intensity decline.

Similarly, productivity growth increases the real output produced for a given level of pollution emitted,

thereby decreasing pollution intensity.

At the sector-wide level, lower iceberg trade costs imply a smaller portion of a firm’s output must be

paid in order to export goods. Thus, lower iceberg trade costs let a sector emit less pollution in order to

obtain the same total value. Decreasing fixed trade costs causes a reallocation of market share to firms that

are more productive and have lower pollution intensity. This can be seen when setting ✓s = (1�↵s)(�s�1),

15The prediction that more productive firms charge lower prices comes from the assumption of monopolistic competition but
would also result from many other market structures and has empirical support (Foster, Haltiwanger, and Syverson, 2008).
Certainly some specific innovations do increase pollution intensity. The use of pesticides in agriculture, for example, probably
increased both productivity and pollution intensity. This model envisions a broad set of factor-neutral productivity changes which
allow producers to use fewer inputs for obtaining the same output, and such broad factor-neutral productivity improvements
are likely to decrease pollution emitted to produce a given output.
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which shuts o↵ firm heterogeneity.

While productivity features prominently in the foregoing explanations, we emphasize that not all changes

in pollution can be ascribed to it. The three terms in equation (6) show that emissions can change via several

channels: the investment of productive factors in abatement ⇠, the selection of which productivity levels '

entrepreneurs choose to form into firms, and the reallocation of productive factors across operating firms,

lod,s. The discussion above highlights the relevance of these channels to the various shocks.

What is the magnitude of trade liberalization’s e↵ect on pollution intensity? Proposition 1 shows that for

both fixed and variable trade costs, this magnitude grows with baseline pollution intensity and with baseline

openness, and decreases with baseline iceberg or fixed trade costs. Thus, a relatively closed country like

the U.S., where international trade accounts for a relatively small share of expenditure, will have relatively

limited e↵ects of trade liberalization on pollution.

Proposition 1 describes the sign of local, partial equilibrium changes. Discrete changes in pollution taxes,

productivity, and trade costs might lead to di↵erent patterns, and they provide one reason to analyze the

model quantitatively. One general conclusion which arises from this model even without quantification is

that a sector’s pollution intensity can fall due to productivity, trade, and environmental regulation.

3.3 Methodology for Analyzing Counterfactuals

We now describe how we use this model to analyze counterfactuals. We combine the model’s assumptions

into two conditions that summarize firm behavior. In a competitive equilibrium, these conditions must be

satisfied at a given point in time. We then use these conditions to analyze how counterfactuals a↵ect welfare.

The first condition for a competitive equilibrium, shown earlier in equation (7), is that labor demand

must equal labor supply in each country. The second condition for a competitive equilibrium says that

the expected profit that an entrepreneur obtains from drawing a productivity must equal the fixed cost of

drawing a productivity:
1� ↵s

✓s

�s � 1

�s
Ro,s = wof

e
o,sM

e
o,s (9)

(See derivation in Appendix B.4.) This is also known as a free entry condition. The left-hand side describes

the profit entrepreneurs expect from drawing a productivity. This expected profit equals total revenues

divided by markups, and scaled by the Pareto shape parameter and the pollution elasticity. On the right-

hand side, the term f e
o,s represents the fixed cost of forming a firm, which is paid in local wages and multiplied

by the mass of firms entering.

To analyze counterfactual changes in environmental regulation, productivity, and trade costs, we rewrite

each variable as a proportional change from a base year, which is a methodology developed in Dekle, Eaton,

and Kortum (2008). The benefit of this methodology is that many variables which are di�cult to measure

do not appear in changes.

Formally, we use this methodology as follows. Let x denote any variable from the model, let x0 denote

the value of this variable under a counterfactual scenario, and let x̂ ⌘ x0/x denote the proportional change

in this variable due to the counterfactual. Written in changes, the two equilibrium equations (7) and (9)
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become the following:

1 =  o

 P
s M̂

e
o,sRo,s

(�s�1)(✓s�↵s+1)
�s✓s

+ ⌘0o
P

sRo,s
(�s�1)(✓s�↵s+1)

�s✓s
+ ⌘o

◆
(10)

ŵo =
X

d

⇣od,s
⇣

ŵo

b̂o,s

⌘�✓s
(⌧̂od,s)

� ✓s
1�↵s (f̂od,s)

1� ✓s
(�s�1)(1�↵s)

�
t̂o,s
�� ↵s✓s

1�↵s

P
i �id,sM̂

e
i,s

⇣
ŵo

b̂o,s

⌘�✓s
(⌧̂od,s)

� ✓s
1�↵s (f̂od,s)

1� ✓s
(�s�1)(1�↵s)

�
t̂o,s
�� ↵s✓s

1�↵s

�̂d,s
R0

d �NX 0
d

Rd �NXd
(11)

(See derivations in Appendix B.5 and Appendix B.6.) We assume for simplicity that the fixed cost of

drawing a productivity is constant over time. In these equilibrium conditions, we have defined the parameter

combinations ⌘o and  o, and export shares ⇣od,s ⌘ Xod,s/
P

dXod,s, where Xod,s is the value of trade from

country o to country d of goods from sector s.16 Equation (10) says that in any counterfactual, labor demand

must equal labor supply in each country. Equation (11) says that in any counterfactual, the expected profit

from drawing a productivity must equal the fixed cost of drawing a productivity. We use equations (10) and

(11) to find the wages and firm entry decisions that characterize each counterfactual.

To measure pollution emissions associated with a counterfactual, we integrate pollution emissions from

(6) over the measure of operating firms. The change in country o’s pollution emissions between a baseline

year and a counterfactual is

Ẑo =

P
s
M̂e

o,sŵo

t̂o,s
Zo,s

P
s Zo,s

(12)

(See derivation in Appendix B.7.) The denominator of equation (12) describes the sum over sectors of

baseline pollution. The numerator shows the same sum, but each sector’s pollution is multiplied by the

proportional change in that sector’s pollution due to a counterfactual,

Ẑo,s =
M̂ e

o,sŵo

t̂o,s
(13)

A sector’s change in pollution emissions increases proportionally with firm entry M̂ e
o,s and wages ŵo, and

decreases with regulation t̂o,s.

4 Data

The data for this paper fall into two categories: plant-level microdata for estimating the model’s parameters,

and country-by-sector aggregates used to analyze counterfactuals. We use a few additional data sources for

sensitivity analyses described in Section 7.

We use plant-level microdata to estimate three parameters of the model, calculated separately for each

sector: the elasticity of substitution across product varieties; the shape parameter of the Pareto distribution

of firm productivities; and a pollution elasticity. Estimating the elasticity of substitution requires input costs

and the value of total sales for each sector. We obtain these data from the U.S. Census Bureau’s Annual

16Specifically, ⌘o,s ⌘
P

s[�
✓s�(�s�1)(1�↵s)��s✓s

�s✓s
�o,sNXo�NXo,s

(�s�1)(✓s�↵s+1)
�s✓s

] and  o ⌘ [1�
P

s
✓s�(�s�1)(1�↵s)

�s✓s
�o,s]/[1�P

s
✓s�(�s�1)(1�↵s)

�s✓s
�0
o,s], where NXo,s are net exports (exports minus imports) in sector s.
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Survey of Manufactures (ASM) in the first year of our sample, 1990. The ASM is a probabilistic sample of

approximately 60,000 establishments per year.17 All our calculations with the ASM use sampling weights

provided by the Census Bureau so the calculations are representative of the sector as a whole. We also use

the ASM data to estimate the Pareto shape parameter; details are described below.

Estimating the pollution elasticity requires two additional pieces of information: pollution abatement ex-

penditures and pollution emissions. Pollution abatement expenditures come from the Pollution Abatement

Costs and Expenditures (PACE) survey, which was developed jointly by the U.S. Environmental Protection

Agency and the U.S. Census Bureau.18 We also use data on air pollution emissions from the U.S. Envi-

ronmental Protection Agency’s National Emissions Inventory (NEI), which provides a comprehensive and

detailed report of air pollution emissions from all sources above a low minimum reporting threshold. The

NEI was created to provide EPA, federal and state decision makers, the U.S. public, and foreign countries

with accurate measures of U.S. pollution emissions.19

We compile aggregate data for the U.S. and foreign countries separately for each sector and for each

of the years 1990-2008. In particular, we need production and trade data from each country, and we need

a measure of pollution emissions in the United States. For production in years 1990-1995, we use data

from the Structural Analysis Database of the Organization for Economic Co-operation and Development

(OECD). For trade in years 1990-1995, we use data from the OECD’s Structural Analysis Database. For

production and trade in years 1995-2008, we use data from the World Input-Output Dataset (WIOD). We

adjust the WIOD values to exactly match the OECD data in the year 1995. These datasets are reported

in two-digit International Standard Industrial Classification codes, third revision. We convert trade data,

which are reported in foreign currencies, to nominal U.S. dollars using annual exchange rates from the

OECD Statistics dataset (see Appendix C.3 for more details). We aggregate these data to two countries

(the U.S. and Foreign) and to 17 manufacturing sectors defined in Appendix Table A2. We abstract from

non-manufacturing activity. Although almost no countries report intra-national trade (goods produced in

the same country where they are consumed), we measure it as total production minus total exports.

We measure U.S. pollution emissions with the same National Emissions Inventory (NEI) data used to

measure pollution parameters. The NEI is conducted roughly triennially, and we use years 1990, 1996,

17Between 1990 and 1996, firms with at least 250 employees or $500 million in sales were sampled with certainty. Beginning in
1998, firms with at least 500 employees or $1 billion in sales were sampled with certainty. Below these thresholds, the probability
of appearing in the sample increases with a firm’s size.

18Empirical research has used the PACE survey to show that pollution abatement expenditures respond to Clean Air Act
county-specific regulations; other work has shown that PACE expenditures are correlated with state-specific foreign direct
investment (Keller and Levinson, 2002; Becker, 2005). The 1990 and 2005 PACE data that we use have similar structure and
are broadly comparable. The 1999 PACE data, which we do not use, was not comparable with these surveys (Becker and
Shadbegian, 2005).

19Our measures of particulate matter pollution in the NEI include only filterable particulate matter. This category includes
particulates that can be captured on a filter during sampling. It excludes condensible particulate matter, which are gaseous
particles that condense to small particles after they cool. It also excludes “secondary” particulate matter, which is formed in
the atmosphere through reactions involving other gases like NOx and SO2. Filterable particulate matter is the only type of
particulate matter reported in all NEI years 1990-2008. Several recent studies have used NEI microdata to explore temporal
and spatial patterns in emissions trends and to incorporate air pollution into national accounts (Levinson, 2009; Muller and
Mendelsohn, 2009; Muller, Mendelsohn, and Nordhaus, 2011). The classification of “polluting” industries in other studies
(Greenstone, 2002; Greenstone, List, and Syverson, 2012) relies on an EPA study that used pollution emissions data from the
AIRS dataset, which were later integrated into the NEI.
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1999, 2002, 2005, 2008. The year 1993 had no inventory. We focus on sector-level emissions of six of the

main air pollutants regulated under the Clean Air Act: carbon monoxide (CO), nitrogen oxides (NOx),

particulate matter less than 10 micrometers (PM10), particulate matter less than 2.5 micrometers (PM2.5),

sulfur dioxide (SO2), and volatile organic compounds (VOCs).

5 Estimation and Results: Parameters and Shocks

5.1 Estimating Parameters

We first describe estimation of pollution parameters, then trade and macro parameters. To estimate the

pollution parameters, we divide zod,s(') = (1 � ⇠)1/↵s'lod,s(') from Assumption 3 by qod,s(') = (1 �
⇠)'lod,s(') from Assumption 2 to show that pollution intensity is a function of abatement investments:

z

q
= (1� ⇠)(1�↵)/↵ (14)

Taking logs of equation (14), taking first di↵erences � over time, and allowing for national trends ⌘t in

emissions intensity and idiosyncratic disturbances ✏i,t to pollution intensity gives

� ln

✓
zi,t
qi,t

◆
=

1� ↵

↵
� ln (1� ⇠i,t) + ⌘t + ✏i,t (15)

Since ⇠ is the abatement cost share, we expect (1�↵)/↵ to be positive (i.e., pollution intensity increases with 1

minus the abatement expenditure share). Appendix C.3 describes the data extract used in these regressions,

which combines emissions from NEI, value of shipments and costs from ASM, and pollution abatement

costs from PACE. Pollution abatement costs may be endogenous here, leading to biased estimates of ↵. If

regulators require the dirtiest plants to spend more on pollution abatement, then reverse causality will bias

estimates of (1 � ↵)/↵ downward. Moreover, our measures of abatement costs and total factor costs are

based on PACE and ASM surveys, both of which may contain measurement error. An additional possibility

is that abatement costs decrease precisely because regulation causes exit of the dirtiest firms (Levinson and

Taylor, 2008).

To address all three of these possible endogeneity concerns, we instrument for changes in the abatement

cost share ln(1� ⇠i,t) in equation (15) using changes in local environmental regulatory stringency. The EPA

requires polluting firms in areas that exceed air quality standards (“nonattainment” counties) to install

pollution abatement technologies.These instruments directly address the reverse causality and measurement

error concerns described in the previous paragraph. We aggregate data to the county-sector-year level so it

helps address the third concern about endogenous plant exit.

We estimate a single ↵ using this regression approach, and we use an additional implication from the

model to scale this estimate for each sector.20 We use the fact that ↵s represents pollution tax payments as

a share of production costs. Assumption 3 states that zod,s(') = (1� ⇠)1/↵s'lod,s('). Solving for 1� ⇠ then

20In principle, we could use our instrumental variables regression approach to estimate ↵ for each of the 17 sectors in our
analysis. In practice, we have a limited sample of plants that we observe in all three of the NEI, PACE, and ASM datasets.
When dividing these plants into 17 sectors, the samples are too small to estimate equation (15) separately for each sector.
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substituting into qod,s(') = (1 � ⇠)'lod,s(') from Assumption 2 shows that we can write total output as a

Cobb-Douglas function of pollution emissions and productive factors:

q = (z)↵s ('l)1�↵s (16)

Under Cobb-Douglas production with constant returns to scale, the output elasticity ↵s is equal to the share

of firm costs which represent pollution taxes.

Since the U.S. does not have pollution taxes, we cannot directly observe the share of firm costs that

represent pollution taxes. If the pollution tax rate is constant across sectors, however, then the relative

value of ↵s across sectors is proportional to the tons of pollution emitted per dollar of input costs in each

sector. For example, if the basic metals sector emitted twice as much pollution per dollar of input costs as

the textiles sector did, then we would have ↵basic-metals = 2↵textiles. We use this approach to measure relative

di↵erences in ↵ across sectors. We then scale these values so the mean across all sectors equals the economy-

wide elasticity of pollution emissions intensity with respect to abatement costs from our equation (15)

regression estimate.

As discussed earlier, this approach to recovering pollution elasticities relies heavily on Assumptions 2

and 3, which together imply this Cobb-Douglas result. Without this Cobb-Douglas relationship, regardless

of whether it is assumed directly or derived from microfoundations like (15) and (16), it would be much less

straightforward to recover estimates of the pollution elasticity ↵ or to use the model to study counterfactuals.

Table 1 reports the first-stage, reduced-form, and instrumental variable regressions of equation (15)

for the five pollutants in the NEI for which we have an instrumental variable for abatement expenditures.

It analyzes each pollutant in a separate regression, where county-level nonattainment designations imposed

under the Clean Air Act serve as instrumental variables for the abatement cost shares in Panel C.21 Columns

(1) through (5) analyze each pollutant separately, and Column (6) uses total emissions of all pollutants in

tons as a summary measure of emissions. All regressions report standard errors in parentheses, clustered by

commuting zone.

Panel A of Table 1 presents the first-stage regressions which show that designating a county as nonat-

tainment increases the proportion of firm costs devoted to pollution abatement in sectors that account for

a larger share of pollutant p emissions. All of these first-stage regressions have negative signs, implying

that regulated firms increase the share of costs devoted to pollution abatement by 6 percent relative to the

baseline share. For the pooled regression in column (6), the first-stage F statistic of 42 (equal to the square

of the t-statistic) suggests this instrument is quite strong. For the pollutant-specific regressions, estimates

for CO, NOx, and VOCs have strong instruments (F-statistics ranging from 14 to 49), though the first-stage

21Technically, the instrumental variable we use for changes in abatement expenditures is an interaction between a variable

indicating the pollution intensity of pollutant p of a sector in 1990 (i.e., PolluterSharejp =
IndustryEmissionsjp

TotalEmissionsp
) and whether the

county switches into nonattainment for any pollutant between 1990 and 1993 (i.e., 1[Nonattainc]=1). Thus, the instrumental
variable is PolluterSharejp⇥1[Nonattainc]. We allow for a county to be in nonattainment if it violates the EPA standards for any
of the pollutants regulated under the Clean Air Act. In practice, nonattainment is pollutant specific. We model nonattainment
in this way in order to capture cross-pollutant regulatory spillovers and to ameliorate the fact that many pollutants have little
variation over this time period (e.g. CO). The focus on counties that switched into nonattainment between 1990 and 1993 is
meant to capture all the counties that became newly regulated under the 1990 Clean Air Act Amendments. We include the
lower order interaction terms in all regression models to facilitate identification of the di↵erence-in-di↵erences interaction term.
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F-statistics for particulate matter are fairly small (1.4 and 3.4).

Panel B presents evidence from reduced form regressions of pollution emissions intensity on the regulation

instrument.22 The regression estimates show that polluting sectors in newly regulated counties decrease their

pollution per unit of output after the regulations go into place. The relationship between nonattainment

and pollution emission rates is negative for all pollutants, imprecise for most pollutants, but precise for VOC

emissions and for total pollution emissions. Panel C, which presents our instrumental variable regression

estimates, shows that changes in pollution abatement cost shares, instrumented with changes in Clean Air

Act regulations, predict changes in pollution intensity. Panel D presents our estimates of ↵ that come from

a nonlinear transformation of the regression coe�cient (1 � ↵)/↵. The estimates of ↵ range from 0.008 to

0.017. When we aggregate over pollutants in column (6), we obtain the value ↵ = 0.011, which is statistically

significant at the one-percent level.

Table 2 shows estimates separately for each sector; the various pollutants have similar patterns (Appendix

Table A3). The resulting pollution elasticities, estimated using the pooled sample of all pollutants in Table

2, range from 0.001 to 0.048. The dirtiest sectors are Basic Metals and Other Non-Metallic Minerals.

The overall estimate of 0.011 implies that firms are behaving as if they pay one percent of their total

production costs to pollution taxes. We lack a method to test this number independently, but we can

compare it to two related statistics. First, the PACE data report that manufacturing pollution abatement

costs are about half a percent of total manufacturing sales (U.S. Census Bureau, 2008). Second, Greenstone,

List, and Syverson (2012) find that nonattainment designations decrease the total factor productivity of

regulated firms by 2.6 percent. Because these numbers all characterize the economic costs of environmental

regulation, it is notable that are of the same order of magnitude.

We also estimate the elasticity of substitution and shape parameter of the Pareto distribution separately

for each sector, by building on the approach used in Hsieh and Ossa (2016) and Antras, Fort, and Tintelnot

(2017) (Table 2). Since these parameters have been estimated elsewhere with similar methodology, method-

ological details are described in Appendix C.4. We estimate the Pareto shape parameter ✓s by regressing

the log of a firm’s sales rank on the log of its sales using the microdata from the 1990 Annual Survey of

Manufactures. The regression estimates of the Pareto shape parameter are extremely precise, which reflects

the fact that power law distributions describe firm size well, at least in the upper tail (Gabaix, 2009). We

estimate the elasticity of substitution �s by taking the ratio of the value of shipments to production costs.23

The estimates support our assumption that ✓s > (�s � 1)(1� ↵s).

22The dependent variable in Panels B and C is log((pollution+1)/output) in order to prevent attrition for non-polluting
county⇥sector⇥year cells in the sample.

23These methods are literally consistent with the model, but it is worth emphasizing that they do not extrapolate well to
other models. Our methodology for estimating the trade elasticity relies on the assumption that productivity has a Pareto
distribution. Our methodology for estimating the elasticity of substitution relies on the assumption that firms engage in
monopolistic competition. It is feasible in principle to use other features of the model to estimate these parameters, such as
gravity equations for bilateral trade, which are more robust to model misspecification and which extrapolate more easily to
other models. With our data on the total value of bilateral trade flows, however, it is di�cult to implement such methods. We
are not aware of other papers that estimate both of these two parameters separately for a variety of sectors using such other
methods, though it is noteworthy that the mean values we obtain for these parameters are similar to economy-wide estimates
of these parameters from other studies.

18



5.2 Recovering Historic Values of Shocks

This paper’s research question of why pollution followed its historical path requires studying counterfactuals

where some shocks take on their actual, historical values, and other shocks do not. Analyzing such coun-

terfactuals requires measuring the historic values of each shock for each year in 1990-2008. We now explain

how we use implications of the model together with country⇥sector aggregate data to recover historic values

of the paper’s four main shocks: foreign competitiveness; domestic competitiveness; expenditure shares; and

environmental regulation.

Foreign Competitiveness

Informally, “competitiveness” in the model measures the ability of a country to sell a wide variety of prod-

ucts at relatively low prices. We describe a single “foreign competitiveness” shock because analyzing the

causes of changes in U.S. pollution does not require distinguishing which underlying forces change foreign

competitiveness.24 Formally, foreign competitiveness combines foreign productivity, foreign environmental

regulation, and foreign exporting trade costs:
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(For derivation, see Appendix B.8.) The first equation defines this shock, and the second shows how we

measure it. An asterisk (⇤) denotes the actual, historic value of a shock. The right-hand side of equation

(18) shows that the change in foreign competitiveness can be measured by the change in the share of U.S.

expenditure on goods from a foreign country, divided by the change in nominal income times firm entry.

U.S. Competitiveness

Shocks to U.S. competitiveness represent changes in U.S. productivity and trade costs for exports, which

are allowed to vary across sectors and over time. These have similar definition and measurement:
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(For derivation, see Appendix B.8.) Again the first equation defines the shock and the second shows how

we measure it. Because we have pollution emissions data for the U.S. but not foreign countries, we separate

the environmental regulation term t̂o,s from other components of U.S. competitiveness.

24We also lack the data to measure each component of foreign competitiveness separately. Separately measuring productivity
and trade costs would require foreign producer price index data, which are not available for most countries, sectors, and
years. Separately measuring the e↵ect of foreign environmental regulation requires data on air pollution emissions for each
country⇥sector, which are not available.
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We recover a separate foreign competitiveness shock for each sector and year and also a separate domestic

competitiveness shock for each sector and year. For example, we recover one foreign competitiveness shock

for the basic metals sector, a separate foreign competitiveness shock for the chemicals sector, etc. If some

force has increased foreign competitiveness only in dirty industries, these shocks are designed to capture

that force. For example, foreign countries might have improved their productivity in dirty industries, might

have begun facing lower trade costs for exports in dirty industries, or might have decreased the stringency

of environmental regulation for dirty industries.25

Expenditure Shares

We measure shocks to sectoral expenditure shares as the share of a country’s expenditure on sector s in a

counterfactual, divided by the share of the country’s expenditure on sector s in a baseline year.26
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We include this shock in our analysis because with it, when all shocks are set to exactly match their historic

levels, the model can re-create historic paths of emissions, production, and trade.27

Environmental Regulation

Finally, we measure shocks to environmental regulation by rearranging equation (12):

t̂o,s =
M̂ e

o,sŵo

Ẑo,s

(22)

The change in environmental regulation equals the change in the mass of entering firms times the change in

factor prices, divided by the change in pollution emissions.

This result helps contrast the technique e↵ect from the statistical decomposition with the environmental

regulation shock analyzed in this model. The technique e↵ect for a specific sector is defined as the change

25Because sector is the finest unit of analysis in our model, these shocks do not separately distinguish within-sector changes.
Suppose China became less competitive at producing dirty structural steel from blast furnace plants, but became more competi-
tive at producing cleaner rebar steel from mini-mill plants. Our sector-level analysis might interpret this as no aggregate change
in foreign competitiveness for the basic metals sector, whereas competitiveness actually grew in the dirty products within this
sector but decreased in the clean products within this sector. The finding of the statistical decomposition that composition
e↵ects are similarly small both across industries and products provides suggestive evidence that this is not a first-order channel
for studying pollution intensity.

26Our specification of CES preferences implies that we abstract from consumer tastes changing among varieties within a
sector.

27Exactly matching historic data requires a fifth shock, to trade imbalances; see Appendix C.5. Consumer expenditure in
this model involves two stages of budgeting: expenditure is first allocated to each sector, with expenditure shares equal to
Cobb-Douglas exponents; and then across varieties within a sector. The model can therefore only match historic changes in
expenditure shares across sectors if it allows changes in the Cobb-Douglas exponents over time. In the absence of changes in the
Cobb-Douglas exponents, the model could match all historic changes in the data except changes in expenditure shares across
sectors. One could therefore think of this expenditure share shock as a residual. This shock will primarily a↵ect the composition
of production and consumption across sectors, rather than the emissions intensity within a given sector. Given the conclusion
of Section 2 that most historic decreases in emissions intensity have been within rather than across products, this shock to
expenditure shares is unlikely to play a large role in explaining decreases in emissions.
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in pollution per real unit of output within a sector, or Ẑo,s/(R̂o,s/P̂o,s). Combining the previous expressions

for changes in pollution Ẑo,s, changes in factor prices ŵo, and changes in firm entry M̂o,s shows that envi-

ronmental regulation in this model can be written as t̂o,s = Ẑo,s/R̂o,s (see derivation in Appendix B.9). In

other words, all three forces we study – trade costs, productivity, and environmental regulation – determine

the technique e↵ect in the statistical decomposition, but trade costs and productivity do so through changes

in the price index P̂o,s.

5.3 Description of Environmental Regulation Shocks

The previous subsection described how we calculate historic values of each of the shocks in the model. We

calculate these shocks primarily to use them in decomposing historic changes in pollution emissions into the

share accounted for by changes in environmental regulation, productivity, and trade costs. The levels of

some of these shocks, however, are interesting in their own right. We focus on the environmental regulation

shock here; shocks to expenditure shares, wages, and firm entry are less directly relevant to the question of

why pollution emissions have declined so we discuss these in Appendix C.5.28

Figure 4 suggests that the implied pollution tax for NOx for U.S. manufacturing nearly doubled between

1990 and 2008. As Section 7.2 describes, the rate of increase in implicit taxes for other pollutants was if

anything more rapid. While the level of pollution taxes for dirty industries may have been much greater

in 1990, the rate of increase in the stringency of implicit taxes on dirty industries between 1990 and 2008

generally resembled the rate of increase of taxes for clean industries over this period.

Is this a realistic change in the stringency of environmental regulation? We emphasize that the U.S.

does not actually have a pollution tax on NOx. A way to think about the meaning of this tax is as follows:

if all U.S. environmental regulation relevant to NOx emissions from manufacturing were replaced with a

pollution tax, what change in that tax rate would lead to the changes in firm behavior that we actually

observe? Given dramatic expansion of NOx regulation over these 18 years, a doubling in the implicit tax

on pollution seems plausible. A very incomplete list of actual changes in NOx regulations includes: a

nearly doubling of the number of counties in ozone nonattainment between 2003 and 2004, which may

be the largest expansion of nonattainment areas since the Clean Air Act began; the 1990 Clean Air Act

Amendments, which required large NOx emitters in ozone nonattainment areas to install stringent pollution

controls by 1995; the RECLAIM cap-and-trade for Los Angeles, which began in 1993; the Ozone Transport

Commission cap-and-trade for New England, which began in 1999; and the NOx Budget Trading Program

for the Eastern U.S., which began in 2003.29

28We focus on results for NOx regulation, both since NOx emissions are measured with higher-quality methods than most
other pollutants are, and because we have detailed data on one major regulation, the NOx Budget Trading Program. According
to the 2008 NEI, which reports monitoring method for almost all plants, over half of manufacturing NOx emissions are reported
based on continuous emissions monitoring systems or other direct measures. We considered focusing on SO2, but according to
plant-level data we obtained from the EPA Clean Air Markets Division, the Acid Rain Program which created a cap-and-trade
system for SO2 in most years included only one or two manufacturing plants.

29Ozone nonattainment regulations target NOx and VOC emissions since ozone pollution forms through photochemical re-
actions involving NOx, VOCs, heat, and sunlight. The 1990 Clean Air Act Amendments began requiring plants in ozone
nonattainment areas to install Reasonably Available Control Technology (RACT). Some of these policies focus more on elec-
tricity generating units than on manufacturing. However, the relevant statistic here is the share of manufacturing pollution to
which these policies applied.
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6 Counterfactuals

Methodology

To analyze counterfactuals. We choose a counterfactual scenario (e.g., what if U.S. environmental regulation

had evolved as we observe in the years 1990-2008, but other shocks had remained fixed at their 1990 levels?).

For each year 1990-2008, we then find the firm decisions, including pollution emissions, which would have

prevailed in that counterfactual. Finally, we compare those counterfactual emissions against the actual

emissions that occurred. Appendix C.6 describes this procedure in more detail. We show some results

separately for “dirty” and “clean” sectors; these results define dirty sectors as sectors with values of the

pollution elasticity (↵) above the national mean of 0.011, and clean sectors as all others.30

Each counterfactual creates direct and indirect e↵ects. For example, a shock to environmental regulation

will a↵ect pollution directly. Environmental regulation may also a↵ect average output per worker, and

this change in output per worker may create indirect e↵ects on pollution. In this example, we attribute

both the direct and indirect e↵ects to environmental regulation, and not to productivity. More broadly,

when we add a shock to a specific counterfactual (e.g., changing environmental regulation), we attribute all

resulting changes in pollution to that shock, regardless of whether these changes in pollution occur directly

or indirectly. This is a general equilibrium decomposition in which all prices and quantities can change in

response to a single exogenous shock.

Results

Figure 5 plots the time paths of pollution emissions under four separate counterfactuals, indicated in the

legend; Appendix Table C1 summarizes some numbers corresponding to these graphs. The solid line shows

actual historic pollution emissions. Each dashed line shows the model’s counterfactual prediction of what

would have happened if the indicated shock had followed its historic path and other shocks had remained fixed

at their 1990 levels. For example, the line with stars shows the pollution which the U.S. would have emitted

in a counterfactual where foreign competitiveness followed its historic path but other shocks remained fixed

at their 1990 levels. Each line is normalized to 100 in the year 1990. The markers on the dashed lines show

the years when pollution emissions are observed in the NEI rather than linearly interpolated.

Figure 5 suggests that foreign competitiveness had a limited e↵ect on U.S. manufacturing pollution

emissions. Between 1990 and 2000, in a counterfactual where foreign competitiveness followed its actual

historic path and other shocks remained unchanged at their 1990 values, pollution would have increased

by a few percentage points. After 2000, when China’s growth accelerated, foreign competitiveness led to

modest decreases in U.S. pollution of a few percentage points. By 2008, in this counterfactual, U.S. pollution

emissions were a few percent below their 1990 value. Ultimately, shocks to foreign competitiveness account

for little of the total decline in U.S. pollution.

30The dirty sectors are: Paper and Publishing; Coke, Refined Petroleum, and Fuels; Chemicals; Other Non-metallic Minerals;
and Basic Metals. The clean sectors are: Food, Beverages, and Tobacco; Textiles, Apparel, Fur, and Leather; Wood Products;
Rubber and Plastics; Fabricated Metals; Machinery and Equipment; O�ce, Computing, and Electrical; Radio, Television, and
Communication; Medical, Precision, and Optical; Motor Vehicles and Trailers; Other Transport Equipment; and Furniture,
Other, and Recycling.
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Given the large e↵ects of China’s economic growth over this time on U.S. manufacturing employment

(Autor, Dorn, and Hanson, 2013), or the scope of NAFTA for Mexico’s access to U.S. markets (Caliendo and

Parro, 2014), one might have expected foreign competitiveness to cause large decreases in pollution. Figure 5

suggests that this was not the case. Why didn’t Chinese or other foreign competition more substantially a↵ect

U.S. pollution over this time period? A few ideas help explain. Although China’s exports are concentrated

in low-skilled sectors, they were not especially concentrated in dirty sectors. Moreover, aggregate data on

U.S. manufacturing show that the e↵ect of China’s growth on manufacturing output or on value added

was much smaller than its e↵ect on employment (Pierce and Schott, 2016). Finally, one e↵ect of foreign

competition would be to shift the composition of U.S. production to cleaner or dirtier types of products,

and the statistical decomposition from Section 2 provided little evidence that such a shift occurred.

Figure 5 suggests that changes to U.S. competitiveness explain most of the change in U.S. manufacturing

NOx emissions. Between 1997 and 2003, the e↵ect of U.S. competitiveness alone caused U.S. pollution

emissions to increase by about 10 percent. After 2003, the e↵ect of this shock was to decrease pollution, but

for most pollutants by much less than the observed decrease. How can we make sense of this finding that

U.S. competitiveness does not explain most of the change in pollution? Figure 2 and plant-level regressions

from papers discussed in the introduction suggest that more productive firms emit less pollution per unit of

output. The model reflects this fact, since at the plant level, more productive firms in the model emit less

pollution per unit of output. However, at the economy-wide level, while productivity growth may diminish

factor demand per unit of output, factors are used for other output in the same or other plants. Unless

productivity growth is much larger in dirty industries, productivity growth may have limited scope to a↵ect

pollution.31

Figure 5 also quantifies how changing consumer expenditure shares across sectors a↵ected pollution

emissions, and it suggests they play little role in explaining the historic trends in pollution emissions.

Between the years 1990 and 2000, expenditure shares on clean sectors decreased slightly, and this decreased

U.S. pollution emissions. After 2000, by contrast, increasing expenditure on pollution-intensive sectors leads

to an increase in U.S. pollution emissions of 10 to 20 percent.

The first three counterfactuals suggest that foreign competitiveness, domestic competitiveness, and U.S.

expenditure shares do not account for a majority of the decrease in pollution emissions. By contrast, Figure 5

suggests that changes in environmental regulation over this time period account for much of the decrease

in pollution emissions. In the early years of this analysis, regulation by itself would have caused about 10

percent less pollution reduction than actually occurred. By the year 2008, regulation explains most of the

change in pollution. The pattern is similar across pollutants and years.

The findings of this section that regulation explains most of the observed changes in emissions across

pollutants and that most pollutants had similar magnitude declines in emissions together imply that environ-

mental regulation had similar e↵ects over this time period for the pollutants we study. It is di�cult to assess

31Another way to think about these patterns is in terms of scale and technique e↵ects. Proposition 1 shows that increasing
a sector’s productivity decreases its emissions intensity, which corresponds to the technique e↵ect decreasing total emissions.
But given inelastic factor supply, the increased productivity leads to increased total output, which corresponds to the scale
e↵ect increasing total emissions. The o↵setting signs of the technique and scale e↵ects here may help explain why even large
productivity growth may have limited e↵ects on total pollution emissions.
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this conclusion independently, but cursory reflection suggests it is plausible. Most pollutants experienced

increased regulatory stringency over this time period. We have discussed in previous sections the many

NOx regulations that took place over this time period. The pollutants PM and VOC also experienced large

expansions in Clean Air Act county nonattainment designations (and increasingly stringent nonattainment

standards within these designations). The 1990 Clean Air Act Amendments also established new guidelines

for CO that depend on the degree of local air quality violations. Areas in “moderate” or “serious” violation

were required to implement programs introducing oxygenated fuels and/or enhanced emission inspection

programs, among other measures. The 1990 Clean Air Act Amendments established the Acid Rain Pro-

gram, which was designed to control SO2 emissions over this time period. As mentioned above, there are

additional air pollution programs at local, state, and regional levels, but the relative importance of these

regulations compared to federal regulations is empirically unknown. In addition, firms and industries which

emit large amounts of one pollutant often emit large amounts of other pollutants. This suggests that some

types of abatement for one pollutant may a↵ect other pollutants at the plant.

7 Alternative Explanations

This analysis finds that the stringency of environmental regulation for criteria air pollutants more than

doubled between 1990 and 2008, and this change explains much of the observed national decrease in pollution

emissions. We now consider alternative explanations for the decrease in pollution emissions.

7.1 Do Shocks Besides Environmental Regulation A↵ect Pollution Intensity?

Proposition 1 provided analytical evidence that marginal increases in pollution taxes, productivity, and trade

liberalization each decrease sector-specific pollution intensity. We now provide some quantitative evidence

as to how other channels, aside from pollution taxes, a↵ect pollution intensity.

We consider a series of counterfactuals which each take data for 1990, increase or decrease the level of

foreign competitiveness in a sector, then calculate the resulting change in U.S. pollution intensity for that

sector. Appendix Figure A5 plots the result.32 The x-axis describes the change in foreign competitiveness

and the y-axis records the resulting change in U.S. sector-specific emissions intensity. The value 1 on the

x-axis describes a counterfactual where a shock does not change, and the value 100 on the y-axis describes

an outcome where pollution intensity for the sector does not change. We plot results separately for each

of the 17 sectors (thin grey lines), and also show the mean change in pollution intensity across all sectors

(thick blue line).

Appendix Figure A5 shows that increasing foreign competitiveness in a sector decreases U.S. pollution

intensity in that sector. This shows that the analytical results of Proposition 1 hold quantitatively for

non-marginal changes. This also implies that the conclusions of the model-based decomposition are not

32For brevity, we present this sensitivity analysis for NOx emissions only. To create these graphs, we consider shocks ranging
from 0.50 to 2.0 in increments of 0.25. For example, a shock of 0.50 in Appendix Figure A5 represents a counterfactual where
foreign competitiveness falls to half of its 1990 value but U.S. competitiveness and U.S. environmental regulation remain at
their 1990 values. For each counterfactual, we measure the resulting change in pollution. We then plot these results for the
entire range of shocks from 0.50 to 2.0.
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predestined given the findings of Section 2 (i.e., foreign competitiveness in this model can a↵ect pollution

intensity). This figure also shows that the magnitude of this e↵ect is not large. Doubling foreign competi-

tiveness only decreases pollution intensity by a few percentage points for most sectors.

Two reasons help explain why these magnitudes are not large. First, the U.S. is among the world’s most

closed countries, with an import penetration ratio below 10 percent. Proposition 1 shows that the e↵ect of

trade liberalization on pollution intensity is larger for relatively open countries and sectors, and so increasing

foreign competitiveness may have limited e↵ects on pollution intensity for a closed country like the U.S.

Second, models with similar trade assumptions to ours find that trade liberalization does not have large

magnitude e↵ects on real income. Even extreme trade policies like a 40 percent uniform global tari↵ (whereas

mean current U.S. and EU tari↵s are around 2 percent) would only decrease U.S. GDP by less than one

percent (Costinot and Rodriguez-Clare, 2014). The key potential channels for those e↵ects – reallocation

and selection, and associated price index changes – are similar in that setting and ours. In monopolistic

competition models with heterogeneous firms like we study, part of the benefit of trade liberalization comes

through reallocation of output to more productive firms. The correlation of productivity and firm-level

pollution intensity is around minus one (see Figure 2), so the magnitude of the increase in productivity and

real income due to trade liberalization may be broadly similar to the decrease in pollution intensity due to

trade liberalization.

In order for trade liberalization to account for more than a small share of the decreases in emissions

documented in Figure 1, trade must have very di↵erent e↵ects on pollution emissions than trade does on

real income. One way to interpret our results is that in our model, which reflects a set of leading frameworks

from the international and environmental literatures, trade’s e↵ects on emissions are not vastly larger than

trade’s e↵ects on real income.

As discussed earlier, one important caveat in this analysis deals with the ability of the model to account

for composition changes within a sector. Because sector is the finest unit of analysis in the model, a decrease

in foreign competitiveness for dirty products within a sector and an increase in foreign competitiveness for

clean products within that sector could o↵set each other and appear in the model as no net change in foreign

competitiveness for that sector. If such changes were widespread, they could represent a channel which is not

captured in this model and through which trade decreases emissions intensities. The conclusion of Section 2

that product-level patterns in emissions intensities are very similar to industry-level patterns in emissions

intensities provides some evidence that this is not a first-order issue in reality, though it remains an issue

the model is not designed to accommodate.

7.2 Does the Model Describe Environmental Regulation?

We now provide two tests of whether the shock we call “environmental regulation” corresponds to true regu-

lation. We first compare our model-based measure of regulation to one well-known change in environmental

regulation, the NOx Budget Trading Program (NBP). We then calculate model-based measures of regulation

for carbon dioxide, a pollutant which largely has not been regulated.
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NOx Budget Trading Program

The NBP was a cap-and-trade program for NOx emissions from power plants and large industrial plants

in the Eastern U.S.. The EPA distributed permits to each source and allowed trading of permits. Most

sources were electricity generating units but many oil refineries, chemical plants, and other manufacturing

plants faced NBP regulation.33 We obtain data from the EPA’s Air Markets Program Data (AMPD) on

facilities regulated under the NBP. We link the AMPD data to the NEI data by requiring an exact match on

county and industry and a non-exact match on facility name, longitude, and latitude.34 About 13 percent

of manufacturing emissions of NOx came from manufacturing plants that were subject to the NBP.

We explore how our model-driven measure of pollution taxes corresponds with the NBP by using the

following di↵erence-in-di↵erence-in-di↵erences regression model:

ln(trst) = �1 (1[NBPr]⇥ 1[NBPIndustrys]⇥ 1[Y ear > 2002]) + ⌘rt + �st +  rs + ✏rst (23)

We regress our measure of implied pollution taxes, t, as defined in equation (22), in sector s of NBP region

r and year t, on a three-way interaction term describing the e↵ect of being in an NBP-regulated sector in an

NBP state in the years after the regulation went into place. We aggregate the data to the sector⇥region⇥year

level, where a region is defined as inside/outside the NBP region, and sectors are defined by the 17 manufac-

turing sectors defined in Table A2.35 We control for region⇥year fixed e↵ects ⌘rt, sector⇥year fixed e↵ects

�st, and region⇥sector fixed e↵ects  rs. With these sets of fixed e↵ects, the model e↵ectively controls for

time-invariant observed or unobserved determinants of pollution taxes by sector⇥region, common transitory

shocks to sectors across regions, and transitory shocks within a region that a↵ect all sectors similarly. The

identifying assumption of the model is that there exist no transitory shocks specific to regulated sectors in

the NBP region in the years after the NBP went into place. While this assumption is inherently untestable,

the data permit some indirect tests. For example, data from years prior to the change in regulations permit

the analysis of pre-trends across treatment and control groups prior to the change in policy. The coe�cient

of interest, �1, describes how the NBP a↵ected pollution taxes in polluting sectors of regulated states.

Appendix Table A4 presents results from several versions of equation (23). Each column represents a

separate regression, and parentheses show standard errors robust to clustering at the sector⇥region level.

The first column represents the baseline specification and suggests that polluting manufacturing firms in the

NBP region in the years after the NBP went into place experienced a 1.195 log point increase in pollution

taxes, or approximately 2.3⇥ increase relative to the counterfactual.36 Column (2) adds sector⇥year fixed

e↵ects, and the results are nearly identical. Columns (3) and (4) add region⇥year fixed e↵ects which slightly

attenuate results, but the results remain statistically significant across all 4 specifications.

33Economic research has studied the NBP, including di↵erences-in-di↵erences-in-di↵erences research designs to measure e↵ects
on pollution, health, and employment (Fowlie, 2010; Curtis, 2014; Deschenes, Greenstone, and Shapiro, 2017).

34The NPB data’s only measure of industry is a facility’s “source category.” We exclude NBP participants with cogeneration,
electric utility, or small power producer as source category, since these are typically not manufacturing.

35States in the NBP region include Alabama, Connecticut, Delaware, Illinois, Indiana, Kentucky, Maryland, Massachusetts,
Michigan, New Jersey, New York, North Carolina, Ohio, Pennsylvania, Rhode Island, South Carolina, Tennessee, Virginia,
Washington DC, and West Virginia. All other states are defined as outside the NBP region.

362.3⇥ is calculated as exp(1.195)� 1 = 2.303.
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Figure 6 shows an event study version of equation (23), including leads and lags in event time.37 The

figure suggests two main findings: First, in the years leading up to the policy, the implied taxes in the

treatment and control groups are relatively similar and are not statistically di↵erent. This lends some

reassurance that the research design is capturing a sharp event that a↵ects NBP-regulated plants in the

NBP region in the years after the NBP rather than some underlying trend in the data. Second, the years

after the policy reveal a sharp and statistically significant increase in the implied pollution taxes for the

NOx polluting sectors in the NBP region. The magnitudes of these estimates correspond closely to those

from Appendix Table A4.

Carbon Dioxide

This paper focuses on six “criteria” air pollutants which have been a focus of U.S. environmental regulations,

in part because they have available data. This section analyzes a pollutant that has not experienced much

regulation over this period, CO2.38 CO2 emissions also contribute to climate change, so it is important to

understand the underlying forces driving changes in manufacturing CO2 emissions.39 Appendix C.3 provides

additional details on the CO2 data.

Figure 7a shows our inferred measure of the stringency of environmental regulation for each of the

pollutants in this study, including CO2. The dashed lines in that figure show that between 1990 and 2008,

the stringency of regulation for most air pollutants increased by 75 to 250 percent. However, the solid

line suggests the stringency of CO2 regulation was more flat over this entire time period, and if anything

actually decreased modestly.40 Although criteria air pollution regulation became much more stringent over

this time period, CO2 regulation hardly changed. The fact that we find such large increases in the implicit

tax rate for air pollution emissions and smaller changes in the implicit tax rate for CO2 emissions provides

an additional piece of evidence that the model-driven measures of pollution taxes capture realistic features

of the regulatory environment rather than changes in other associated economic variables.

Figure 7b shows the counterfactual decomposition for CO2 emissions. The graph is the same as Appendix

Figure 5, except that it shows results for CO2 rather than for criteria air pollutants. The solid blue line

shows that CO2 emissions from manufacturing initially increased then decreased, but overall changed little

37Specifically, we estimate models of the following form

ln(t̂rst) =
2008X

⌧=1990

�k (1[NBPr]⇥ 1[NBPRegulateds]⇥ 1[Y ear = ⌧ ]) + ⌘rt + �st +  rs + ✏rst.

We normalize the event-time coe�cient in the year prior to the policy to 0.
38The Northeast states began a cap-and-trade system for CO2 emissions, the Regional Greenhouse Gas Initiative (RGGI), in

2008. Boulder, Colorado, and San Francisco implemented small carbon taxes in 2006 and 2008, respectively. States and the
federal governments operate other taxes on various fuels which emit CO2.

39Local pollution regulation may have limited e↵ects on CO2 emissions because end-of-pipe abatement technologies for local
pollution (e.g., scrubbers) do not decrease CO2. For example, the NOx Budget Trading Program discussed above caused 35-
40 percent decreases in NOx emissions from regulated power plants but essentially no change in CO2 emissions (Deschenes,
Greenstone, and Shapiro, 2017). Although local pollution regulation might have small e↵ects on CO2 emissions, CO2 regulation
could substantially decrease local pollution emissions because there is no economically viable end-of-pipe abatement technology
for CO2, so fuel switching from coal to gas due to a CO2 tax would decrease local pollutants (Parry, Veung, and Heine, 2015).

40For all pollutants, Figure 7a shows the mean across sectors. For each pollutant, some sectors have inferred pollution taxes
above and others below this mean value across sectors.
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relative to 1990. The dashed lines show counterfactual CO2 emissions under di↵erent sets of shocks. Overall,

no one set of shocks completely explains the modest changes in CO2 emissions, and regulation plays a limited

role.

7.3 Other Technical Aspects of the Model

We now briefly discuss the extent to which the model accounts for several other important issues, and we

consider the possible importance of each.41 We first consider the importance of reallocation and selection

e↵ects. Formally, we shut o↵ selection and reallocation by analyzing how a model with monopolistic com-

petition but homogeneous firms a↵ects the decomposition. Mathematically, we shut o↵ firm heterogeneity

by setting �s � 1 = ✓s/(1� ↵s).

Appendix Table C1 shows that shutting o↵ firm heterogeneity has small e↵ects on the decomposition

results; when we shut o↵ firm heterogeneity, environmental regulation alone accounts for a nearly equivalent

decrease in pollution emissions. For the other shocks, shutting o↵ firm heterogeneity has quantitatively

larger e↵ects on the decomposition, but the qualitative conclusions are unchanged.

Why does firm heterogeneity have small e↵ects on our estimates, particularly given the strong relationship

between plant-level pollution intensity and plant-level productivity documented in Figure 2? We emphasize

two explanations. First, as discussed earlier, more productive firms may have lower pollution intensity at the

plant level, but increasing plant-level productivity for a given level of output may free up productive factors

which can be used in other factories to make widgets and pollution elsewhere. Second, in some settings, the

e↵ects of firm heterogeneity on the magnitude from gains from trade are not large.42 Our environmental

setting di↵ers from this literature’s focus, but the intuition persists that adding more margins by which

policy can a↵ect welfare need not mean policy has larger e↵ects on welfare.

As highlighted earlier, multiple channels in this model transmit a change in a given shock to pollution.

Here we discuss a partial equilibrium version of the model which assumes no change in factor prices or

firm entry: ŵo = M̂ e
o,s = 0. We then calculate the change in pollution from a given shock merely from

the change in pollution taxes: Ẑo,s = 1/t̂o,s. One could think of this as including the “direct” channel

discussed at the beginning of this section, but turning o↵ “indirect” channels. Row 8 of Appendix Table

C1 shows the results. By definition, because shocks to foreign competitiveness, U.S. competitiveness, U.S.

expenditure shares, and trade deficits do not change pollution taxes in this model, these shocks lead to no

change in pollution in this partial equilibrium scenario. In contrast, shocks to environmental regulation still

substantially decrease pollution in this setting. Put another way, the general and partial equilibrium results

are more similar for the counterfactual where only environmental regulation changes, and are less similar

41Appendix C.7 describes additional sensitivity analyses we we explore and which leave the main conclusions unchanged,
including alternative values of the Pareto shape parameter and the pollution elasticity and adding a non-manufacturing sector
to the quantitative exercise.

42Costinot and Rodriguez-Clare (2014) find that in a model with multiple sectors but no intermediate goods, a 40 percent
global tari↵ would create a 1.2% global decrease in welfare (measured as the average across regions) in a world with monopolistic
competition and heterogeneous firms and a 1.4% decrease in welfare in a world with monopolistic competition and homogeneous
firms. More broadly, Arkolakis, Costinot, and Rodriguez-Clare (2012) show that the gains from trade are equivalent in these
two frameworks for a model with one sector, no intermediate goods, and the same trade elasticity. Melitz and Redding (2014)
argue that the gains from trade are strictly larger in a model with firm heterogeneity because given primitive parameters, the
trade elasticity di↵ers across models.
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for the other counterfactuals. One interpretation of this is finding that the general equilibrium price, wage,

and firm entry adjustments in the model are relatively less important for our conclusions about the e↵ects of

environmental regulation on pollution, and relatively more important for our conclusions about the e↵ects

of the other shocks.

Another abstraction is aggregation. If firms have changed their focuses of production within one of our 17

sectors from more- to less-dirty sectors and products, then our analysis may confound regulation with product

substitution. Additionally, if firms o↵shore particularly dirty parts of their production processes, then trade

might a↵ect pollution through the exchange of intermediate goods. The statistical decomposition presented

in Section 2 at the product level suggests that compositional changes in the type of goods produced within

narrow product categories are not able to explain a significant fraction of the observed emissions reductions.

If U.S. manufacturing had disproportionately increased o↵shoring of dirty products, then one would expect

the o↵shoring of these dirty products to change the composition of U.S. production to cleaner goods. Our

statistical decomposition, however, provides very little role for composition e↵ects, and looking at product

rather than industry level delivers similar results. This evidence suggests that fragmenting production or

o↵shoring is not likely to account for a large share of the reductions in emissions intensities.

Another important issue is technical change which decreases pollution emissions or pollution intensity. A

few findings in our analysis suggest that such technical change is not a predominant source of bias. Secular

technical change decreases the demand for all productive inputs. The productivity shock in our model is

designed to account for such technical change, and we find that it does not account for the majority of

changes in pollution emissions. This suggests that for any such technical change to explain the observed

decrease in pollution, it must be biased towards increasing the use of relatively cleaner inputs. The inputs

which produce the local air pollutants we study, however, generally also produce CO2. Thus, it is likely

that if biased technical change explained the observed decrease in local air pollutants, then that technical

change would also reduce CO2. We showed that CO2 from manufacturing changed very little, and local air

pollutants from manufacturing fell considerably. It seems relatively unlikely that technical change would

decrease demand for inputs which are intensive in the six pollutants that have been heavily regulated, but

would leave unchanged the demand for inputs intensive in CO2.

Finally, we consider the assumption that pollution is proportional to a firm’s outputs rather than to its

inputs, which is implicit in equation (6). This paper’s model implies that more productive firms emit less

pollution only because they invest more in pollution abatement. One could imagine a di↵erent model in

which more productive firms emit less pollution because they use fewer factor inputs to produce a unit of

output. We investigated this alternative by removing the productivity term ' from equation (6), giving an

expression for pollution which is proportional to inputs rather than outputs. We then re-derived expressions

for a firm’s chosen pollution emissions under that modified assumption. This modification produces identical

expressions for firm-level and economy-level pollution emissions both in observed data and in counterfac-

tuals. This modification does produce a di↵erent mechanism by which productivity a↵ects pollution—by

decreasing factor inputs rather than increasing abatement investments. However, the magnitude of the e↵ect

of productivity on pollution in the two models is numerically equivalent.

Every model is an abstraction, and the goal of our model-based analysis is to analyze several prominent
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explanations for pollution’s decline. While we have emphasized advantages of our approach, one disadvantage

is that one can always come up with additional hypotheses to explain an observed change in pollution.

8 Conclusions

Public observers once worried that U.S. economic growth would lead to increasingly dangerous levels of

pollution. Instead, U.S. air quality has improved dramatically. This paper focuses on U.S. manufacturing

and assesses three candidate explanations for why pollution emissions have fallen since 1990.

The first explanation is that increasing production of pollution-intensive goods in China, Mexico, and

other foreign countries has decreased U.S. pollution. Second, environmental regulation may have led to

adoption of increasingly e↵ective abatement technologies. Third, if productivity decreases pollution intensity,

then rising productivity may have decreased pollution emissions.

We begin with a statistical decomposition which shows that almost all of the change in pollution emissions

from U.S. manufacturing is due to changes in pollution intensity within narrowly defined product-categories.

To quantify the importance of environmental regulation, productivity, and trade, we build on recent trade

and environmental research to develop a model of heterogeneous firms that choose optimal investments

in pollution abatement in response to environmental regulation. Although the methods we use are typ-

ically applied to research questions in international trade, we use them to address an open question in

environmental economics: why are pollution emissions from U.S. manufacturing declining? While many

quantitative models are used to forecast how untested future policies like carbon taxes or tari↵ reductions

would a↵ect pollution and welfare, we use our model to analyze the past—to recover the implied changes in

environmental regulation and other shocks that firms actually faced in each year 1990-2008. We then use

the implied changes to quantify how pollution would have changed under scenarios other than those that

actually occurred.

The paper obtains three main conclusions. First, the fall in pollution emissions is due to decreasing

pollution per unit output in narrowly defined manufacturing product categories, rather than reallocation

across products or changes in the scale of real manufacturing output. Second, environmental regulation

has grown increasingly stringent, and the pollution tax that explains U.S. data roughly doubled between

1990 and 2008. Third, environmental regulation accounts for most of the observed reduction in pollution

emissions from manufacturing. Productivity improvements and trade costs play relatively smaller roles.

We believe there are a number of worthwhile extensions to the work presented here. First, like most

models of monopolistic competition, our model assumes that prices are a constant markup over marginal

cost. While theory makes predictions about how markups should respond to various competitive forces, the

empirical evidence on the relationship between environmental policy and markups is limited. Second, the

decomposition methodology developed in the paper could be applied to other settings. For example, why has

energy e�ciency improved across the United States. Has this been driven by e�ciency standards? Rising

energy prices? Population migration? One could adapt the tools from this paper to address this important

policy question. We leave these extensions and questions for future work.
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Figure 1: Trends in Manufacturing Pollution Emissions and Real Output
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Note: Real output is measured from the NBER-CES database, using its industry-specific output price deflators and expressed

in 2008$. Emissions come from the EPA’s National Emissions Inventory in years 1990, 1996, 1999, 2002, 2005, and 2008. Values

are normalized to 100 in 1990.

Figure 2: Plant Level Pollution Intensity vs. Total Factor Productivity
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Note: This figure plots the relationship between plant-level total factor productivity and NOx pollution per unit of output for

U.S. manufacturing in 1990. The plant-level productivity measure is constructed from the U.S. Annual Survey of Manufacturers,

using a total factor productivity index measure. We divide the sample into 10 deciles based on this plant-level productivity

measure. We then compute the mean values of log productivity and log pollution per unit of real output within each decile,

weighting the decile mean by plant-level inventory-adjusted, real output. The plot is accompanied by a linear fit, relating

plant-specific emissions intensities to total factor productivity at the same plant. The line is fit to the entire sample, not simply

the decile means. See Appendix C.8 for additional details.
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Figure 3: Nitrogen Oxides Emissions From United States Manufacturing
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Notes: This figure plots observed and counterfactual trends in NOx emissions based on the statistical decomposition from

equation (2). The top line plots the counterfactual emissions with the same composition of goods and techniques as in 1990.

The middle line represents emissions with the same emissions per unit of output as in 1990. The final line represents the actual

observed emissions trends, which consists of changes to both the scale, composition, and techniques associated with production

since 1990. Source: NBER-CES database, CMF, ASM, and NEI.

Figure 4: Shocks to Implicit NOx Pollution Tax, 1990-2008.
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Notes: This figure plots the time path of the shock to environmental regulation for NOx that we recover from the model

outlined in Section 3 and derived using equation (22). The model delivers the value of the indicated shock for each of the 17

industries in our sample in each year. Here, we summarize the results by plotting the mean separately for both dirty industries

(solid line) and clean industries (dotted line), weighted by baseline revenue in each industry. As described in the main text,

dirty industries are defined as those with a value of the pollution elasticity ↵s above the economy-wide mean of 0.011, and clean

industries are defined as those with a value of this pollution elasticity below 0.011.
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Figure 5: Counterfactual U.S. Manufacturing Pollution Emissions Under Subsets of Shocks, 1990-2008
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Notes: This figure plots a separate counterfactual exercise for each pollutant and shock. Each subfigure plots the actual and counterfactual time path of

the indicated pollutant emissions in U.S. manufacturing. The solid blue line displays the actual time path of emissions, and the dotted red lines show the

counterfactual emissions in a scenario where only a single explanatory factor is allowed to take on its actual historical values. The scenario for each explanatory

factor, or “shock,” is indicated in the legend in Subfigure 5a. For each counterfactual, all other explanatory factors are constrained to take their base year,

1990, values. The year 1990 values have been normalized to 100 in all figures. The star, circle, triangle, and square markers on the dashed lines show the years

1990, 1996, 1999, 2002, 2005, and 2008, when pollution data from NEI are observed rather than linearly interpolated.
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Figure 6: NOx Pollution Tax Changes as a Function of NOx Budget Trading Program Status
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Notes: This figure reports regression coe�cients from an event-study version of equation (23) in the text. The coe�cients are

plotted in blue and represent the time path of pollution taxes in polluting industries of NBP regions in the years just before

and just after the NBP rollout, measured relative to a counterfactual. The dashed red lines represent 95 percent confidence

intervals. The dependent variable is the model-driven measure of pollution taxes for a region⇥sector⇥year. The regression model

includes region⇥year fixed e↵ects, sector⇥year fixed e↵ects, and region⇥sector fixed e↵ects. Standard errors are clustered by

sector⇥region.

Figure 7: Analysis of Carbon Dioxide Emissions
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Notes: Subfigure (a) plots implicit pollution taxes recovered for each pollutant and year, including CO2. Subfigure (b)

shows the same decomposition as Figure 5, except for CO2 rather than for a criteria pollutant. The star, circle, triangle, and

square markers on the dashed lines show the years when pollution data from NEI or MECS are observed rather than linearly

interpolated.
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Table 1: Pollution Elasticity: Instrumental Variables Regressions, by Pollutant

CO NOx (O3) PM10 PM2.5 VOC (O3) Total (Any)

Panel A: First Stage

(1) (2) (3) (4) (5) (6)
Nonattaincp⇥Polluterp -0.057⇤⇤⇤ -0.061⇤⇤⇤ -0.101 -0.126⇤ -0.063⇤⇤⇤ -0.058⇤⇤⇤

(0.015) (0.011) (0.085) (0.068) (0.009) (0.009)

Panel B: Reduced Form

Nonattaincp⇥Polluterp -7.386 -5.985 -9.474 -7.399 -7.812⇤⇤⇤ -5.346⇤⇤

(5.244) (4.782) (6.860) (4.427) (1.214) (1.979)

Panel C: Instrumental Variables

Abatement Expenditure Ratio 130.030⇤⇤ 98.592 94.118 58.551 124.907⇤⇤⇤ 91.604⇤⇤⇤

(64.278) (72.412) (78.483) (46.795) (36.827) (25.373)

N ⇡3500 ⇡3500 ⇡3500 ⇡3500 ⇡3500 ⇡3500
First Stage F-Stat 14 30 1.4 3.4 52 42

Panel D: Pollution Elasticity Parameter

Pollution Elasticity (↵) 0.008⇤⇤ 0.010 0.011 0.017 0.008⇤⇤⇤ 0.011⇤⇤⇤

(0.004) (0.007) (0.009) (0.013) (0.002) (0.003)

County-NAICS FE X X X X X X

Notes: This table presents a series of regression coe�cients from 18 separate regressions, one for each column of each Panel

A through C. An observation is a county⇥industry⇥year, where industry is a 6 digit NAICS code. The dependent variable

in Panel A is the same in each column and represents the log of 1 minus the abatement cost share of county⇥industry⇥year

production. The regressor of interest is an interaction between two indicator variables that denote whether the industry is in

a county that was newly regulated (i.e., Nonattaincp=1) and whether the industry is a polluting industry (i.e., Polluterp=1).

The variable “Nonattain” changes across columns, reflecting di↵erent pollutant-specific nonattainment designations as indicated

in the column headings. Parentheses in the column headings describe the type of nonattainment used as the regressor. The

dependent variable in Panels B and C represent the log emissions intensity, defined as pollution emissions per dollar of real

output. The dependent variable in Panels B and C changes in each column, where the pollution emissions are indicated in the

column headings. Panel C presents the instrumental variable estimates of log pollution intensity regressed on log abatement

cost shares, which in practice represents the ratio of the estimates presented in Panel A and Panel B. Lastly, Panel D transforms

the regression estimates in Panel C to back out a measure of ↵ for each pollutant, where the standard errors are calculated

using the delta method. Robust standard errors are in parentheses, clustering by commuting zone. Source: ASM, NEI, PACE.
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Table 2: Parameter Estimates

Tons Pollution Pollution Input Elasticity of Pareto Shape Shape Parameter
Per Dollar Costs Elasticity (↵) Share Substitution (�) Parameter (✓) Standard Error

Sector (1) (2) (3) (4) (5) (6)

Food, Beverages, Tobacco 2.60 0.0040 0.74 3.79 3.89 (0.13)
Textiles, Apparel, Fur, Leather 1.44 0.0022 0.79 4.87 4.80 (0.10)
Wood Products 6.75 0.0103 0.83 5.94 6.20 (0.17)
Paper and Publishing 14.61 0.0223 0.79 4.80 5.21 (0.10)
Coke, Refined Petroleum, Fuels 13.88 0.0212 0.88 8.18 9.91 (1.67)
Chemicals 13.42 0.0205 0.70 3.28 3.50 (0.08)
Rubber and Plastics 3.13 0.0048 0.78 4.59 4.62 (0.08)
Other Non-metallic Minerals 19.91 0.0303 0.73 3.66 4.05 (0.11)
Basic Metals 36.57 0.0557 0.85 6.66 10.01 (0.50)
Fabricated Metals 1.24 0.0019 0.79 4.77 4.80 (0.06)
Machinery and Equipment 1.00 0.0015 0.76 4.25 4.19 (0.14)
O�ce, Computing, Electrical 1.52 0.0023 0.81 5.24 5.32 (0.15)
Radio, Television, Communication 0.32 0.0005 0.79 4.66 4.77 (0.23)
Medical, Precision, and Optical 0.94 0.0014 0.65 2.89 2.86 (0.06)
Motor Vehicles, Trailers 1.03 0.0016 0.82 5.62 5.60 (0.18)
Other Transport Equipment 1.26 0.0019 0.74 3.88 3.87 (0.13)
Furniture, Other, Recycling 3.06 0.0047 0.73 3.77 3.75 (0.03)

Mean Across Industries 7.22 0.011 0.77 4.76 5.14 (0.23)

Notes: This table presents summary means and regression estimates for 17 separate industries, one per row, using data from a single year, 1990. Column 1

presents the total tons of pollution per dollar input costs for each sector, where pollution data comes from the NEI and data on input costs come from the ASM.

Column 2 presents the sector specific pollution elasticity, which is calculated using the economy-wide estimate of 0.011 from Table 1, scaled across industries by the

tons pollution per dollar costs from column (1). Column 3 presents the input share that is defined as the ratio of costs to revenues using data from the ASM. We

deflate revenues and input expenditures using industry-specific price output and input price deflators, respectively. Column 4 displays the sector-specific elasticity

of substitution, which is calculated from equation (37). Columns 5 and 6 present regression estimates and standard errors for the Pareto shape parameter, derived

from equation (38). The actual parameter is a non-linear transformation of the regression coe�cient, where the reported standard errors are calculated using the

delta method, clustering by four digit NAICS code.
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Appendix A For Online Publication: Figures and Tables

Figure A1: Emissions Statistical Decomposition From United States Manufacturing
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Notes: This figure plots the observed and counterfactual trends in emissions for 6 separate pollutants based on the statistical

decomposition from equation (2). The solid line of each panel plots the counterfactual for what emissions would have looked like

in a world with the same composition of goods and techniques of production as was observed in the base year, 1990. The dashed

line represents what emissions would have looked like if we maintained the same production techniques (defined as emissions

per unit of output) as in the base year, 1990. The dashed-dotted line represents the actual observed emissions trends, which

consists of changes to both the scale, composition, and techniques associated with production since 1990. Source: NBER-CES

database, ASM, and NEI.
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Figure A2: Comparing Product-Level and Industry-Level Statistical Emissions Decompositions
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Notes: This figure plots observed and counterfactual trends in NOx emissions based on the statistical decomposition from

equation (2). The top, solid line plots the counterfactual emissions with the same composition of goods and techniques as in

1990. The middle two dashed lines represent emissions with the same emissions per unit of output as in 1990, using either the

industry level emissions factors or the product level emissions factors. The final line represents the actual observed emissions

trends, which consists of changes to both the scale, composition, and techniques associated with production since 1990. Source:

NBER-CES database, ASM, and NEI.

Figure A3: Historic Values of Preference Shocks, 1990-2008
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Notes: This figure plots the time path of shocks to expenditure shares that we recover from the model outlined in Section 3

and derived using equation (21). The model delivers the value of the indicated shock for each of the 17 industries in our sample

in each year. Here, we summarize the results graphically by plotting the unweighted mean separately for both dirty industries

(solid line) and clean industries (dotted line). As described in the main text, dirty industries are defined as those with a value

of the pollution elasticity ↵s above the economy-wide mean of 0.011, and clean industries are defined as those with a value of

this pollution elasticity below 0.011.
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Figure A4: Historic Values of Endogenous Variables, 1990-2008.
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(c) Foreign Firm Entry
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Notes: This figure plots the time path of endogenous variables that we recover from the model outlined in Section 3. The

model delivers the value of firm entry changes for each of the 17 industries in our sample in each year. Here, we summarize

the results graphically by plotting the unweighted mean for the indicated country-year. In subfigures (c) and (d) we plot the

unweighted mean separately for both dirty industries or clean industries. As described in the main text, dirty industries are

defined as those with a value of the pollution elasticity ↵s above the economy-wide mean of 0.011, and clean industries are

defined as those with a value of this pollution elasticity below 0.011.

Figure A5: Counterfactual Pollution Intensity Under Arbitrary Shocks to Foreign Competitiveness, by Sector
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Notes: This figure plots 6 separate counterfactual exercises for each sector. In each counterfactual, foreign competitiveness takes

on a value ranging from 0.50 to 2 times baseline levels, in 0.25 increments. For each counterfactual, we measure the resulting

change in NOx pollution intensity, which is indicated on the y-axis, with the baseline value normalized to 100. Pollution intensity

is defined as pollution emissions per real unit output. Each grey line describes pollution intensity for a single sector, and the

blue line shows the cross-sector mean.
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Table A1: Statistical Decomposition - 2008 Values

CO NOx PM10 PM2.5 SO2 VOC
(1) (2) (3) (4) (5) (6)

Panel A: Baseline Values

Scale (Census) 1.32 1.32 1.32 1.32 1.32 1.32
Scale & Composition (NEI+Census) 1.24 1.30 1.19 1.18 0.99 1.42
Scale, Composition, & Technique (NEI) 0.34 0.49 0.22 0.24 0.35 0.31

Panel B: Single-Product Plants

Scale (Census) 1.32 1.32 1.32 1.32 1.32 1.32
Scale & Composition (NEI+Census) 0.93 1.08 0.95 0.89 1.09 1.19
Scale, Composition, & Technique (NEI) 0.34 0.49 0.22 0.24 0.35 0.31

Panel C: Uniform Apportionment

Scale (Census) 1.32 1.32 1.32 1.32 1.32 1.32
Scale & Composition (NEI+Census) 1.33 1.40 1.27 1.25 1.06 1.46
Scale, Composition, & Technique (NEI) 0.34 0.49 0.22 0.24 0.35 0.31

Notes: This table displays the observed and counterfactual 2008 levels of emissions for 6 separate pollutants, relative to their
1990 values. The full counterfactual trend lines are plotted in Appendix Figure A1. The counterfactuals stem from the statistical
decomposition embodied in equation (2). “Scale” refers to the counterfactual for what emissions would have looked like in a
world with the same composition of goods and techniques of production as was observed in the base year, 1990. “Scale &
Composition” refer to what emissions would have looked like if we maintained the same production techniques (defined as
emissions per unit of output) as in the base year, 1990. “Scale, Composition, & Technique” refers to the actual observed
emissions trends, which consists of changes to both the scale, composition, and techniques associated with production since
1990. Source: NBER-CES database, ASM, and NEI.
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Table A2: Sector Definitions

Code Description ISIC Rev. 3 Codes

1 Food, beverages, tobacco 15-16
2 Textiles, apparel, fur, leather 17-19
3 Wood products 20
4 Paper and publishing 21-22
5 Coke, refined petroleum, nuclear fuel 23
6 Chemicals 24
7 Rubber and plastics 25
8 Other non-metallic minerals 26
9 Basic metals 27
10 Fabricated metals 28
11 Machinery and equipment 29
12 O�ce, accounting, computing, and electrical machinery 30-31
13 Radio, television, communication equipment 32
14 Medical, precision, and optical, watches, clocks 33
15 Motor vehicles, trailers 34
16 Other transport equipment 35
17 Furniture, manufactures n.e.c., recycling 36-37

Notes: This table presents the sector definitions used in the analysis and their corresponding two-digit International Standard

Industrial Classification, third revision (ISIC Rev. 3) codes.
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Table A3: Estimates of Pollution Elasticity, by Pollutant

Total
(Main Estimates) CO NOx PM10 PM2.5 SO2 VOCs

Sector (1) (2) (3) (4) (5) (6) (7)

Food, Beverages, Tobacco 0.0040 0.0016 0.0054 0.0057 0.0061 0.0047 0.0054
Textiles, Apparel, Fur, Leather 0.0022 0.0004 0.0024 0.0013 0.0013 0.0028 0.0064
Wood Products 0.0103 0.0101 0.0089 0.0183 0.0252 0.0030 0.0142
Paper and Publishing 0.0223 0.0204 0.0275 0.0161 0.0222 0.0275 0.0172
Coke, Refined Petroleum, Fuels 0.0212 0.0151 0.0248 0.0066 0.0089 0.0354 0.0224
Chemicals 0.0205 0.0243 0.0241 0.0081 0.0089 0.0159 0.0265
Rubber and Plastics 0.0048 0.0008 0.0038 0.0021 0.0023 0.0042 0.0191
Other Non-metallic Minerals 0.0303 0.0048 0.0539 0.0972 0.0713 0.0363 0.0064
Basic Metals 0.0557 0.1033 0.0218 0.0227 0.0295 0.0450 0.0159
Fabricated Metals 0.0019 0.0003 0.0016 0.0007 0.0009 0.0011 0.0085
Machinery and Equipment 0.0015 0.0010 0.0014 0.0011 0.0015 0.0014 0.0034
O�ce, Computing, Electrical 0.0023 0.0031 0.0011 0.0010 0.0013 0.0022 0.0028
Radio, Television, Communication 0.0005 0.0003 0.0005 0.0002 0.0002 0.0004 0.0014
Medical, Precision, and Optical 0.0014 0.0001 0.0039 0.0014 0.0021 0.0013 0.0025
Motor Vehicles, Trailers 0.0016 0.0004 0.0010 0.0003 0.0004 0.0011 0.0068
Other Transport Equipment 0.0019 0.0003 0.0025 0.0015 0.0013 0.0018 0.0060
Furniture, Other, Recycling 0.0047 0.0005 0.0024 0.0027 0.0037 0.0027 0.0219

Notes: This table presents estimates of the pollution elasticity for each sector and pollutant. Column (1) corresponds to column (2) of Table 2 that is calculated

using the economy-wide estimate of 0.011 from Table 1, scaled across industries by the tons pollution per dollar costs from column (1) of Table 2. Columns (2)-(7)

scale the economy-wide value of 0.011 according to the tons of each pollutant emitted per dollar of cost inputs.
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Table A4: Relationship Between Implied Manufacturing Pollution Tax and NOx Budget Program

(1) (2) (3) (4)

1[NBPr]⇥ 1[NBPRegulateds]⇥ 1[Yeart > 2002] 1.195⇤⇤⇤ 1.195⇤⇤⇤ 1.186⇤⇤⇤ 1.186⇤⇤⇤

(0.422) (0.424) (0.404) (0.405)
N 1583 1583 1583 1583

Industry⇥region FE X X X X
Industry⇥year FE X X
Region⇥year FE X X

Notes: This table reports regression coe�cients from 4 separate versions of equation (23), one per column. The dependent

variable in all regressions is the model-driven measure of pollution taxes for a region⇥industry⇥year. All specifications control

for the lower order interaction terms that ensure identification of the di↵erence-in-di↵erence-in-di↵erences regression equation

presented above. Standard errors are clustered by industry⇥region and are in parentheses.
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Appendix B Theory

This appendix derives results of the model in more detail. We begin by summarizing the main notation.

o: origin country

d: destination country

s: sector

Lo: factor supply

wo: nominal wage

fod,s: fixed cost for firm from country o to sell in country d

lod,s: labor used to produce qod,s, some of which is used for pollution abatement

pod,s: price of goods shipped o ! d

qod,s: quantity of goods shipped o ! d

rod,s: revenue from goods shipped o ! d

zod,s: units of pollution emitted to produce qod,s

Xod,s: Total national value of exports from o ! d

bo,s: location parameter of Pareto distribution (i.e., country-sector productivity)

co,s: variable cost of production

f e
o,s: fixed cost for firm to make a productivity draw

to,s: tax imposed on each unit of pollution z

Eo,s: national expenditure on sector s

Ro,s: national revenue from sector s

M e
o,s: attempted entrants

Mo,s: successful entrants

NXo,s: net exports (exports minus imports)

Po,s: price index

Zo,s: national pollution emissions

e: emissions rate, i.e., tons pollution per unit output, ⌘ z/q

': productivity draw (output per unit labor)

!: indexes varieties

⇠: a firm’s abatement expenditure (share of factors for abatement, not production)

G(·), g(·): Productivity distribution and density

↵s: pollution elasticity

�s: elasticity of substitution

✓s: shape parameter of Pareto productivity distribution

�d,s: Cobb-Douglas expenditure share

'⇤
od,s: productivity which makes a firm earn zero profits from exporting to d

⇡od,s: profit from o to d trade for a firm in sector s

⌧od,s: iceberg trade cost

�od,s: share of country d’s expenditure in sector s going to country o

9



Appendix B.1 Intermediate Results Used to Derive Expressions from the Main Text

This subsection describes several intermediate steps that will be used below to derive results shown in
the main text. Several parts of this subsection mirror more standard models of heterogeneous firms with
monopolistic competition except they incorporate pollution taxes and abatement.

Consumers

Solving the representative agent’s utility-maximization problem for the optimal quantity qod,s gives the
following consumer demand for variety ! in destination country d:

qod,s (!) =
(pod,s (!))

��s

(Pd,s)
1��s

Ed,s (24)

where the price index (the cost of one unit of utility) is

Pd,s =

"
X

o

Z

!2⌦o,s

pod,s (!)
1��s

# 1
1��s

(25)

Firms

Firms engage in monopolistic competition. They choose prices pod,s and abatement investments ⇠ to maxi-
mize profits. Recall from main text equation (8) that the firm’s first-order condition for pollution abatement
is

1� ⇠ =

✓
wo

'to,s

↵s

1� ↵s

◆↵s

(26)

Combining this with the first-order condition for prices implies that prices equal a constant markup over
marginal costs:

pod,s(') =
�s

�s � 1

co,s⌧od,s
'1�↵s

(27)

where

co,s ⌘
(to,s)

↵s (wo)
1�↵s

(↵s)
↵s (1� ↵s)

1�↵s

In some of the following results, a simpler expression for firm profits is useful:

⇡od,s(') =
rod,s(')

�s
� wdfod,s. (28)

where a firm’s revenues are rod,s(') ⌘ pod,s(')qod,s(') This expression can be derived from the firm’s profit
function by substituting in abatement (26) and prices (27) then simplifying. Finally, several derivations below
use the following part of Assumption 2 from Section 3.1 of the main text, restated here for convenience:

lod,s(') =
qod,s(')

'(1� ⇠)
(29)
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Productivity Distribution

The Pareto productivity distribution from equation (5) of the main text is restated here for convenience:

G('; bo,s) = 1� (bo,s)✓s

'✓s
(30)

Several results below use the conditional density, which in general is g('|' > '⇤
od,s) = g(')/(1 � G['⇤

od,s]),
where g(') is the unconditional density. For the Pareto distribution, the conditional density is

g('|' > '⇤
od,s) = ✓s

('⇤
od,s)

✓s

'✓s+1
(31)

Cuto↵ Productivity

Let '⇤
od,s describe the productivity level which makes a firm earn zero profits from exporting to destination

d, and therefore which makes a firm indi↵erent about whether to export to d. In other words, if ⇡od,s(') is
the profit that a firm with productivity ' in origin country o and sector s earns from exporting to destination
country d, then this cuto↵ is implicitly given by ⇡od,s('⇤

od,s) = 0. Combining consumer demand (24) with
firm profits (28) lets us write the cuto↵ implicitly as

wdfod,s =
1

�s

pod,s('⇤
od,s)

1��s

P (1��s)
d,s

Ed,s

Substituting in prices (27) then solving for '⇤
od,s gives

'⇤
od,s =

 
�s

�s � 1

co,s⌧od,s
Pd,s

✓
�swdfod,s

Ed,s

◆ 1
�s�1

! 1
1�↵s

(32)

Free Entry

In equilibrium, the fixed cost of drawing a productivity must equal an entrepreneur’s expected profit from
drawing a productivity:

wof
e
o,s = (1�G['⇤

oo,s])E[⇡|' > '⇤
oo,s]

Here '⇤
oo,s is the productivity level which makes a firm earn zero profits from producing domestically.

Substituting in prices (27), profits (28), the Pareto conditional density (31), and the cuto↵ productivity (32)
gives

f e
o,s

✓s � (�s � 1)(1� ↵s)

(�s � 1)(1� ↵s)
=
X

d

(bo,s)✓s

('⇤
od,s)

✓s

wd

wo
fod,s (33)

This concludes our explanation of intermediate steps, and we now combine several of these results to
derive equations highlighted in the main text.

Appendix B.2 Deriving Equation (25), the Sector-Specific Price Index

We obtain the price index for a country and sector by rewriting the price index (25) as

P (1��s)
d,s =

X

o

Z Mod,s

0
pod,s(v)

1��sdv
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where Mod,s is the mass of firms exporting. Substituting in prices (27), the Pareto conditional density (31),
and the productivity cuto↵ (32) lets us rewrite this price index as

(Pd,s)
� ✓s

1�↵s =
X

o

M e
o,s

✓
wo

bo,s

◆�✓s
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� ✓s

1�↵s (fod,s)
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(1�↵s)(�s�1) (to,s)
� ↵s✓s

1�↵s

✓
Ed,s

wd

◆ ✓s
(1�↵s)(�s�1)�1

�s (34)

where M e
o,s is the mass of entrepreneurs drawing a productivity, Ed,s is total expenditure, and �s is a

constant.1

Appendix B.3 Deriving Bilateral Expenditure Shares

The value of bilateral trade equals the proportion of firms exporting, times the mass of firms operating,
times exports per exporter:

Xod,s =
Pr(' > '⇤

od,s)

Pr(' > '⇤
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Mo,sE[rod,s|' > '⇤
od,s]

=
M e
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�✓s (⌧od,s)
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1�↵s (fod,s)

1� ✓s
(�s�1)(1�↵s) (to,s)

� ↵s✓s
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✓
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◆ ✓s
(�s�1)(1�↵s)

(wd)�s (35)

The second equality follows from using demand (24), prices (27), the Pareto distribution (30), free entry (33),
and the cuto↵ productivity (32). Here Ed,s denotes the expenditure of country d on goods from sector s, and
we have collected parameters into the constant �s. This constant has the same value as in equation (34).
We can then write �od,s, the share of country d’s expenditure on sector s that is purchased from country o,
as

�od,s =
M e

o,s (wo/bo,s)
�✓s (to,s)

� ↵s✓s
1�↵s (⌧od,s)

� ✓s
1�↵s (fod,s)

1� ✓s
(�s�1)(1�↵s)

P
iMi,s (wi/bi,s)

�✓s (to,s)
� ↵s✓s
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(�s�1)(1�↵s)

(36)

Appendix B.4 Deriving Equation (9), the Second Equilibrium Condition

To derive the second equilibrium condition in equation (9), we substitute in the cuto↵ productivity (32), the
free entry condition (33), and the price index (34). This gives the following version of the second equilibrium
condition:

f e
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Substituting in the definitions of the price index from (34) and bilateral trade from (35) gives equation (9)
from the main text. The version of this equilibrium equation shown in the main text is short and intuitive.
The version of this equation shown above is more practically useful for deriving the second equilibrium
condition in changes and relating it to changes in trade costs, productivity, and environmental regulation.

Appendix B.5 Deriving Equation (10), the First Equilibrium Condition in Changes

Recall the first equilibrium condition in levels, equation (7) from the main text:

Lo = Le
o + Lp

o + Lt
o + Lm

o + Lnx
o

1The positive constant is given by �s = (�s)
1� �s✓s
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This shows that labor in this model is demanded for five purposes: firm entry; production and abatement;
pollution taxes; market entry; and net exports. We explain each in turn, then sum them to describe total
labor demand.

First, labor in this model is used to pay the fixed cost for drawing a productivity (in other words, labor
is demanded for firm entry). The labor demanded for this purpose equals the mass of entrepreneurs drawing
a productivity times the fixed cost per draw:

Le
o,s = M e

o,sf
e
o,s

Second, labor in this model is used to producing widgets and abating pollution. The labor demanded for
this purpose equals the mass of entrepreneurs drawing a productivity times expected labor for production
and pollution abatement:

Lp
o,s = M e

o,sE[lod,s(')⌧od,s]
= M e

o,s✓sf
e
o,s

The second equality follows from substituting in several terms: lod,s(') = qod,s(')/('(1�⇠)) from assumption
2; demand (24); abatement investments (26); prices (27); the Pareto conditional density (31); and free
entry (33).

Third, labor in this model is used to pay pollution taxes. The quantity of labor demanded for this
purpose equals total expenditure on pollution taxes divided by the wage rate

Lt
d,s =

td,sZd,s

wd

=
↵s

1� ↵s
✓sM

e
d,sf

e
d,s

The second equality follows from substituting in several terms: demand (24); prices (27); abatement (26);
pollution (29); and the Pareto conditional density (31).

Fourth, labor in this model is used to pay the fixed cost of entering foreign markets. The amount of
labor demanded for this purpose equals the sum over all foreign countries of the mass of firms exporting to
a country times the fixed cost of exporting to that country.

Lm
d,s =

X

o

Mod,sfod,s

=
✓s � (�s � 1)(1� ↵s)

�s✓s

Ed,s

wd

The second equality follows from calculating the expected revenue of exporters then substituting in de-
mand (24); prices (27); and the productivity cuto↵ (32).

Fifth, labor is used to pay for trade deficits. The amount of labor demanded for this purpose equals the
sum over all foreign countries of the mass of firms exporting to a country, times the first cost of exporting
to that country:

Lnx
d,s = �

NXd,s

wd

(�s � 1)(✓s � ↵s + 1)

�s✓s
+ �d,s

NXd

wd

This trade imbalance term is defined so that the model can exactly match historic data on expenditure and
production decisions.

Summing these five terms then solving for Ld gives an expression for the labor market clearing condition:
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The left-hand side of this equation describes labor supply and the right-hand side labor demand. Writing
the ratio of counterfactual to observed labor demand, L0

d/Ld, and simplifying using the Pareto technology
assumption (30), the Pareto conditional density (31), demand (24) and the free entry condition (33) gives
the main text equation (10).

Appendix B.6 Deriving Equation (11), the Second Equilibrium Condition in Changes

To derive equation (11), we write the second equilibrium condition in levels (9) under a counterfactual by
adding an apostrophe to each variable. Each counterfactual variable can then be written as the product
of that variable’s baseline level and its proportional change (i.e., x0 = x̂/x). Substituting in expenditures
shares (36) and simplifying gives equation (11).

Appendix B.7 Deriving Equation (12), Proportional Changes in Pollution

Recall the following from Assumption 3 of the model:

zod,s(') = (1� ⇠)1/↵s'lod,s(')

We then use abatement (26), prices (27), the Pareto distribution (30), and demand (24) to derive the
following firm-level expected pollution emissions:

E[zod,s(')⌧od,s|' > '⇤
od,s] =

(�s � 1)↵s✓s
✓s � (�s � 1)(1� ↵s)

wd

to,s
fod,s

Again applying the Pareto distribution (30), bilateral demand (36), and taking ratios of counterfactual to
baseline pollution gives equation (12).

Appendix B.8 Deriving Equation (18), the Foreign Competitiveness Shock

We obtain equation (18) in the main text by expressing the expenditure shares equation (36) in changes and
then solving for equation (17) from the main text.

�̂⇤
od,s ⌘ (1/b̂o,s)

�✓s(⌧̂od,s)
�✓s/(1�↵s)(f̂od,s)

1�✓s/(�s�1)(1�↵s)
�
t̂o,s
��↵s✓s/(1�↵s)

We do not need to measure the terms in parentheses on the right-hand part of equation (18) from the main
text because they are specific to destination d so appear in both the numerator and denominator of the part
of this model where this shock is used (the second equilibrium equation in changes, equation (11)), and so
cancel in that equation.

Appendix B.9 Deriving a Simpler Expression for the Environmental Regulation Shock

To obtain the expression for environmental regulation described in equation (22), we express the first equilib-
rium condition (9) in changes then solve for R̂d,s. This derivation uses the fact that M̂ e

o,s = (1/ŵo)(
P

dX
0
od,s/Xod,s).

We obtain this expression for M̂ e
o,s in a few steps. First, we solve the expression for foreign competitiveness

in equations (17) and (18) for the change in trade flows, �̂od,s. Second, we substitute this into the second
equilibrium condition in changes in equation (11). Finally, we simplify the result to obtain this expression
for M̂ e

o,s.
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Appendix C Data Overview and Additional Empirical Details

Appendix C.1 Matching the 1990 Annual Survey of Manufacturers to the 1990 Na-
tional Emissions Inventory

We match the 1990 Annual Survey of Manufacturers (ASM) to the 1990 National Emissions Inventory using
name and address string matching techniques. The ASM does not provide name and address information for
plants, but the ASM can be linked to the Census Business Register via a unique, longitudinal identifier that
does. The Business Register consists of the universe of establishments in the United States on an annual
basis and forms the basis for the more commonly known and used Longitudinal Business Database (LBD).

We perform a match between the 1990 NEI and the Business Register for each Business Register year
between 1985 and 1996. Both the NEI and the Business Register contain establishment level name and
address information that we use to perform the match: county, state, SIC code (4-digit, 3-digit, and 2-digit),
facility name, street, city, and zip code. We perform exact matching on county, state, and SIC codes and
“fuzzy” matching on facility name, street, city, and zip code. We use the “COMPGED” feature of SAS’s
PROC SQL to create a “generalized edit distance” score reflecting the degree of di↵erence between two text
strings. For each variable in which we use fuzzy matching techniques, we choose a score that minimizes both
false positives and false negatives by visually checking the performance of the matches.

We then iterate over combinations of the match variables listed above, selecting the match with the
highest score in each round, and removing the residual observations from each dataset before matching
again. At the end of the matching process, we are able to match 77.4% of the 1990 NEI manufacturing
observations (i.e., SIC code between 2000-3999). The match percentage also reflects the fact that the ASM
is a sample and not a survey, and thus we should not expect a match rate near 100%.

In addition, the unmatched plant observations are not significantly di↵erent along emissions totals,
relative to the matched observations. For each pollutant, we ran a plant-level regression of emissions on
an indicator for whether the plant matched the census data, controlling for 4-digit SIC fixed e↵ects and
clustering standard errors by 4-digit SIC codes. Of 6 pollutants, the coe�cient on the match variable is
significant at the 10% level (though not at 5%) for PM10 and PM2.5; for other pollutants we fail to reject
the null hypothesis that matched and unmatched plants have the same emissions. For the plants that are
matched and emit particulate matter, the matched plants tend to emit slightly more particulates than the
unmatched plants. Not all ASM plants appear in the NEI because the NEI is only designed to include data
from plants with at least 100 tons per year of one of the major pollutants.

Appendix C.2 Product Level Decomposition: Details

Section 2 in the text describes the statistical decomposition using the product-level production data from
the Census and Annual Survey of Manufacturers (CMF and ASM, respectively). Here we provide additional
details.

Bernard, Redding, and Schott (2011) provide a detailed overview of the Manufacturing Product trailer
for research purposes. In terms of descriptive statistics, the typical two-digit SIC code in Manufacturing
has 24 four-digit industries and 76 five-digit products, although there is heterogeneity across industries in
the amount of product detail. For example, the number of products per sector ranges from a low of 12 in
Leather (SIC 31) to a high of 178 in Industrial Machinery (SIC 35) (Bernard, Redding, and Schott, 2011).2

Within the CMF and ASM product trailers, there are several industries which report only aggregate
product codes (i.e., within a 4-digit industry, more than 95% of output is produced in a product code that

2As noted by Bernard, Redding, and Schott (2011), there is also substantial variation in the precision of product classifications.
For example, Passenger Cars (SIC 37111) and Combat Vehicles (SIC 37114) are examples of products in the Motor Vehicle
industry (SIC 3711), while Textbook Binding and Printing (SIC 27323) and Religious Books, Binding and Printing (SIC 27323)
are examples of products in the Book Printing industry (SIC 2732).
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ends in “-”, “0”, or “W”). In the case that 50% or more of the product shipments within in a 4-digit SIC
industry come from one of these aggregate product codes, we aggregate to the 4-digit SIC level.

There are two primary issues that emerge when looking at changes in the composition of products and
how these a↵ect manufacturing emissions over time. The first issue is associated with the introduction of
new products; we calculate emissions factors using total product-level production and emissions in 1990.
If new products are introduced after 1990, they will not have an emissions factor, and thus will lead to
false inferences from the decomposition. In order to address product entry, we fold all new products into
the adjacent product category, as defined by 5-digit SIC product codes. This implicitly assumes that the
emissions factor from the new product is the same as the emissions factor calculated for the adjacent product
code.

The second issue emerges from the transition between SIC and NAICS product code definitions between
1997 and 1998. We construct a product code crosswalk between 5-digit SIC product codes and 7 digit NAICS
product codes. This allows us to construct a consistent 5-digit SIC by year dataset from 1990 until 2008.
We develop this product-level SIC-NAICS concordance using 3 separate but complimentary strategies:

1. For the industries that only report aggregate product shipments (i.e., at the level of 4-digit SIC codes
or 6-digit NAICS codes), we use the NBER-CES crosswalk which provides a linkage between 4-digit
SIC codes and 6-digit NAICS codes. In the event that a 6-digit NAICS code maps into more than one
4-digit SIC code, the NBER-CES crosswalk provides value shares in order to apportion NAICS output
to the relevant SIC code.

2. For products that are consistently reported at the NAICS 7-digit product level, we develop a crosswalk
using the 1997 Census of Manufacturing product trailer. In 1997, Census collected both NAICS and
SIC product codes which we use to build the crosswalk. For 7-digit NAICS product codes that map
into more than one 5-digit SIC product code, we construct apportionment shares based on the fraction
of total 1997 output that is split between the respective SIC codes.

3. Lastly, there are some 7-digit NAICS codes in years 1998+ that do not match either of the two
crosswalks above. For these residual product codes, we use a crosswalk developed by the Bureau of
Labor Statistics between SIC and NAICS product codes.3 There are still some cases for which NAICS
7-digit product codes map into more than one 5-digit SIC product code. In these cases, the BLS does
not provide relative output shares for the “many to 1” crosswalk that would allow us to apportion
NAICS output to the relevant SIC product code. This lack of apportionment for split products means
that the product series in years 1998+ will overstate the amount of output for NAICS product codes
that map into multiple SIC product codes. We adjust for this structural break by multiplying the scale
+ composition line in years 1998+ by an adjustment factor. This adjustment factor is computed by
fitting a linear trend to years 1996 and 1997 and projecting the 1998 point; the value that we multiply
the observed 1998 value to recover the predicted 1998 value is the adjustment factor we use to scale
all post-1998 output.

Once we have a consistent 5-digit SIC product-level dataset, we construct product shares in each year by
taking the total product output produced in a given year and dividing that by total manufacturing output
in that year. In non-Census years, we use the weights provided by the Census to scale up plant-level output
by the inverse sampling probability of the survey. We multiply these product shares by the product-level
emissions factors and sum over all products in a year. Lastly, we multiply this annual number by total
manufacturing output in that year in order to recover the scale+composition line in Figures 3 and A1.

3Source: https://urldefense.proofpoint.com/v2/url?u=http-3A__www.bls.gov_ppi_ppinaictosic15.
htm&d=AwIFaQ&c=-dg2m7zWuuDZ0MUcV7Sdqw&r=a0JqX4ibH77Bx2Kpq1YnZLhOhR2TzpM1ZpfzjHqqTT0&m=
ikhWR7s5FQkUNMczenUZrOI6MFlWL89tekAhlHFe5qE&s=SnuKGRQabLYEWjLd02OHuSmBxmbRI0DlBoHFRNj25y0&e= (accessed on
July, 1 2014).
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Appendix C.3 Additional Data Details

Concordances

We use several publicly available industry concordance files to express all datasets in the same classification
systems. Whenever possible, we use concordance files that provide weights or shares. When shares or
weights for multiple variables are available, we use employment shares. In cases where a given observation
cannot be linked at the most detailed possible industry code (e.g., 6-digit NAICS code to 4-digit SIC code),
we construct concordances for each possible further aggregation of this industry (e.g., 5-digit NAICS to
4-digit SIC, then 4-digit NAICS to 4-digit SIC, etc.). We link each observation at the most detailed possible
industry level.

The subsection above describes linking SIC and NAICS product codes. To concord SIC and NAICS
industry codes, we use a file constructed in Fort and Klimek (2016). This file takes an internal concordance
file from the U.S. Census then cleans and documents it, and imputes missing values for some narrowly
divided industry cells by using averages from more aggregate industry categories. Unlike standard census
NAICS-SIC concordances, this file provides shares; and unlike the NBER-CES database, it represents all
industries and does not only focus on manufacturing.

To concord between di↵erent years of NAICS codes (e.g., between 1997 NAICS and 2002 NAICS; or
between 2002 NAICS and 2007 NAICS), we use concordance files available in the U.S. Census Bureau’s
Factfinder application. The Census Bureau calls these “Industry Bridge Statistics” and gives them the table
code 00CBDG2.

To concord NAICS codes to ISIC codes, we use a crosswalk file from Statistics Canada. This file does
not provide data on weights, so we define weights according to the number of industries linked. For example,
if one NAICS industry is linked to 5 di↵erent ISIC industries, we assign 20 percent of the NAICS industry
to each of the ISIC industries.

Gross Output Data

We setup gross output using these data as follows. First, we concord reporting sectors. Some country⇥years
report values for combinations of two-digit ISIC codes (e.g., one value covering both ISIC=15 and ISIC=16).
In these cases, we take reports from the same country in other years, calculate the share of output coming
from each of the two underlying ISIC 2-digit codes in those other years, and apportion the focal year to the
two codes according to those shares.

We use a few steps to to incorporate country⇥years not in the OECD data. First, we extract data
on each country⇥year’s total manufacturing GDP from the World Bank’s World Development Indicators
(WDI), which covers both OECD and non-OECD countries. Second, we calculate the ratio of manufacturing
GDP (from WDI) to manufacturing gross output (from OECD STAN) for the OECD in total, separately by
year. This ratio gradually declines from 0.33 in the year 1990 to 0.26 in 2008. Dekle, Eaton, and Kortum
(2008) report a similar value for this ratio of 0.31. Third, we divide the WDI manufacturing GDP values by
the GDP/Output ratios calculated in the second step to calculate gross output per country⇥year, for both
OECD and non-OECD countries. Fourth, we calculate the composition of total OECD manufacturing gross
output across the 17 sectors in our data, separately by year. Fifth, we assign the country⇥year gross output
calculated in step three to sectors using the proportions calculated in step four. For OECD countries, we
use reported data from OECD STAN; for other countries, we use these calculated values.

As discussed in the main text, we use these values for years 1990-1995. For years 1995-2008, we use
production and trade data from the World Input Output Dataset (WIOD), which begins in the year 1995
(Timmer, Dietzenbacher, Los, Stehrer, and de Vries, 2015). WIOD directly reports gross output for the
U.S. and other countries, including a rest-of-the-world category, so does not require the aforementioned
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imputation. We scale each production and trade flow in WIOD so they exactly match the OECD gross
output data in 1995.

Data for Estimating Pollution Elasticity

We use data on pollution emissions from NEI, the value of shipments and value of production costs from
ASM, and pollution abatement costs from PACE (z, q, and ⇠, respectively).4 We “winsorize” the reported
emissions data at the 99th percentile of the 4-digit NAICS-year emissions distribution, and we use sample
weights from both the Annual Survey of Manufacturers and the Pollution Abatement Costs and Expenditure
Survey to inflate survey values to be nationally representative. Total abatement costs consist of the sum of
abatement operating costs plus the rental cost of capital associated with the observed abatement capital at
a plant.5 Total expenditures consist of the sum of expenditures on salary and wages, materials, energy, and
the industry-specific capital rental rates for a given level of capital stock.

Manufacturing and Energy Consumption Survey and CO2 Emissions

MECS is a nationally representative survey of U.S. manufacturing which was conducted in 1991, 1994, 1998,
2002, 2006 and 2010. We download publicly available tables, which are available at the 2-digit SIC or 3-
digit NAICS level. We extract data on total inputs of energy for heat, power, and electricity generation by
industry, measured in trillions of BTUs. These data exclude energy used as feedstock (e.g., they exclude the
petroleum which is a physical part of plastics).

For confidentiality reasons, public versions of the MECS data supress a few fuel⇥industry⇥year cells.
We impute these values as follows. First, we calculate total BTUs for the fuel⇥year, and subtract BTUs for
industry⇥years within that fuel that are not suppressed. Second, within each year, we then calculate the
share of all BTUs (total across fuels) that each industry accounts for. Finally, we allocate the non-specified
BTUs (calculated in the first step) across industries according to the relative proportions calculated in the
second step.

Given these data on million BTU of each energy source, we calculate CO2 emissions using physical
emissions rates from the U.S. Environmental Protection Agency.

EPA Air Program Markets Data

In order to operate cap-and-trade programs like the NOx Budget Trading Programs, the EPA maintains
a public database listing each facility which participates in the program and its attributes.6 We obtain a
list of facilities which were regulated under the NOx Budget Trading Program in each year of its operation,
2003-2007. Each facility includes identifying information such as longitude and latitude, address, and a
generic industry description, which we use to link these data to the National Emissions Inventory.

4We proxy for measures of physical output qi,t using plant revenue, deflated by industry-specific output price deflators, where
the industry-specific output price deflators come from the NBER-CES database.

5Capital rental rates are from unpublished data constructed by the Bureau of Labor Statistics for use in computing their
Multifactor Productivity series. These data are commonly used in the productivity literature to proxy for industry-specific
capital rental rates. See e.g., Syverson (2011). We only observe abatement capital stocks in 2005 (not 1990). We impute 1990
abatement capital stocks using our observed measure of depreciation expenditures in both 1990 and 2005. Specifically, we use
the 2005 ratio of abatement capital stocks to abatement depreciation expenditures, and we multiply this ratio by the 1990
abatement depreciation expenditure for a plant to back out the 1990 abatement capital stock of the plant.

6The data are available at https://urldefense.proofpoint.com/v2/url?u=http-3A__ampd.epa.
gov_ampd_&d=AwIFaQ&c=-dg2m7zWuuDZ0MUcV7Sdqw&r=a0JqX4ibH77Bx2Kpq1YnZLhOhR2TzpM1ZpfzjHqqTT0&m=
ikhWR7s5FQkUNMczenUZrOI6MFlWL89tekAhlHFe5qE&s=7mYZMH3I9I3bQFxPnze5IKdiE9IML9vBovn4qZuymUw&e=. These data
were formerly called the Clean Air Markets Database.
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Appendix C.4 Macroeconomic Parameters

To estimate the elasticity of substitution across product varieties, we use the implication of the model that
a sector’s expenditure on labor for production is proportional to the sector’s revenue:

woL
p
o,s = (1� ↵s)

�s � 1

�s
Ro,s (37)

Here Lp
o,s represents labor used in production and Ro,s represents revenue.7 We use the 1990 Annual Survey of

Manufactures to calculate these elasticities separately for each of the 17 aggregated ISIC sectors. Intuitively,
this approach is observing markups in data, then using our assumption of the market structure (monopolistic
competition) to back out the demand elasticity which rationalizes those markups.

Column 4 of Table 2 presents our estimates of �s for each sector.8 The elasticity of substitution ranges
from 2.89 to 8.18 across industries, with a cross-sector mean of 4.76. We expect a smaller elasticity of
substitution for industries with more di↵erentiated products. The pattern across sectors generally follows this
pattern. The largest elasticity of 8.18 in absolute value is for the Coke, Refined Petroleum, and Nuclear Fuels
sector, which has fairly homogeneous products. The smallest elasticity of 2.89 is for the Medical, Precision,
and Optical Products sector, which has fairly di↵erentiated products. These correspond to markups of
between 14 and 53 percent, which fits the range from other published studies, which for U.S. manufacturing
industries typically range from 10 to 50 percent (Hall, 1986; Martins, Scarpetta, and Pilat, 1996; Ganapati,
Shapiro, and Walker, 2016).

Next, we estimate the shape parameter of the Pareto distribution of firm productivities. We rely on the
fact that if the distribution of firm productivities is Pareto with shape parameter ✓s, then the distribution
of firm sales is Pareto with shape parameter ✓s/(�s � 1). The Pareto tail cumulative distribution function
is Pr{x > Xi,s} = (bi,s/Xi,s)✓s/(�s�1) for Xi,s � bi,s. Taking logs gives

ln(Pr{x > Xi,s}) = �0,s + �1,s ln(Xi,s) + ✏i,s (38)

We estimate equation (38) separately for each sector s, and the coe�cient �1,s in each regression is generally
close to negative one. The Pareto shape parameter is then given by ✓s = �1,s(1� �s).

We use a subset of the firm-level data to estimate equation (38). Because selection into exporting can
bias these estimates (di Giovanni, Levchenko, and Ranciere, 2011), we estimate this regression using only
domestic sales. Additionally, since the Pareto distribution best fits the right tail of the firm distribution, we
estimate these regressions using firms above the 90th percentile of sales within each sector.9

7In the model, this prediction reflects only wage payments used for production. In applying this prediction empirically, we
measure all factor payments in the data (not merely wages), and we treat all factor payments in the data as productive (since
the data do not separately measure fixed entry and marketing costs). Firm revenues are “inventory-adjusted” total value of
shipments for a plant in 1990, and firm costs consist of expenditures on labor, parts and materials, energy, and capital.

8The reported elasticity is calculated as �s = (1 � ↵s)/((1 � ↵s) � wLs/Xs), where ↵s is the pollution elasticity estimated
above and wLs/Xs is factor costs divided by the value of shipments. Columns 1-3 of Table 2 present these intermediate inputs
into the construction of �s.

9In the census microdata, we measure domestic sales as inventory-adjusted total value of shipments minus the value of export
shipments. Estimating the regression using only the upper tail of firm sizes follows the literature by taking a set of firms for
which the relationship between firm rank and size is approximately linear (Gabaix, 2009; di Giovanni, Levchenko, and Ranciere,
2011). To determine the percentile cuto↵ for these regressions, we bin the data into values of firm size that are equidistant from
each other on the log scale, then collapse the rank/size data to the bin level for 10 bins. We examine the scatter plot of these
points overlaid by the linear fit to these points. In general, the upper 90th percentile of the sales distribution is strongly linear
with respect to firm rank.
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Table C1: Sensitivity Analysis: U.S. Pollution Emissions in Counterfactual Divided by 1990 Emissions,
Separately for Each Shock

U.S. U.S.
Foreign U.S. Environmental Expenditure Trade

Competitiveness Competitiveness Regulation Shares Deficits
(1) (2) (3) (4) (5)

1. Actual Change 46.464
2. Main Estimate 95.429 81.188 47.528 111.28 102.33
3. No Firm Heterogeneity 93.504 83.868 47.526 111.25 102.30
4. Parameter ✓: Top 50% 89.757 83.64 48.161 110.82 104.17
5. Parameter ✓: Top 25% 91.064 83.333 48.015 110.95 103.66
6. Parameter ↵: 0.25⇥ Main Estimates 95.354 75.549 48.845 111.28 102.33
7. Parameter ↵: 4⇥ Main Estimates 93.487 88.595 46.042 111.26 102.32
8. Partial Equilibrium 100.000 100.000 48.98 100.000 100.000

Notes: This table presents a set of sensitivity analyses for the main set of counterfactuals in the text. For the sensitivity

analysis listed in each row, we calculate each counterfactual separately for each of the six criteria pollutants. The table shows

the unweighted mean of these results across these pollutants. We show the mean outcome averaged across years 2005 and

2008. Row 1 presents the actual observed change in pollution emissions between 1990 and 2005-2008, averaged across the six

pollutants. The value of 40.47 means that emissions in the years 2005-2008 were 40.47 percent of their value in 1990. Row 2

shows the main estimates from the model, where each column corresponds to a separate counterfactual. For example, column

(1) shows that if foreign competitiveness took its actual historic value and all other shocks were held fixed, then manufacturing

emissions in 2005-2008 would have been 107.14 percent of their observed 1990 values. Row 3 shows counterfactuals in a model

where parameters are chosen so all firms have the same productivity and there is no firm heterogeneity. Rows 4 and 5 explore

sensitivity of these counterfactuals to changes in the Pareto shape parameters that govern the distribution of firm productivity.

Rows 6 and 7 explore model sensitivity to changes in the estimated pollution elasticity.

Appendix C.5 Discussion of Other Shocks, Wages, and Firm Entry Changes

Appendix Figure A3 shows the time path of the historical shocks in the paper.10 Although we recover the
value of each shock for each country⇥sector, it is cumbersome to describe values for 17 di↵erent sectors.
Instead, we plot shocks separately for “clean” and “dirty” sectors. Dirty industries are defined as those with
a value of the pollution elasticity ↵s above the economy-wide mean of 0.011, and clean industries are defined
as those with a value of this pollution elasticity below 0.011.

Appendix Figure A3a shows that foreign expenditure shares on dirty versus clean goods changed relatively
little until 2005, when spending on dirty industries grew by around 10 percent. U.S. expenditure shares
show similar patterns. This increase in expenditure shares for dirty goods is especially driven by the
increasing expenditure in the Coke, Refined Petroleum, and Nuclear Fuels sector, reflecting increases in
global commodity prices.11

Our measures of these historic shocks depend on the changes in wages in each country and changes in

10The model and counterfactuals account for competitiveness shocks to each country. As discussed earlier, although the price
index P̂d,s appears in our measure of competitiveness shocks, we don’t need these price data to analyze counterfactuals. This is
because destination price indices appear in only the numerator and denominator of the second equilibrium condition and cancel.
As a result, the historical shocks to U.S. and foreign competitiveness outside of a particular counterfactual are not informative,
and we omit competitiveness shocks from Appendix Figure A3.

11This stylized fact that the share of U.S. expenditure on energy products nearly doubled between 2004 and 2008 appears
in other data. For example, the Energy Information Agency Energy Information Administration (2011) records that consumer
expenditure on all petroleum products grew in nominal terms from $470 billion in the year 2004 to $871 billion in the year 2008.
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Table C2: Sensitivity to Starting Values and Algorithms

2008 Di↵erence in Pollution,
Minimized Objective Regulation-only

Function Counterfactual

Main Results 1.32E-30 —
Starting Values Randomly Chosen:

Mean 2.48E-30 3.98E-13
Minimum 4.31E-31 4.26E-14
Maximum 7.81E-29 1.42E-14
Standard Deviation (3.11E-30) 9.29E-15

Algorithm: Trust-Region Reflective 1.32E-30 0
Algorithm: Levenberg-Marquardt 1.32E-30 0

Notes: This table presents a set of sensitivity analyses for the counterfactuals presented in the paper, for NOx emissions.

The table varies the starting values and the algorithm associated with solving the system of nonlinear equations used in our

counterfactuals. The main results in the paper use a starting value equal to one and a trust-region, dogleg algorithm. This table

presents results from a randomly chosen set of starting values drawn from a uniform distribution [0.75,1.25]. The table reports

the mean, minimum, maximum, and standard deviation of the 1,000 di↵erent results. The last two rows of the table present

results using two di↵erent minimization routines. The second column shows the absolute value of the di↵erence in the pollution

emissions under a regulation-only counterfactual as calculated in a given row relative to the value calculated in the first row.

firm entry in each country and sector. Appendix Figure A4 plots these values. U.S. wages stagnated in the
1990s as U.S. output grew more slowly than global output. U.S. wages grew slightly in the late 1990s and
early 2000s, as U.S. output growth modestly outpaced global output growth. Wages then declined in the
2000s as growth from foreign countries, especially China, accelerated. Foreign wages display the opposite
pattern: modest growth in the early 1990s and late 2000s but a slight decrease in intervening years.

Appendix Figure A4 also shows patterns in firm entry. In both the U.S. and abroad, entry grew more
quickly in dirty sectors than in clean sectors, as indicated by the solid line rising after the year 2005 in
panels (c) and (d). This increase in entry to dirty sectors in the late 2000s reflects rising energy prices and
revenues—greater value of output in dirty sectors increases the expected profit from entry, attracting more
firms to these sectors.

One additional issue in describing the shocks concerns trade imbalances. In a dynamic model, trade im-
balances would represent intertemporal concerns like saving or consumption smoothing. In the comparative
statics we examine here, trade imbalances appear as transfers from one country to another. The natural way
for this static model to exactly recreate historic data is to allow for separate shocks to trade imbalances. In
the decomposition, we read o↵ actual trade imbalances from the data.12

Appendix C.6 Algorithm to Calculate Equilibrium

To analyze counterfactuals, we use country⇥industry data from the year 1990 on production, trade, and U.S.
pollution emissions (Xod,s and Zo,s), and the parameter vectors for each industry: the pollution elasticity,
elasticity of substitution, and Pareto shape parameter (↵s, �s, and ✓s). With the full set of data and
parameters, we then use the following algorithm to solve for a specific counterfactual:

12We define net exports, NXo, as a country’s exports minus its imports. As in Hsieh and Ossa (2016), we also allow scaled
sectoral imbalances, given by NXd,s(�s � 1)(✓s � ↵s + 1)/wd�s✓s.
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1. Characterize the counterfactual scenario by choosing values for shocks to foreign and U.S. competi-
tiveness, U.S. environmental regulation, and expenditure shares in each of the years 1990-2008 {�̂od,s,

t̂o,s, and �̂o,s}. These values can be hypothetical or they can describe the actual, historical values of
these shocks.

2. Find the changes to wages and firm entry in each country⇥sector⇥year (ŵo and M̂ e
o,s) which make

the equilibrium conditions (10) and (11) hold with equality for all countries and sectors and years, by
solving a system of nonlinear equations and then inputting the values chosen in step 1.13 This system
represents N + NS � 1 variables in N + NS � 1 unknowns: one unknown wage change per country,
one unknown firm entry change per country⇥sector, and one unknown excluded as numeraire.

3. Use equation (12) to measure the change in U.S. pollution emissions, given the values from steps 1
and 2.

The historic values of shocks to foreign and domestic competitiveness, environmental regulation, and
expenditure shares are {�̂⇤

od,s, t̂
⇤
o,s, �̂

⇤
o,s}, calculated using equations (18) through (21). By construction,

these values solve the two equilibrium conditions (10) and (11) in every country, industry, and year for the
wage changes and firm entry changes (ŵ⇤

o and M̂ e⇤
o,s) which actually occurred. Hence, if we take observed levels

of trade, pollution emissions, and production from the initial year 1990, add the shocks {�̂⇤
od,s, t̂

⇤
o,s, �̂

⇤
o,s}

which actually occurred between 1990 and some future year, and calculate the new equilibrium, we recover
the historic value of pollution from that year. However, we are interested in what pollution would have been
if shocks had not equaled their historic values.

To decompose the change in pollution into the e↵ects of the separate shocks, we study a specific set of
counterfactuals. Consider the shock to foreign competitiveness. To measure how foreign competitiveness
a↵ected pollution, we define the shocks as follows:

{�̂od,s, t̂o,s, �̂o,s} =

(
{�̂⇤

od,s, 1, 1} if o 6= U.S.

{1, 1, 1} if o = U.S.
(39)

This says that the foreign competitiveness shock �̂od,s took on its historic value �̂⇤
od,s, o 6= U.S., but other

shocks remained fixed at their 1990 values (i.e., the proportional change for every other shock equals one).
Given the shocks defined in equation (39), we use steps 2 and 3 of the algorithm to recover the pollution
emitted in this counterfactual. We do a similar calculation for each shock separately. For example, to measure
the pollution change due to environmental regulation, we define the shocks as {�̂od,s, t̂o,s, �̂o,s} = {1, t̂⇤o,s, 1}.
We then follow steps 2 and 3 of the algorithm described above to measure the implied pollution under these
shocks.

Three additional points may clarify this algorithm. First, setting all shocks equal to their historic
values at once recreates the historic decline in pollution. Second, although we are choosing the shocks to
characterize a counterfactual, the firm-level decisions in the model — like entry, exit, abatement, production,
and exports — are all adjusting freely in response to the shocks. Third, we analyze the model separately
for each pollutant.

Appendix Table C2 explores the sensitivity of the results to di↵erent sets of starting values needed for
the algorithm to solve systems of nonlinear equations (10) and (11). We randomly draw 1,000 di↵erent sets
of starting values from the uniform distribution [0.75,1.25].14 Each set of starting values represents changes
in wages in each country and firm entry decisions in each country⇥sector. The objective function appears to

13To solve the system of nonlinear equations, we use a standard trust-region dogleg algorithm. However, as we discuss below
and show in Appendix Table C2, other algorithms and randomly-chosen starting values give equivalent results.

14We choose this range to cover common values of shocks observed in data and described in Appendix Figure A4. Some
starting values well outside this region fail to converge.
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be somewhat flat in a narrow range around the main set of results; di↵erent starting values obtain slightly
di↵erent values of the changes in wages and firm entry decisions which are not numerically equivalent to
the main results. However, column (1) shows that the di↵erences between these equilibria are very small
and appear only between the 29th and 31st decimal point. Because we only have 32 digits of calculation
precision, these di↵erences in equilibria may reflect numerical precision due to computational limits. We also
report results using two alternative algorithms for solving systems of nonlinear equations—a trust-region
reflexive algorithm and a Levenberg-Marquardt algorithm. Both yield very similar, though not numerically
equivalent values of the objective function, and yield the same estimate of how regulation a↵ects pollution.

Column (2) of Appendix Table C2 shows that the ratio of U.S. pollution emissions in 2008 relative to 1990
is nearly identical in every set of starting values and algorithms we use. Across the thousand alternative sets
of starting values, the standard deviation is 8.33E-31. These results suggest that our quantitative conclusions
are the same with other starting values or algorithms.

Appendix C.7 Additional Model Sensitivity Analyses

We now consider the sensitivity of the paper’s main results to parameter estimates and model assumptions.
Table C1 begins by investigating model sensitivity to alternative parameter specifications. The first row
shows that by 2008, NOx emissions from U.S. manufacturing were 46.46 percent of their 1990 values. The
paper’s main estimates imply that environmental regulation alone would have caused pollution emissions to
equal 47.53 percent of their 1990 value by 2008 (column (3), row (2)). Rows 3 and 4 explore how sensitive
this conclusion is to changes in the underlying Pareto shape parameter estimates. Because the Pareto
distribution best approximates the size distribution for the upper tail of firms, our main estimates of these
parameters use the largest 10 percent of firms in each industry. Estimating the Pareto shape parameters
using the top 50 percent of firms in each industry, or using the top 25 percent of firms in each industry,
hardly a↵ects the main conclusions. These two alternatives imply that environmental regulation would have
led NOx emissions to be 48.16 or 48.02 percent of their 1990 value by 2008, which are extremely close to the
main results.

Rows (5) and (6) of Appendix Table C1 explore sensitivity to changes in the pollution elasticity ↵s. Row
(5) assumes that the pollution elasticity is one-fourth of our estimated values, and row (6) assumes that the
true values of ↵s are four times the values of our main estimates. The former implies that environmental
regulation alone would have led pollution emissions to be 48.85 percent of their 1990 value in 2008; the latter
implies that environmental regulation alone would have led pollution emissions to be 46.04 percent of their
1990 value by 2008. These alternative parameter values modestly a↵ect the magnitude of how environmental
regulation a↵ects manufacturing NOx emissions. However, across the four alternative sets of results, the
qualitative conclusion persists that regulation explains most of the change in pollution.

Appendix C.8 Pollution Intensity and Total Factor Productivity: Details

Figure 2 plots the relationship between plant level pollution intensity in total factor productivity. This
section provides additional details underlying this figure. We use the 1990 Annual Survey of Manufacturers
(ASM) which provides information on input decisions and total output at the plant level. We match the
ASM to the National Emissions Inventory (NEI) using name and address matching techniques. Details of
the match can be found in Appendix C.1. We use the sampling weights in the ASM to adjust plant-level
output by the inverse sampling probability of a plant in the survey.

For each plant and each pollutant we divide total emissions by inventory adjusted real output.15 We

15Inventory adjusted total output is defined as the total value of shipments, minus the di↵erence between finished goods
inventory between the beginning and end of the year, minus the di↵erence between work in progress inventory at the beginning
and end of the period.

23



use industry-specific price deflators from the CES-NBER Productivity database to deflate output using
an SIC-4, industry-level index normalized to 1 in 2008. We then compute a plant-level index measure of
total factor productivity, using a Cobb-Douglas production technology and assuming constant returns to
scale.16 Production inputs include labor, capital, and materials. We approximate the output elasticities of
production inputs using industry-level cost shares from the NBER-CES productivity database. All inputs
were deflated using industry, input-specific price deflators from the NBER-CES productivity database.

We divide the sample into 10 deciles based on total factor productivity. We then compute the mean
values of log productivity and log pollution per unit of real output within each decile, weighting the decile
mean by plant-level inventory-adjusted, real output. Figure 2 plots the results for each of the six pollutants
in our sample. Each pollutant scatter plot is accompanied by a linear fit, relating plant-specific emissions
intensities to total factor productivity at the same plant. The line is fit to the entire sample, not simply the
decile means.

16Plant TFP is computed as its logged output minus a weighted sum of its logged labor, capital, materials, and energy inputs.
That is

TFPit = yit � ↵ltlit � ↵ktkit � ↵mtmit � ↵eteit

where the weights ↵j are the input elasticities of input j 2 {l, k,m, e}. Index productivity measures are common in the literature
partly because they are easy to construct and also because they are a nonparametric first-order approximation to a general
production function. See e.g., Syverson (2011).
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