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Abstract 
 

This paper discusses the construction of a new longitudinal database tracking inventors and 
patent-owning firms over time. We match granted patents between 2000 and 2011 to 
administrative databases of firms and workers housed at the U.S. Census Bureau. We use 
inventor information in addition to the patent assignee firm name to and improve on previous 
efforts linking patents to firms. The triangulated database allows us to maximize match rates and 
provide validation for a large fraction of matches. In this paper, we describe the construction of 
the database and explore basic features of the data. We find patenting firms, particularly young 
patenting firms, disproportionally contribute jobs to the U.S. economy. We find patenting is a 
relatively rare event among small firms but that most patenting firms are nevertheless small, and 
that patenting is not as rare an event for the youngest firms compared to the oldest firms. While 
manufacturing firms are more likely to patent than firms in other sectors, we find most patenting 
firms are in the services and wholesale sectors. These new data are a product of collaboration 
within the U.S. Department of Commerce, between the U.S. Census Bureau and the U.S. Patent 
and Trademark Office. 
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1. Introduction 

Policy makers, researchers and the public are interested in understanding the sources of job creation and 

economic growth in the U.S. economy. Innovative firms are believed to play an important role in this 

regard, introducing new products or services that satisfy a previously unmet need or processes that 

provide existing goods and services in new and more efficient ways. These firms will prosper and grow 

and their competitors will adjust and respond with further innovations of their own, or become obsolete 

and eventually exit the market. The reallocation of resources from less productive, less efficient firms to 

more efficient and productive firms is in large measure responsible for the productivity gains that 

ultimately drive the long-term improvements in our standards of living. Despite the importance of this 

innovation and reallocation process to U.S. economic growth, our understanding of the particular firms at 

the center of the innovation activities and their role in reallocation and productivity growth is still very 

limited.1   

The current debate concerning the value of more recent innovations relative to the great 

breakthroughs of the past is a clear indication of our inability to track the impact innovative activity has 

on reallocation and productivity growth in the U.S. There are two reasons for this. First, it is hard to 

identify innovative firms. Data on the innovative activities of firms are hard to capture because the 

outputs of innovation (e.g., knowledge, networks, new process, new software, and marketing) are 

challenging to quantify. As a consequence, the field lacks a properly defined identifying frame. Second 

and relatedly, researchers often rely on inputs to innovation such as R&D expenditures as a proxy for 

innovation or technological progress because measuring innovation is difficult. However, R&D survey 

data are at best an imperfect measure of the inputs of innovation, and are typically skewed towards the 

                                                 
1 See Cohen (2010) in the Handbook of the Economics of Innovation for a review of the literature in this area. 
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largest firms thus missing the smaller and younger firms – the most dynamic segment in the U.S. 

economy.2   

This paper discusses a new longitudinal linked patent-business database tracking patenting firms 

and inventors over time created under a joint effort between the U.S. Census Bureau and the U.S. Patent 

and Trademark Office (USPTO). Information contained in granted patents allows us to capture the types 

of inventive activity that result in a U.S. patent. In this initial research effort, we match patents issued in 

the U.S. between 2000 and 2011 independently to two Census Bureau administrative databases, one of 

businesses (firms) and the other of workers. Prior efforts have used the assignee information contained in 

patent documents to identify the firms where the innovation is taking place [see Hall, Jaffe, and 

Trajtenberg (2002), Kerr and Fu (2008), Balasubramanian and Sivadasan (2010, 2011), Eberhardt et al. 

(2011)]. The presence of non-standard business names in patent documents and the fact that corporations 

often file for patents through subsidiaries or other legal entities complicates identification of the patent 

assignee business considerably [Thoma et al. (2010)]. Here we extend earlier approaches by exploiting 

not just the business assignee names, but also the inventor information contained in the focal patent 

document.  

Using both inventor and assignee information to disambiguate and link granted patents to their 

firm owners is a methodological innovation in the field. Using the inventor information on the patent 

allows us to identify human inventors and match these to the population of U.S. workers available in 

Census Bureau databases, which provides us with an independent link to the parent corporation where 

they were employed at the time the patent application was filed at the USPTO. We triangulate the two 

                                                 
2 Most of what we know in this area is based on cross sectional samples of R&D expenditure survey data. R&D 
survey frames are identified from administrative records and other available information. For example, a firm is 
identified as an R&D firm in an administrative data set if it has claimed an R&D tax credit. However, small and 
young businesses may overlook the R&D tax credit because they assume they must have on-site laboratories or 
breakthrough research to claim the credits (see Section 174 Test of the IRS regulations). Others might fear they 
might face complex tax calculations or trigger an IRS audit. Another criticism of these surveys is that small firms 
are typically under-represented and only the most successful ones might survive and be included. 
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independent sources of business information (assignees and inventors) to maximize match rates and 

provide validation for a large portion of matches.  

The result is a database tracking patenting firms as well as the network of inventors employed at 

those firms. We are able to account for ownership on 91 percent of U.S. patents using this approach, a 

significant improvement over prior efforts matching 70-81 percent [Kerr and Fu (2008), Balasubramanian 

and Sivadasan (2010)]. Disambiguated databases of both patenting firms and human inventors are 

byproducts of our triangulation. Forthcoming papers will offer descriptions of the disambiguated 

databases. In this paper, we describe only the firm database, documenting basic features of the patenting 

firms we have identified along with characteristics of their patent portfolios.  

Our methodological improvement allows us to provide richer information on patenting by the 

smallest and youngest firms in the U.S., a segment often underrepresented by standard methods. We find 

patenting firms, particularly young patenting firms, disproportionally contribute jobs to the U.S. 

economy. Consistent with the literature we find patenting is a relatively rare event among small firms but 

nevertheless most patenting firms are small.3  We also find that, compared with patent rates among the 

oldest firms, patenting is not as rare of an event for the youngest U.S. firms. Moreover, while 

manufacturing firms are most likely to patent, we find that most patenting firms are in the services and 

wholesale sectors. Because our methodological improvement allows us to follow both establishments 

(locations, often sub-units of firms) and firms (often larger parent entities) over time, we are able to 

leverage the firm-worker links in the Census databases, thereby providing an opportunity to explore 

where invention occurs, and possibly allow researchers to identify the particular establishment locations 

where specific inventive activities are taking place.4 

Because of the sensitivity of Census Bureau data used in the match, the micro database is 

restricted-use, but will be updated annually and, contingent on review, eventually will be accessible to 
                                                 
3 See Balasubramanian and Sivadasan (2010, 2011). 
4 We will explore these aspects in future papers. 



5 
 

qualified researchers with approved projects through secure U.S. Federal Statistical Research Data 

Centers.5  However, a specific goal of the joint Census Bureau-USPTO project is, to the greatest extent 

possible, to create a series of new public-use products derived from the confidential microdata, since 

public-use tabulations at the Census Bureau meet disclosure avoidance rules and are thus accessible to 

any member of the public wishing to explore and conduct research with such aggregated tabulations. 

Early results from one possible set of such tabulations are discussed in this paper.  

The rest of the paper is organized as follows. Section 2 describes the source data used in the 

construction of the new database. Section 3 describes the creation of the inventor and firm linkages and 

our triangulation of the data to identify and validate matches. This is followed in Section 4 with a 

description of the new linked database. Section 5 highlights some basic features of patenting firms using 

the longitudinal linked patent-business database. Section 6 concludes with a discussion of directions for 

future work. 

2. Data Sources 

We use four different datasets to construct the longitudinal linked patent-business database, one derived 

from USPTO data and three built from information housed at the Census Bureau. The first, the USPTO 

Patent Data Extract, contains bibliographic information including names of the human inventor(s) and the 

organization assignee(s) associated with each granted patent. In the United States during 2000-2011, 

patents only issue to human inventors, and it is therefore common for an agreement – generally an 

employment agreement – to assign patent rights to a business firm – generally an employer-assignee.6  

Such “assignments” are information recorded routinely on the granted patent document. 

Three Census datasets are also employed. The first of these is the U.S. Census Bureau Business 

Register, a dataset containing the list of all businesses in the U.S. and the source of the business name 

                                                 
5 For more information on secure Federal Statistical Research Data Centers, visit http://www.census.gov/fsrdc.  
6 The America Invents Act (2011) altered this rule concerning granting to non-human inventors, but the law was 
implemented after our study period so does not affect our data. 

http://www.census.gov/fsrdc
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information used to link to the assignee business names in the patent records. The second is the 

Longitudinal Business Database, a longitudinal file describing business activity for establishments and 

firms in the U.S., and the source of economic information including the type of activity, employment, 

payroll and location of the establishments and firms. The third is the Longitudinal Employer Household 

Dynamics (LEHD) Employment History Files, a longitudinal file containing a list of job records (worker-

employer associations) and the source of the information used to link human inventors in the patent 

records to their employers at time of the focal patent’s application filing. We discuss these in turn. 

2.1. Bibliographic Patent Data Extract 

Our primary source of patent data is the USPTO’s Patent Technology Monitoring Team (PTMT) Custom 

Bibliographic Patent Data Extract. These data are produced annually, generally around March or April, 

from the bibliographic text files for the patents granted by the USPTO in the previous calendar year. 

Available data include the patent number, series code and application number, type of patent, filing date, 

title, grant date, inventor information (names), assignee type and name at time of grant, foreign priority 

information, related U.S. patent documents, classification information, U.S. and foreign references, 

attorney, agent or firm/legal representative, Patent Cooperation Treaty information, abstract, and if 

present a statement of U.S. Government interest.7  We supplement the PTMT data with information on 

assignee city and state from the USPTO Bulk Download data publicly hosted on the internet.8    Further, 

the PTMT data contain information on the primary assignee only so, for patents with multiple assignees, 

we obtain information on additional assignees from the USPTO Bulk Download data.9 

                                                 
7 Additional information is available at http://www.uspto.gov/web/offices/ac/ido/oeip/taf/reports.htm. The files can 
be downloaded from: https://eipweb.uspto.gov/TOC/ (accessed February 13, 2015). 
8 These are available at:  http://www.google.com/googlebooks/uspto-patents-applications-biblio.html.  
9 Note, there are some discrepancies between the USPTO Bulk Download data and the PTMT data including some 
additional granted patents in the USPTO Bulk Download data, which we retain for our analysis. Moreover, since 
PTMT data is routinely standardized to unique common entity names prior to release (for instance, “IBM” and “Int’l 
Business Mach” may be standardized to “International Business Machine”), we use that standardized information 
but also retain the original, unstandardized information from the USPTO Bulk Download data to improve our 
matches to Census datasets.  (The company name example above is sourced solely from the publicly-available 
USPTO data.)  

http://www.uspto.gov/web/offices/ac/ido/oeip/taf/reports.htm
https://eipweb.uspto.gov/TOC/
http://www.google.com/googlebooks/uspto-patents-applications-biblio.html
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To create the longitudinal linked patent-business firm-level data described in this paper, we focus 

on information from the over 2.3 million patents granted from 2000 to 2011. Of these issued patents, just 

under 90 percent are assigned to either a U.S. or foreign “non-government organization”, individual, or 

government. The remaining patents are listed as “unassigned” with the assumption that ownership 

remains with the human inventor(s). Table 1 shows the frequency of all granted patents, all those 

assigned, and all those assigned to a named organization assignee, by year. The number of patents granted 

each year is relatively stable with the exception of a drop in 2005 and an uptick in the 2010-2011 period. 

Table 2 shows the frequency of assignee types in the granted patent data. According to the applicant type 

code provided in the PTMT file, the bulk of patents are either assigned to a U.S. non-government 

organization (44.3 percent) or to a foreign non-government organization (43.8 percent), while less than 

one percent of patents are assigned to U.S. or foreign individuals and less than one percent are assigned to 

U.S. or foreign governments. 

We exploit the inventor and assignee name information in the patent documents to link to two 

restricted-use Census databases. Inventor information included in the PTMT file is limited to inventor 

name, city, and state, and is generally provided at the time of patent application and not necessarily 

updated at the time of grant. Understanding this limitation, we use this information to link to the LEHD 

Employment History Files. Information on firm assignee(s) is generally designated at time of grant and 

includes assignee name, city, and state. We use this information to link to the Census Bureau’s Business 

Register, recognizing that there is often a considerable lag between the date on which the patent 

application is filed (when inventor information may be collected) and issued (when assignee information 

may be collected).10 

                                                 
10 During the 2000-2011 study period, the USPTO reported average pendency to grant averaged about 36 months, 
after accounting for continued applications and other influences.  
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2.2. The U.S. Census Bureau Business Register  

Name and address information for businesses in the U.S. come from the Census Bureau’s Business 

Register (BR). Since 1972, the Census Bureau has maintained a general-purpose business register for 

statistical purposes. The BR servers multiple purposes, it is the frame for economic censuses and surveys, 

it is a repository of administrative data, and it is the source data for Census public use products including 

the County Business Patterns (CBP) and the Business Dynamics Statistics (BDS). The database covers all 

U.S. business establishments and companies with paid employees filing taxes with the Internal Revenue 

Service.  

The BR is continuously updated with administrative data from business income and payroll 

filings, as well as data collected through economic census and surveys. Naturally, the amount of detail 

that is available in the BR about a particular employer depends largely on whether the industry is covered 

by the Economic Census. Industries outside the scope of the Economic Census include:  Agriculture, 

Forestry and Fishing, Railroads, U.S. Postal Service, Certificated Passenger Air Carriers, Elementary and 

Secondary Schools, Colleges and Universities, Labor Organizations, Political Organizations, and 

Religious Organizations. For these employers we simply have basic administrative data and we do not 

collect information about the activity or location of the establishments associated with the employer or 

whether multiple employers fall under common ownership or control of a firm. Most public 

administration and governmental entities (NAICS sector 92) are not part of the BRs statistical unit 

coverage. The only exceptions are state-run liquor stores, central reserve depository institutions, federal 

and federally-sponsored nondepository institutions and hospitals.11   

                                                 
11 We are in the process of identifying public administration data to supplement the Business Register. 
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2.3.  The Longitudinal Business Database 

The Longitudinal Business Database (LBD) is a longitudinal (research ready) version of the BR [see 

Jarmin and Miranda (2002) for details].12  A benefit of working with the LBD is the high quality 

longitudinal linkages that allow accurate measurement of establishment and firm births and deaths. Given 

the ubiquitous changes in ownership among U.S. firms, a common feature in administrative micro data 

such as the BR is spurious firm and establishment entry and exit as a result of purely legal and 

administrative actions. The LBD minimizes these issues by enhancing existing identifiers with name and 

address matching algorithms. The LBD includes annual observations beginning in 1976 and is updated 

annually – the most current update runs through 2013. It provides information on the type of activity, 

location, employment, payroll, and legal form of organization for every establishment in scope of the 

CBP. Employment observations in the LBD are for the payroll period covering the 12th day of March in 

each calendar year.  

A unique advantage of the LBD is its coverage of both firms and establishments. Only in the 

LBD is firm activity captured up to the level of operational control instead of being based on an arbitrary 

taxpayer ID. All of the establishments under the control of a common legal operating entity are assigned a 

common firm identifier. This extends to establishments of subsidiaries – as long as the parent corporation 

controls more than 50 percent of their stock. This allows us to define firm characteristics such as firm size 

and firm age. We construct firm size measures by aggregating the establishment information to the firm 

level using the appropriate firm identifiers. We construct firm age following the approach adopted for the 

BDS and based on prior work [see, e.g., Becker et al. (2006), Davis et al. (2007) and Haltiwanger, Jarmin 

and Miranda (2013)]. Namely, when a new firm identifier arises for whatever reason, we assign the firm 

an age based on the age of the oldest establishment that the firm owns in the first year in which the new 

firm identifier is observed. The firm is then allowed to age naturally (by one year for each additional year 

                                                 
12 For more information about the LBD, see the Center for Economic Studies website at 
http://www.census.gov/ces/dataproducts/datasets/lbd.html. 

http://www.census.gov/ces/dataproducts/datasets/lbd.html
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it is observed in the data) regardless of any acquisitions and divestitures as long as the firm continues 

operations as a legal entity. Our ability to track both establishments and firms allows us to compute 

measures of organic growth that abstract from growth that results from merger and acquisition activity.13 

2.4. The LEHD Employment History Files 

The LEHD Employment History Files (EHF) are a product of the Longitudinal Employer Household 

Dynamics (LEHD) program of the U.S. Census Bureau.14  The EHF is sourced from state Unemployment 

Insurance (UI) wage records. The UI wage records are collected by state employment security agencies in 

compliance with the Social Security Act of 1935. Employers are required to report the total amount of 

wages paid to each employee during a quarter to determine an individual’s eligibility when filing an UI 

claim. The Census Bureau receives these data in a partnership with state employment security agencies. 

The UI records connect individuals to every employer from which they received wages. Wage records 

include information on the individual's Social Security Number, the first name, last name, and middle 

initial of the employee – these are replaced with an anonymous protected identification key (PIK) by the 

Census Bureau immediately upon receipt, as well as the UI account number or state employer 

identification number (SEIN) of the employer to identify the employer. The LEHD program uses these 

data to construct public-use statistics including the Quarterly Workforce Indicators and OnTheMap. The 

EHF is a virtual census of wage and salaried private employment non-farm payroll. The only major 

category of private sector workers not covered by the UI system are self-employed workers. Other 

workers not covered include members of the armed forces, federal employees, local government 

employees and state elected officials, and members of the judiciary. Some small agricultural enterprises 

and religious organizations are also excluded from the system. Data in the EHF go back to 1985 but are 

only available for a majority of states starting in 2000. For our purposes it is important to note that even 

                                                 
13 See the appendix to Haltiwanger, Jarmin, and Miranda (2013) for an in depth treatment of these issues. 
14 For more information about the LEHD program, see the LEHD website at http://lehd.ces.census.gov/. 

http://lehd.ces.census.gov/
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post-2000 there is incomplete coverage of states.15  A relevant feature of the EHF file is that it can easily 

be linked to Census Bureau personal characteristics files including demographics such as age, race, 

gender, and country of origin of workers in the US. It can also be linked to the BR via the Employer 

Characteristics File (ECF). The ECF includes the UI account number of the employer --the State 

Employer Identification Number (SEIN), as well as a Federal Employer Identification Number (EIN).  

3. Linking Methodology 

The data integration methodology follows a multi-step process shown in Figure 1. We first link patent 

assignee names contained in the patent data directly to firm names in the BR files. This link provides 

information about the legal operating entity that owns the patent as well as numeric identifiers including 

the Federal Employer Identification Number (EIN) and the firm identifier (ALPHA) common across 

Census Bureau business files. Second, we link inventor names contained in the patent data to the LEHD 

data. This link is done in two steps:  (1) assign PIKs to inventors in the patent data and (2) link inventors 

to the LEHD data by PIK. The link to the LEHD data provides information about the inventor, their 

coworkers, and their employer(s). Patent documents contain very limited name and address information 

on inventors and assignees, which limits our ability to identify them uniquely. This problem is common to 

all matching exercises using patent data. It is for this reason that traditional matching efforts making use 

of assignee information alone are limiting. Our approach differs from previous efforts in that we can 

exploit information on the inventors. In the initial matching exercise we allow matches to multiple firms 

and inventors in order to minimize the number of missed links (Type II errors). We then triangulate the 

independently matched databases to eliminate the incorrect matches (Type I errors).16  We describe the 

matching process in detail below. 

                                                 
15 We use the 2011 snapshot of the LEHD infrastructure files. Data for Alabama, Arkansas, the District of 
Columbia, and Mississippi all start after 2000. The 2011 snapshot does not contain data for Massachusetts. For 
details on coverage by state, see Table 1.2 in Vilhuber and McKinney (2014). 
16 Typical matching exercises rely on a single match thus requiring a careful simultaneous balance of Type I and 
Type II errors in a single step. 
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3.1. Patent Assignee Name to BR Firm Name Match 

We match the patent assignee name to a firm name on the BR using an automated-rules based approach 

that defines name matching rules and compares the similarity of names. We use the available address 

information to limit our search to the set of feasible potential matches. Patent assignment information is 

generally provided at time of grant. However, we match assignment information to all years of the BR, 

from 1999 to 2012, to allow for potential timing mismatches between the patent data and the BR data. It 

is important to note patent assignees include non-U.S. firms.17  Foreign firms that have no establishments 

in the U.S. will not be present in the BR; however,  many foreign firms do have activity in the U.S. While 

we attempt to match foreign assignee names to the BR we anticipate much lower match rates for that 

sample. 

In preparing the patent file for matching, we first drop all patents that have no business assignee 

name (unassigned or assigned to either a U.S. or foreign individual).18  This yields 2,054,754 patents. The 

last column of Table 1 shows the annual frequency of this set of patents, which includes patents assigned 

to U.S. and foreign entities. We treat U.S. and foreign assignee names differently in the name match 

process. They are treated differently for two reasons:  (1) we do not have city and state information for 

foreign firms; and (2) foreign assignee names may be structured differently than U.S. assignee names.19  

The lack of information on city and state for foreign firms means we have no blocking variable (i.e., no 

way to limit the possible set of matches). This makes use of the SAS DQMatch fuzzy matching procedure 

we use for U.S. firm names computationally unwieldy.20 

                                                 
17 If the assignee state field contains no characters in the patent assignee data downloaded from Google, the assignee 
is classified as a foreign assignee. 
18 It is outside of the scope of this project to identify patents that remain unassigned or are assigned to the human 
inventor. In future work we will explore their identification amongst non employer firms. 
19 One illustrative example is the Japanese firm styled “Panasonic Corporation” in the U.S., the Japanese name for 
which is Panasonikku Kabushiki-gaisha. Note, this is an illustrative example only and is not taken from restricted-
use microdata. 
20 Foreign firm names are also in a variety of different languages and the version of SAS DQMatch we use when 
matching U.S. firm names is optimized for English. 
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For U.S. assignees in the patent data, we use assignee city/place and state information to attach a 

3-digit zip code to the assignee. We do this because zip code information is readily available in the BR 

and is much more reliable than place names as a matching variable. In some cases, multiple 3-digit zip 

codes are attached to a single assignee if the place straddles multiple 3-digit zip codes. We next 

standardize the firm name field by deleting punctuation and symbols (e.g., “.”, “-”, “&”, “@”), common 

words (e.g., “and”, “the”), legal entity designations (e.g., “Corp.”, “Co.”, “LP”, “LLC”), and removing 

blanks. Firm names from the BR are standardized using the same algorithm. We perform several 

matching passes: 

1. Match patent assignee name and 3-digit zip code to BR firm name and 3-digit zip code. 

2. For remaining unmatched U.S. assignees, match patent assignee name and state to BR firm name 

and state. 

3. For remaining unmatched U.S. assignees, use SAS DQMatch “fuzzy” name matching algorithm 

to match patent assignee name to BR firm name blocking on 3-digit zipcode.  

4. For remaining unmatched U.S. assignees, use “fuzzy” name matching algorithm to match patent 

assignee name to BR firm name blocking on state. 

5. For remaining unmatched U.S. assignees, use “fuzzy” name matching algorithm to match patent 

assignee name to BR firm name removing all geographic blocking variables. 

We also try a word matching algorithm (described below as step 2 for foreign assignee name matching), 

but did not find this algorithm produced additional good matches for the remaining unmatched U.S. 

assignees after SAS DQMatch fuzzy matching. Over 87 percent of U.S. assignees are matched to at least 

one BR firm identifier in steps 1 and 2. Note we keep all matches resulting from the above steps. This 

means we will have multiple matches for many assignee names. Many of these multiple matches will be 

resolved during the triangulation process described later in this section.  



14 
 

For foreign assignees in the patent data, we have only the assignee name listed on the granted 

patent. We standardize the foreign assignee names in the same way as the U.S. assignee names. We then 

perform the following matching passes: 

1. Match patent assignee name to BR firm name. 

2. For remaining unmatched foreign assignees, use a word matching algorithm (based on the 

components of the business name) to match patent assignee name to BR firm name with no 

blocking variable. The following rule applies here: 

a. If a match is not achieved, then remove the last word of the name and match again. 

b. Continue until there are only two words left in the name.  

c. Keep the match or matches from the earliest pass (the pass that uses the largest amount of 

information). 

As noted above, we do not apply SAS DQMatch to these records because of high computational cost due 

to the lack of geographical blocking variables. Approximately 35 percent of foreign assignees have at 

least one match to a BR firm name in the first step and just under 24 percent are matched in the second 

step. This total match rate, approximately 59 percent, is considerably lower than the match for U.S. 

assignees. The lower total match rate is expected since foreign firms with no physical presence in the U.S. 

have no chance of being matched. 

3.2. Inventor PIK Assignment 

Patent documents do not include social security numbers or birth dates for inventors so we rely on the 

available identifying fields:  the inventor’s name and the city and state of residence. We also know the 

likely vintage of the inventor information since inventor information is supplied to the USPTO in the year 

the patent application was filed. In order to match inventors from the patent data to workers in the LEHD 

data, inventors first need to be assigned an anonymous PIK. The Census Bureau uses the Person 

Identification Validation System (PVS) to assign PIKs to replace personal identifying information on any 
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file immediately upon acquisition. The PVS uses probabilistic linking to match person data to a reference 

file built from a combination of administrative and commercial databases. See Wagner and Lane (2014) 

for a description of the process. Note this reference file includes not only names but also residential 

address information. 

We create a set of inventor files for patents granted between 2000 and 2011 with application 

years of 1996 and later from the PTMT data.21  Table 3 shows the percent of U.S. and foreign inventors in 

the granted patents data. There are over 5.8 million non-unique named inventors on granted patents from 

2000-2011. Of these, roughly 47 percent are foreign inventors with no U.S. address.22  Foreign-based 

inventors with no U.S. address will not be in the PVS reference files or the LEHD data.23  Therefore, we 

limit the sample of inventors we feed into the PVS process to inventors with U.S. addresses in the patent 

data. We then use the inventor city and state of residence information to attach a 3-digit zip code to the 

inventor.24  Files with inventor name, state, and 3-digit zip code are used as an input to the PVS matching 

process. We attempt to assign PIKs to over 3.1 million non-unique inventors on over 1.2 million patents, 

which is 52 percent of the complete set of patents granted 2000-2011.25   

The standard PVS is used with a few changes particular to our specific application. First, since we 

are interested in working-age individuals covered by the LEHD data, we exclude matches to individuals 

in the reference files that are 16 years of age or younger. Second, due to the limited inventor information 

                                                 
21 We lose inventors on only a very small fraction of patents (less than 0.6 percent) and inventors (just over 0.6 
percent) by restricting to application years of 1996 and later. This restriction is made because reference files are not 
available in the PVS for years prior to 2000. The 2000 reference file is used for 1996-1999. 
22 U.S. inventors have a U.S. postal state code in the inventor state field on PTMT data; foreign inventors do not. 
23 Note there might be some rare exceptions to this. For example, a foreign- based inventor that receives a temporary 
permit to work in the U.S. in nonimmigrant status (e.g., an alien working at a U.S. company temporarily to work on 
an invention) might appear in the LEHD data. However, the PVS reference files do not generally cover these 
individuals.  
24 In some cases, city and state information link to multiple 3-digit zip codes. In these cases we provide all linked 3-
digit zip codes (zip3) as an input into the PVS. The input files are at the patent-inventor-zip3 level. 
25 Note, there are not 3.1 million different inventors, but here we treat each inventor-patent combination as a 
separate inventor since the patent data contains no inventor identifier. 
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available, we give additional weight to exact middle initial matches.26  Finally, for most applications, the 

PVS makes unique PIK assignments excluding cases that do not yield a unique match. Since we have 

limited inventor information and an opportunity to bring additional information to bear later in our 

matching process, we allow for multiple PIKs to be assigned to a single inventor. We performed three 

different matching passes as part of the PVS process: 

1. Fuzzy name match blocking by 3-digit zip code 

2. Fuzzy name match blocking by inventor state 

3. Fuzzy name match blocking by assignee state 

Only the PIK or PIKs assigned by the pass with the “best” information are retained. For example, if an 

inventor received PIKs in all three passes, only those from the first pass (block by 3-digit zip code) are 

kept.  

We find that in more than 97 percent of our inventor-patent combinations, at least one PIK is 

assigned. While many inventors are assigned multiple PIKs, over 90 percent of the 1.2 million patents 

have at least one inventor assigned with a unique PIK (noting that 68 percent of patents with at least one 

U.S. inventor include multiple inventors). This feature of the data in combination with the triangulation 

described in Section 3.4 can be leveraged to create a disambiguated inventor database.27 

3.3.  Matching the Inventor to the LEHD Data and BR Firm Identifier 

 Once PIKs have been attached to inventors in the patent data, the inventor data is linked to the LEHD-

EHF data using PIK as a matching variable. This link provides UI state identifiers (SEIN) for the 

employers where the inventor works. Recall, there is incomplete coverage of states in the LEHD data so 

                                                 
26 The middle name is typically not used in PVS. PVS typically relies on additional personal information - either a 
birth date or a Social Security number that is more reliable. 
27 We leave discussion of the inventor database to a later time. We simply note that uniquely identifying any one of 
the inventors on a team of inventors provides considerably power to disambiguating all other inventors in the team 
as long as they work for the same firm. So for example, a hypothetical David Smith (inventor A) can be 
disambiguated from a David Smith (inventor B) because they work with different co-inventors (inventor C) and 
(inventor D). 
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not all PIKs will match to the LEHD data. Roughly 90 percent of PIK-patent combinations match to at 

least one SEIN. We then use the LEHD-ECF file to get all the corresponding federal employer identifiers 

(EIN) where the inventor worked.28  Finally, we create a crosswalk between the EINs in the ECF and firm 

identifiers (ALPHA) on the BR. Note there are EINs in the ECF that do not appear in the BR and vice 

versa so not all ECF-EINs will match to the BR. We are able to match about 94 percent of the LEHD 

EIN-year combinations in our data to the BR.29  Our final output from this step is a file of all possible 

inventor identifiers (PIKs) -recall some inventors receive multiple possible PIKs - and all possible BR 

firm-year combinations associated with those PIKs.30 

3.4. Triangulation 

The matching described in Sections 3.1-3.3 generates two sets of files each providing an independent 

source of employer information including the EIN and the ALPHA. The business name match identifies 

all potential patenting firms in the BR. The inventor match identifies all potential firms in the LEHD data 

where the inventors may work. Our task then is to cross validate the matches and reconcile them 

whenever possible. We consider matches to be valid for consideration as long as they take place at the 

time of grant (for patent assignee) or application (for the inventor) or in a two year window around those 

dates.31 

Consider first the simplest type of case where the name of the inventor and/or the firm are rare 

and therefore easily identified in our data. Statistically, unusual names are more likely to provide a unique 

link. The inventor matches to a unique worker (PIK) who is in the employment of a single firm in the 

application year. The patent assignee name produces a unique firm match in the grant year. A match is 

considered closed and validated when the same firm is identified from the inventor (worker) and the 

                                                 
28 Once we identify an inventor in the LEHD we keep their whole employment history. 
29 This is consistent with match rates documented in  McCue (2012), pg.6, Table 5. 
30 This includes both the administrative identifier, the EIN, as well as the unique Census firm identifier, the ALPHA. 
31 We make a few exceptions to this rule; these are described later in the section. 
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assignee (firm-employer) sides. This situation is depicted in Appendix A, Figures A.1.1 and A.1.2. 

(Models 1 and 2). 

Many cases are considerably more complex than the simplest case described above. Recall, we 

match inventors at the application date and patent assignees at the grant date because those are the points 

in time when the information is most accurate and likely to provide correct matches in the LEHD or BR 

data.32  There is a considerable time lag between the application date and the grant date (an average of 

just under 3 years in our data). Common situations resulting from this time lag include the following:   

1. Firms that are active at time of application (identified through the inventor worker-to-employer 

link) might no longer be active as such at time of grant (identified through the firm name link). 

The original firm may have been acquired, merged, or changed its legal name which might trigger 

a change in the firm identifiers that the Census Bureau assigns to them (ALPHA). This situation 

is depicted in Appendix A, Figure A.1.3  (Model 3). Note that in this case even though the firm 

identifier may have changed we are still able find a link between the two sides of the match 

through an EIN. 

2. The firm at time of application, firm A, shuts down and its portfolio of patent applications is 

acquired by firm B, and granted under firm B’s name. The inventor may, or may not, have been 

later employed by firm B. This situation is depicted in Appendix A, Figure A.1.4. In this case 

there is no link between firm A and firm B (Model 4). 

3. The firm at time of application identified through the inventor-LEHD match and the firm at time 

of grant identified through the assignee name-BR match differ and they are both operational at 

time of grant. This may occur when a firm transfers their patent applications to another firm prior 

to grant or when a firm divests or spins off part of its activity (including patent applications) to 

another named entity. This situation might also arise when the research activity is outsourced to a 

                                                 
32 Inventors can switch jobs so timing is relevant to identifying the correct employer at the time the innovation was 
being developed. Similarly, merger and acquisition activity can lead to changes in the structure of firms. 
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contract research organization, or an entity in which firm A has an ownership interest but is not 

otherwise identified in the Census data as a subsidiary.33  This situation is similar to Figure A.1.4. 

In this case there is no link between firm A and firm B. 

4. The patent is owned by multiple assignees. This situation is similar to Figure A.1.5 (Model 5). 

We simplify these cases by treating each assignee-inventor combination as independent matches. 

5. The presence of non-standard business names in the patent data and the fact that corporations 

often file for patents through subsidiaries or other legal entities might lead us to find an inventor 

match but no assignee name match. This situation is depicted in Appendix A, Figure A.1.6 

(Model 6). In this case, it may be possible to validate the link using the inventor’s information 

from another patent on which the same inventor is named (but which may include different 

assignee information).  

6. For foreign inventors, we will not find the inventors place of work in our database. However, we 

may find the assignee name in the BR if the firm has a presence in the U.S. This situation is 

depicted in Appendix A, Figure A.1.7 (Model 7). For some of these cases it might be possible to 

validate the link using the assignee’s information from a different patent. 

In cases where simple triangulation is not sufficient to uniquely identify a unique firm we apply the 

following rules: 

1. The firm identified at time of grant dominates if this is a unique match.34 

2. If there is no unique firm identified at time of grant but there is a unique firm identifier at time of 

application then we look at the history of the inventor (or its network) to identify a likely firm at 

time of grant. This is depicted in Appendix A, Figure A.1.6. If no firm is identified at time of 

grant then we employ the firm identified at time of application. 
                                                 
33 A firm is identified as a subsidiary to a parent corporation by the Census Bureau when the parent owns at least 
50% of the subsidiary. 
34 Note this database makes it possible to distinguish the firms developing the innovation (where the inventors work) 
and the firms that are assigned the patent rights. We can also track the outcomes of both firms. We are exploring 
alternative selection rules. 
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Following this process, we are left with unmatched cases for which there is either (i) no unique match to a 

firm either directly through the assignee name or indirectly through the inventor name or (ii) there is no 

match using either. We resolve some of these cases manually. We first identify the assignees with the 

largest number of patents. We then perform manual name matching that includes visual inspection as well 

as web research.  

4. Linked Patent-Business Firm-level Data 

We use the crosswalk that results from the triangulation methodology described above to create a 

longitudinal database of patenting firms. We attempt to match roughly 2.1 million unique patent-assignee 

combinations from the USPTO bibliographic patent data extract to the BR/LBD.35  Of these, we match 

nearly 75 percent of all patent-assignee combinations. Table 4 shows our match rates. As expected many 

of our non-matches are for patents with foreign firm assignees. We match 91 percent of patents with U.S. 

firm assignees and nearly 59 percent of patents with foreign firm assignees.36  This compares to match 

rates of between 70 and 81 percent for U.S. patents in Balasubramanian et al. (2010) and Kerr and Fu 

(2008).  

Overall, we match more than 1.5 million patent-assignee combinations to over 77,000 firms. 

Figure 2, panel A shows the percent of firms by the size of their patent portfolio (number of patents per 

firm) in our sample. . During the 2000-2011 period, nearly 45 percent of patenting firms are granted only 

a single patent, over 16 percent are granted 2 patents, and about 25 percent are granted between 3 and 9 

patents. Deeper in the distribution, close to 8 percent of firms are granted between 10 and 24 patents, and 

about 4 percent of firms are granted between 25 and 99 patents. Among the most prolific patenting firms, 

over 1 percent of firms are granted between 100 and 499 patents and about 0.5 percent of firms are 

granted 500 or more patents. The average time between patent grants for firms that hold multiple patents 

                                                 
35 This is all patent-assignee combinations with an assignee organization name. Some patents have multiple 
assignees. 
36 We have no way of knowing how many of the foreign assignees have operations in the U.S. 
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is just over 1 year, a statistic heavily influenced by the large share of firms issued nine or fewer patents 

during our 12-year study period.  

While the vast majority of patent-holding firms hold a single patent or just a few patents, most 

U.S. patents are held by just a few firms. These large patent holders dominate patenting activity. Figure 2, 

panel B shows the percent of patents held by firms as a function of the size of the patent portfolio. At the 

top of the distribution, we see that firms with patent portfolios exceeding 500 patents account for 58% of 

all patents granted in the U.S. There are less than 500 firms in this group. There is a monotonic decline as 

the size of the portfolio declines. Firms with patent portfolios between 100 and 499 patents account for an 

additional 13% of patents. At the bottom of the distribution, firms with up to 9 patents account for 13% of 

all patents.  

After standardization, there are 153,889 different assignee firm names in our patent data.37 Note, 

this includes both primary and secondary assignees. Of these, 62 percent (~96,000) are linked to at least 

one firm identifier in the BR. Breaking out assignee names  by foreign and U.S., we link about 86 percent 

of U.S. firm names and 37 percent of foreign firms names to at least one BR firm identifier.38  For 

comparison, Balasubramanian and Sivadasan (2010) match roughly 64 percent of U.S. firms. 

Recall, we link to around 77,000 BR firm identifiers. This implies some of the approximately 

96,000 different firm names link to the same firm identifier. The ability to disambiguate firm names 

through the triangulation of two databases is an advantage of our linking methodology. This methodology 

also allows us to identify more complex situations that result in the same assignee name being assigned to 

different firm identifiers. This is because the triangulation algorithm can resolve to a different firm 

identifier for different patents. Some of these cases are valid - for example, a firm that is granted a patent 

as a single-unit firm and then expands to a multi-unit firm and is granted another patent will have a valid 

                                                 
37 Name standardization is described in Section 3.1. 
38 Here we identify a firm name as a “U.S. firm name” if it ever has a U.S. state in the patent data. There are about 
3,700 firms that are identified as both U.S. or foreign depending on the patent.  
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firm identifier change between these patents. Alternatively, a firm that reorganizes and changes its legal 

form  between patents but keeps the same name can also have a valid firm identifier change. However, 

other cases appear to be firms that contract out R&D where we are linking to the contractor rather than 

the actual assignee. We are investigating these cases and plan to improve these links in future versions of 

the crosswalk. Note, we also plan to keep the information on the firm where the inventors work at time of 

application even if it is not the final assignee firm as this is interesting information in its’ own right. 

Our final Patent-LBD crosswalk file has 2,118,911 unique patent-assignee-firm identifier 

combinations. This figure is larger than the number of patent-assignee combinations because in a small 

number of cases we allow a single patent-assignee combination to match to multiple firm identifiers in the 

BR. There are just over 1,500 of these multiple matches in the crosswalk.39  Table 5 shows the frequency 

of different types of matches in the crosswalk file. Nearly 30 percent of all matches are based on a Model 

1 loop close, which is the case where both the LEHD data match and BR data match lead to the same EIN 

and BR firm identifier. These matches are the highest quality in that they are validated by the 

triangulation strategy. Models 2 and 3 represent 2.5 percent of matches and are similarly closed loops 

where only the EIN or the firm identifier match and are considered validated. The next largest category 

accounts for 26.9 percent of the matches. These are cases where there is a match to a unique firm in the 

BR and no inventor match at all. Of these, 15.5 percent include firms that had been previously found to be 

a patenting firm in a Model 1-3 loop close. We consider these firms validated by their prior history. The 

remaining 11.4 percent have no prior history of validated patenting. The reverse situation is rare. There 

are relatively few cases where there is a unique link through the inventor and no link through the BR. 

These account for 4.5 percent of our matches and include cases validated through a prior inventor history, 

(1.9 percent), cases validated through a prior firm patenting history (1.3 percent), and cases not validated 

(1.3 percent). Roughly 5.3 percent of our matches are cases where the inventor links and assignee links do 

                                                 
39 These come from our manual matches. In these cases the firms appeared to be linked through a parent corporation. 
In the future, we plan to examine these cases more closely. 
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not line up but in which a unique link is identified either through the assignee (4.5 percent), or the 

inventor (0.8 percent). Our database also includes manual matches for some of the largest innovators not 

identified through our algorithm, accounting for 4.7 percent of matches. Finally, we include some 

matches that take place outside our valid 2-year window but in which both the inventor and the assignee 

agree (1.3 percent). It is notable that the bulk of our foreign assignee matches come from BR only 

matches, a reasonable outcome since inventors named on patents with foreign assignees are less likely to 

be based in the U.S. 

Table 6 provides a list of the variables included on the Patent-LBD crosswalk file. The crosswalk 

includes the patent identifier (PRDN) linking uniquely to the patent database and a firm identifier (firmid) 

linking uniquely to the BR/LBD. It also includes the patent application year, the patent grant year, the 

patent assignee sequence number and their country, state, and type (see Table 2), a U.S. inventor flag, a 

match flag (see Table 5), as well as the match years to the LEHD and BR datasets. 

Our match rate for patent-assignee combinations to the LBD is high, but we do not match them 

all. Figure 3 shows patent-assignee match rates by grant year for the full crosswalk, and broken out by 

type of assignee -U.S. assignees and foreign assignees. There is not much variation in match rates across 

years for the U.S. assignees. Notably, the match rate is over 90 percent in every grant year.40  Possibly 

related to how information flows into the patenting process, the match rate for foreign assignees shows an 

inverted-U shape over time, with minima in the earlier and later grant years and a peak at about 65 

percent in 2006.  

The type of match, and perhaps also the reliability of that match as captured by the match flag, 

also differs across assignee types. Figure 4 shows match rates by grant year broken out by broad type of 

match:  BR and LEHD match, BR only match, LEHD only match, other types of matches, and 

                                                 
40 This is consistent with Balasubramanian et al. (2010). 
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unmatched.41  Between 58 and 64 percent of U.S. assignee matches are BR and LEHD matches where we 

were able to validate by triangulating BR and LEHD data. For U.S. assignees, we do not see a lot of 

variation by grant year though the BR and LEHD match rates are slightly lower in the early and late grant 

years possibly reflecting various left- and right-censoring issues in the data. Less than 2 percent of foreign 

assignee matches in each grant year are BR and LEHD triangulated matches. Most matches are based on 

the BR only. 

The LEHD partnership with state employment security agencies has expanded over time, with 

some U.S. states only recently joining. We show match rates broken out by broad type of match and 

assignee state as given in the patent data in Figure 5. Not surprisingly, there is considerable variation in 

both overall match rate and broad match type across assignee states. The District of Columbia and 

Montana show the lowest overall with match rates below 70 percent, while Connecticut and New York 

show the highest overall with match rates around 95 percent. For most states, over 50 percent of matches 

are high-quality triangulated BR and LEHD matches. The state not in the LEHD data (Massachusetts) and 

states that came in to the LEHD data post-2000 (Alabama, Arkansas, the District of Columbia and 

Mississippi) have some of the lowest percentages of triangulated matches.42  This outcome makes sense 

since patent assignee state is correlated with the state where the inventor(s) work, but is not always the 

same.43  We consider triangulated matches to be our highest quality matches, so to the extent that match 

rates differ by type across assignee states, the quality of matches might differ by assignee state. 

                                                 
41 A match is a BR and LEHD match if match_flag = {A1, A2, A3}; a BR only match if match_flag = {B1, B2}; an 
LEHD only match if match_flag = {C1, C2, C3}; an other match if match_flag = {D1, D2, E1, E2}, and unmatched 
if match_flag is blank. 
42 This result is not ideal but we note Massachusetts still has high overall match rates due to disproportionate BR 
only matches and a significant number of triangulated matches. Massachusetts is routinely named one of the most 
innovative states by population, and one that generates a disproportionate share of entrepreneurial foundings. See, 
ITIF (The Information Technology & Innovation Foundation). 2014. "The 2014 State New Economy Index: 
Benchmarking Economic Transformation in the States."   
43 For example, consider a firm where the headquarters is in the patent assignee state and the research is taking place 
in an establishment of the firm located in another state. 
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We now examine match rates by several other patent characteristics, noting that the statistics 

reported in this analysis (Tables 7, 8, and 9) include all patent-assignee-firm identifier combinations in the 

Patent-LBD crosswalk. Looking first at team size (number of inventors per patent), we begin by noting 

that our matching methodology may bias our matches in the direction of patents with more inventors 

since we are likely at higher hazard of identifying at least one of the (several) inventors in the LEHD data. 

Table 7 shows match rates by inventor team size categories, both in terms of “all matches” and separated 

into U.S. and foreign assignee match rates. We observe a relatively small amount of variation in match 

rates by team size, though it does appear patents with between 2 and 9 inventors have slightly higher 

match rates than those with either a single inventor or 10 or more inventors. This difference is driven 

primarily by foreign patents and is consistent with the idea that non-U.S. patents are disproportionately 

represented in the set with 10 or more inventors.  

Next we examine match rates by number of (forward) citations per patent to see whether our 

match algorithm is biased toward more highly cited (and potentially more valuable) patents. Forward 

patent citations (references made by later issued patents) have been commonly used in the literature as a 

proxy for technological impact or economic value [Jaffe and Trajtenberg (2002)]. Table 8 shows match 

rates by number of citations. In general, match rates appear to increase with the number of citations. The 

difference is once again largely driven by foreign patents suggesting foreign firms with more important 

patents (and, relatedly, technologies, products, and services showing higher consumer demand) are more 

likely to have a physical presence in the U.S.  

Finally, Table 9 looks at match rates by technology category. We consider nine technology 

categories: Chemical, Computers & Communications, Drugs & Medical, Electrical & Electronic, 

Mechanical, Design, Plant, and Others.44  Among U.S. assignees, match rates are roughly similar across 

                                                 
44 Technology category assignment is based on U.S. Patent Classification codes assigned by USPTO and available 
in the U.S. Patent Grant Master Classification File. The category definitions are based on Hall et al. (2002) with 
additions described in detail in Dreisigmeyer et al. (2014). 
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technology classes, ranging between 90.2 percent and 92.6 percent, with the exception of patents in Drugs 

and Medical (85.7 percent) and Plant patents (showing the lowest match rate at 80.6 percent).45  Among 

U.S. patents matched to foreign assignees, we find a wider distribution of match rates. The Computers & 

Communications and Electrical & Electronic categories show the highest match rates (65.4 percent and 

63.2 percent respectively) and plant patents the lowest (31.1 percent), with those in other categories 

ranging between 55.5 percent and 49.4 percent. We surmise that this matching pattern among non-U.S. 

assignees is influenced by the high propensity of large Asian electronics firms to file many thousands of 

patents annually at the USPTO, and to also have business establishments located in the United States.46   

5. Patenting Firms in the U.S. 

We use the longitudinal linked patent-business database to explore basic characteristics of patenting firms 

in the U.S. For this simple illustrative exercise, we examine characteristics of patenting firms based on 

two different definitions of a patenting firm. In our time invariant definition, we define a firm as a 

patenting firm for all years if it has a patent granted any time between 2000 and 2011. We also create a 

time-varying definition of a patenting firm where a firm is considered to be a patenting firm in year t if it 

assigned a patent in year t. 

In both definitions, we consider all firms with at least one granted patent in our crosswalk to be 

“patenting firms” and do not consider the size and value of their patent portfolios. We also make no 

distinction for the technology class or the team size. Additionally, for this exercise we abstract from 

complex issues around the identification and timing of the innovative activity leading to the patent. The 

PTMT data include only granted patents and our approach is to identify assignee firms as close to the time 

                                                 
45 The lower match rates for Drugs & Medical is consistent with results from Balasubramanian et al. (2010). Lower 
match rates are possibly due to a disproportionate share of R&D for Drugs & Medical being conducted at 
universities. Also, merger and acquisition activity is particularly intense in this industry with small companies 
developing new drugs that then are targeted for acquisition. The lower match rates for Plant patents may be due to 
characteristics of assignees in the plant patenting category (such as greenhouses, and horticulturists) which are also 
out of scope of the Economic Census and the LBD.  
46 See for instance USPTO (2015) “Patent by Organizations” report, at:  
http://www.uspto.gov/web/offices/ac/ido/oeip/taf/topo_14.htm#PartB. 
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of patent grant as possible. However, identifying innovative activity at the time of patent grant is an 

arbitrary demarcation at best. Patents are often issued many years after the application is submitted so the 

grant date may be well after the actual innovative activity by the firm. Further, if we are interested in 

estimating the impact of innovation on firm outcomes, then it is important to note firms may exploit the 

invention while the patent application is still pending, and often expect to exploit their patents for many 

years after grant.  

With these caveats in mind, we pursue our interest in examining the characteristics of patenting 

firms using the two alternative definitions. Motivating our interest in a time invariant definition of a 

patenting firm is the notion that firms that patent are inherently different from firms that do not patent. 

The resulting descriptive statistics will capture the “stock” of all patenting firms as long as they are still 

active during the period of analysis. This approach allows us to describe how patenting firms differ from 

non-patenting firms – for example in terms of firm size, industry, or region at any point in time and 

regardless of when they actually receive the patent rights. . However, we are also interested in 

understanding when patenting takes place in the life cycle of a business. To answer these questions, we 

use the time-varying definition of a patenting firm. . A firm is defined as a patenting firm in year t if it is 

assigned a patent by our matching process in year t.47 This definition allows us to describe firms –for 

example their age, and job creation and destruction patterns, around the time of the granting of the patent. 

Under our time-varying definition, firms that hold a single patent will be classified as patenting firms for 

a single year in our calculations while those that are granted multiple patents might contribute multiple 

observations (one for each year that the firm is granted a patent).48   

                                                 
47 Recall, in our matching procedure, we allow a five-year window when matching patents to BR firm identifiers (t-2 
to t+2). We narrow this window for our time-varying definition of a patenting firm. If a firm is assigned a patent in 
year t, the grant year of the patent must be between t-1 and t+1 for the patent to be assigned as a patenting firm in 
year t. 
48 Obviously, there are different approaches that we can take depending on the question at hand. For example, we 
may want to examine firm activity immediately before and after the granting of a patent. Alternatively, we may want 
to understand differences between the stock of patent owning firms and those that are not patent holders. Or, we 
might want to take some point in between. For example, Akcigit et al. (2013) consider a firm to be innovative if it 
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The longitudinal linked patent-business database starts in 2000 so our time invariant indicator is 

left censored, misclassifying  firms that are granted patents before 2000 and have not been granted a 

patent since. This obviously excludes a large number of single patent firms.49  Also note that since it takes 

an average of 35 months for a patent to be granted our sample will be right censored as we approach more 

recent years. Since some types of patents (e.g., patents in complex technological categories) take longer to 

process than others this will necessarily introduce selection in the types of patents we observe towards the 

end of our sample. With these limitations in mind, we proceed and provide basic descriptive statistics for 

patenting firms in the U.S. Most of the statistics we provide are centered around 2005 to minimize some 

of the censoring issues just described.  

Figure 6 shows the share of patenting firms in the U.S. and their employment using our time 

invariant definition of a patenting firm. Less than 1 percent of firms in the U.S. economy are granted a 

patent between 2000 and 2011.50  These firms are among the largest firms in the economy, accounting for 

33 percent of employment. The finding that patent-owning firms are amongst the largest in the economy 

is consistent with previous findings in the literature.51  Figure 7 shows the percent of firms that are ever 

granted a patent by firm size class. Panel A describes the “stock” of patenting firms in 2005 (i.e., we use 

the time invariant definition of a patenting firm). We find most large firms are patenting firms whereas 

patenting is a rare event among the smallest firms. Less than 0.5 percent of the smallest U.S. firms (those 

with 1 to 4 employees) are patenting firms. We find this proportion increasing monotonically with size: 

12 percent of firms with between 250 and 499 employees patent at some point, and 52 percent of the 

largest firms (those with 5,000 or more employees) patent at least once. We find 62 percent of the largest 

firms, those with 10,000 or more employees, are patenting firms. The finding that the share of firms with 
                                                                                                                                                             
has received a patent or engaged in R&D expenditures within a five year window of time. We leave examination of 
alternative definitions for a later time. We believe both sets of questions are important. 
49 We plan to explore the heterogeneity in patent portfolios, technologies, and firm characteristics in future work.  
50 We note there are complex issues around the transfer of the ownership of patents after the patent has been granted. 
We simply note these issues here. We expect to incorporate the assignments database in future versions of the 
longitudinal linked patent-business database. 
51 See Acs and Audretsch (1988) and Balasubramanian and Sivadasan (2011). The later find that patenting firms 
account for 52% of all employment in the manufacturing sector. 
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patenting activity increases monotonically with firm size in the U.S. economy is similar to prior findings 

for the U.S. manufacturing sector [see Balasubramanian and Sivadasan (2011)]. Panel B, uses the time-

varying definition of a patenting firm and looks only at patents matched in 2005. We find the distribution 

is not much different. Nearly 40 percent of the largest firms are assigned a patent in 2005. Less than 0.1 

percent of the smallest firms are assigned a patent in 2005.  

While patenting is a characteristic of large firms, our analysis demonstrates that small firms also 

play an important role in this economic activity. While relatively few small firms engage in patenting 

activity, they account for a large share of all patenting firms. Figure 8 shows the size distribution of 

patenting firms in 2005 using the time-varying definition of a patenting firm. We find the smallest firms, 

those with less than 4 employees, account for 17 percent of the total number of patenting firms. The share 

sums to 52 percent when we consider all firms with less than 50 employees. Some of these may grow to 

become large firms in later years. By contrast, the largest firms (those with at least 10,000 employees) 

account for less than 3 percent of patenting firms. This finding is driven by the skewed size distribution of 

firms in the U.S. economy.  

Innovation is often associated with young firms (Andrews et al. 2014). Figure 9 shows the 

percentage of patenting firms in 2005 by firm age using the time-varying definition of a patenting firm. 

We find an inverted U shape relationship in the initial 15 years following birth. Young 4- and 5-year-old 

firms have the highest patenting rates in the economy during this time. We find 0.23 percent of 4-year-old 

firms in 2005 receive a patent. Patenting rates decline after age 4 and through age 15. Since the average 

patent takes close to three years to be granted, it stands to reason that many of the youngest firms 

developed these particular inventions shortly after being born. The lag between invention and patenting 

might be responsible for the observed ramp up through age 4. It is somewhat surprising there are so many 

startups and firms under 3 years old that receive a patent. There are multiple possible explanations for 

this. Some of these firms might be the result of spinoffs; early patents by very young firms may be a 

selected sample of simple to process patents; or the patent applications could have been filed before the 
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firm had employees.52 Regardless, the implication of this inverted U shape is that young innovative firms 

are particularly productive in the initial years after entry but the chances of successfully patenting decline 

quickly after that. After age 15 patenting activity again picks up with rates in excess of 0.3 percent on 

average. This high rate is driven by firms born before 1976 (the oldest firms we can observe in our data). 

This group is dominated by many of the largest firms depicted in Figure 7b. Figure 10 compares the age 

distribution of patent-holding and non patent-holding firms in 2005 again using the time-varying 

definition of a patenting firm. We find 4- and 5-year-old firms are slightly more likely to be patenting 

firms than non-patenting firms. Firms in the 16+ group are much more likely to be patenting firms than 

non-patenting firms. Those in the age-censored group (subset of oldest firms in the 16+ group, not shown 

separately in Figure 10) are even more likely to patent.53 

The most commonly granted patent in the U.S. is a “utility patent” conferring exclusive rights to 

use, make or sell new products, machines, combinations of matter, and processes (including software). 

We expect these types of inventions to be more typically associated with innovation conducted in some 

industries than in other industries. Figure 11 shows the share of patenting firms in 2005 by broad 

industrial class using the time invariant definition of a patenting firm. We allow individual firms to 

populate multiple categories if they engage in activities across multiple sectors.54  We find the 

manufacturing sector is particularly patent intensive with more than 6 percent of firms linked to patenting 

activity. Firms in the mining and wholesale sectors are also relatively likely to patent, with 2 percent and 

3 percent of their firms patenting, respectively.55  Firms in transportation, communication, and public 

                                                 
52 Recall, the BR contains employer firms only so firms are observed for the first time after they hire their first 
employee. A startup (age equal to zero) is defined in our database as a denovo employer firm (where all its 
establishments are new to the economy). Some firms may hire their first worker only after the patent is assigned. 
This is consistent with the idea that patents facilitate access to finance. 
53 Equal probability is represented by bars of equal length. 
54 For example, a firm maybe included in “manufacturing” and also in “finance and insurance” if the firm controls 
an establishment or establishments classified in these sectors. The U.S. Census Bureau assigns an industry code to 
each establishment based on its primary activity (generally the activity that generates the most revenue for the 
establishment). 
55 Wholesale activities might be linked to factory-less manufacturing goods producers or alternatively manufacturing 
firms with some associated wholesale activity. 
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utilities (TCU), services and finance, insurance, and real estate (FIRE) are less likely to patent with 0.9 

percent, 0.7 percent, and 0.6 percent of firms being assigned a patent, respectively. Firms in retail, 

construction, and agriculture, forestry, and fishing (Ag-For-Fish) are the least prone to this activity, with 

0.4 percent, 0.3 percent and 0.2 percent of firms patenting, respectively. Wholesale firms with patenting 

activity may be related to factoryless goods production. Software development is often classified in 

Services. For large conglomerate firms spanning product areas and sectors of activity a question arises as 

to the correct segment of the firm to associate with the invention.56  

We note that the manufacturing sector accounts for a relatively small number of firms in the 

economy when compared to retail or services. So, while patenting activity is more likely among 

manufacturing firms, it is reasonable to hypothesize that a significant share of patenting is occurring 

among firms outside the manufacturing sector. Figure 12 shows the industry distribution of patenting and 

non-patenting firms in 2005 by sector. Here we are again using the time invariant definition of a patenting 

firm. We find that only 30 percent of patenting firms are engaged in manufacturing but a larger share of 

patenting firms are active outside of manufacturing. We find 28 percent of patenting observations at the 

firm-sector level are active in the services sector, 19 percent in the wholesale sector, and 7 percent in the 

retail sector. Comparing the sectoral distribution of patenting and non-patenting firm-sector segments, we 

find manufacturing and wholesale firms are disproportionally likely to patent relative to their size in the 

population.  

Ultimately, we are interested in understanding the innovation process and the relationship 

between firm patenting and economic outcomes such as job creation and productivity growth. For our 

purpose here, we explore basic job flow measures. We define “job creation” and “job destruction” 

                                                 
56 The large diversification of many firms may be such that particular patents may have an impact far beyond the 
industry segment of origin. Depending on the research question we might want to identify only the “origin” 
industry” or alternatively the “using” industry, or even the whole firm if we expect innovations to ripple through all 
different segments of the company. For example, a software innovation in the manufacturing segment might benefit 
the retail segment of the company.  
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following Davis, Haltiwanger, and Schuh (1996). Let Eit be employment in year t for establishment i. We 

measure the establishment-level employment growth rate as follows:  

𝑔𝑔𝑖𝑖𝑖𝑖 =
𝐸𝐸𝑖𝑖𝑖𝑖 − 𝐸𝐸𝑖𝑖𝑖𝑖−1

𝑋𝑋𝑖𝑖𝑖𝑖
 

where 

𝑋𝑋𝑖𝑖𝑖𝑖 =
𝐸𝐸𝑖𝑖𝑖𝑖 + 𝐸𝐸𝑖𝑖𝑖𝑖−1

2
 

This growth rate measure has become standard in analysis of establishment and firm dynamics both 

because it shares some useful properties of log differences and because it accommodates entry and exit 

[see Davis et al. (1996) and Tornqvist, Vartia and Vartia (1985)].57  These measures can also be 

computed for any firm characteristic including firm size, firm age, and industry.  

Figure 13 shows job creation and destruction rates among patenting and non-patenting firms, by 

firm age as an average over the 2005 to 2008 period. We use the time-varying definition of a patenting 

firm. We exclude startups from this chart since startups only create jobs and there is no contrast between 

types of firms in this regard.58  We find patenting firms create more jobs than non-patenting firms for all 

age classes except among the youngest firms (those that are 1 year old). Our analysis shows the average 

growth differential is in excess of 3 growth points. By contrast, non-patenting firms on average shed more 

jobs than do patenting firms across almost all age classes, with the youngest non-patenting firms shedding 

the most jobs. Our analysis shows the average differential is nearly 7 growth points.  

                                                 
57 The DHS growth rate, like the log first difference, is a symmetric growth rate measure but has the added 
advantage that it accommodates entry and exit. It is a second-order approximation of the log difference for growth 
rates around zero. Note that the use of a symmetric growth rate does not obviate the need to be concerned about 
regression to the mean effects. Also, note that the DHS growth rate is not only symmetric but bounded between -2 
(exit) and 2 (entrant). 
58 Startups are de novo firms with all brand new establishment(s). These firms have no activity in the previous year. 
The job creation rate for these firms is equal to 2 in the standard DHS methodology. Note that the inclusion of  this 
rate in the graphs would reduce the magnitude of the remaining bars making comparisons across types of firms more 
difficult. 
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Larger growth among young patenting firms is consistent with results in Acemoglu et al. 

(2013).59  It is also consistent with more recent work by Decker et al. (2015). These authors show that the 

growth distributions for young firms are highly skewed and that this is particularly important in the high 

tech sector. Our results are consistent with their findings. Interestingly we find differences in the job 

destruction margin play a particularly important role in explaining the relative higher net growth rates of 

patenting firms. It is important to highlight that while young patenting firms tend to disproportionally 

create jobs that there are relatively few of them;  accordingly, while patent holding firms account for 27 

percent of gross job creation in our analysis, young patent holding firms (those up to 10 years old) 

account for less than 1.5 percent of gross job creation.60  

Figure 14 shows job creation and destruction rates among patenting and non-patenting firms, by 

firm size as an average over the 2005 to 2008 period using the time-varying definition of a patenting firm. 

Again small patenting firms (not controlling for age) disproportionally contribute jobs to the economy, 

but the patterns we find here are much less pronounced than in Figure 13. On average, we find job 

creation rates for patenting firms exceeding those for non-patenting firms by less than 1 growth point. 

When we examine job destruction, the differential again shows patenting firms performing better, but by 

less than 0.5 growth points.  

6. Conclusion and Future Work 

This paper describes the joint efforts of the U.S. Census Bureau and the USPTO to create a new 

longitudinal database of patents holding firms and inventors covering the period between 2000 and 2011. 

The goal of the partnership between the Census Bureau and the USPTO is to create data products that 

improve our knowledge of the innovation process and describe its impact on relevant economic outcomes 

such as job creation and productivity growth.  

                                                 
59 Their sample includes both patenting firms as well as firms engaged in R&D expenditures. 
60 This analysis is based on 3 years of data and ignores the fact that young patent holding firms grow 
disproportionally fast over many years so that the job contribution of each new cohort is expected to continue and 
grow over time. 
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We differ from previous patent matching efforts in that we link patent data to two independent 

administrative data sets –one on firms and one on workers. Previous efforts have only been able to exploit 

data from the administrative frame of firms in the U.S. from the Census Bureau BR. We follow them but 

expand on their work by using an additional administrative data set on workers and employers from the 

LEHD program. The LEHD data allows us to create an independent link to the employers where the 

inventors work. We triangulate the two datasets to create a more comprehensive frame of patent holding 

firms in the U.S. and their workers, and inventors. We are able to match over 90 percent of U.S. patent 

assignees to the BR. The use of two independent sources of information allows us to validate a large 

fraction of the matches. 

We use the resulting database to explore basic features of the population of patent-holding firms. 

We find patenting is a rare event amongst U.S. firms. Most firms in the U.S. do not patent. However, 

those that do, particularly young patenting firms, disproportionally contribute jobs to the U.S. economy. 

We find the population of patenting firms itself is highly skewed. Most patenting firms hold a single 

patent but a small percentage of firms hold the majority of patents. A natural consequence of the skewed 

firm size distribution is that while patenting is a relatively rare event among small firms, most patenting 

firms are nonetheless small. We also find patenting is not as rare an event for the youngest firms 

compared to the oldest firms. Finally, we find firms engaged in manufacturing are the most likely to 

patent, but that most patenting firms are in the services and wholesale sectors.  

This paper provides a first glimpse at the types of tabulations and analysis that are possible using 

the simplest possible measure of patent activity, the presence or absence of a granted patent at the firm 

level. Many other dimensions of innovative activity can be examined using these rich data. We have 

developed multiple measures of the patent value, impact, and knowledge content in this database. We 

have also added measures of technological innovation, including whether the innovation is general, 

limited use, or is radical or incremental when compared with the prior art. In the future, we anticipate 
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incorporating these and other measures to characterize both particular patents and also firms’ patent 

portfolios.  

We expect to extend our database and improve match rates in follow up versions of these data. In 

particular, we expect to extend the number of years covered by the database and to add to the richness of 

assignment information available to us by including dynamic assignment information available in the 

USPTO Patent Assignments Dataset [Marco et al. (2015)]. We also plan to refine our matching 

algorithms by exploiting the information contained in the network of inventors available to us in the 

patent data. Supplementary versions will incorporate information on the quality and value of the patents 

and firm patent portfolios. Finally, the current effort generated additional files including a longitudinal 

database of inventors, a disambiguated database of inventors, and a disambiguated database of patent-

holding firms. We leave the discussion of these databases to future papers.  
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Tables and Figures 

Table 1. Number of Patents per Year in USPTO Granted Patents Data, 2000-2011 

Year All Granted Patents 
All Assigned Granted 

Patents 

Granted Patents with 
Organization 

Assignee 
2000 176,083 149,300 147,950 
2001 184,046 158,701 157,189 
2002 184,424 160,540 159,025 
2003 187,048 163,951 162,470 
2004 181,319 160,912 159,510 
2005 157,741 140,938 139,665 
2006 196,437 176,312 174,894 
2007 182,928 164,785 163,473 
2008 185,244 168,064 166,875 
2009 191,933 175,513 174,206 
2010 244,358 223,768 222,235 
2011 247,728 228,705 227,262 

    Total 2,319,289 2,071,489 2,054,754 
 

Source:  Authors’ calculations on the USPTO’s PTMT data. It is notable that the “All Granted Patents” 
counts derived from the PTMT dataset are marginally different than annual USPTO statistics here: 
http://www.uspto.gov/web/offices/ac/ido/oeip/taf/us_stat.htm, likely due to updates and 
unforeseen latent patent grants resulting from appeals entering the PTMT data. 

Note:  Assigned granted patents are all granted patents except for unassigned patents. Granted patents 
with assignee organization name are all granted patents less unassigned patents and those assigned 
(only) to individuals. 

http://www.uspto.gov/web/offices/ac/ido/oeip/taf/us_stat.htm
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Table 2. Frequency of Assignee Type in USPTO Granted Patents Data, 2000-2011 

  Granted Patents 
Assignee Type Number  Percent 
Unassigned 247,800 10.7 
U.S. non-government organization 1,026,536 44.3 
Foreign non-government 
organization 1,016,852 43.8 
U.S. individual 10,563 0.5 
Foreign individual 6,172 0.3 
U.S. Federal Government 10,174 0.4 
Foreign government 1,192 0.1 

   Total 2,319,289 100.0 

 

Source:  Authors’ calculations on the USPTO’s PTMT data. 

Note:  This table reflects assignee type for the primary assignee only. Approximately 2.6 percent of total 
patents have multiple assignees. 
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Table 3. Frequency of U.S. and Foreign Inventors in USPTO Granted Patents Data, 2000-2011 

  
Inventors on  Granted 

Patents 

Inventors on Granted 
Patents with Application 

Year 1996 or Later 
  Number Percent Number Percent 
U.S. 3,073,383 52.5 3,052,137 52.1 
Foreign 2,785,295 47.5 2,769,850 47.3 

     Total 5,858,678  100.0 5,821,987 100.0  

 
Source:  Authors’ calculations on the USPTO’s PTMT data. 
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Table 4. Match Rates for Match of Patent-Assignee Combinations to the BR/LBD 

  All U.S. Assignee Foreign Assignee 
Match Number  Percent Number  Percent Number  Percent 

0 538,650 25.4 94,857 9.0 443,793 41.5 
1 1,579,371 74.6 953,399 91.0 625,972 58.5 

 
    

  
  

 Total 2,118,021  100.0 1,048,256 100.0  1,069,765  100.0 

Source:  Authors’ calculations on the Patent-LBD crosswalk file. 

Note:  We did not attempt to match patents that were “unassigned” or assigned to individuals to the 
BR/LBD. This table includes only unique patent-assignee combinations. 
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Table 5. Frequency of Match Types in the Patent-LBD Crosswalk File 

    All U.S. Assignees Foreign Assignees 
match_flag Description Number Percent Number Percent Number Percent 

A1 Model 1 loop close (EIN and Firm ID match) 618,705 29.2 603,975 57.6 14,730 1.4 
A2 Model 2 loop close (Firm ID match) 46,384 2.2 41,975 4.0 4,409 0.4 
A3 Model 3 loop close (EIN match) 7,372 0.3 6,992 0.7 380 0.0 
B1 BR only loop close 329,182 15.5 92,743 8.8 236,439 22.1 
B2 BR only residual match 240,643 11.4 25,011 2.4 215,632 20.2 
C1 LEHD only loop close - inventors and Firm ID 40,656 1.9 34,678 3.3 5,978 0.6 
C2 LEHD only loop close - Firm ID 28,155 1.3 23,240 2.2 4,915 0.5 
C3 LEHD only remainder match 27,544 1.3 23,514 2.2 4,030 0.4 
D1 Unmatched firms loop close by Firm Name (Some manual) 28,469 1.3 4,650 0.4 23,819 2.2 
D2 Unmatched firms matched to Firm ID manually 99,656 4.7 21 0.0 99,635 9.3 
E1 Model 4 loop close (unique BR firm id) 95,853 4.5 83,274 7.9 12,579 1.2 
E2 Model 4 loop close (unique LEHD firm id) 17,642 0.8 14,207 1.4 3,435 0.3 

 
Unmatched 538,650 25.4 94,857 9.0 443,793 41.5 

  
    

  
  

   Total 2,118,911 100.0 1,049,137 100.0 1,069,774 100.0 

Source:  Authors’ calculations on the Patent-LBD crosswalk file. 

Note:  We did not attempt to match patents that were “unassigned” or assigned to individuals to the BR/LBD. This table includes all patent-
assignee-firm identifier combinations in the Patent-LBD crosswalk file. 
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Table 6. Variable Listing for Patent-LBD Crosswalk File 

Variable Description 
PRDN Patent identifier 
application_year Patent application year 
assignee_country Patent assignee country (populated only for foreign assignees) 
assignee_sequence Patent assignee sequence number 
assignee_state Patent assignee state (populated only for U.S. assignees) 
assignee_type Patent assignee type (see Table 2 for assignee types; populated only for 

primary assignee) 
firmid BR firm identifier (or ALPHA) 
foreign_assignee_flag = 1 when the assignee is foreign 
grant_year Patent grant year 
match_flag Match type flag (see Table 4 for values and descriptions) 
multiple_assignee_flag = 1 when there are multiple assignees on the patent 
unique_firm_id = 1 when assigned to a unique BR firm identifier 

= 0 when assigned to multiple firm identifiers 
Note:  This is only applicable when match is a Model 1-3 loop close 

us_assignee_flag = 1 when the assignee is based in the U.S. 
us_inventor_flag = 1 when there is a U.S. applicant on the patent 
year Calendar year of match to the LEHD data 
yr Calendar year of match to the BR data 
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Table 7. Match Rates by Team Size, Patent-LBD Crosswalk 

Team Size 
(Number of 

Inventors per 
Patent) 

All U.S. Assignees Foreign Assignees 

Number 
Matched 

Percent 
Matched 

Number 
Matched 

Percent 
Matched 

Number 
Matched 

Percent 
Matched 

1 503,680 72.3 288,667 90.3 215,013 57.1 
2 414,900 76.2 259,770 91.1 155,130 59.8 
3 291,484 76.4 181,965 91.6 109,519 59.9 
4 172,730 75.5 105,223 91.7 67,507 59.3 

5-9 184,827 73.8 110,734 90.8 74,093 57.7 
10+ 12,640 73.1 7,921 89.4 4,719 56.1 

 
    

  
  

 Total 1,580,261 74.6 954,280 91.0 625,981 58.5 

Source:  Authors’ calculations on the Patent-LBD crosswalk file. 

Note:  This table includes all patent-assignee-firm identifier combinations in the Patent-LBD Crosswalk. 
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Table 8. Match Rates by Number of Citations, Patent-LBD Crosswalk 

Number of 
Citations per 

Patent 

All U.S. Assignees Foreign Assignees 

Number 
Matched 

Percent 
Matched 

Number 
Matched 

Percent 
Matched 

Number 
Matched 

Percent 
Matched 

0 465,734 70.9 254,019 90.4 211,715 56.3 
1 236,180 73.0 133,057 90.8 103,123 58.2 

2-4 346,007 74.8 204,159 91.2 141,848 59.3 
5-9 234,008 76.8 148,606 91.3 85,402 60.2 

10-99 289,094 80.2 206,300 91.2 82,794 61.7 
100+ 9,238 86.7 8,139 91.4 1,099 62.7 

 
    

  
  

 Total 1,580,261 74.6 954,280 91.0 625,981 58.5 

Source:  Authors’ calculations on the Patent-LBD crosswalk file. 

Notes:  This table includes all patent-assignee-firm identifier combinations in the Patent-LBD Crosswalk. 
Number of citations is the number of times the patent has been cited by other patents. This 
measure is right-censored because newer patents have had less time to be cited.
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Table 9. Match Rates by Technology Category, Patent-LBD Crosswalk 

Technology Category 

All U.S. Assignees Foreign Assignees 
Number 
Matched 

Percent 
Matched 

Number 
Matched 

Percent 
Matched 

Number 
Matched 

Percent 
Matched 

Chemical 170,970 71.0 102,370 90.2 68,600 53.9 
Computers & 
Communications 451,170 79.6 280,789 91.7 170,381 65.4 
Drugs & Medical 140,138 73.0 106,142 85.7 33,996 49.8 
Electrical & Electronic 346,414 75.4 176,421 92.6 169,993 63.2 
Mechanical 195,880 70.3 102,882 92.4 92,998 55.5 
Design 131,555 74.1 87,530 92.1 44,025 53.4 
Plant 4,812 52.9 3,230 80.6 1,582 31.1 
Others 139,322 71.6 94,916 90.7 44,406 49.4 

 
    

  
  

 Total 1,580,261 74.6 954,280 91.0 625,981 58.5 

Source:  Authors’ calculations on the Patent-LBD crosswalk file. 

Notes:  This table includes all patent-assignee-firm identifier combinations in the Patent-LBD Crosswalk. 
Technology categories are based on Hall et al. (2002) with additions described in Dresigmeyer et 
al. (2014). Design patents are patents granted for ornamental design of a functional item. Plant 
patents are for new plants.
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Figure 1. Patent to Firm Matching Process to Create Patent-LBD Crosswalk 
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A. Percent of Firms 

 

B. Percent of Patents 

 

Source:  Authors’ calculations on the Patent-LBD crosswalk file. 

Figure 2. Number of Patents per Firm, Matched Patenting Firms Only, 2000-2011 Granted Patents  
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Source:  Authors’ calculations on the Patent-LBD crosswalk file. This figure includes all patent-assignee 
firm identifier combinations in the Patent-LBD crosswalk file. 

Figure 3. Match Rates by Grant Year, 2000-2011 
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A. All 

 

B. U.S. Assignees     C. Foreign Assignees 
 

 
 

Source:  Authors’ calculations on the Patent-LBD crosswalk file. This figure includes all  
patent-assignee-firm identifier combinations in the Patent-LBD crosswalk file. 

Figure 4. Match Rates by Grant Year, 2000-2011
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Source:  Authors’ calculations on the Patent-LBD crosswalk file. This figure includes all patent-assignee-firm identifier combinations in the 
Patent-LBD crosswalk file with assignee state in the U.S. (50 states plus District of Columbia). 

Figure 5. Match Rates by Assignee State
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Source:  Authors’ calculations on the longitudinal linked patent-business database. 

Notes:  Statistics in this figure are calculated using the time invariant definition of a patenting firm; i.e., if 
the firm is granted a patent at any time from 2000 to 2011, it is defined as a patent-holding firm in 
all years. 

Figure 6. Share of Firms and Employment by Patenting Status, Average 2005-2008 
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A. Time Invariant Patenting Firm Definition 

 
B. Time-varying Patenting Firm Definition 

 

Source:  Authors’ calculations on the longitudinal linked patent-business database. 

Notes:  Statistics in panel A of this figure are calculated using the time invariant definition of a patenting 
firm; i.e., if the firm is granted a patent at any time from 2000 to 2011, it is defined as a patent-
holding firm in all years. Statistics in panel B of this figure are calculated using the time-varying 
definition of a patenting firm; i.e., if a firm is assigned a patent in year t, it is a patent-holding firm 
in year t. 

Figure 7. Percent of Firms Assigned a Patent by Firm Size, 2005 
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Source:  Authors’ calculations on the longitudinal linked patent-business database. 

Notes:  Statistics in this figure are calculated using the time-varying definition of a patenting firm; i.e., if 
a firm is assigned a patent in year t, it is a patent-holding firm in year t. 

Figure 8. Size Distribution of Firms by Patenting Status in 2005 
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Source:  Authors’ calculations on the longitudinal linked patent-business database. 

Notes:  Statistics in this figure are calculated using the time-varying definition of a patenting firm; i.e., if 
a firm is assigned a patent in year t, it is a patent-holding firm in year t. 

Figure 9. Percentage of Firms Assigned a Patent in 2005 by Firm Age 
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Source:  Authors’ calculations on the longitudinal linked patent-business database. 

Notes:  Statistics in this figure are calculated using the time-varying definition of a patenting firm; i.e., if 
a firm is assigned a patent in year t, it is a patent-holding firm in year t. 

Figure 10. Age Distribution of Firms by Patenting Status in 2005 
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Source:  Authors’ calculations on the longitudinal linked patent-business database. 

Notes:  ‘Ag-For-Fish’ is Agriculture, Forestry, and Fishing; ‘TCU’ is Transportation, Communication, 
and Public Utilities; FIRE is Finance, Insurance, and Real Estate. Statistics in this figure are 
calculated using the time invariant definition of a patenting firm; i.e., if the firm is granted a patent 
at any time from 2000 to 2011, it is defined as a patent-holding firm in all years. 

Figure 11. Percent of Patent Holding Firms by Sector, 2005 
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Source:  Authors’ calculations on the longitudinal linked patent-business database. 

Notes:  ‘Ag-For-Fish’ is Agriculture, Forestry, and Fishing; ‘TCU’ is Transportation, Communication, 
and Public Utilities; FIRE is Finance, Insurance, and Real Estate. Statistics in this figure are 
calculated using the time invariant definition of a patenting firm; i.e., if the firm is granted a patent 
at any time from 2000 to 2011, it is defined as a patent-holding firm in all years. 

Figure 12. Sectoral Distribution of Firms by Patenting Status, 2005 
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A. Job Creation Rate 

 
B. Job Destruction Rate 

 
Source:  Authors’ calculations on the longitudinal linked patent-business database. 

Notes:  Statistics in this figure are calculated using the time-varying definition of a patenting firm; i.e., if 
a firm is assigned a patent in year t, it is a patent-holding firm in year t. 

Figure 13. Gross Job Creation and Destruction Rates by Patenting Status and Firm Age,  
Average 2005-2008 
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A. Job Creation Rate 

 
B. Job Destruction Rate 

 
Source:  Authors’ calculations on the longitudinal linked patent-business database. 

Notes:  Statistics in this figure are calculated using the time-varying definition of a patenting firm; i.e., if 
a firm is assigned a patent in year t, it is a patent-holding firm in year t. 

Figure 14. Gross Job Creation and Destruction Rates by Patenting Status and Firm Employment,  
Average 2005-2008 
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Appendix  

 

Figure A.1. Matching Models 

 

1. Closed Loop Model 1: EIN and ALPHA are the same 

 

  

 

 

 

 

 

 

 

 

 

2. Closed Loop Model 2: EIN is not the same but the ALPHA is the same 
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3. Closed Loop Model 3: EIN is the same but the ALPHA is not the same 
 

 

 

 

 

 

 

 

 

 

 

 

4. Model 4. Assignee and inventor links do not line up. 
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5. Model 5. Multiple assignee case. 
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Model 6. Inventor only match.  
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6. Model 7: Business Register only match. 
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