Business Dynamics of Innovating Firms:
Linking U.S. Patents with Administrative Data on Workers and Firms

by

Stuart Graham
Georgia Institute of Technology and U.S. Patent and Trademark Office

Cheryl Grim
U.S. Census Bureau

Tariqul Islam
Environmental and Health Sciences

Alan Marco
U.S. Patent and Trademark Office

Javier Miranda
U.S. Census Bureau

CES 15-19 July, 2015

The research program of the Center for Economic Studies (CES) produces a wide range of economic analyses to improve the statistical programs of the U.S. Census Bureau. Many of these analyses take the form of CES research papers. The papers have not undergone the review accorded Census Bureau publications and no endorsement should be inferred. Any opinions and conclusions expressed herein are those of the author(s) and do not necessarily represent the views of the U.S. Census Bureau. All results have been reviewed to ensure that no confidential information is disclosed. Republication in whole or part must be cleared with the authors.

To obtain information about the series, see www.census.gov/ces or contact Fariha Kamal, Editor, Discussion Papers, U.S. Census Bureau, Center for Economic Studies 2K132B, 4600 Silver Hill Road, Washington, DC 20233, CES.Papers.List@census.gov.
Abstract

This paper discusses the construction of a new longitudinal database tracking inventors and patent-owning firms over time. We match granted patents between 2000 and 2011 to administrative databases of firms and workers housed at the U.S. Census Bureau. We use inventor information in addition to the patent assignee firm name to improve on previous efforts linking patents to firms. The triangulated database allows us to maximize match rates and provide validation for a large fraction of matches. In this paper, we describe the construction of the database and explore basic features of the data. We find patenting firms, particularly young patenting firms, disproportionately contribute jobs to the U.S. economy. We find patenting is a relatively rare event among small firms but that most patenting firms are nevertheless small, and that patenting is not as rare an event for the youngest firms compared to the oldest firms. While manufacturing firms are more likely to patent than firms in other sectors, we find most patenting firms are in the services and wholesale sectors. These new data are a product of collaboration within the U.S. Department of Commerce, between the U.S. Census Bureau and the U.S. Patent and Trademark Office.

* Corresponding author is Javier Miranda (Javier.Miranda@census.gov). Graham, Georgia Institute of Technology and U.S. Patent and Trademark Office; Grim and Miranda, U.S. Census Bureau; Islam, Environmental and Health Sciences (formerly U.S. Census Bureau); Marco, U.S. Patent and Trademark Office. We thank Kirsten Apple and Jim Hirabayashi for their assistance in answering many questions related to the U.S. Patent and Trademark Office data and processes. We thank Deborah Wagner and Juan Carlos Humud for their work to assign protected identity keys to inventors. Any opinions and conclusions in this paper are those of the authors and do not necessarily represent the views of the U.S. Census Bureau or the U.S. Patent and Trademark Office. All results have been reviewed to ensure that no confidential data are disclosed.
1. Introduction

Policy makers, researchers and the public are interested in understanding the sources of job creation and economic growth in the U.S. economy. Innovative firms are believed to play an important role in this regard, introducing new products or services that satisfy a previously unmet need or processes that provide existing goods and services in new and more efficient ways. These firms will prosper and grow and their competitors will adjust and respond with further innovations of their own, or become obsolete and eventually exit the market. The reallocation of resources from less productive, less efficient firms to more efficient and productive firms is in large measure responsible for the productivity gains that ultimately drive the long-term improvements in our standards of living. Despite the importance of this innovation and reallocation process to U.S. economic growth, our understanding of the particular firms at the center of the innovation activities and their role in reallocation and productivity growth is still very limited.\(^1\)

The current debate concerning the value of more recent innovations relative to the great breakthroughs of the past is a clear indication of our inability to track the impact innovative activity has on reallocation and productivity growth in the U.S. There are two reasons for this. First, it is hard to identify innovative firms. Data on the innovative activities of firms are hard to capture because the outputs of innovation (e.g., knowledge, networks, new process, new software, and marketing) are challenging to quantify. As a consequence, the field lacks a properly defined identifying frame. Second and relatedly, researchers often rely on inputs to innovation such as R&D expenditures as a proxy for innovation or technological progress because measuring innovation is difficult. However, R&D survey data are at best an imperfect measure of the inputs of innovation, and are typically skewed towards the

\(^1\) See Cohen (2010) in the Handbook of the Economics of Innovation for a review of the literature in this area.
largest firms thus missing the smaller and younger firms – the most dynamic segment in the U.S. economy.²

This paper discusses a new longitudinal linked patent-business database tracking patenting firms and inventors over time created under a joint effort between the U.S. Census Bureau and the U.S. Patent and Trademark Office (USPTO). Information contained in granted patents allows us to capture the types of inventive activity that result in a U.S. patent. In this initial research effort, we match patents issued in the U.S. between 2000 and 2011 independently to two Census Bureau administrative databases, one of businesses (firms) and the other of workers. Prior efforts have used the assignee information contained in patent documents to identify the firms where the innovation is taking place [see Hall, Jaffe, and Trajtenberg (2002), Kerr and Fu (2008), Balasubramanian and Sivadasan (2010, 2011), Eberhardt et al. (2011)]. The presence of non-standard business names in patent documents and the fact that corporations often file for patents through subsidiaries or other legal entities complicates identification of the patent assignee business considerably [Thoma et al. (2010)]. Here we extend earlier approaches by exploiting not just the business assignee names, but also the inventor information contained in the focal patent document.

Using both inventor and assignee information to disambiguate and link granted patents to their firm owners is a methodological innovation in the field. Using the inventor information on the patent allows us to identify human inventors and match these to the population of U.S. workers available in Census Bureau databases, which provides us with an independent link to the parent corporation where they were employed at the time the patent application was filed at the USPTO. We triangulate the two

² Most of what we know in this area is based on cross sectional samples of R&D expenditure survey data. R&D survey frames are identified from administrative records and other available information. For example, a firm is identified as an R&D firm in an administrative data set if it has claimed an R&D tax credit. However, small and young businesses may overlook the R&D tax credit because they assume they must have on-site laboratories or breakthrough research to claim the credits (see Section 174 Test of the IRS regulations). Others might fear they might face complex tax calculations or trigger an IRS audit. Another criticism of these surveys is that small firms are typically under-represented and only the most successful ones might survive and be included.
independent sources of business information (assignees and inventors) to maximize match rates and provide validation for a large portion of matches.

The result is a database tracking patenting firms as well as the network of inventors employed at those firms. We are able to account for ownership on 91 percent of U.S. patents using this approach, a significant improvement over prior efforts matching 70-81 percent [Kerr and Fu (2008), Balasubramanian and Sivadasan (2010)]. Disambiguated databases of both patenting firms and human inventors are byproducts of our triangulation. Forthcoming papers will offer descriptions of the disambiguated databases. In this paper, we describe only the firm database, documenting basic features of the patenting firms we have identified along with characteristics of their patent portfolios.

Our methodological improvement allows us to provide richer information on patenting by the smallest and youngest firms in the U.S., a segment often underrepresented by standard methods. We find patenting firms, particularly young patenting firms, disproportionally contribute jobs to the U.S. economy. Consistent with the literature we find patenting is a relatively rare event among small firms but nevertheless most patenting firms are small. We also find that, compared with patent rates among the oldest firms, patenting is not as rare of an event for the youngest U.S. firms. Moreover, while manufacturing firms are most likely to patent, we find that most patenting firms are in the services and wholesale sectors. Because our methodological improvement allows us to follow both establishments (locations, often sub-units of firms) and firms (often larger parent entities) over time, we are able to leverage the firm-worker links in the Census databases, thereby providing an opportunity to explore where invention occurs, and possibly allow researchers to identify the particular establishment locations where specific inventive activities are taking place.

Because of the sensitivity of Census Bureau data used in the match, the micro database is restricted-use, but will be updated annually and, contingent on review, eventually will be accessible to

3 See Balasubramanian and Sivadasan (2010, 2011).
4 We will explore these aspects in future papers.
qualified researchers with approved projects through secure U.S. Federal Statistical Research Data Centers. However, a specific goal of the joint Census Bureau-USPTO project is, to the greatest extent possible, to create a series of new public-use products derived from the confidential microdata, since public-use tabulations at the Census Bureau meet disclosure avoidance rules and are thus accessible to any member of the public wishing to explore and conduct research with such aggregated tabulations. Early results from one possible set of such tabulations are discussed in this paper.

The rest of the paper is organized as follows. Section 2 describes the source data used in the construction of the new database. Section 3 describes the creation of the inventor and firm linkages and our triangulation of the data to identify and validate matches. This is followed in Section 4 with a description of the new linked database. Section 5 highlights some basic features of patenting firms using the longitudinal linked patent-business database. Section 6 concludes with a discussion of directions for future work.

2. Data Sources

We use four different datasets to construct the longitudinal linked patent-business database, one derived from USPTO data and three built from information housed at the Census Bureau. The first, the USPTO Patent Data Extract, contains bibliographic information including names of the human inventor(s) and the organization assignee(s) associated with each granted patent. In the United States during 2000-2011, patents only issue to human inventors, and it is therefore common for an agreement – generally an employment agreement – to assign patent rights to a business firm – generally an employer-assignee. Such “assignments” are information recorded routinely on the granted patent document.

Three Census datasets are also employed. The first of these is the U.S. Census Bureau Business Register, a dataset containing the list of all businesses in the U.S. and the source of the business name

\[5\text{ For more information on secure Federal Statistical Research Data Centers, visit } \text{http://www.census.gov/fsrdc.}\]

\[6\text{ The America Invents Act (2011) altered this rule concerning granting to non-human inventors, but the law was implemented after our study period so does not affect our data.}\]
information used to link to the assignee business names in the patent records. The second is the Longitudinal Business Database, a longitudinal file describing business activity for establishments and firms in the U.S., and the source of economic information including the type of activity, employment, payroll and location of the establishments and firms. The third is the Longitudinal Employer Household Dynamics (LEHD) Employment History Files, a longitudinal file containing a list of job records (worker-employer associations) and the source of the information used to link human inventors in the patent records to their employers at time of the focal patent’s application filing. We discuss these in turn.

2.1. Bibliographic Patent Data Extract

Our primary source of patent data is the USPTO’s Patent Technology Monitoring Team (PTMT) Custom Bibliographic Patent Data Extract. These data are produced annually, generally around March or April, from the bibliographic text files for the patents granted by the USPTO in the previous calendar year. Available data include the patent number, series code and application number, type of patent, filing date, title, grant date, inventor information (names), assignee type and name at time of grant, foreign priority information, related U.S. patent documents, classification information, U.S. and foreign references, attorney, agent or firm/legal representative, Patent Cooperation Treaty information, abstract, and if present a statement of U.S. Government interest. We supplement the PTMT data with information on assignee city and state from the USPTO Bulk Download data publicly hosted on the internet. Further, the PTMT data contain information on the primary assignee only so, for patents with multiple assignees, we obtain information on additional assignees from the USPTO Bulk Download data.

8 These are available at: http://www.google.com/googlebooks/uspto-patents-applications-biblio.html.
9 Note, there are some discrepancies between the USPTO Bulk Download data and the PTMT data including some additional granted patents in the USPTO Bulk Download data, which we retain for our analysis. Moreover, since PTMT data is routinely standardized to unique common entity names prior to release (for instance, “IBM” and “Int’l Business Mach” may be standardized to “International Business Machine”), we use that standardized information but also retain the original, unstandardized information from the USPTO Bulk Download data to improve our matches to Census datasets. (The company name example above is sourced solely from the publicly-available USPTO data.)
To create the longitudinal linked patent-business firm-level data described in this paper, we focus on information from the over 2.3 million patents granted from 2000 to 2011. Of these issued patents, just under 90 percent are assigned to either a U.S. or foreign “non-government organization”, individual, or government. The remaining patents are listed as “unassigned” with the assumption that ownership remains with the human inventor(s). Table 1 shows the frequency of all granted patents, all those assigned, and all those assigned to a named organization assignee, by year. The number of patents granted each year is relatively stable with the exception of a drop in 2005 and an uptick in the 2010-2011 period. Table 2 shows the frequency of assignee types in the granted patent data. According to the applicant type code provided in the PTMT file, the bulk of patents are either assigned to a U.S. non-government organization (44.3 percent) or to a foreign non-government organization (43.8 percent), while less than one percent of patents are assigned to U.S. or foreign individuals and less than one percent are assigned to U.S. or foreign governments.

We exploit the inventor and assignee name information in the patent documents to link to two restricted-use Census databases. Inventor information included in the PTMT file is limited to inventor name, city, and state, and is generally provided at the time of patent application and not necessarily updated at the time of grant. Understanding this limitation, we use this information to link to the LEHD Employment History Files. Information on firm assignee(s) is generally designated at time of grant and includes assignee name, city, and state. We use this information to link to the Census Bureau’s Business Register, recognizing that there is often a considerable lag between the date on which the patent application is filed (when inventor information may be collected) and issued (when assignee information may be collected).10

10 During the 2000-2011 study period, the USPTO reported average pendency to grant averaged about 36 months, after accounting for continued applications and other influences.
2.2. The U.S. Census Bureau Business Register

Name and address information for businesses in the U.S. come from the Census Bureau’s Business Register (BR). Since 1972, the Census Bureau has maintained a general-purpose business register for statistical purposes. The BR serves multiple purposes, it is the frame for economic censuses and surveys, it is a repository of administrative data, and it is the source data for Census public use products including the County Business Patterns (CBP) and the Business Dynamics Statistics (BDS). The database covers all U.S. business establishments and companies with paid employees filing taxes with the Internal Revenue Service.

The BR is continuously updated with administrative data from business income and payroll filings, as well as data collected through economic census and surveys. Naturally, the amount of detail that is available in the BR about a particular employer depends largely on whether the industry is covered by the Economic Census. Industries outside the scope of the Economic Census include: Agriculture, Forestry and Fishing, Railroads, U.S. Postal Service, Certified Passenger Air Carriers, Elementary and Secondary Schools, Colleges and Universities, Labor Organizations, Political Organizations, and Religious Organizations. For these employers we simply have basic administrative data and we do not collect information about the activity or location of the establishments associated with the employer or whether multiple employers fall under common ownership or control of a firm. Most public administration and governmental entities (NAICS sector 92) are not part of the BRs statistical unit coverage. The only exceptions are state-run liquor stores, central reserve depository institutions, federal and federally-sponsored nondepository institutions and hospitals.11

11 We are in the process of identifying public administration data to supplement the Business Register.
2.3. The Longitudinal Business Database

The Longitudinal Business Database (LBD) is a longitudinal (research ready) version of the BR [see Jarmin and Miranda (2002) for details]. A benefit of working with the LBD is the high quality longitudinal linkages that allow accurate measurement of establishment and firm births and deaths. Given the ubiquitous changes in ownership among U.S. firms, a common feature in administrative micro data such as the BR is spurious firm and establishment entry and exit as a result of purely legal and administrative actions. The LBD minimizes these issues by enhancing existing identifiers with name and address matching algorithms. The LBD includes annual observations beginning in 1976 and is updated annually – the most current update runs through 2013. It provides information on the type of activity, location, employment, payroll, and legal form of organization for every establishment in scope of the CBP. Employment observations in the LBD are for the payroll period covering the 12th day of March in each calendar year.

A unique advantage of the LBD is its coverage of both firms and establishments. Only in the LBD is firm activity captured up to the level of operational control instead of being based on an arbitrary taxpayer ID. All of the establishments under the control of a common legal operating entity are assigned a common firm identifier. This extends to establishments of subsidiaries – as long as the parent corporation controls more than 50 percent of their stock. This allows us to define firm characteristics such as firm size and firm age. We construct firm size measures by aggregating the establishment information to the firm level using the appropriate firm identifiers. We construct firm age following the approach adopted for the BDS and based on prior work [see, e.g., Becker et al. (2006), Davis et al. (2007) and Haltiwanger, Jarmin and Miranda (2013)]. Namely, when a new firm identifier arises for whatever reason, we assign the firm an age based on the age of the oldest establishment that the firm owns in the first year in which the new firm identifier is observed. The firm is then allowed to age naturally (by one year for each additional year

12 For more information about the LBD, see the Center for Economic Studies website at http://www.census.gov/ces/dataproducts/datasets/lbd.html.
it is observed in the data) regardless of any acquisitions and divestitures as long as the firm continues operations as a legal entity. Our ability to track both establishments and firms allows us to compute measures of organic growth that abstract from growth that results from merger and acquisition activity.13

2.4. The LEHD Employment History Files

The LEHD Employment History Files (EHF) are a product of the Longitudinal Employer Household Dynamics (LEHD) program of the U.S. Census Bureau.14 The EHF is sourced from state Unemployment Insurance (UI) wage records. The UI wage records are collected by state employment security agencies in compliance with the Social Security Act of 1935. Employers are required to report the total amount of wages paid to each employee during a quarter to determine an individual’s eligibility when filing an UI claim. The Census Bureau receives these data in a partnership with state employment security agencies. The UI records connect individuals to every employer from which they received wages. Wage records include information on the individual’s Social Security Number, the first name, last name, and middle initial of the employee—these are replaced with an anonymous protected identification key (PIK) by the Census Bureau immediately upon receipt, as well as the UI account number or state employer identification number (SEIN) of the employer to identify the employer. The LEHD program uses these data to construct public-use statistics including the Quarterly Workforce Indicators and OnTheMap. The EHF is a virtual census of wage and salaried private employment non-farm payroll. The only major category of private sector workers not covered by the UI system are self-employed workers. Other workers not covered include members of the armed forces, federal employees, local government employees and state elected officials, and members of the judiciary. Some small agricultural enterprises and religious organizations are also excluded from the system. Data in the EHF go back to 1985 but are only available for a majority of states starting in 2000. For our purposes it is important to note that even

13 See the appendix to Haltiwanger, Jarmin, and Miranda (2013) for an in depth treatment of these issues.
14 For more information about the LEHD program, see the LEHD website at http://lehd.ces.census.gov/.
post-2000 there is incomplete coverage of states.\footnote{We use the 2011 snapshot of the LEHD infrastructure files. Data for Alabama, Arkansas, the District of Columbia, and Mississippi all start after 2000. The 2011 snapshot does not contain data for Massachusetts. For details on coverage by state, see Table 1.2 in Vilhuber and McKinney (2014).} A relevant feature of the EHF file is that it can easily be linked to Census Bureau personal characteristics files including demographics such as age, race, gender, and country of origin of workers in the US. It can also be linked to the BR via the Employer Characteristics File (ECF). The ECF includes the UI account number of the employer -- the State Employer Identification Number (SEIN), as well as a Federal Employer Identification Number (EIN).

3. Linking Methodology

The data integration methodology follows a multi-step process shown in Figure 1. We first link patent assignee names contained in the patent data directly to firm names in the BR files. This link provides information about the legal operating entity that owns the patent as well as numeric identifiers including the Federal Employer Identification Number (EIN) and the firm identifier (ALPHA) common across Census Bureau business files. Second, we link inventor names contained in the patent data to the LEHD data. This link is done in two steps: (1) assign PIKs to inventors in the patent data and (2) link inventors to the LEHD data by PIK. The link to the LEHD data provides information about the inventor, their coworkers, and their employer(s). Patent documents contain very limited name and address information on inventors and assignees, which limits our ability to identify them uniquely. This problem is common to all matching exercises using patent data. It is for this reason that traditional matching efforts making use of assignee information alone are limiting. Our approach differs from previous efforts in that we can exploit information on the inventors. In the initial matching exercise we allow matches to multiple firms and inventors in order to minimize the number of missed links (Type II errors). We then triangulate the independently matched databases to eliminate the incorrect matches (Type I errors).\footnote{Typical matching exercises rely on a single match thus requiring a careful simultaneous balance of Type I and Type II errors in a single step.} We describe the matching process in detail below.
3.1. Patent Assignee Name to BR Firm Name Match

We match the patent assignee name to a firm name on the BR using an automated-rules based approach that defines name matching rules and compares the similarity of names. We use the available address information to limit our search to the set of feasible potential matches. Patent assignment information is generally provided at time of grant. However, we match assignment information to all years of the BR, from 1999 to 2012, to allow for potential timing mismatches between the patent data and the BR data. It is important to note patent assignees include non-U.S. firms. Foreign firms that have no establishments in the U.S. will not be present in the BR; however, many foreign firms do have activity in the U.S. While we attempt to match foreign assignee names to the BR we anticipate much lower match rates for that sample.

In preparing the patent file for matching, we first drop all patents that have no business assignee name (unassigned or assigned to either a U.S. or foreign individual). This yields 2,054,754 patents. The last column of Table 1 shows the annual frequency of this set of patents, which includes patents assigned to U.S. and foreign entities. We treat U.S. and foreign assignee names differently in the name match process. They are treated differently for two reasons: (1) we do not have city and state information for foreign firms; and (2) foreign assignee names may be structured differently than U.S. assignee names. The lack of information on city and state for foreign firms means we have no blocking variable (i.e., no way to limit the possible set of matches). This makes use of the SAS DQMatch fuzzy matching procedure we use for U.S. firm names computationally unwieldy.

17 If the assignee state field contains no characters in the patent assignee data downloaded from Google, the assignee is classified as a foreign assignee.

18 It is outside of the scope of this project to identify patents that remain unassigned or are assigned to the human inventor. In future work we will explore their identification amongst non-employer firms.

19 One illustrative example is the Japanese firm styled “Panasonic Corporation” in the U.S., the Japanese name for which is Panasonikku Kabushiki-gaisha. Note, this is an illustrative example only and is not taken from restricted-use microdata.

20 Foreign firm names are also in a variety of different languages and the version of SAS DQMatch we use when matching U.S. firm names is optimized for English.
For U.S. assignees in the patent data, we use assignee city/place and state information to attach a 3-digit zip code to the assignee. We do this because zip code information is readily available in the BR and is much more reliable than place names as a matching variable. In some cases, multiple 3-digit zip codes are attached to a single assignee if the place straddles multiple 3-digit zip codes. We next standardize the firm name field by deleting punctuation and symbols (e.g., “,”, “-”, “&”, “@”), common words (e.g., “and”, “the”), legal entity designations (e.g., “Corp.”, “Co.”, “LP”, “LLC”), and removing blanks. Firm names from the BR are standardized using the same algorithm. We perform several matching passes:

1. Match patent assignee name and 3-digit zip code to BR firm name and 3-digit zip code.
2. For remaining unmatched U.S. assignees, match patent assignee name and state to BR firm name and state.
3. For remaining unmatched U.S. assignees, use SAS DQMatch “fuzzy” name matching algorithm to match patent assignee name to BR firm name blocking on 3-digit zipcode.
4. For remaining unmatched U.S. assignees, use “fuzzy” name matching algorithm to match patent assignee name to BR firm name blocking on state.
5. For remaining unmatched U.S. assignees, use “fuzzy” name matching algorithm to match patent assignee name to BR firm name removing all geographic blocking variables.

We also try a word matching algorithm (described below as step 2 for foreign assignee name matching), but did not find this algorithm produced additional good matches for the remaining unmatched U.S. assignees after SAS DQMatch fuzzy matching. Over 87 percent of U.S. assignees are matched to at least one BR firm identifier in steps 1 and 2. Note we keep all matches resulting from the above steps. This means we will have multiple matches for many assignee names. Many of these multiple matches will be resolved during the triangulation process described later in this section.
For foreign assignees in the patent data, we have only the assignee name listed on the granted patent. We standardize the foreign assignee names in the same way as the U.S. assignee names. We then perform the following matching passes:

1. Match patent assignee name to BR firm name.

2. For remaining unmatched foreign assignees, use a word matching algorithm (based on the components of the business name) to match patent assignee name to BR firm name with no blocking variable. The following rule applies here:
 a. If a match is not achieved, then remove the last word of the name and match again.
 b. Continue until there are only two words left in the name.
 c. Keep the match or matches from the earliest pass (the pass that uses the largest amount of information).

As noted above, we do not apply SAS DQMatch to these records because of high computational cost due to the lack of geographical blocking variables. Approximately 35 percent of foreign assignees have at least one match to a BR firm name in the first step and just under 24 percent are matched in the second step. This total match rate, approximately 59 percent, is considerably lower than the match for U.S. assignees. The lower total match rate is expected since foreign firms with no physical presence in the U.S. have no chance of being matched.

3.2. Inventor PIK Assignment

Patent documents do not include social security numbers or birth dates for inventors so we rely on the available identifying fields: the inventor’s name and the city and state of residence. We also know the likely vintage of the inventor information since inventor information is supplied to the USPTO in the year the patent application was filed. In order to match inventors from the patent data to workers in the LEHD data, inventors first need to be assigned an anonymous PIK. The Census Bureau uses the Person Identification Validation System (PVS) to assign PIKs to replace personal identifying information on any
file immediately upon acquisition. The PVS uses probabilistic linking to match person data to a reference file built from a combination of administrative and commercial databases. See Wagner and Lane (2014) for a description of the process. Note this reference file includes not only names but also residential address information.

We create a set of inventor files for patents granted between 2000 and 2011 with application years of 1996 and later from the PTMT data.\(^{21}\) Table 3 shows the percent of U.S. and foreign inventors in the granted patents data. There are over 5.8 million non-unique named inventors on granted patents from 2000-2011. Of these, roughly 47 percent are foreign inventors with no U.S. address.\(^{22}\) Foreign-based inventors with no U.S. address will not be in the PVS reference files or the LEHD data.\(^{23}\) Therefore, we limit the sample of inventors we feed into the PVS process to inventors with U.S. addresses in the patent data. We then use the inventor city and state of residence information to attach a 3-digit zip code to the inventor.\(^{24}\) Files with inventor name, state, and 3-digit zip code are used as an input to the PVS matching process. We attempt to assign PIKs to over 3.1 million non-unique inventors on over 1.2 million patents, which is 52 percent of the complete set of patents granted 2000-2011.\(^{25}\)

The standard PVS is used with a few changes particular to our specific application. First, since we are interested in working-age individuals covered by the LEHD data, we exclude matches to individuals in the reference files that are 16 years of age or younger. Second, due to the limited inventor information

\(^{21}\) We lose inventors on only a very small fraction of patents (less than 0.6 percent) and inventors (just over 0.6 percent) by restricting to application years of 1996 and later. This restriction is made because reference files are not available in the PVS for years prior to 2000. The 2000 reference file is used for 1996-1999.

\(^{22}\) U.S. inventors have a U.S. postal state code in the inventor state field on PTMT data; foreign inventors do not.

\(^{23}\) Note there might be some rare exceptions to this. For example, a foreign-based inventor that receives a temporary permit to work in the U.S. in nonimmigrant status (e.g., an alien working at a U.S. company temporarily to work on an invention) might appear in the LEHD data. However, the PVS reference files do not generally cover these individuals.

\(^{24}\) In some cases, city and state information link to multiple 3-digit zip codes. In these cases we provide all linked 3-digit zip codes (zip3) as an input into the PVS. The input files are at the patent-inventor-zip3 level.

\(^{25}\) Note, there are not 3.1 million different inventors, but here we treat each inventor-patent combination as a separate inventor since the patent data contains no inventor identifier.
available, we give additional weight to exact middle initial matches.26 Finally, for most applications, the PVS makes unique PIK assignments excluding cases that do not yield a unique match. Since we have limited inventor information and an opportunity to bring additional information to bear later in our matching process, we allow for multiple PIKs to be assigned to a single inventor. We performed three different matching passes as part of the PVS process:

1. Fuzzy name match blocking by 3-digit zip code
2. Fuzzy name match blocking by inventor state
3. Fuzzy name match blocking by assignee state

Only the PIK or PIKs assigned by the pass with the “best” information are retained. For example, if an inventor received PIKs in all three passes, only those from the first pass (block by 3-digit zip code) are kept.

We find that in more than 97 percent of our inventor-patent combinations, at least one PIK is assigned. While many inventors are assigned multiple PIKs, over 90 percent of the 1.2 million patents have at least one inventor assigned with a unique PIK (noting that 68 percent of patents with at least one U.S. inventor include multiple inventors). This feature of the data in combination with the triangulation described in Section 3.4 can be leveraged to create a disambiguated inventor database.27

3.3. Matching the Inventor to the LEHD Data and BR Firm Identifier

Once PIKs have been attached to inventors in the patent data, the inventor data is linked to the LEHD-EHF data using PIK as a matching variable. This link provides UI state identifiers (SEIN) for the employers where the inventor works. Recall, there is incomplete coverage of states in the LEHD data so

26 The middle name is typically not used in PVS. PVS typically relies on additional personal information - either a birth date or a Social Security number that is more reliable.

27 We leave discussion of the inventor database to a later time. We simply note that uniquely identifying any one of the inventors on a team of inventors provides considerably power to disambiguating all other inventors in the team as long as they work for the same firm. So for example, a hypothetical David Smith (inventor A) can be disambiguated from a David Smith (inventor B) because they work with different co-inventors (inventor C) and (inventor D).
not all PIKs will match to the LEHD data. Roughly 90 percent of PIK-patent combinations match to at least one SEIN. We then use the LEHD-ECF file to get all the corresponding federal employer identifiers (EIN) where the inventor worked. Finally, we create a crosswalk between the EINs in the ECF and firm identifiers (ALPHA) on the BR. Note there are EINs in the ECF that do not appear in the BR and vice versa so not all ECF-EINs will match to the BR. We are able to match about 94 percent of the LEHD EIN-year combinations in our data to the BR. Our final output from this step is a file of all possible inventor identifiers (PIKs) - recall some inventors receive multiple possible PIKs - and all possible BR firm-year combinations associated with those PIKs.

3.4. Triangulation

The matching described in Sections 3.1-3.3 generates two sets of files each providing an independent source of employer information including the EIN and the ALPHA. The business name match identifies all potential patenting firms in the BR. The inventor match identifies all potential firms in the LEHD data where the inventors may work. Our task then is to cross validate the matches and reconcile them whenever possible. We consider matches to be valid for consideration as long as they take place at the time of grant (for patent assignee) or application (for the inventor) or in a two year window around those dates.

Consider first the simplest type of case where the name of the inventor and/or the firm are rare and therefore easily identified in our data. Statistically, unusual names are more likely to provide a unique link. The inventor matches to a unique worker (PIK) who is in the employment of a single firm in the application year. The patent assignee name produces a unique firm match in the grant year. A match is considered closed and validated when the same firm is identified from the inventor (worker) and the

28 Once we identify an inventor in the LEHD we keep their whole employment history.
29 This is consistent with match rates documented in McCue (2012), pg.6, Table 5.
30 This includes both the administrative identifier, the EIN, as well as the unique Census firm identifier, the ALPHA.
31 We make a few exceptions to this rule; these are described later in the section.
assignee (firm-employer) sides. This situation is depicted in Appendix A, Figures A.1.1 and A.1.2. (Models 1 and 2).

Many cases are considerably more complex than the simplest case described above. Recall, we match inventors at the application date and patent assignees at the grant date because those are the points in time when the information is most accurate and likely to provide correct matches in the LEHD or BR data. There is a considerable time lag between the application date and the grant date (an average of just under 3 years in our data). Common situations resulting from this time lag include the following:

1. Firms that are active at time of application (identified through the inventor worker-to-employer link) might no longer be active as such at time of grant (identified through the firm name link). The original firm may have been acquired, merged, or changed its legal name which might trigger a change in the firm identifiers that the Census Bureau assigns to them (ALPHA). This situation is depicted in Appendix A, Figure A.1.3 (Model 3). Note that in this case even though the firm identifier may have changed we are still able find a link between the two sides of the match through an EIN.

2. The firm at time of application, firm A, shuts down and its portfolio of patent applications is acquired by firm B, and granted under firm B’s name. The inventor may, or may not, have been later employed by firm B. This situation is depicted in Appendix A, Figure A.1.4. In this case there is no link between firm A and firm B (Model 4).

3. The firm at time of application identified through the inventor-LEHD match and the firm at time of grant identified through the assignee name-BR match differ and they are both operational at time of grant. This may occur when a firm transfers their patent applications to another firm prior to grant or when a firm divests or spins off part of its activity (including patent applications) to another named entity. This situation might also arise when the research activity is outsourced to a

32 Inventors can switch jobs so timing is relevant to identifying the correct employer at the time the innovation was being developed. Similarly, merger and acquisition activity can lead to changes in the structure of firms.
contract research organization, or an entity in which firm A has an ownership interest but is not otherwise identified in the Census data as a subsidiary.33 This situation is similar to Figure A.1.4. In this case there is no link between firm A and firm B.

4. The patent is owned by multiple assignees. This situation is similar to Figure A.1.5 (Model 5). We simplify these cases by treating each assignee-inventor combination as independent matches.

5. The presence of non-standard business names in the patent data and the fact that corporations often file for patents through subsidiaries or other legal entities might lead us to find an inventor match but no assignee name match. This situation is depicted in Appendix A, Figure A.1.6 (Model 6). In this case, it may be possible to validate the link using the inventor’s information from another patent on which the same inventor is named (but which may include different assignee information).

6. For foreign inventors, we will not find the inventors place of work in our database. However, we may find the assignee name in the BR if the firm has a presence in the U.S. This situation is depicted in Appendix A, Figure A.1.7 (Model 7). For some of these cases it might be possible to validate the link using the assignee’s information from a different patent.

In cases where simple triangulation is not sufficient to uniquely identify a unique firm we apply the following rules:

1. The firm identified at time of grant dominates if this is a unique match.34

2. If there is no unique firm identified at time of grant but there is a unique firm identifier at time of application then we look at the history of the inventor (or its network) to identify a likely firm at time of grant. This is depicted in Appendix A, Figure A.1.6. If no firm is identified at time of grant then we employ the firm identified at time of application.

33 A firm is identified as a subsidiary to a parent corporation by the Census Bureau when the parent owns at least 50\% of the subsidiary.

34 Note this database makes it possible to distinguish the firms developing the innovation (where the inventors work) and the firms that are assigned the patent rights. We can also track the outcomes of both firms. We are exploring alternative selection rules.
Following this process, we are left with unmatched cases for which there is either (i) no unique match to a firm either directly through the assignee name or indirectly through the inventor name or (ii) there is no match using either. We resolve some of these cases manually. We first identify the assignees with the largest number of patents. We then perform manual name matching that includes visual inspection as well as web research.

4. Linked Patent-Business Firm-level Data

We use the crosswalk that results from the triangulation methodology described above to create a longitudinal database of patenting firms. We attempt to match roughly 2.1 million unique patent-assignee combinations from the USPTO bibliographic patent data extract to the BR/LBD. Of these, we match nearly 75 percent of all patent-assignee combinations. Table 4 shows our match rates. As expected many of our non-matches are for patents with foreign firm assignees. We match 91 percent of patents with U.S. firm assignees and nearly 59 percent of patents with foreign firm assignees. This compares to match rates of between 70 and 81 percent for U.S. patents in Balasubramanian et al. (2010) and Kerr and Fu (2008).

Overall, we match more than 1.5 million patent-assignee combinations to over 77,000 firms. Figure 2, panel A shows the percent of firms by the size of their patent portfolio (number of patents per firm) in our sample. During the 2000-2011 period, nearly 45 percent of patenting firms are granted only a single patent, over 16 percent are granted 2 patents, and about 25 percent are granted between 3 and 9 patents. Deeper in the distribution, close to 8 percent of firms are granted between 10 and 24 patents, and about 4 percent of firms are granted between 25 and 99 patents. Among the most prolific patenting firms, over 1 percent of firms are granted between 100 and 499 patents and about 0.5 percent of firms are granted 500 or more patents. The average time between patent grants for firms that hold multiple patents

35 This is all patent-assignee combinations with an assignee organization name. Some patents have multiple assignees.

36 We have no way of knowing how many of the foreign assignees have operations in the U.S.
is just over 1 year, a statistic heavily influenced by the large share of firms issued nine or fewer patents during our 12-year study period.

While the vast majority of patent-holding firms hold a single patent or just a few patents, most U.S. patents are held by just a few firms. These large patent holders dominate patenting activity. Figure 2, panel B shows the percent of patents held by firms as a function of the size of the patent portfolio. At the top of the distribution, we see that firms with patent portfolios exceeding 500 patents account for 58% of all patents granted in the U.S. There are less than 500 firms in this group. There is a monotonic decline as the size of the portfolio declines. Firms with patent portfolios between 100 and 499 patents account for an additional 13% of patents. At the bottom of the distribution, firms with up to 9 patents account for 13% of all patents.

After standardization, there are 153,889 different assignee firm names in our patent data.37 Note, this includes both primary and secondary assignees. Of these, 62 percent (~96,000) are linked to at least one firm identifier in the BR. Breaking out assignee names by foreign and U.S., we link about 86 percent of U.S. firm names and 37 percent of foreign firms names to at least one BR firm identifier.38 For comparison, Balasubramanian and Sivadasan (2010) match roughly 64 percent of U.S. firms.

Recall, we link to around 77,000 BR firm identifiers. This implies some of the approximately 96,000 different firm names link to the same firm identifier. The ability to disambiguate firm names through the triangulation of two databases is an advantage of our linking methodology. This methodology also allows us to identify more complex situations that result in the same assignee name being assigned to different firm identifiers. This is because the triangulation algorithm can resolve to a different firm identifier for different patents. Some of these cases are valid - for example, a firm that is granted a patent as a single-unit firm and then expands to a multi-unit firm and is granted another patent will have a valid

37 Name standardization is described in Section 3.1.
38 Here we identify a firm name as a “U.S. firm name” if it ever has a U.S. state in the patent data. There are about 3,700 firms that are identified as both U.S. or foreign depending on the patent.
firm identifier change between these patents. Alternatively, a firm that reorganizes and changes its legal form between patents but keeps the same name can also have a valid firm identifier change. However, other cases appear to be firms that contract out R&D where we are linking to the contractor rather than the actual assignee. We are investigating these cases and plan to improve these links in future versions of the crosswalk. Note, we also plan to keep the information on the firm where the inventors work at time of application even if it is not the final assignee firm as this is interesting information in its’ own right.

Our final Patent-LBD crosswalk file has 2,118,911 unique patent-assignee-firm identifier combinations. This figure is larger than the number of patent-assignee combinations because in a small number of cases we allow a single patent-assignee combination to match to multiple firm identifiers in the BR. There are just over 1,500 of these multiple matches in the crosswalk.39 Table 5 shows the frequency of different types of matches in the crosswalk file. Nearly 30 percent of all matches are based on a Model 1 loop close, which is the case where both the LEHD data match and BR data match lead to the same EIN and BR firm identifier. These matches are the highest quality in that they are validated by the triangulation strategy. Models 2 and 3 represent 2.5 percent of matches and are similarly closed loops where only the EIN or the firm identifier match and are considered validated. The next largest category accounts for 26.9 percent of the matches. These are cases where there is a match to a unique firm in the BR and no inventor match at all. Of these, 15.5 percent include firms that had been previously found to be a patenting firm in a Model 1-3 loop close. We consider these firms validated by their prior history. The remaining 11.4 percent have no prior history of validated patenting. The reverse situation is rare. There are relatively few cases where there is a unique link through the inventor and no link through the BR. These account for 4.5 percent of our matches and include cases validated through a prior inventor history, (1.9 percent), cases validated through a prior firm patenting history (1.3 percent), and cases not validated (1.3 percent). Roughly 5.3 percent of our matches are cases where the inventor links and assignee links do

39 These come from our manual matches. In these cases the firms appeared to be linked through a parent corporation. In the future, we plan to examine these cases more closely.
not line up but in which a unique link is identified either through the assignee (4.5 percent), or the inventor (0.8 percent). Our database also includes manual matches for some of the largest innovators not identified through our algorithm, accounting for 4.7 percent of matches. Finally, we include some matches that take place outside our valid 2-year window but in which both the inventor and the assignee agree (1.3 percent). It is notable that the bulk of our foreign assignee matches come from BR only matches, a reasonable outcome since inventors named on patents with foreign assignees are less likely to be based in the U.S.

Table 6 provides a list of the variables included on the Patent-LBD crosswalk file. The crosswalk includes the patent identifier (PRDN) linking uniquely to the patent database and a firm identifier (firmid) linking uniquely to the BR/LBD. It also includes the patent application year, the patent grant year, the patent assignee sequence number and their country, state, and type (see Table 2), a U.S. inventor flag, a match flag (see Table 5), as well as the match years to the LEHD and BR datasets.

Our match rate for patent-assignee combinations to the LBD is high, but we do not match them all. Figure 3 shows patent-assignee match rates by grant year for the full crosswalk, and broken out by type of assignee - U.S. assignees and foreign assignees. There is not much variation in match rates across years for the U.S. assignees. Notably, the match rate is over 90 percent in every grant year. Possibly related to how information flows into the patenting process, the match rate for foreign assignees shows an inverted-U shape over time, with minima in the earlier and later grant years and a peak at about 65 percent in 2006.

The type of match, and perhaps also the reliability of that match as captured by the match flag, also differs across assignee types. Figure 4 shows match rates by grant year broken out by broad type of match: BR and LEHD match, BR only match, LEHD only match, other types of matches, and

40 This is consistent with Balasubramanian et al. (2010).
unmatched. Between 58 and 64 percent of U.S. assignee matches are BR and LEHD matches where we were able to validate by triangulating BR and LEHD data. For U.S. assignees, we do not see a lot of variation by grant year though the BR and LEHD match rates are slightly lower in the early and late grant years possibly reflecting various left- and right-censoring issues in the data. Less than 2 percent of foreign assignee matches in each grant year are BR and LEHD triangulated matches. Most matches are based on the BR only.

The LEHD partnership with state employment security agencies has expanded over time, with some U.S. states only recently joining. We show match rates broken out by broad type of match and assignee state as given in the patent data in Figure 5. Not surprisingly, there is considerable variation in both overall match rate and broad match type across assignee states. The District of Columbia and Montana show the lowest overall with match rates below 70 percent, while Connecticut and New York show the highest overall with match rates around 95 percent. For most states, over 50 percent of matches are high-quality triangulated BR and LEHD matches. The state not in the LEHD data (Massachusetts) and states that came in to the LEHD data post-2000 (Alabama, Arkansas, the District of Columbia and Mississippi) have some of the lowest percentages of triangulated matches. This outcome makes sense since patent assignee state is correlated with the state where the inventor(s) work, but is not always the same. We consider triangulated matches to be our highest quality matches, so to the extent that match rates differ by type across assignee states, the quality of matches might differ by assignee state.

41 A match is a BR and LEHD match if match_flag = \{A1, A2, A3\}; a BR only match if match_flag = \{B1, B2\}; an LEHD only match if match_flag = \{C1, C2, C3\}; an other match if match_flag = \{D1, D2, E1, E2\}, and unmatched if match_flag is blank.

42 This result is not ideal but we note Massachusetts still has high overall match rates due to disproportionate BR only matches and a significant number of triangulated matches. Massachusetts is routinely named one of the most innovative states by population, and one that generates a disproportionate share of entrepreneurial foundings. See, ITIF (The Information Technology & Innovation Foundation). 2014. "The 2014 State New Economy Index: Benchmarking Economic Transformation in the States."

43 For example, consider a firm where the headquarters is in the patent assignee state and the research is taking place in an establishment of the firm located in another state.
We now examine match rates by several other patent characteristics, noting that the statistics reported in this analysis (Tables 7, 8, and 9) include all patent-assignee-firm identifier combinations in the Patent-LBD crosswalk. Looking first at team size (number of inventors per patent), we begin by noting that our matching methodology may bias our matches in the direction of patents with more inventors since we are likely at higher hazard of identifying at least one of the (several) inventors in the LEHD data. Table 7 shows match rates by inventor team size categories, both in terms of “all matches” and separated into U.S. and foreign assignee match rates. We observe a relatively small amount of variation in match rates by team size, though it does appear patents with between 2 and 9 inventors have slightly higher match rates than those with either a single inventor or 10 or more inventors. This difference is driven primarily by foreign patents and is consistent with the idea that non-U.S. patents are disproportionately represented in the set with 10 or more inventors.

Next we examine match rates by number of (forward) citations per patent to see whether our match algorithm is biased toward more highly cited (and potentially more valuable) patents. Forward patent citations (references made by later issued patents) have been commonly used in the literature as a proxy for technological impact or economic value [Jaffe and Trajtenberg (2002)]. Table 8 shows match rates by number of citations. In general, match rates appear to increase with the number of citations. The difference is once again largely driven by foreign patents suggesting foreign firms with more important patents (and, relatedly, technologies, products, and services showing higher consumer demand) are more likely to have a physical presence in the U.S.

Finally, Table 9 looks at match rates by technology category. We consider nine technology categories: Chemical, Computers & Communications, Drugs & Medical, Electrical & Electronic, Mechanical, Design, Plant, and Others. Among U.S. assignees, match rates are roughly similar across

44 Technology category assignment is based on U.S. Patent Classification codes assigned by USPTO and available in the U.S. Patent Grant Master Classification File. The category definitions are based on Hall et al. (2002) with additions described in detail in Dreisigmeyer et al. (2014).
technology classes, ranging between 90.2 percent and 92.6 percent, with the exception of patents in Drugs and Medical (85.7 percent) and Plant patents (showing the lowest match rate at 80.6 percent). Among U.S. patents matched to foreign assignees, we find a wider distribution of match rates. The Computers & Communications and Electrical & Electronic categories show the highest match rates (65.4 percent and 63.2 percent respectively) and plant patents the lowest (31.1 percent), with those in other categories ranging between 55.5 percent and 49.4 percent. We surmise that this matching pattern among non-U.S. assignees is influenced by the high propensity of large Asian electronics firms to file many thousands of patents annually at the USPTO, and to also have business establishments located in the United States.

5. Patenting Firms in the U.S.

We use the longitudinal linked patent-business database to explore basic characteristics of patenting firms in the U.S. For this simple illustrative exercise, we examine characteristics of patenting firms based on two different definitions of a patenting firm. In our time invariant definition, we define a firm as a patenting firm for all years if it has a patent granted any time between 2000 and 2011. We also create a time-varying definition of a patenting firm where a firm is considered to be a patenting firm in year t if it assigned a patent in year t.

In both definitions, we consider all firms with at least one granted patent in our crosswalk to be “patenting firms” and do not consider the size and value of their patent portfolios. We also make no distinction for the technology class or the team size. Additionally, for this exercise we abstract from complex issues around the identification and timing of the innovative activity leading to the patent. The PTMT data include only granted patents and our approach is to identify assignee firms as close to the time

45 The lower match rates for Drugs & Medical is consistent with results from Balasubramanian et al. (2010). Lower match rates are possibly due to a disproportionate share of R&D for Drugs & Medical being conducted at universities. Also, merger and acquisition activity is particularly intense in this industry with small companies developing new drugs that then are targeted for acquisition. The lower match rates for Plant patents may be due to characteristics of assignees in the plant patenting category (such as greenhouses, and horticulturists) which are also out of scope of the Economic Census and the LBD.

of patent grant as possible. However, identifying innovative activity at the time of patent grant is an arbitrary demarcation at best. Patents are often issued many years after the application is submitted so the grant date may be well after the actual innovative activity by the firm. Further, if we are interested in estimating the impact of innovation on firm outcomes, then it is important to note firms may exploit the invention while the patent application is still pending, and often expect to exploit their patents for many years after grant.

With these caveats in mind, we pursue our interest in examining the characteristics of patenting firms using the two alternative definitions. Motivating our interest in a time invariant definition of a patenting firm is the notion that firms that patent are inherently different from firms that do not patent. The resulting descriptive statistics will capture the “stock” of all patenting firms as long as they are still active during the period of analysis. This approach allows us to describe how patenting firms differ from non-patenting firms – for example in terms of firm size, industry, or region at any point in time and regardless of when they actually receive the patent rights. However, we are also interested in understanding when patenting takes place in the life cycle of a business. To answer these questions, we use the time-varying definition of a patenting firm. A firm is defined as a patenting firm in year \(t \) if it is assigned a patent by our matching process in year \(t \).\(^{47}\) This definition allows us to describe firms – for example their age, and job creation and destruction patterns, around the time of the granting of the patent. Under our time-varying definition, firms that hold a single patent will be classified as patenting firms for a single year in our calculations while those that are granted multiple patents might contribute multiple observations (one for each year that the firm is granted a patent).\(^{48}\)

\(^{47}\) Recall, in our matching procedure, we allow a five-year window when matching patents to BR firm identifiers \((t-2\) to \(t+2)\). We narrow this window for our time-varying definition of a patenting firm. If a firm is assigned a patent in year \(t \), the grant year of the patent must be between \(t-1\) and \(t+1\) for the patent to be assigned as a patenting firm in year \(t \).

\(^{48}\) Obviously, there are different approaches that we can take depending on the question at hand. For example, we may want to examine firm activity immediately before and after the granting of a patent. Alternatively, we may want to understand differences between the stock of patent owning firms and those that are not patent holders. Or, we might want to take some point in between. For example, Akcigit et al. (2013) consider a firm to be innovative if it
The longitudinal linked patent-business database starts in 2000 so our time invariant indicator is left censored, misclassifying firms that are granted patents before 2000 and have not been granted a patent since. This obviously excludes a large number of single patent firms. Also note that since it takes an average of 35 months for a patent to be granted our sample will be right censored as we approach more recent years. Since some types of patents (e.g., patents in complex technological categories) take longer to process than others this will necessarily introduce selection in the types of patents we observe towards the end of our sample. With these limitations in mind, we proceed and provide basic descriptive statistics for patenting firms in the U.S. Most of the statistics we provide are centered around 2005 to minimize some of the censoring issues just described.

Figure 6 shows the share of patenting firms in the U.S. and their employment using our time invariant definition of a patenting firm. Less than 1 percent of firms in the U.S. economy are granted a patent between 2000 and 2011. These firms are among the largest firms in the economy, accounting for 33 percent of employment. The finding that patent-owning firms are amongst the largest in the economy is consistent with previous findings in the literature. Figure 7 shows the percent of firms that are ever granted a patent by firm size class. Panel A describes the “stock” of patenting firms in 2005 (i.e., we use the time invariant definition of a patenting firm). We find most large firms are patenting firms whereas patenting is a rare event among the smallest firms. Less than 0.5 percent of the smallest U.S. firms (those with 1 to 4 employees) are patenting firms. We find this proportion increasing monotonically with size: 12 percent of firms with between 250 and 499 employees patent at some point, and 52 percent of the largest firms (those with 5,000 or more employees) patent at least once. We find 62 percent of the largest firms, those with 10,000 or more employees, are patenting firms. The finding that the share of firms with

49 We plan to explore the heterogeneity in patent portfolios, technologies, and firm characteristics in future work.
50 We note there are complex issues around the transfer of the ownership of patents after the patent has been granted. We simply note these issues here. We expect to incorporate the assignments database in future versions of the longitudinal linked patent-business database.
51 See Acs and Audretsch (1988) and Balasubramanian and Sivadasan (2011). The later find that patenting firms account for 52% of all employment in the manufacturing sector.
patenting activity increases monotonically with firm size in the U.S. economy is similar to prior findings for the U.S. manufacturing sector [see Balasubramanian and Sivadasan (2011)]. Panel B, uses the time-varying definition of a patenting firm and looks only at patents matched in 2005. We find the distribution is not much different. Nearly 40 percent of the largest firms are assigned a patent in 2005. Less than 0.1 percent of the smallest firms are assigned a patent in 2005.

While patenting is a characteristic of large firms, our analysis demonstrates that small firms also play an important role in this economic activity. While relatively few small firms engage in patenting activity, they account for a large share of all patenting firms. Figure 8 shows the size distribution of patenting firms in 2005 using the time-varying definition of a patenting firm. We find the smallest firms, those with less than 4 employees, account for 17 percent of the total number of patenting firms. The share sums to 52 percent when we consider all firms with less than 50 employees. Some of these may grow to become large firms in later years. By contrast, the largest firms (those with at least 10,000 employees) account for less than 3 percent of patenting firms. This finding is driven by the skewed size distribution of firms in the U.S. economy.

Innovation is often associated with young firms (Andrews et al. 2014). Figure 9 shows the percentage of patenting firms in 2005 by firm age using the time-varying definition of a patenting firm. We find an inverted U shape relationship in the initial 15 years following birth. Young 4- and 5-year-old firms have the highest patenting rates in the economy during this time. We find 0.23 percent of 4-year-old firms in 2005 receive a patent. Patenting rates decline after age 4 and through age 15. Since the average patent takes close to three years to be granted, it stands to reason that many of the youngest firms developed these particular inventions shortly after being born. The lag between invention and patenting might be responsible for the observed ramp up through age 4. It is somewhat surprising there are so many startups and firms under 3 years old that receive a patent. There are multiple possible explanations for this. Some of these firms might be the result of spinoffs; early patents by very young firms may be a selected sample of simple to process patents; or the patent applications could have been filed before the
firm had employees. Regardless, the implication of this inverted U shape is that young innovative firms are particularly productive in the initial years after entry but the chances of successfully patenting decline quickly after that. After age 15 patenting activity again picks up with rates in excess of 0.3 percent on average. This high rate is driven by firms born before 1976 (the oldest firms we can observe in our data). This group is dominated by many of the largest firms depicted in Figure 7b. Figure 10 compares the age distribution of patent-holding and non patent-holding firms in 2005 again using the time-varying definition of a patenting firm. We find 4- and 5-year-old firms are slightly more likely to be patenting firms than non-patenting firms. Firms in the 16+ group are much more likely to be patenting firms than non-patenting firms. Those in the age-censored group (subset of oldest firms in the 16+ group, not shown separately in Figure 10) are even more likely to patent.

The most commonly granted patent in the U.S. is a “utility patent” conferring exclusive rights to use, make or sell new products, machines, combinations of matter, and processes (including software). We expect these types of inventions to be more typically associated with innovation conducted in some industries than in other industries. Figure 11 shows the share of patenting firms in 2005 by broad industrial class using the time invariant definition of a patenting firm. We allow individual firms to populate multiple categories if they engage in activities across multiple sectors. We find the manufacturing sector is particularly patent intensive with more than 6 percent of firms linked to patenting activity. Firms in the mining and wholesale sectors are also relatively likely to patent, with 2 percent and 3 percent of their firms patenting, respectively. Firms in transportation, communication, and public

52 Recall, the BR contains employer firms only so firms are observed for the first time after they hire their first employee. A startup (age equal to zero) is defined in our database as a denovo employer firm (where all its establishments are new to the economy). Some firms may hire their first worker only after the patent is assigned. This is consistent with the idea that patents facilitate access to finance.
53 Equal probability is represented by bars of equal length.
54 For example, a firm may be included in “manufacturing” and also in “finance and insurance” if the firm controls an establishment or establishments classified in these sectors. The U.S. Census Bureau assigns an industry code to each establishment based on its primary activity (generally the activity that generates the most revenue for the establishment).
55 Wholesale activities might be linked to factory-less manufacturing goods producers or alternatively manufacturing firms with some associated wholesale activity.
utilities (TCU), services and finance, insurance, and real estate (FIRE) are less likely to patent with 0.9 percent, 0.7 percent, and 0.6 percent of firms being assigned a patent, respectively. Firms in retail, construction, and agriculture, forestry, and fishing (Ag-For-Fish) are the least prone to this activity, with 0.4 percent, 0.3 percent and 0.2 percent of firms patenting, respectively. Wholesale firms with patenting activity may be related to factoryless goods production. Software development is often classified in Services. For large conglomerate firms spanning product areas and sectors of activity a question arises as to the correct segment of the firm to associate with the invention.56

We note that the manufacturing sector accounts for a relatively small number of firms in the economy when compared to retail or services. So, while patenting activity is more likely among manufacturing firms, it is reasonable to hypothesize that a significant share of patenting is occurring among firms outside the manufacturing sector. Figure 12 shows the industry distribution of patenting and non-patenting firms in 2005 by sector. Here we are again using the time invariant definition of a patenting firm. We find that only 30 percent of patenting firms are engaged in manufacturing but a larger share of patenting firms are active outside of manufacturing. We find 28 percent of patenting observations at the firm-sector level are active in the services sector, 19 percent in the wholesale sector, and 7 percent in the retail sector. Comparing the sectoral distribution of patenting and non-patenting firm-sector segments, we find manufacturing and wholesale firms are disproportionally likely to patent relative to their size in the population.

Ultimately, we are interested in understanding the innovation process and the relationship between firm patenting and economic outcomes such as job creation and productivity growth. For our purpose here, we explore basic job flow measures. We define “job creation” and “job destruction”

56 The large diversification of many firms may be such that particular patents may have an impact far beyond the industry segment of origin. Depending on the research question we might want to identify only the “origin” industry or alternatively the “using” industry, or even the whole firm if we expect innovations to ripple through all different segments of the company. For example, a software innovation in the manufacturing segment might benefit the retail segment of the company.
following Davis, Haltiwanger, and Schuh (1996). Let E_i be employment in year t for establishment i. We measure the establishment-level employment growth rate as follows:
\[
\frac{g_{it}}{X_{it}} = \frac{E_{it} - E_{it-1}}{X_{it}}
\]
where
\[
X_{it} = \frac{E_{it} + E_{it-1}}{2}
\]
This growth rate measure has become standard in analysis of establishment and firm dynamics both because it shares some useful properties of log differences and because it accommodates entry and exit [see Davis et al. (1996) and Tornqvist, Vartia and Vartia (1985)].57 These measures can also be computed for any firm characteristic including firm size, firm age, and industry.

Figure 13 shows job creation and destruction rates among patenting and non-patenting firms, by firm age as an average over the 2005 to 2008 period. We use the time-varying definition of a patenting firm. We exclude startups from this chart since startups only create jobs and there is no contrast between types of firms in this regard.58 We find patenting firms create more jobs than non-patenting firms for all age classes except among the youngest firms (those that are 1 year old). Our analysis shows the average growth differential is in excess of 3 growth points. By contrast, non-patenting firms on average shed more jobs than do patenting firms across almost all age classes, with the youngest non-patenting firms shedding the most jobs. Our analysis shows the average differential is nearly 7 growth points.

57 The DHS growth rate, like the log first difference, is a symmetric growth rate measure but has the added advantage that it accommodates entry and exit. It is a second-order approximation of the log difference for growth rates around zero. Note that the use of a symmetric growth rate does not obviate the need to be concerned about regression to the mean effects. Also, note that the DHS growth rate is not only symmetric but bounded between -2 (exit) and 2 (entrant).

58 Startups are de novo firms with all brand new establishment(s). These firms have no activity in the previous year. The job creation rate for these firms is equal to 2 in the standard DHS methodology. Note that the inclusion of this rate in the graphs would reduce the magnitude of the remaining bars making comparisons across types of firms more difficult.
Larger growth among young patenting firms is consistent with results in Acemoglu et al. (2013). It is also consistent with more recent work by Decker et al. (2015). These authors show that the growth distributions for young firms are highly skewed and that this is particularly important in the high tech sector. Our results are consistent with their findings. Interestingly we find differences in the job destruction margin play a particularly important role in explaining the relative higher net growth rates of patenting firms. It is important to highlight that while young patenting firms tend to disproportionally create jobs that there are relatively few of them; accordingly, while patent holding firms account for 27 percent of gross job creation in our analysis, young patent holding firms (those up to 10 years old) account for less than 1.5 percent of gross job creation.

Figure 14 shows job creation and destruction rates among patenting and non-patenting firms, by firm size as an average over the 2005 to 2008 period using the time-varying definition of a patenting firm. Again small patenting firms (not controlling for age) disproportionally contribute jobs to the economy, but the patterns we find here are much less pronounced than in Figure 13. On average, we find job creation rates for patenting firms exceeding those for non-patenting firms by less than 1 growth point. When we examine job destruction, the differential again shows patenting firms performing better, but by less than 0.5 growth points.

6. Conclusion and Future Work

This paper describes the joint efforts of the U.S. Census Bureau and the USPTO to create a new longitudinal database of patents holding firms and inventors covering the period between 2000 and 2011. The goal of the partnership between the Census Bureau and the USPTO is to create data products that improve our knowledge of the innovation process and describe its impact on relevant economic outcomes such as job creation and productivity growth.

59 Their sample includes both patenting firms as well as firms engaged in R&D expenditures.
60 This analysis is based on 3 years of data and ignores the fact that young patent holding firms grow disproportionally fast over many years so that the job contribution of each new cohort is expected to continue and grow over time.
We differ from previous patent matching efforts in that we link patent data to two independent administrative data sets—one on firms and one on workers. Previous efforts have only been able to exploit data from the administrative frame of firms in the U.S. from the Census Bureau BR. We follow them but expand on their work by using an additional administrative data set on workers and employers from the LEHD program. The LEHD data allows us to create an independent link to the employers where the inventors work. We triangulate the two datasets to create a more comprehensive frame of patent holding firms in the U.S. and their workers, and inventors. We are able to match over 90 percent of U.S. patent assignees to the BR. The use of two independent sources of information allows us to validate a large fraction of the matches.

We use the resulting database to explore basic features of the population of patent-holding firms. We find patenting is a rare event amongst U.S. firms. Most firms in the U.S. do not patent. However, those that do, particularly young patenting firms, disproportionately contribute jobs to the U.S. economy. We find the population of patenting firms itself is highly skewed. Most patenting firms hold a single patent but a small percentage of firms hold the majority of patents. A natural consequence of the skewed firm size distribution is that while patenting is a relatively rare event among small firms, most patenting firms are nonetheless small. We also find patenting is not as rare an event for the youngest firms compared to the oldest firms. Finally, we find firms engaged in manufacturing are the most likely to patent, but that most patenting firms are in the services and wholesale sectors.

This paper provides a first glimpse at the types of tabulations and analysis that are possible using the simplest possible measure of patent activity, the presence or absence of a granted patent at the firm level. Many other dimensions of innovative activity can be examined using these rich data. We have developed multiple measures of the patent value, impact, and knowledge content in this database. We have also added measures of technological innovation, including whether the innovation is general, limited use, or is radical or incremental when compared with the prior art. In the future, we anticipate
incorporating these and other measures to characterize both particular patents and also firms’ patent portfolios.

We expect to extend our database and improve match rates in follow up versions of these data. In particular, we expect to extend the number of years covered by the database and to add to the richness of assignment information available to us by including dynamic assignment information available in the USPTO Patent Assignments Dataset [Marco et al. (2015)]. We also plan to refine our matching algorithms by exploiting the information contained in the network of inventors available to us in the patent data. Supplementary versions will incorporate information on the quality and value of the patents and firm patent portfolios. Finally, the current effort generated additional files including a longitudinal database of inventors, a disambiguated database of inventors, and a disambiguated database of patent-holding firms. We leave the discussion of these databases to future papers.
References

Tables and Figures

Table 1. Number of Patents per Year in USPTO Granted Patents Data, 2000-2011

<table>
<thead>
<tr>
<th>Year</th>
<th>All Granted Patents</th>
<th>All Assigned Granted Patents</th>
<th>Granted Patents with Organization Assignee</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>176,083</td>
<td>149,300</td>
<td>147,950</td>
</tr>
<tr>
<td>2001</td>
<td>184,046</td>
<td>158,701</td>
<td>157,189</td>
</tr>
<tr>
<td>2002</td>
<td>184,424</td>
<td>160,540</td>
<td>159,025</td>
</tr>
<tr>
<td>2003</td>
<td>187,048</td>
<td>163,951</td>
<td>162,470</td>
</tr>
<tr>
<td>2004</td>
<td>181,319</td>
<td>160,912</td>
<td>159,510</td>
</tr>
<tr>
<td>2005</td>
<td>157,741</td>
<td>140,938</td>
<td>139,665</td>
</tr>
<tr>
<td>2006</td>
<td>196,437</td>
<td>176,312</td>
<td>174,894</td>
</tr>
<tr>
<td>2007</td>
<td>182,928</td>
<td>164,785</td>
<td>163,473</td>
</tr>
<tr>
<td>2008</td>
<td>185,244</td>
<td>168,064</td>
<td>166,875</td>
</tr>
<tr>
<td>2009</td>
<td>191,933</td>
<td>175,513</td>
<td>174,206</td>
</tr>
<tr>
<td>2010</td>
<td>244,358</td>
<td>223,768</td>
<td>222,235</td>
</tr>
<tr>
<td>2011</td>
<td>247,728</td>
<td>228,705</td>
<td>227,262</td>
</tr>
<tr>
<td>Total</td>
<td>2,319,289</td>
<td>2,071,489</td>
<td>2,054,754</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations on the USPTO’s PTMT data. It is notable that the “All Granted Patents” counts derived from the PTMT dataset are marginally different than annual USPTO statistics here: http://www.uspto.gov/web/offices/ac/ido/oeip/taf/us_stat.htm, likely due to updates and unforeseen latent patent grants resulting from appeals entering the PTMT data.

Note: Assigned granted patents are all granted patents except for unassigned patents. Granted patents with assignee organization name are all granted patents less unassigned patents and those assigned (only) to individuals.
Table 2. Frequency of Assignee Type in USPTO Granted Patents Data, 2000-2011

<table>
<thead>
<tr>
<th>Assignee Type</th>
<th>Granted Patents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Percent</td>
</tr>
<tr>
<td>Unassigned</td>
<td>247,800</td>
<td>10.7</td>
</tr>
<tr>
<td>U.S. non-government organization</td>
<td>1,026,536</td>
<td>44.3</td>
</tr>
<tr>
<td>Foreign non-government organization</td>
<td>1,016,852</td>
<td>43.8</td>
</tr>
<tr>
<td>U.S. individual</td>
<td>10,563</td>
<td>0.5</td>
</tr>
<tr>
<td>Foreign individual</td>
<td>6,172</td>
<td>0.3</td>
</tr>
<tr>
<td>U.S. Federal Government</td>
<td>10,174</td>
<td>0.4</td>
</tr>
<tr>
<td>Foreign government</td>
<td>1,192</td>
<td>0.1</td>
</tr>
<tr>
<td>Total</td>
<td>2,319,289</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations on the USPTO’s PTMT data.

Note: This table reflects assignee type for the primary assignee only. Approximately 2.6 percent of total patents have multiple assignees.
<table>
<thead>
<tr>
<th></th>
<th>Inventors on Granted Patents</th>
<th>Inventors on Granted Patents with Application Year 1996 or Later</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Percent</td>
</tr>
<tr>
<td>U.S.</td>
<td>3,073,383</td>
<td>52.5</td>
</tr>
<tr>
<td>Foreign</td>
<td>2,785,295</td>
<td>47.5</td>
</tr>
<tr>
<td>Total</td>
<td>5,858,678</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations on the USPTO’s PTMT data.
Table 4. Match Rates for Match of Patent-Assignee Combinations to the BR/LBD

<table>
<thead>
<tr>
<th>Match</th>
<th>All</th>
<th>U.S. Assignee</th>
<th>Foreign Assignee</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Number</td>
<td>Number</td>
</tr>
<tr>
<td></td>
<td>Percent</td>
<td>Percent</td>
<td>Percent</td>
</tr>
<tr>
<td>0</td>
<td>538,650</td>
<td>94,857</td>
<td>443,793</td>
</tr>
<tr>
<td></td>
<td>25.4</td>
<td>9.0</td>
<td>41.5</td>
</tr>
<tr>
<td>1</td>
<td>1,579,371</td>
<td>953,399</td>
<td>625,972</td>
</tr>
<tr>
<td></td>
<td>74.6</td>
<td>91.0</td>
<td>58.5</td>
</tr>
<tr>
<td>Total</td>
<td>2,118,021</td>
<td>1,048,256</td>
<td>1,069,765</td>
</tr>
<tr>
<td></td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations on the Patent-LBD crosswalk file.

Note: We did not attempt to match patents that were “unassigned” or assigned to individuals to the BR/LBD. This table includes only unique patent-assignee combinations.
Table 5. Frequency of Match Types in the Patent-LBD Crosswalk File

<table>
<thead>
<tr>
<th>match_flag</th>
<th>Description</th>
<th>All</th>
<th></th>
<th>U.S. Assignees</th>
<th></th>
<th>Foreign Assignees</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td></td>
<td></td>
<td>Percent</td>
<td></td>
<td>Number</td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>Model 1 loop close (EIN and Firm ID match)</td>
<td>618,705</td>
<td>29.2</td>
<td>603,975</td>
<td>57.6</td>
<td>14,730</td>
<td>1.4</td>
</tr>
<tr>
<td>A2</td>
<td>Model 2 loop close (Firm ID match)</td>
<td>46,384</td>
<td>2.2</td>
<td>41,975</td>
<td>4.0</td>
<td>4,409</td>
<td>0.4</td>
</tr>
<tr>
<td>A3</td>
<td>Model 3 loop close (EIN match)</td>
<td>7,372</td>
<td>0.3</td>
<td>6,992</td>
<td>0.7</td>
<td>380</td>
<td>0.0</td>
</tr>
<tr>
<td>B1</td>
<td>BR only loop close</td>
<td>329,182</td>
<td>15.5</td>
<td>92,743</td>
<td>8.8</td>
<td>236,439</td>
<td>22.1</td>
</tr>
<tr>
<td>B2</td>
<td>BR only residual match</td>
<td>240,643</td>
<td>11.4</td>
<td>25,011</td>
<td>2.4</td>
<td>215,632</td>
<td>20.2</td>
</tr>
<tr>
<td>C1</td>
<td>LEHD only loop close - inventors and Firm ID</td>
<td>40,656</td>
<td>1.9</td>
<td>34,678</td>
<td>3.3</td>
<td>5,978</td>
<td>0.6</td>
</tr>
<tr>
<td>C2</td>
<td>LEHD only loop close - Firm ID</td>
<td>28,155</td>
<td>1.3</td>
<td>23,240</td>
<td>2.2</td>
<td>4,915</td>
<td>0.5</td>
</tr>
<tr>
<td>C3</td>
<td>LEHD only remainder match</td>
<td>27,544</td>
<td>1.3</td>
<td>23,514</td>
<td>2.2</td>
<td>4,030</td>
<td>0.4</td>
</tr>
<tr>
<td>D1</td>
<td>Unmatched firms loop close by Firm Name (Some manual)</td>
<td>28,469</td>
<td>1.3</td>
<td>4,650</td>
<td>0.4</td>
<td>23,819</td>
<td>2.2</td>
</tr>
<tr>
<td>D2</td>
<td>Unmatched firms matched to Firm ID manually</td>
<td>99,656</td>
<td>4.7</td>
<td>21</td>
<td>0.0</td>
<td>99,635</td>
<td>9.3</td>
</tr>
<tr>
<td>E1</td>
<td>Model 4 loop close (unique BR firm id)</td>
<td>95,853</td>
<td>4.5</td>
<td>83,274</td>
<td>7.9</td>
<td>12,579</td>
<td>1.2</td>
</tr>
<tr>
<td>E2</td>
<td>Model 4 loop close (unique LEHD firm id)</td>
<td>17,642</td>
<td>0.8</td>
<td>14,207</td>
<td>1.4</td>
<td>3,435</td>
<td>0.3</td>
</tr>
<tr>
<td>Unmatched</td>
<td></td>
<td>538,650</td>
<td>25.4</td>
<td>94,857</td>
<td>9.0</td>
<td>443,793</td>
<td>41.5</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2,118,911</td>
<td>100.0</td>
<td>1,049,137</td>
<td>100.0</td>
<td>1,069,774</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations on the Patent-LBD crosswalk file.

Note: We did not attempt to match patents that were “unassigned” or assigned to individuals to the BR/LBD. This table includes all patent-assignee-firm identifier combinations in the Patent-LBD crosswalk file.
Table 6. Variable Listing for Patent-LBD Crosswalk File

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRDN</td>
<td>Patent identifier</td>
</tr>
<tr>
<td>application_year</td>
<td>Patent application year</td>
</tr>
<tr>
<td>assignee_country</td>
<td>Patent assignee country (populated only for foreign assignees)</td>
</tr>
<tr>
<td>assignee_sequence</td>
<td>Patent assignee sequence number</td>
</tr>
<tr>
<td>assignee_state</td>
<td>Patent assignee state (populated only for U.S. assignees)</td>
</tr>
<tr>
<td>assignee_type</td>
<td>Patent assignee type (see Table 2 for assignee types; populated only for primary assignee)</td>
</tr>
<tr>
<td>firmid</td>
<td>BR firm identifier (or ALPH A)</td>
</tr>
<tr>
<td>foreign_assignee_flag</td>
<td>= 1 when the assignee is foreign</td>
</tr>
<tr>
<td>grant_year</td>
<td>Patent grant year</td>
</tr>
<tr>
<td>match_flag</td>
<td>Match type flag (see Table 4 for values and descriptions)</td>
</tr>
<tr>
<td>multiple_assignee_flag</td>
<td>= 1 when there are multiple assignees on the patent</td>
</tr>
<tr>
<td>unique_firm_id</td>
<td>= 1 when assigned to a unique BR firm identifier</td>
</tr>
<tr>
<td></td>
<td>= 0 when assigned to multiple firm identifiers</td>
</tr>
<tr>
<td></td>
<td>Note: This is only applicable when match is a Model 1-3 loop close</td>
</tr>
<tr>
<td>us_assignee_flag</td>
<td>= 1 when the assignee is based in the U.S.</td>
</tr>
<tr>
<td>us_inventor_flag</td>
<td>= 1 when there is a U.S. applicant on the patent</td>
</tr>
<tr>
<td>year</td>
<td>Calendar year of match to the LEHD data</td>
</tr>
<tr>
<td>yr</td>
<td>Calendar year of match to the BR data</td>
</tr>
</tbody>
</table>
Table 7. Match Rates by Team Size, Patent-LBD Crosswalk

<table>
<thead>
<tr>
<th>Team Size (Number of Inventors per Patent)</th>
<th>All</th>
<th>U.S. Assignees</th>
<th>Foreign Assignees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number Matched</td>
<td>Percent Matched</td>
<td>Number Matched</td>
</tr>
<tr>
<td>1</td>
<td>503,680</td>
<td>72.3</td>
<td>288,667</td>
</tr>
<tr>
<td>2</td>
<td>414,900</td>
<td>76.2</td>
<td>259,770</td>
</tr>
<tr>
<td>3</td>
<td>291,484</td>
<td>76.4</td>
<td>181,965</td>
</tr>
<tr>
<td>4</td>
<td>172,730</td>
<td>75.5</td>
<td>105,223</td>
</tr>
<tr>
<td>5-9</td>
<td>184,827</td>
<td>73.8</td>
<td>110,734</td>
</tr>
<tr>
<td>10+</td>
<td>12,640</td>
<td>73.1</td>
<td>7,921</td>
</tr>
<tr>
<td>Total</td>
<td>1,580,261</td>
<td>74.6</td>
<td>954,280</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations on the Patent-LBD crosswalk file.

Note: This table includes all patent-assignee-firm identifier combinations in the Patent-LBD Crosswalk.
Table 8. Match Rates by Number of Citations, Patent-LBD Crosswalk

<table>
<thead>
<tr>
<th>Number of Citations per Patent</th>
<th>All</th>
<th>U.S. Assignees</th>
<th>Foreign Assignees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number Matched</td>
<td>Percent Matched</td>
<td>Number Matched</td>
</tr>
<tr>
<td>0</td>
<td>465,734</td>
<td>70.9</td>
<td>254,019</td>
</tr>
<tr>
<td>1</td>
<td>236,180</td>
<td>73.0</td>
<td>133,057</td>
</tr>
<tr>
<td>2-4</td>
<td>346,007</td>
<td>74.8</td>
<td>204,159</td>
</tr>
<tr>
<td>5-9</td>
<td>234,008</td>
<td>76.8</td>
<td>148,606</td>
</tr>
<tr>
<td>10-99</td>
<td>289,094</td>
<td>80.2</td>
<td>206,300</td>
</tr>
<tr>
<td>100+</td>
<td>9,238</td>
<td>86.7</td>
<td>8,139</td>
</tr>
<tr>
<td>Total</td>
<td>1,580,261</td>
<td>74.6</td>
<td>954,280</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations on the Patent-LBD crosswalk file.

Notes: This table includes all patent-assignee-firm identifier combinations in the Patent-LBD Crosswalk. Number of citations is the number of times the patent has been cited by other patents. This measure is right-censored because newer patents have had less time to be cited.
Table 9. Match Rates by Technology Category, Patent-LBD Crosswalk

<table>
<thead>
<tr>
<th>Technology Category</th>
<th>All</th>
<th>U.S. Assignees</th>
<th>Foreign Assignees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number Matched</td>
<td>Percent Matched</td>
<td>Number Matched</td>
</tr>
<tr>
<td>Chemical</td>
<td>170,970</td>
<td>71.0</td>
<td>102,370</td>
</tr>
<tr>
<td>Computers & Communications</td>
<td>451,170</td>
<td>79.6</td>
<td>280,789</td>
</tr>
<tr>
<td>Drugs & Medical</td>
<td>140,138</td>
<td>73.0</td>
<td>106,142</td>
</tr>
<tr>
<td>Electrical & Electronic</td>
<td>346,414</td>
<td>75.4</td>
<td>176,421</td>
</tr>
<tr>
<td>Mechanical</td>
<td>195,880</td>
<td>70.3</td>
<td>102,882</td>
</tr>
<tr>
<td>Design</td>
<td>131,555</td>
<td>74.1</td>
<td>87,530</td>
</tr>
<tr>
<td>Plant</td>
<td>4,812</td>
<td>52.9</td>
<td>3,230</td>
</tr>
<tr>
<td>Others</td>
<td>139,322</td>
<td>71.6</td>
<td>94,916</td>
</tr>
<tr>
<td>Total</td>
<td>1,580,261</td>
<td>74.6</td>
<td>954,280</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations on the Patent-LBD crosswalk file.

Notes: This table includes all patent-assignee-firm identifier combinations in the Patent-LBD Crosswalk. Technology categories are based on Hall et al. (2002) with additions described in Dresigmeyer et al. (2014). Design patents are patents granted for ornamental design of a functional item. Plant patents are for new plants.
Figure 1. Patent to Firm Matching Process to Create Patent-LBD Crosswalk
A. Percent of Firms

B. Percent of Patents

Source: Authors’ calculations on the Patent-LBD crosswalk file.

Figure 2. Number of Patents per Firm, Matched Patenting Firms Only, 2000-2011 Granted Patents

49
Figure 3. Match Rates by Grant Year, 2000-2011

Source: Authors’ calculations on the Patent-LBD crosswalk file. This figure includes all patent-assignee firm identifier combinations in the Patent-LBD crosswalk file.
Figure 4. Match Rates by Grant Year, 2000-2011

Source: Authors’ calculations on the Patent-LBD crosswalk file. This figure includes all patent-assignee-firm identifier combinations in the Patent-LBD crosswalk file.
Source: Authors’ calculations on the Patent-LBD crosswalk file. This figure includes all patent-assignee-firm identifier combinations in the Patent-LBD crosswalk file with assignee state in the U.S. (50 states plus District of Columbia).

Figure 5. Match Rates by Assignee State
Source: Authors’ calculations on the longitudinal linked patent-business database.

Notes: Statistics in this figure are calculated using the time invariant definition of a patenting firm; i.e., if the firm is granted a patent at any time from 2000 to 2011, it is defined as a patent-holding firm in all years.

Figure 6. Share of Firms and Employment by Patenting Status, Average 2005-2008
A. Time Invariant Patenting Firm Definition

B. Time-varying Patenting Firm Definition

Source: Authors’ calculations on the longitudinal linked patent-business database.

Notes: Statistics in panel A of this figure are calculated using the time invariant definition of a patenting firm; i.e., if the firm is granted a patent at any time from 2000 to 2011, it is defined as a patent-holding firm in all years. Statistics in panel B of this figure are calculated using the time-varying definition of a patenting firm; i.e., if a firm is assigned a patent in year t, it is a patent-holding firm in year t.

Figure 7. Percent of Firms Assigned a Patent by Firm Size, 2005
Source: Authors’ calculations on the longitudinal linked patent-business database.

Notes: Statistics in this figure are calculated using the time-varying definition of a patenting firm; i.e., if a firm is assigned a patent in year t, it is a patent-holding firm in year t.

Figure 8. Size Distribution of Firms by Patenting Status in 2005
Source: Authors’ calculations on the longitudinal linked patent-business database.

Notes: Statistics in this figure are calculated using the time-varying definition of a patenting firm; i.e., if a firm is assigned a patent in year t, it is a patent-holding firm in year t.

Figure 9. Percentage of Firms Assigned a Patent in 2005 by Firm Age
Source: Authors’ calculations on the longitudinal linked patent-business database.

Notes: Statistics in this figure are calculated using the time-varying definition of a patenting firm; i.e., if a firm is assigned a patent in year t, it is a patent-holding firm in year t.

Figure 10. Age Distribution of Firms by Patenting Status in 2005
Source: Authors’ calculations on the longitudinal linked patent-business database.

Notes: ‘Ag-For-Fish’ is Agriculture, Forestry, and Fishing; ‘TCU’ is Transportation, Communication, and Public Utilities; FIRE is Finance, Insurance, and Real Estate. Statistics in this figure are calculated using the time invariant definition of a patenting firm; i.e., if the firm is granted a patent at any time from 2000 to 2011, it is defined as a patent-holding firm in all years.

Figure 11. Percent of Patent Holding Firms by Sector, 2005
Source: Authors’ calculations on the longitudinal linked patent-business database.

Notes: ‘Ag-For-Fish’ is Agriculture, Forestry, and Fishing; ‘TCU’ is Transportation, Communication, and Public Utilities; FIRE is Finance, Insurance, and Real Estate. Statistics in this figure are calculated using the time invariant definition of a patenting firm; i.e., if the firm is granted a patent at any time from 2000 to 2011, it is defined as a patent-holding firm in all years.

Figure 12. Sectoral Distribution of Firms by Patenting Status, 2005
A. Job Creation Rate

B. Job Destruction Rate

Source: Authors’ calculations on the longitudinal linked patent-business database.

Notes: Statistics in this figure are calculated using the time-varying definition of a patenting firm; i.e., if a firm is assigned a patent in year t, it is a patent-holding firm in year t.

Figure 13. Gross Job Creation and Destruction Rates by Patenting Status and Firm Age, Average 2005-2008
A. Job Creation Rate

B. Job Destruction Rate

Source: Authors’ calculations on the longitudinal linked patent-business database.

Notes: Statistics in this figure are calculated using the time-varying definition of a patenting firm; i.e., if a firm is assigned a patent in year t, it is a patent-holding firm in year t.

Figure 14. Gross Job Creation and Destruction Rates by Patenting Status and Firm Employment, Average 2005-2008
Appendix

Figure A.1. Matching Models

1. Closed Loop Model 1: EIN and ALPHA are the same

2. Closed Loop Model 2: EIN is not the same but the ALPHA is the same
3. Closed Loop Model 3: EIN is the same but the ALPHA is not the same

4. Model 4. Assignee and inventor links do not line up.
5. Model 5. Multiple assignee case.
Model 6. Inventor only match.
6. Model 7: Business Register only match.