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Abstract 
 

Since Schumpeter, there has been a lively debate regarding the optimal firm size for innovation.  
Empirical results have settled into a puzzle: R&D spending increasing with scale, while R&D 
productivity decreases with scale.  Thus large firms appear irrational.  We propose and test two 
alternative resolutions of the puzzle: 1) that it arises from measurement problems, and 2) that firm 
size endogenously drives R&D strategy, and that the returns to R&D strategies depend on scale. 
To test both propositions we use recently available NSF BRDIS survey data of firms R&D 
practices (strategies) as well as a broader measure of R&D productivity.  Using the broader 
measure, we find that both R&D spending and R&D productivity increase with scale—thus 
offering one resolution to the puzzle.  We further find that while large firms and small firms differ 
in the types of R&D they conduct, there is no type whose returns decrease in scale—there are 
merely types for which the small firm penalty is less severe. Thus Schumpeter appears to be 
correct--large firms are the major engine of growth, they both spend more in aggregate than small 
firms, and are more productive with that spending. 
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I. Introduction 

A common innovation prescription is that firms should behave more entrepreneurially, 

suggesting that the optimal size for innovation is small firms.  So it is interesting that the bulk of 

R&D in the US is conducted by large established firms-- 3.9% of firms account for 77.3% of 

R&D (NSF 2003).  It is also interesting that this would come as no surprise to Joseph 

Schumpeter, the economist most often associated with entrepreneurship.  Despite all the attention 

to his “creative destruction”, Schumpeter asserted that large firms are the major engine of 

economic growth (1942).  His assertion rested on two arguments.  The first argument is that large 

firms enjoy economies of scale.  At the simplest level, this occurs because larger scale amortizes 

the fixed cost per innovation over more units of output.  The second argument is that large firms 

tend to have greater market power, which means they enjoy higher price premia.  Accordingly, 

both the lower cost and the higher price premia suggest the returns to innovation should be 

greater for large firms.    

Since Schumpeter, there has been a lively debate over which firm size1  is more amenable 

to innovation.  Indeed, the debate has become one of the most examined questions in innovation 

economics.  The debate is important to economics because innovation is the major driver of 

economic growth (Solow 1957, Romer 1990).  Accordingly, if large firms are more innovative, 

then perhaps anti-trust policy should be more lenient toward large firms—balancing the 

innovative benefits of scale against the anti-competitive effects on price.  Conversely, if small 

firms are more innovative, then anti-trust policy has yet another reason to limit industry 

consolidation.   

The debate is also important to firm strategy, because it raises the question of whether 

there is an optimal firm size for technology firms.  If so, once firms grow beyond that size, they 

may need to decompose into smaller units.  Alternatively, if there is an innovative advantage to 

large scale, then firms may want to aggressively pursue consolidation.  Thus it is not surprising 

that the debate rages in the management literature as well. 

Management arguments in favor of large firm innovation (beyond those advanced by 

                                                           
1 While it seems awkward to convert the continuous size variable into two discrete classes, this follows convention 
in the theoretical literature, and has an empirical incarnation (the SBA threshold of 500 firms, as used by Acs and 
Audretsch 1988 and others) 
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Schumpeter), point to the fact that large firms are more effective conducting R&D.  This occurs 

for a number of reasons.  First, there may be minimum efficient scales for some R&D projects, 

e.g., there is only one super-collider.  Second, R&D projects are known to be stochastic.  Stevens 

and Burley (1997) report that on average for Industrial Research Institute (IRI) member firms, it 

takes 125 funded projects to achieve one commercial success.  Large firms are better able to 

absorb this risk because they can pool it over a broader portfolio of projects.   Having a broad 

portfolio confers another advantage: technical diversity—typically more projects implies a 

broader set of problems and associated expertise (Nelson 1959).  This increases the likelihood of 

having any required expertise in-house.  Finally, large scale implies a broader set of product 

markets.  Drawing again upon the stochastic nature of R&D, this increases the likelihood that 

projects that fail for a given application, might have applications elsewhere in the firm. 

Management arguments in favor of small firm innovation typically rely on governance 

advantages.  One such advantage is that small firm compensation systems are better able to align 

employee behavior with company goals.  First, because there are fewer employees it is easier to 

observe employee behavior directly.  Accordingly, it is easier to design compensation systems 

based on observed behavior.  Second, often there is only one group or department in the 

company.  This means company-level outcomes are a reasonable measure of performance for 

that group.  These compensation advantages translate into both better ability to attract high 

caliber employees and better ability to motivate them.  Indeed Zenger (1994) found that Silicon 

Valley employees leaving for small firms obtained twice the salary premium of those going to 

large firms.  He also found that small companies were more likely to offer equity and other forms 

of compensation tied to individual and group performance.  As a result, small companies were 

able to attract higher caliber (based on GPA, degrees, awards, publications and patents) 

employees, and that those employees worked more hours than employees in large companies. 

An additional organizational advantage small companies enjoy beyond the ability to 

attract higher caliber employees and induce them to work harder, is better communication.  

Having fewer employees implies decision makers are closer both to the technology as well as the 

customer.  This means they can better link technological possibilities to market needs.  In 

addition to making better decisions, these decisions are made more rapidly because there are 

fewer levels of hierarchy.  Beyond these “vertical advantages” that stem from few levels of 

hierarchy, are horizontal communication advantages. Allen (1977) found that the likelihood 
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engineers consult other employees is a function of physical proximity (which is closer in small 

companies).  A more recent study finds this is still true even though researchers now have email 

and the internet (Liu 2016).  

Given compelling arguments for either size to be more effective in conducting R&D, the 

issue of firm size and innovation has become an empirical matter.  Cohen (2010) provides a 

comprehensive summary of that literature.  The main stylized facts emerging from that summary 

are: 1) the likelihood of conducting R&D increases with firm size; 2) R&D rises monotonically 

with size (Baldwin and Scott 1987, Scherer and Ross 1990), and 3) R&D productivity 

(innovation per unit of R&D) tends to decline with firm size (Scherer 1965, Pavitt et al 1987, 

Acs and Audretsch 1988, 1990).   

Thus the empirical literature has been unable to resolve the debate.  Indeed the stylized 

facts introduce a puzzle of seemingly irrational behavior of large firms: R&D investment 

increases in scale, despite the fact that R&D productivity appears to decrease with scale. 

Accordingly, a new generation of theories has emerged to explain the empirical puzzle of large 

firm irrationality.  These more nuanced theories don’t advocate for a particular firm size.  Rather 

they suggest the two sizes differ in the type of R&D they conduct, and that the returns to type of 

R&D vary with firm size. In essence they argue that choice of R&D strategy is endogenous--

firms choose the strategy most likely to be effective given their size.   

The first of the nuanced theories is that large firms are more likely to conduct basic 

research.  Nelson (1959) argues this is due to a broader technological base, as well as a wider 

range of products firms are willing to produce if the research identifies opportunities.  The 

second of the nuanced theories addresses the observation that radical innovation tends to 

decrease with firm size (Mansfield 1981).  Rosen (1991) develops a model in which firms 

separately choose project riskiness and project scale. Because the scale of their output is greater, 

large firms prefer safer innovation that enhances their existing product lines.  In contrast, 

precisely because they lack scale, small firms require riskier projects that have the potential for 

greater price premia.  The final nuanced theory addresses the observation that process R&D 

tends to increase with firm size (Link 1982, Scherer 1991).  Cohen and Klepper (1996) argue that 

because process innovation provides lower cost good/services to existing customers, the returns 

to process innovation increase in ex ante output.   In contrast, because the returns to product 

innovation stem from licensing or sales to new customers, they are independent of ex ante 
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output.  Accordingly, large firms favor process innovation, while small firms favor product 

innovation.  Cohen and Klepper (1996) test their model using FTC Line of Business data, and 

confirm that process share of R&D increases with firm size.  However, aside from the empirics 

in Cohen and Klepper (and the empirical observations motivating each theory), these more 

nuanced theories have not been tested. 

Thus one explanation for the empirical puzzle of irrational firms, is that firm size 

determines the type of R&D, and that innovative outcomes rely on type. An alternative 

explanation for the empirical puzzle is that it is an artifact of weak measures of innovative 

outcomes.  Typically, empirical studies rely on product counts or patent counts as the measure of 

R&D outcomes.  However, if the type of innovation is endogenously determined by firm size as 

the more nuanced theories suggest, these tests may undercount large firm innovation.  This is 

because process and incremental innovation are less likely to be patented.  Indeed, Cohen and 

Klepper (1996) state they don’t examine outcomes in their study of product versus product R&D, 

because process R&D is less likely to be patented. 

Our goal in the paper is to resolve the empirical puzzle of irrational large firms.  We hope 

to reconcile the empirical observation that R&D spending increases with scale, with the 

countervailing observation that R&D productivity decreases with scale.  We employ two tacks—

utilizing an alternative measure of R&D output, and testing the more nuanced theories of R&D.  

This requires both a more comprehensive measure of R&D outcome (to captures all forms of 

innovation), as well as data on R&D practices (to capture the innovation strategies in the more 

nuanced theories).  

We exploit a recent measure of R&D productivity, RQ (short for Research Quotient) 

(Knott 2008) to pursue the first tack, and recently available data from the National Science 

Foundation (NSF) Business R&D and Innovation Survey (BRDIS) to pursue the second tack, in 

attempting to resolve the firm size puzzle.  We expect to find either that the more comprehensive 

outcome measure indicates R&D productivity increases with scale, or that the returns to at least 

one form of innovation favored by small firms decreases with scale. 

With regard to the first tack of employing a more comprehensive measure of innovative 

outcomes, we find that R&D productivity (measured as RQ) increases with scale.  Thus the 

measurement tack offers one resolution of the firm size puzzle: R&D spending and RQ both 

increase with scale.  We had limited success with the second tack of exploring the more nuanced 
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theories of firm size and innovation.  While our results confirm that firm R&D behavior matches 

each theory: basic research, process innovation and incremental innovation all increase with 

scale, we could find no strategy favoring small firms.   In particular, there were no strategies 

whose returns decreased in scale—there were merely strategies for which the small firm penalty 

was less severe.  Taken together, the results indicate that large firms are rational.  Moreover they 

suggest the prior puzzle of irrational firms stems from measurement problems, rather than from 

endogeneity issues.    

Beyond offering a resolution to the puzzle of irrational large firms, which is important for 

theory, our results offer a broader implication for practice: Schumpeter (1942) appears to be 

correct that large firms are the chief engine of innovation (and accordingly economic growth).  

Not only do large firms (using the US Small Business Association definition of greater than 500 

employees) conduct 5.75 more R&D in aggregate than small firms, they have 13% higher 

productivity with that R&D.  Thus anti-trust policy may want to consider tradeoffs between the 

anti-competitive effects of large scale against the innovative benefits of large scale.  Similarly, 

for firms, the prescription for them to behave more entrepreneurially (like small firms), should be 

treated with caution.  At least one small firm strategy has lower returns to scale than the large 

firm counterpart.   

The paper proceeds as follows.  We first outline our empirical approach, providing 

greater details on the measurement tack (including the RQ measure itself), the nuanced theory 

tack, and the data.  We next present results, then provide a summary and discuss implications. 

 

II. Empirical Approach 

This study is an effort to resolve the firm size puzzle by pursuing two tacks: 1) utilizing 

a new R&D output measure to see if the puzzle is merely an artifact of measurement problems, 

and 2) testing the more nuanced theories of firm size and R&D.  Under the measurement tack, 

we utilize COMPUSTAT data on all publicly traded firms engaged in R&D. We first attempt 

to replicate the stylized fact that R&D productivity decreases with scale.  We then repeat the 

test using the new RQ measure that captures the returns to R&D irrespective of form.  Under 

the second tack of testing the more nuanced theories of firm R&D behavior, we exploit 

recently collected data on firms’ R&D practices from the NSF’s BRDIS survey.  We first test 
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the impact of scale on the likelihood of employing each strategy.  We then examine the impact 

of each strategy on R&D productivity. 

 

2. 1 Replicating stylized facts 

Our first set of empirics attempts to replicate the stylized facts that R&D increases with 

scale, while R&D productivity (measured as patents per unit of R&D) decreases with scale.  

Equation 1 examines the main effects of firm scale on behavior (R&D spending), while equation 

2 models the main effects of scale on patent intensity. Both models include firm fixed effects and 

year effects.  Our primary dataset for testing equation 1 comes from the COMPUSTAT North 

American Annual database.   However to test equation 2, we need to merge that with data from 

the  NBER patent database maintained by Hall, Jaffe and Trajtenberg (2001). The database 

provides detailed information about patent application and grant date, patent assignee, citation 

information for each patent and a link between patent assignee and COMPUSTAT GVKEY. This 

database starts in 1976 and ends at 2006. 

Because we later utilize BRDIS data to examine firm behavior, we also test equations 1 

and 2 using that data.   

(1) ln Rit   0  1 ln Yit  
 i  t    it    

(2)  Patent Intensityit   0  1 ln Yit  
 i  t    it   

 

2.2 The Measurement tack 

 

Once we replicate the stylized fact with COMPUSTAT data, we then retest equation 2, 

replacing patent intensity with a more comprehensive measure of R&D outcomes, RQ (short for 

research quotient), as shown in Equation 3.  

(3)  RQit   0  1 ln Yit  
 i  t    it   

 

2.2.1 The RQ measure 

 

The RQ measure that we employ for the measurement tack, and another measure called 

TFP (total factor productivity) were both developed to circumvent problems with patent 
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measures for capturing firm innovation.  The first concern with patent-based measures is they 

are not universal. In our sample, only 37% of the firms in COMPUSTAT who conduct R&D 

have any patents.  Thus over 60% of firms conducting R&D will appear to have no innovation.  

The second concern with patents is they lack uniformity. Scherer and Harhoff (2000) report 

that 10% of U.S. patents account for 81%-85% of the economic value of all U.S. patents. To 

compensate for this, many studies weight patents by the number of citations they receive.  

However, Abrams et al (2013) show that even this correction may be problematic. Thus while 

citations may help mitigate the non-uniformity problem of patent value, they don’t solve it.    

TFP and RQ are similar in that they capture the source of technological change in the 

firm’s production function.  However, they differ in their assumptions about the source of that 

technological change.  TFP maps onto Solow’s (1957) theory of exogenous technological 

change—thus implicitly assumes firm innovative output is independent of its R&D.  

Accordingly, it is modeled as a shifter in the firm’s production function, and empirically 

captured as a fixed effect or the residual in the firm’s production function. 

In contrast RQ, defined as the firm-specific output elasticity of R&D, maps onto 

models of endogenous technological change that treat R&D as investments made by profit-

maximizing agents (Romer 1990, Thompson 1996, Lentz and Mortensen 2008).  Accordingly, 

it is imbedded in the firm’s production function as a continually evolving stock of knowledge, 

and is captured empirically as the output elasticity of R&D. 

More macro-level versions of both measures have been used extensively in studies at 

the industry and economic level (See Hulten 2000 for a review of TFP studies; see Hall, 

Mairesse and Mohnen 2010 for a review of returns to R&D).  The extension of these measures 

to the firm-level stems from the recognition there is tremendous heterogeneity among firms 

even within the same industry  

Both TFP and RQ circumvent the universality and uniformity problems of patent-based 

measures.  With respect to universality, both TFP and RQ are estimated from firms’ financial 

data, so can be estimated for any firm doing R&D.  With respect to uniformity, both measures 

are unitless (TFP is a shifter, RQ is an elasticity), so their interpretation is uniform across 

firms.  However of the two measures, RQ is the more appropriate for tests of firm behavior and 

innovation because its foundational assumption (firms choose R&D to maximize firm value) 

matches the empirical reality that firms’ invest in R&D to achieve growth.  Beyond that, and 
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likely because of that, the most compelling advantage of RQ is reliability. Tests of RQ versus 

patent intensity and TFP indicate RQ is the only measure empirically consistent with 

propositions from models of endogenous growth theory (e.g., Thompson 1996, Lentz and 

Mortensen 2011) that R&D investment, market value and growth all increase in R&D 

productivity (Knott and Vieregger 2016). In contrast, patent intensity fails to hold under all 

three propositions, while total factor productivity (TFP) holds for the R&D investment and 

market value propositions, but not for the growth proposition.  

Of course, RQ has limitations.  In particular, it can only capture innovation derived 

from R&D.  Thus it excludes innovation by the approximately 7% of non-R&D firms who 

report introducing product or service innovations in the prior three years (Boroush 2010). 

Further RQ can only measure aggregate innovation (the level at which you can form a 

production function).  Thus it can’t be used to measure productivity of particular projects.  

Finally, the fact that it is unitless means it can’t be used to examine the knowledge content or 

flows of innovation (things patents are particularly well-suited to). 

 

2.3 The Nuanced Theory Tack 

To implement the nuanced theory tack, we first examine whether firm scale drives 

strategy in the manners predicted by theory. We then examine how the strategies affect R&D 

productivity.  We utilize BRDIS data for both sets of examinations.  These data have variables 

that map onto each of the nuanced theories, and also have financial variables that allow us to 

estimate RQ.  The BRDIS variables mapping onto firm strategies in the nuanced theories are: 

portfolio horizon (basic, applied, development), which maps onto Nelson 1959, riskiness (new to 

market, new to firm, incremental), which maps onto Rosen 1991, and locus (product, service, 

process), which maps onto Cohen and Klepper 1996. For each strategy, we examine both the 

impact of scale on choice of that strategy (nine separate iterations of equation 4) and the impact of 

that strategy on outcome (nine separate iterations of equation 5).   

(4) P(strategy)i   0  1 ln Yii 
  i           

(5)  RQij   0  1istrategyj    2 ln Yit  3jstrategyj *lnYi 
  i         

We first estimate equations 4 and 5 for each strategy by defining strategy as the nine uni-

dimensional choices from the BRDIS questions (three each for horizon, riskiness and locus).  
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However, because it is unlikely firms choose the level of each uni-dimensional strategy in 

isolation, we also examine whether firms’ R&D strategies are better characterized as bundles.  

Accordingly we use cluster analysis to construct strategy “archetypes” for portfolio horizon, 

riskiness, and locus.   

We then repeat estimation of equations 4 and 5 replacing the uni-dimensional strategies 

with the strategy archetypes.  Note that we have no expectations for these archetypes because 

there isn’t theory to guide them.  We merely use them as a robustness check of whether strategy 

affects the observed relationships between firm size and innovation. 

 

2.4 Data and Variables 

The data to support these tests come from four sources.  The first tack utilizes data on 

publicly traded firms taken from a) the COMPUSTAT North American Annual database (1976 to 

2012), the Wharton Research Data Services (WRDS) RQ database, and data on patent grants 

taken from the NBER patent database (1976 to 2006) maintained by Hall, Jaffe and Trajtenberg 

(2001).   Data to support the second tack comes from the NSF’s confidential BRDIS survey 

(2008-2011). 

 

2.4.1 BRDIS Data 

BRDIS is an annual survey of firms’ R&D behavior conducted by the National Science 

Foundation (NSF) in conjunction with the U.S Census Bureau.  BRDIS is a more expansive 

successor to the Survey of Industrial Research and Development (SIRD), which was conducted 

from fiscal years 1953 to 2007.  Both surveys address the industry component of the NSF 

mandate "...to provide a central clearinghouse for the collection, interpretation, and analysis of 

data on scientific and engineering resources and to provide a source of information for policy 

formulation by other agencies of the Federal government."  

The more expansive survey was deemed necessary because the bulk of R&D is now 

funded by industry, whereas in the 1950s, when the SIRD was created, the majority of R&D 

was funded by the US government.  Thus greater insight into firm R&D behavior was 

warranted.  In addition, the new survey better matches the Community Innovation Survey 
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(CIS) conducted by the EU countries.2  Accordingly, BRDIS data support comparisons of 

innovative behavior between the US and other countries.   

BRDIS is mailed annually to approximately 40,000 companies.  The BRDIS sample is 

intended to represent the approximately 1.5 million for-profit companies in the United States 

with five or more domestic employees, both publicly or privately held.  The overall response 

rate in the 2008 survey was 77.4%, and the response rate for the top 500 domestic R&D-

performing companies was 92.6%.  Of these responding firms, approximately 3% reported 

performing and/or funding R&D. 

BRDIS gathers data on a number of R&D variables.  The full surveys for each year are 

available at http://www.nsf.gov/statistics/srvyindustry/#qs, however we focus attention on the 

variables related to firm size (ln(worldwide sales)), the additional variables required to estimate 

RQ (ln(worldwide R&D), ln(employees)) and firm R&D practices associated with the nuanced 

theories.   

 

2.4.1.1 BRDIS R&D strategies data   

BRDIS contains a number of questions related to firms’ R&D strategies.  We restrict 

attention to the three questions that best match the nuanced theories of firm size and R&D. 

 

Theory 1: Large firms are more likely to conduct basic research   

The BRDIS question that best addresses this theory, asks: “What percentage of R&D 

paid for and performed by your company was for: 

a. Basic research: planned, systematic pursuit of new knowledge without 

specific immediate commercial application 

b. Applied research: planned, systematic pursuit of new knowledge aimed at 

solving a specific problem or meeting a specific commercial objective 

c. Development: the systematic use of research and practical experience to 

produce new or significantly improved goods, services or processes”. 

 If Nelson (1959) is correct, we expect the answer to (a) to increase with firm size. 

                                                           
2 The Community Innovation Survey (CIS) is a survey of innovation activity in enterprises in EU member states and 
ESS member countries. It is designed to provide information on the innovativeness of sectors by type of 
enterprises, on the different types of innovation, and on various aspects of the development of an innovation.  
http://ec.europa.eu/eurostat/web/microdata/community-innovation-survey 

http://www.nsf.gov/statistics/srvyindustry/#qs
http://ec.europa.eu/eurostat/web/microdata/community-innovation-survey


Page 12  

 

Theory 2: Radical innovation decreases with scale.   

The BRDIS question that best addresses this theory, asks: “What percentage of this 

year’s sales were from goods/services introduced in the past three years that were: 

a. New (or significantly improved) to your market 

b. New (or significantly improved) only to your company 

c. Unchanged or only marginally modified” 

The most radical innovations are goods/services that are new to the market (a).  These 

have inherently higher uncertainty of commercial success than ones which are only new to the 

company (b).  These in turn have higher uncertainty than incremental innovation (goods or 

services which are unchanged or only marginally modified).   If Rosen is correct, we expect the 

answer to (a) to decrease with scale, while we expect the answer to (c) to increase with scale 

 

Theory 3: Process innovation increases with scale; while product innovation decreases with 

scale.   

The BRDIS question that best addresses this theory, asks: “Did your company introduce 

any of the following in the prior three years: 

a.  New (or significantly improved) goods 

b.  New (or significantly improved) services 

c.  New (or significantly improved) processes (methods of producing goods 

or services, distributions systems for inputs or outputs of your goods or services, 

support activities)” 

If we interpret both new goods and new services as product innovation, and if Cohen 

and Klepper are correct, then the answers to (a) and (b) should decrease with scale, while the 

answer to (c) should increase with scale. 

 

2.4.1.2 RQ estimation with BRDIS data 

The RQ data to support test of equation 3 come from the WRDS RQ database.  These 

RQ estimates are derived from the North American COMPUSTAT database.  Thus we can 

match them to firm scale data from COMPUSTAT.  In order to test equation 3 for firms in the 

BRDIS sample, we need to derive RQ from firms’ financial data in BRDIS.  We do so using 
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random coefficients estimation of the firm’s production function in accordance with the general 

methodology described in Knott (2008). One complication with estimation using the BRDIS 

data is that its input variables differ from those collected from firms’10-K filings (the source 

for COMPUSTAT data on which the RQs in the WRDS RQ database were derived).  While 

revenues, employees and R&D expenditures are the same in both datasets, BRDIS does not 

collect either capital or advertising.  Accordingly we employ a model of the following form: 

(6)  ln Yit   (1  1i )  (2  2i ) ln Lit   (3  3i ) ln Rit-1 

(4  4i ) ln Sit-1    it           

Firm level data items include (in $MM unless otherwise stated): worldwide sales (Yit), 

labor as full-time equivalent employees (1000)(Lit), and worldwide R&D (Rit). From these 

primary data, we derive a secondary measure: firm-specific spillovers (Sit) which follows the 

“density above” functional form of spillovers in Knott, Posen and Wu (KPW) (2009).  The 

density-above form of spillovers sums the differences in knowledge (measured as R&D) 

between the focal firm and any firm with more knowledge than the focal firm.  KPW found that 

this form of spillovers better predicted firm output that either a pooled form (all firms in an 

industry sharing all knowledge equally), or a leader-distance form (available spillovers equals 

the difference in knowledge between the focal firm and the knowledge leader). 

We validated the abbreviated RQ estimation with COMPUSTAT data by comparing RQs 

estimated with the full set of inputs in Knott (2008) to those estimated with the restricted set of 

BRDIS inputs. That comparison indicates the RQs are 91.7% correlated across the full RQ 

equation and the limited equation (6).  

A second restriction of the BRDIS data is that is has only been released for years 2008-

2011.  Accordingly the maximum window size per RQ estimate is four-years, whereas prior 

estimates of RQ (Knott 2008, Knott and Vieregger 2016) used seven and ten-year windows, 

respectively.  Accordingly, we tested the impact of window size using COMPUSTAT data.  

Comparisons of RQs generated with COMPUSTAT data in a window surrounding the year 2000 

indicate RQ estimates with a four-year window are 75.8% correlated with those estimated with 

seven-year window. Thus the shorter window will make it more difficult for us to obtain 

significant results. However if we do obtain significant results, the high correlation makes it likely 

results will hold and be more significant with the longer window. 
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Because RQ estimation consumes 4 years’ data, we have only one observation for RQ (the 

4 year mean).  Accordingly, we form four-year averages of our scale variable (worldwide sales) 

and our outcome variables (R&D and patent intensity) as well as the strategy variables.  This 

yields one observation per firm.  Accordingly our analyses with BRDIS data form a cross-section 

rather than a panel.   

 

Variables 

As mentioned previously, our empirics comprise two datasets: 1) a dataset of public 

firms that combines variables from COMPUSTAT, the WRDS RQ database, and the NBER 

patent database,  and 2) the confidential BRDIS dataset that is only accessible within US Census 

Research Data Centers (RDCs). 

Our public dataset used to test equations 1-3 comprises three variables: firm scale, 

measured as ln(Revenues) from COMPUSTAT3, firm RQ from the WRDS RQ database, and 

patent intensity.  Patent intensity is a derived variable formed by dividing patents granted from 

the NBER patent database, by R&D from COMPUSTAT.   This matches the “patents per unit of 

R&D” outcome measure in the stylized facts regarding firm size and innovation.  A summary of 

the resulting dataset of public firms is provided in Table 1a. 

We extract a number of variables from the BRDIS dataset.  These include the variables 

necessary to compute RQ:  worldwide sales (Yit), labor as full-time equivalent employees 

(1000)(Lit), and worldwide R&D (Rit), the number of patents, from which we derive patent 

intensity (patents/worldwide R&D).  In addition, we include answers to the questions pertaining 

to the three nuanced theories of firm R&D behavior: Basic R&D (% of total R&D), Applied 

R&D (%), and Development (%), New to Market innovation (% of sales from), New to firm 

innovation (% of sales from), and Incremental innovation (% of sales from), and dummy 

variables for the question: Did your firm introduce any of the following in the past three years 

(1=yes, 0=no): Process R&D, Product R&D, and Service R&D.  

A summary of the resulting BRDIS dataset is provided in Table 1b. 

------------------------------------ 

                                                           
3 While there are alternative measures of firm scale, such as assets and the number of employees, the nuanced 
theories of firm R&D behavior pertain to the scale of output rather than inputs. 
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Insert Table 1 about here 

------------------------------------ 

 

III. Results 

3. 1 Replicating stylized facts 

 

Our first set of empirics attempts to replicate the stylized facts that R&D increases with 

scale, while R&D productivity (measured as patents per unit of R&D) decreases with scale.  

Table 2 presents results for equation 1 which tests the impact of scale on behavior (R&D spending) 

(Model 1) and equation 2, which tests the impact of scale on patent intensity (Model 2) utilizing the 

dataset of public firms.   

Regarding the impact of scale on R&D investment, results indicate that scale is positive and 

significant in explaining R&D investment.  This matches stylized facts.  Indeed, scale explains 

approximately 46% of intra-firm variance in R&D. The coefficient estimate of 0.529 implies that a 

10% increase in the revenues increases R&D 5.3%.  This is net of firm fixed effects and year effect.   

------------------------------------ 

Insert Table 2 about here 

------------------------------------ 

Regarding the impact of scale on outcomes, results in Model 2 indicate patent intensity is 

negative and significant. A 10% increase in revenue decreases patent intensity by 1.1 percentage 

points.  This also matches stylized facts.  

To check the robustness of these results, we subdivided the sample into large firms and 

small firms, using the SBA threshold of 500 employees.  Models 3 and 4 present results for small 

firms, while models 5 and 6 present results for large firms.  In both cases, R&D investment 

increases with scale, while R&D productivity (measured as patent intensity) decreases with scale.  

Because we later utilize BRDIS data to examine firm behavior, we also test equations 1 

and 2 using that data.  These results (presented in models 7 and 8) match those for the public 

sample.  Thus across all samples and subsamples, we are able to replicate the puzzle that R&D 

investment increases with scale, while R&D productivity decreases with scale.     
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3.2 The Measurement tack 

 

Our first effort to resolve the puzzle of irrational large firms, employs a measurement 

tack to see if the puzzle is merely an artifact of measurement problems.  To examine that, we 

retest equation 2, replacing patent intensity with the more comprehensive measure of R&D 

outcomes, RQ (equation 3).

 The results for the measurement tack are presented in Table 3.  Model 1 utilizes the full 

set of public firms, while Models 2-4 utilize the small firm subsample, the large firm subsample, 

and the BRDIS sample, respectively.  All models indicate that R&D productivity (measured as 

RQ) increases significantly with scale.  The coefficient on scale is fairly consistent across the 

models (0.02), meaning that a 10% increase in revenues increases RQ by 0.02 points (roughly 

20% of the mean value for RQ in the public sample. 

------------------------------------ 

Insert Table 3 about here 

------------------------------------ 

Thus our results using the RQ measure yield firm behavior and outcomes that are consistent 

with one another: R&D investment and R&D productivity both increase with scale.  While these 

results resolve the prior puzzle of inconsistency between behavior and returns, the results may be 

biased by the fact that R&D strategy varies with size, and that returns to R&D strategies may also 

vary with size.  Accordingly, we begin to decompose that by looking separately at the impact of 

scale on choice of strategy and the impact of strategy on behavior and outcomes (the second tack). 

 

3.3 The Nuanced Theory Tack 

To explore the second tack, we next examine firms’ R&D strategies.  As mentioned 

previously, these strategies map onto the three nuanced theories of how firm scale affects 

behavior and outcomes.  These strategy data are only available in BRDIS, so we utilize that 

dataset for all these tests.  We examine both the impact of scale on choice of strategy (equation 4) 

and the impact of strategy on outcomes (equation 5).   

 

3.3.1.  Choice of R&D Strategy 

Results for tests of the impact of scale on choice of R&D strategy (Table 4) provide support 
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for all three theories of scale-based R&D strategy.  The percentage of R&D devoted to basic 

research is increasing in scale (consistent with Nelson 1959) (theory 1).  The likelihood of 

introducing a process innovation is also increasing in scale (consistent with Cohen and Klepper 

1996) (theory 2).  Note however that the likelihood of introducing product and service innovations 

is also increasing in scale (though the likelihood of process innovation is 2.5 times that for product 

innovation).  The result that all forms of innovation are increasing in scale can be explained by 

measure coarseness.  The measure equals one if any innovation was introduced in the prior three 

years.  Thus it can’t be used to gauge the share of process R&D relative to product R&D.   

------------------------------------ 

Insert Table 4 about here 

------------------------------------ 

Finally, the extent of incremental innovation is increasing in scale, while the extent of 

radical innovation is decreasing in scale.  Both results support Rosen’s (1991) theory regarding the 

impact of scale on the riskiness of R&D (theory 3). 

Thus all three theories correctly anticipate the how scale affects choice of R&D strategy.  

This is not a surprise since all three theories were motivated by empirical observations. 

 

3.3.2 Impact of R&D Strategy on Outcomes.   

Having demonstrated that firm R&D behavior is consistent with theories of strategic 

choice, we now turn to the question of returns (RQ) to those strategies (Table 4).  Each model in 

Table 5 captures the impact of the strategy identified in the column header.  For example, model 1 

captures the impact of basic research on RQ.  We allow each strategy to have both intercept and 

slope (with scale) effects.  Table 5 reveals that across the set of strategies, the main effects of scale 

continue to be significant and of similar magnitude to the main model of scale in Table 2 (0.014).  

While the coefficients on strategy tend to be significant, the signs on the intercept and slope terms 

consistently have opposite sign.  Thus the role of strategy is to slightly rotate the relationship 

between scale and RQ as shown in Figure 1 for the three horizon strategies.  However for all 

strategies, the net returns to R&D increase with scale (with slopes ranging from 0.018 for service 

innovation to 0.022 for development).  Accordingly, there is no strategy favoring small firms.  

Rather there are merely strategies for which the penalty for small scale is less severe.   

------------------------------------ 
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Insert Table 5 about here 

------------------------------------ 

------------------------------------ 

Insert Figure 1 about here 

------------------------------------ 

 

Thus while scale is significant in explaining firms’ R&D strategies, those strategies appear 

to have little power in explaining the differential R&D productivity of large and small firms.  The 

primary driver of R&D productivity continues to be scale after we take these strategies into 

account.   

 

3.3.3  Strategy archetypes   

The prior section formally tests the nuanced theories of how firm scale affects R&D 

behavior and outcomes.  Each of these theories was uni-dimensional, e.g., scale increases x, or 

scale decreases y.  However it seems likely that firms use combinations of these strategies, i.e., 

firms don’t just choose the level of basic research, they jointly choose the proportions of basic 

research, applied research and development.  While there is no theory to guide us here, we wanted 

to see if considering joint strategies improved the performance of firm strategy in explaining R&D 

productivity.   

 

3.3.3.1 Defining Strategy archetypes.   

To generate the strategy archetypes, we conducted cluster analysis of the three uni-

dimensional strategies within each main strategy category (horizon, riskiness and form). We 

followed a two-step process. In the first step, we created nine separate groupings, ranging from a 

minimum of two clusters to a maximum of ten, and compare the Calińsky and Harabasz pseudo-F 

index across each grouping. Because the F-scores are similar across several groupings, in a second 

step we examined the content of each grouping in selecting our final cluster sizes. The objective of 

this second step was to ensure that the automatically-generated clusters also conform to observed 

strategic groupings in management practice.  While our reported clusters are based on kmeans 

partition cluster analysis, we also tested groupings based on kmedians, agglomerative hierarchical 

clustering methods, and the examination of dendograms, which produced qualitatively similar 
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results.  The analysis yielded five archetypes for horizon, six for riskiness and seven for locus.  

These archetypes are characterized in Table 6.   

------------------------------------ 

Insert Table 6 about here 

------------------------------------ 

Table 6a reveals that the horizon strategy clustered into five archetypes: BAD1 through 

BAD5.4 Each archetype has a fairly intuitive interpretation. BAD1: principally development, with 

some applied research; BAD2: applied/development balance; BAD3: exclusively development; 

BAD4: principally basic research; and BAD5: principally applied research. Note that BAD4 and 

BAD5 are rare, comprising 30 and 60 firms, respectively, while BAD3 is most prevalent (50% of 

firms). 

Table 6b reveals that the riskiness strategy clustered into six archetypes: OWN1 through 

OWN6.5 Each archetype has a fairly intuitive interpretation. OWN1: principally new to market; 

OWN2: principally new to firm; OWN3: new to market/incremental balance; OWN4: New to 

firm/incremental balance; OWN5: exclusively incremental; OWN6: principally incremental. 

OWN1 and OWN2 are relatively rare, comprising 90 and 70 firms, respectively, while OWN5 is 

most prevalent with 47% of firms. 

Finally, Table 6c reveals that the locus strategy clustered into seven archetypes: PSP1 

through PSP6.6 As with both the horizon riskiness strategies, each archetype has a fairly intuitive 

interpretation. PSP1: balance across product, service and process innovation; PSP2: exclusively 

product; PSP3: exclusively process; PSP4: exclusively service; PSP5: product/service balance; 

PSP6: product/process balance; PSP7: service/process balance. PSP3, 4, 6 and 7 are relatively rare, 

comprising 10, 20, 80 and 60 firms, respectively, while PSP1 is most prevalent with 52% of firms. 

 

3.3.3.2 Impact of Scale on Choice of Strategy Archetypes.   

We repeated the tests of the impact of scale on choice of strategy (equation 4) and the 

impact of strategy on outcomes (equation 5) replacing the uni-dimensional strategies in Tables 3 

and 4 with the strategy archetypes.  

Table 7 reveals that firm choice regarding strategy archetypes resembles that for uni-

                                                           
4 The abbreviation is derived from basic, applied, and development. 
5 The abbreviation stems from the question format asking about own-R&D investments. 
6 The abbreviation is derived from products (or goods), services, and processes. 
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dimensional strategies in Table 3.  In particular, strategies dominated by process (PSP1) and 

incremental innovation (OWN5) increase with scale, while strategies with substantial radical 

(OWN1, OWN3) and product innovation (PSP2, PSP5, PSP6) decrease with scale. 

------------------------------------ 

Insert Table 7 about here 

------------------------------------ 

 

Impact of Strategy Archetypes on RQ Looking next at the impact of strategy on outcomes 

(Table 8), we again obtain results similar to those for uni-dimensional strategy in Table 5.  In 

particular, there is no strategy whose returns decrease with scale.  Thus whether we employ the uni-

dimensional strategies from the nuanced theories or the archetypal strategies, these strategies play 

only a minor role in explaining R&D productivity.   Scale remains the primary driver of R&D 

productivity.  Further for either the uni-dimensional strategies or the archetypal strategies, there is 

no strategy whose returns decrease with scale.  There are merely strategies for which the penalty 

for small scale is less severe. 

------------------------------------ 

Insert Table 8 about here 

------------------------------------ 

 

IV. Conclusion 

There has been a long-standing debate regarding the impact of firm size on innovation. 

Stylized facts indicate R&D spending increases with size, while R&D productivity decreases 

with size.  This creates a puzzle of large firm irrationality.  Three theories have been advanced to 

resolve the puzzle.  Each theory proposes that firm size affects the type of R&D firms conduct, 

and that the productivity of types differs with firm size. Until recently, we have been unable to 

comprehensively test these theories because we lacked firm-level data on the type of R&D firms 

conduct, and because the most common measures of R&D outcomes (product/patent counts) 

embed type.  Accordingly, a second possible resolution of the puzzle is that it is merely an 

artifact of poor outcome measures, that should disappear with a more robust measure. 

We exploited two recent developments to explore both potential resolutions. In particular, 
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we utilized a recently created dataset (BRDIS) to pursue the nuanced theory tack; and utilized a 

recent measure of R&D productivity (RQ) to pursue the measurement tack.  Before pursuing 

either tack however, we first replicated the stylized facts that R&D spending increases with scale 

while R&D productivity (measured as patent intensity) decreases with scale.  We did so using 

both a public dataset and the confidential BRDIS dataset.   

We then tested whether results changed when utilizing RQ as the measure of R&D 

productivity, and found indeed that R&D productivity increased with scale.  These results held 

not only with the full sample of public firms, but with large and small firm subsamples of the 

public dataset, as well as with the BRDIS dataset.  Thus the measurement tack offers one 

resolution of the large firm irrationality puzzle—R&D investment and R&D productivity both 

increase with scale when we use a more robust measure of R&D productivity.   

We next examined whether the nuanced theories of how scale affects R&D behavior 

offered an additional resolution of the puzzle of large firm irrationality.  We found first that firm 

size does indeed affect choice of R&D strategy as expected in each of the theories proposed by 

Nelson (1959), Rosen (1991) and Cohen & Klepper (1996).  All three theories correctly 

anticipated the strategies preferred by large firms. In particular, scale increased the likelihood of 

incremental R&D (consistent with Rosen, 1991), process R&D (consistent with Cohen and 

Klepper, 1996) and basic research (consistent with Nelson 1959).   

Looking next at the impact of those strategies on R&D productivity, we found that none 

could resolve the puzzle.  While all the theories correctly anticipated the relationships between 

firm size and R&D strategy, we found that none of the small firm strategies favored small 

firms—the productivity of all strategies increased with scale.  Rather, there were merely 

strategies that penalized small scale less.   

There are limitations to these results.  In particular, while the results for the measurement 

tack are robust, in that they span all the samples and subsamples, and include fixed effects and 

year effects, the results for the nuanced theory tack all rely on cross-sectional data.  This is not 

because BRDIS is inherently cross-sectional, it is because estimating RQ requires multiple years 

of observations, and this estimation consumed all years of BRDIS data that we had access to.  It 

is remotely possible that the results regarding the impact of practices on R&D productivity may 

change with panel data.  An additional limitation pertains to the product/process strategy results.  
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The BRDIS measures (yes/no) don’t map cleanly onto theory (share of R&D).  Accordingly, 

there may be stronger results for process versus product innovation if we had a better measure. 

Beyond reconciling the puzzle of irrational large firms, which is important for theory, our 

results offer a broader implications for practice: Schumpeter (1942) appears to be correct that 

large firms are the chief engine of innovation (and accordingly economic growth).  Not only do 

large firms (using the US Small Business Association definition of greater than 500 employees) 

conduct 5.75 more R&D in aggregate than small firms, they have 13% higher productivity with 

that R&D.  However this merely captures the private returns to their R&D.  A further benefit of 

large firm R&D is that it generates the spillovers upon which small firm innovation free-rides.   

Thus anti-trust policy may want to consider tradeoffs between the anti-competitive effects 

of large scale against the innovative benefits of large scale.  Similarly, for firms, the prescription 

for them to behave more entrepreneurially (like small firms), should be treated with caution.  At 

least one small firm strategy (radical innovation) has lower returns to scale than the large firm 

counterpart (incremental innovation).   
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TABLE 1. Data Summary 

 

  

Variable       Mean    Std. Dev.

ln(Revenue) 5.59 2.55

ln(R&D) 2.32 2.41

RQ (7-year) 0.13 0.12

Patent intensity 0.02 0.05

Variable       Mean    Std. Dev.

Sales (log) 11.80 2.14

Employees (log) 6.19 1.90

R&D (log) 8.60 1.95

Spillover (log) 12.45 4.57

R&D Intensity 0.26 2.99

RQ 0.26 0.05

Basic R&D (percent) 4.20 9.07

Applied R&D (percent) 14.71 17.81

Development R&D (percent) 81.09 20.83

Process R&D (percent) 0.58 0.37

Product R&D (percent) 0.77 0.32

Service R&D (percent) 0.33 0.37

R&D Incremental (percent) 76.88 25.61

R&D New-to-Market (percent) 12.02 19.08

R&D New-to-Firm (percent) 11.10 17.38

Patents granted 2008 15.56 116.75

* All variables calcuated as 4-year average of BRDIS data

Table 1a.  Data on Public Firms

Observations=32608

Table 1b.  BRDIS Data Summary

Observations=2030 (rounded)
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TABLE 2. Replicating Stylized Facts 

 

 
  

Dependent Variables: ln(R&D)
Patent 

intensity
ln(R&D)

Patent 

intensity
ln(R&D)

Patent 

intensity
ln(R&D)

Patent 

intensity

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

ln(Sales) 0.529*** -0.011*** 0.846*** -0.010*** 0.244*** -0.024* 0.621*** -0.0005*

(0.027) (0.002) (0.029) (0.002) (0.026) (0.011) (0.019) (0.0002)

Constant -1.520*** 0.061*** -3.048*** 0.056*** -1.111* 0.316** 1.263*** 0.0078*

(0.123) (0.011) (0.167) (0.012) (0.448) (0.092) (0.2194) (0.0028)

Fixed effects Yes Yes Yes Yes Yes Yes No No

Year effects Yes Yes Yes Yes Yes Yes No No

R-squared 0.458 0.086 0.633 0.105 0.141 0.138 0.463 0.006

N 32608 13400 22051 12368 10557 1032 2030 900

BRDIS data

All firms Large (>500 employees) 

Public data

Small (<500 employees) 
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TABLE 3. Test of Measurement Tack 

 

 

  

Dependent Variable: RQ

BRDIS data

All firms Large Small

Model 1 Model 2 Model 3 Model 4

ln(Sales) 0.017*** 0.020*** 0.019*** 0.014***

(0.004) (0.004) (0.006) (0.001)

Constant 0.187*** 0.166*** 0.119 0.094***

(0.024) (0.026) (0.095) (0.006)

Fixed effects Yes Yes Yes No

Year effects Yes Yes Yes No

R-squared 0.090 0.192 0.031 0.412

N 32608 22051 10557 2030

Public data
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TABLE 4. Impact of Scale on Choice of Uni-dimensional R&D Strategy 

 

 
 

  

% Basic
% 

Applied

% 

Develop-

ment

Prob: 

Product

Prob: 

Service

Prob: 

Process

% Sales 

New-to-

Market

% Sales 

New-to-

Firm

% Sales 

Incre-

mental

ln(Sales) 0.760 0.221 -0.338 0.086 0.177 0.219 -1.047 -0.329 1.624

SE 0.177 0.242 0.275 0.043 0.022 0.032 0.264 0.249 0.306

Constant -11.704 8.386 88.680 1.614 -1.802 -0.865 19.629 10.441 59.359

SE 2.177 2.917 3.321 0.503 0.266 0.364 3.177 3.000 3.667

R2 0.002 0.000 0.000 0.004 0.024 0.029 0.001 0.000 0.002

Observations 2030 2030 2030 2030 2030 2030 2030 2030 2030

Dependent Variable
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TABLE 5. Impact of Uni-dimensional R&D Strategy On RQ 

 

 

 
 

 

 

  

Dependent Variable: RQ

%      

Basic

% 

Applied

% 

Develop-

ment

Prob: 

Product

Prob: 

Service

Prob: 

Process

% Sales 

New-to-

Market

% Sales 

New-to-

Firm

% Sales 

Incremen-

tal

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Strategy -0.0006 -0.0013 0.0010 0.0850 0.0610 0.0720 -0.0010 0.0006 0.0006

(0.0004) (0.0002) 0.0002 (0.0140) (0.0120) (0.0130) (0.0001) (0.0003) (0.0001)

Strategy*ln(Sales) 0.0000 0.0001 -0.0001 -0.0070 -0.0070 -0.0070 0.0001 -0.0001 0.0000

(0.0001) (0.0001) 0.0000 (0.0010) (0.0009) (0.0010) (0.0001) (0.0001) (0.0001)

ln(Sales) 0.0142 0.0126 0.0220 0.0200 0.0180 0.0190 0.0130 0.0150 0.0164

(0.0004) (0.0005) 0.0010 (0.0001) (0.0005) (0.0008) (0.0004) (0.0004) (0.0010)

Constant 0.0972 0.1160 0.0080 0.0280 0.0620 0.0470 0.1140 0.0880 0.0520

(0.0050) (0.0060) 0.0160 (0.0110) (0.0060) (0.0090) (0.0050) (0.0050) (0.0120)

R-squared 0.4120 0.4210 0.4200 0.4230 0.4420 0.4230 0.4340 0.4170 0.4300

Each Model Represents a Different Strategy (N=2030)
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TABLE 6. Strategy Archetypes 

 

 
  

CLUSTER MEANS (STDEV)

Firms BASIC % APPLIED %

DEVELOP 

MENT %

BAD1 630 5.13 16.96 77.91

6.75 6.26 6.32

BAD2 290 8.12 37.42 54.46

8.60 9.65 8.64

BAD3 1020 0.89 2.85 96.27

2.31 3.60 4.37

BAD4 30 51.17 14.53 34.30

23.91 13.78 19.89

BAD5 60 5.57 79.79 14.63

8.27 15.29 12.09

TOTAL 2030 4.20 14.71 81.09

9.07 17.81 20.83

Firms

NEW TO 

MARKET %

NEW TO     

FIRM %

INCRE- 

MENTAL %

OWN1 90 81.01 6.08 12.91

13.93 9.80 11.15

OWN2 70 12.31 78.94 8.75

17.19 20.16 11.10

OWN3 160 39.77 14.29 45.94

9.90 12.96 12.53

OWN4 180 8.70 33.54 57.76

8.04 10.14 10.35

OWN5 960 2.17 2.48 95.35

2.92 3.19 4.10

OWN6 570 11.25 9.82 78.93

7.94 6.85 5.76

TOTAL 2030 12.02 11.10 76.88

19.08 17.38 25.61

Firms PRODUCT SERVICE PROCESS

PSP1 1050 0.81 0.70 0.56

0.29 0.32 0.32

PSP2 190 0.73 0.00 0.00

0.30 0.00 0.00

PSP3 10 0.00 0.00 0.50

0.00 0.00 0.30

PSP4 20 0.00 0.47 0.00

0.00 0.26 0.00

PSP5 620 0.84 0.64 0.00

0.24 0.30 0.00

PSP6 80 0.69 0.00 0.49

0.31 0.00 0.28

PSP7 60 0.00 0.67 0.68

0.00 0.28 0.32

TOTAL 2030 0.77 0.33 0.58

0.32 0.37 0.37
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TABLE 7. Impact of Scale on Choice of R&D Strategy Archetypes 

 

 
 

  

Dependent Variable: Different Strategies (N=2030)

BAD1 BAD2 BAD3 BAD4 BAD5

ln(Sales) 0.041 0.018 -0.026 -0.067 -0.130

SE 0.022 0.031 0.021 0.104 0.079

Constant -1.282 -2.000 0.301 -3.325 -1.960

SE 0.271 0.369 0.250 1.208 0.901

Prob>chi2 0.070 0.563 0.220 0.521 0.101

OWN1 OWN2 OWN3 OWN4 OWN5 OWN6

ln(Sales) -0.231 -0.123 -0.101 -0.006 0.081 -0.001

SE 0.091 0.068 0.042 0.038 0.021 0.022

Constant -0.488 -1.890 -1.272 -2.247 -1.068 -0.918

SE 1.001 0.782 0.488 0.452 0.250 0.269

Prob>chi2 0.011 0.071 0.017 0.865 0.000 0.958

PSP1 PSP2 PSP3 PSP4 PSP5 PSP6 PSP7

ln(Sales) 0.201 -0.220 -0.081 -0.092 -0.105 -0.207 -0.046

SE 0.022 0.036 0.091 0.084 0.022 0.049 0.078

Constant -2.295 0.211 -4.266 -3.354 0.408 -0.787 -3.019

SE 0.263 0.407 1.087 0.985 0.263 0.559 0.920

Prob>chi2 0.000 0.000 0.372 0.274 0.000 0.000 0.555
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TABLE 8. Impact of R&D Strategy Archetypes on RQ 

 

 

Dependent variable: RQ (N=2030)

BAD1 BAD2 BAD3 BAD4 BAD5

Strategy -0.001 0.005 0.000 -0.012 -0.003

0.002 0.002 0.002 0.006 0.007

ln(Sales) 0.014 0.014 0.014 0.014 0.014

0.001 0.000 0.001 0.001 0.001

Constant 0.095 0.094 0.094 0.095 0.094

0.006 0.006 0.006 0.006 0.006

R-squared 0.412 0.413 0.412 0.413 0.412

OWN1 OWN2 OWN3 OWN4 OWN5 OWN6

Strategy -0.026 -0.008 -0.002 -0.006 0.010 -0.002

0.005 0.005 0.003 0.003 0.002 0.002

ln(Sales) 0.014 0.014 0.014 0.014 0.014 0.014

0.001 0.001 0.001 0.001 0.001 0.001

Constant 0.098 0.095 0.096 0.095 0.092 0.095

0.006 0.006 0.006 0.006 0.006 0.006

R-squared 0.424 0.413 0.412 0.413 0.422 0.412

PSP1 PSP2 PSP3 PSP4 PSP5 PSP6 PSP7

Strategy -0.007 0.004 -0.007 -0.004 0.010 -0.005 -0.013

0.001 0.003 0.008 0.008 0.002 0.004 0.004

ln(Sales) 0.015 0.014 0.014 0.014 0.015 0.014 0.014

0.001 0.001 0.001 0.001 0.001 0.001 0.001

Constant 0.094 0.093 0.094 0.094 0.089 0.095 0.094

0.006 0.006 0.006 0.006 0.006 0.006 0.006

R-squared 0.417 0.412 0.412 0.412 0.421 0.412 0.414
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FIGURE 1. Net Effect of Scale on RQ for Horizon Strategies 
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