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Abstract 
 

Well over half of all electricity generated in recent years in Denmark is through cogeneration. In 
U.S., however, this number is only roughly eight percent. While both the federal and state 
governments provided regulatory incentives for more cogeneration adoption, the capacity added 
in the past five years have been the lowest since late 1970s. My goal is to first understand what 
are and their relative importance of the factors that drive cogeneration technology adoption, with 
an emphasis on estimating the elasticity of adoption with respect to relative energy input prices 
and regulatory factors. Very preliminary results show that with a 1 cent increase in purchased 
electricity price from 6 cents (roughly current average) to 7 cents per kwh, the likelihood of 
cogeneration technology adoption goes up by about 0.7-1 percent. Then I will try to address the 
general equilibrium effect of cogeneration adoption in the electricity generation sector as a whole 
and potentially estimate some key parameters that the social planner would need to determine the 
optimal cogeneration investment amount. Partial equilibrium setting does not consider the 
decrease in investment in the utilities sector when facing competition from the distributed 
electricity generators, and therefore ignore the effects from the change in equilibrium price of 
electricity. The competitive market equilibrium setting does not consider the externality in the 
reduction of CO2 emissions, and leads to socially sub-optimal investment in cogeneration. If we 
were to achieve the national goal to increase cogeneration capacity half of the current capacity 
by 2020, the US Department of Energy (DOE) estimated an annual reduction of 150 million 
metric tons of CO2 annually – equivalent to the emissions from over 25 million cars. This is 
about five times the annual carbon reduction from deregulation and consolidation in the US 
nuclear power industry (Davis, Wolfram 2012). Although the DOE estimates could be an overly 
optimistic estimate, it nonetheless suggests the large potential in the adoption of cogeneration 
technology. 
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1 Introduction

Cogeneration, also known as Combined Heat and Power (CHP), is a mature technology that produces

electricity as a by-product when producing heat/steam. It essentially recycles the rejected/waste heat from

the initial production of useful thermal output and uses it as input for electricity generation. This technology

can be applied to industrial plants, commercial buildings, or even utilities, as long as the entity has need for

both thermal and electric power. Conventionally, plants generate useful thermal output through a boiler,

which loses much of its heat to the atmosphere, and purchase electricity from central power plants. With

cogeneration, plants can make use of the waste heat to generate electricity on site, not only defray costs from

electricity purchase, but also increase the overall efficiency and save on carbon emissions. U.S. Department

of Energy (DOE) suggests that a CHP system can achieve 75% or above overall fuel efficiency (DOE, Figure

1). Central power plants typically operate in the 35% to 50% efficiency range. Depends on specific type of

fuel used for steam and electricity generation, CHP system offer reduction in total primary fuel consumption

by 25% to 35%. A natural gas fired CHP system can reduce CO2 emissions close to 60% if it were to reduce

electricity generation from a coal-fired power plant (Quinn et. al., 2013; DOE reports, 2012). These benefits

of cogeneration have long been recognized by different countries across the globe. In Particularly, Denmark

generated more than half of its electricity through cogeneration. Other Northern European countries, such as

the Netherlands, Latvia, and Finland, all use cogeneration technology substantially to provide both electric

and thermal power (IEA, Figure 2). In comparison, the U.S. only cogenerates about 8 percent of the total

electricity in 2013, far below the average Northern European level, and far below its technical potential

according to DOE’s estimation.

Historically though, the US was the first to employ cogeneration technology and was a leader in its

application. In 1900, over 59 percent of total US electricity generating capacity was at industrial sites,

although not necessarily all through cogeneration. As utility-generated electricity became cheaper and more

reliable, industry gradually shifted away from generating electric power on site. Meanwhile, various federal

and state statutes were passed in the early 1930s to encourage vertically integrated structure in the utility

sector and discourage decentralized electricity generation. By 1950, onsite industrial generation declined to

about 17 percent of total capacity. This number was about 3 to 4 percent by 1980. Cogeneration potential

(industry thermal load fit for cogeneration), during the same period, increased at much faster pace than the

adoption rate. Three major institutional obstacles made it difficult for cogenerators to make their investment

economically profitable. First, utilities were reluctant to purchase the electricity from the cogenerators they

were interconnected to. Second, utilities charged high standby rates. And third, cogenerators that sold

electricity risked being classified, and therefore under state and federal regulation, as electric utility (Ch. 7,
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Figure 1: Fuel Savings From a CHP System

Source: U.S. Department of Energy, and U.S. Environmental Protection Agency, 2012

Industrial and Commercial Cogeneration).

Recognizing the benefits of cogenerators and other fuel efficient generators, as well as being part of

national security efforts to become less dependent on imported fuels, the passing of the 1978 Public Utility

Regulatory Policies Act (PURPA) turned the situation more favorable for cogenerators by removing all three

of the institutional obstacles. Once a cogeneration facility or a small power production facility is certified

as a qualifying facility (QF) under PURPA, it enjoys several statutory benefits. Three main benefits are as

follows: first, utilities are mandated to interconnect with QFs; second, host utilities are required to purchase

electricity (“must purchase” obligation) generated from QFs at utility’s “avoided cost” – a unit price that is

at least as much as the unit generating cost at the utility; and third, host utilities have to provide electric

service (“must sell”obligation) indiscriminately to any QF at its requested capacity. “Avoided cost”is formally

defined as “the incremental cost to the electric utility of electric energy or capacity or both which, BUT FOR

the purchase from the QF or QFs, such utility would generate itself or purchase from another source”. State

and non-regulated utilities always determine avoided cost, either by administratively determining them or

through market-based methods. “Must purchase” obligation applies to all electric utilities, and each federal

power marketing authority, unless the Federal Energy Regulatory Commission (FERC) grants a wavier

(Burns and Rose, 2014). In essence, “must purchase” obligation is a put option and “must sell” obligation

is a buy option provided to the qualifying cogenerators, that they can choose to sell/purchase electricity at

higher/lower prices to/from willing buyer/seller other than their host utility, but they always have the option
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Figure 2: CHP share of national power production

Source: International Energy Agency (IEA), 2008

to sell/buy at guaranteed prices from their host utility. The thought at that time was that this put option at

“avoided cost” promoted the development of QF power without incurring uneconomical subsidies. Whether

or not this “avoided cost” created arbitrage opportunities can be debated, but both side agree that the new

statutory environment created by PURPA encouraged the adoption of cogeneration technology. Indeed, we

observe a sharp increase in the installation of cogeneration soon after 1978 in the data (ICF International,

Figure 3).

However, this increase in cogeneration capacity was somewhat stalled after 2005. Out of the current

82 GW cogeneration capacity, less than 4 GW is added from 2005 to 2013, compared with the 4.8 GW

capacity added in just two years from 2003 to 2004. This makes achieving the national goal of 122 GW

cogeneration capacity by 2020 seem dim. But if the goal were met, the U.S. Department of Energy and

Environment Protection Agency estimated that it would save energy users $10 billion a year compared to

current energy use; save one quadrillion Btus (quad) of energy – the equivalent of 1 percent of all energy use

in the U.S.; reduce emissions by 150 million metric tons of CO2 annually – equivalent to the emissions from

over 25 million cars; and result in $40-$80 billion in new capital investment in manufacturing and other U.S.

facilities over the next decade. Understanding the factors behind cogeneration technology adoption will not

only help to understand the drop in adoption after 2005, but also help policy makers to effectively promote

the technology and reach their ambitious goal.

Preliminary results suggest that relative input prices have limited importance in shaping adoption de-

cisions among manufacturing plants. The regulatory environment might have been more important. In

2005, under intense lobbying by electric utilities, the Energy Policy Act 2005 (EPAct 2005) raised the fuel
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Figure 3: CHP Installation 1900-2013

Source: Data from ICF International Combined Heat and Power Installation Database. Each bar represents the cogeneration capacity added in a given year.

efficiency requirements for cogeneration QF status and relaxed the “must purchase”, “must sell” obligations

for host utilities. Specifically, no utility must-purchase obligation exists if FERC finds that the QF has

nondiscriminatory access to wholesale electricity markets and any QF larger than 20 MW is rebuttably pre-

sumed to satisfy the requirement. Conveniently, although these obligations might not exist any more, the

utility buy-back and standby rates were not altered by the EPAct 2005. A regression discontinuity design

would be ideal for analyzing the economic effect of “must purchase” obligation on both the extensive margin

of cogeneration technology adoption and intensive margin of cogeneration technology utilization. Similarly,

no utility must-sell obligation exists if FERC finds that competing retail electric suppliers are willing and

able to sell and deliver electric energy to the QF, but there is no rebuttable presumptions on plant size.

In general, host utilities complain more about the must-purchase obligation than the must-sell obligation,

because unlike “avoided cost” (buy-back rates) set by state and non-utilities, standby rates are always set

by individual utilities. The interconnection rules stayed relatively unchanged prior and after EPAct 2005.

Thus, among the bundled benefits for being a QF, the change in “must purchase” obligation likely affected

the cogeneration plants the most.

Preliminary results also show that plants do change their behavior significantly after the adoption of

cogeneration. They purchase less electricity and consume more natural gas (primary fuel for generating

thermal output), which is expected. Holding the total amount of electricity consumption fixed, the more we
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generate on site, the less we need to purchase. Over 70 percent of all cogeneration plants are fired by natural

gas. Majority of the adopters already use natural gas in some extent prior adoption. Recall that cogeneration

system requires less fuel to generate both thermal and electricity output than if we were to generate thermal

and electricity separately from traditional boiler and power plants. But for the same amount of thermal

output, cogeneration systems would require more natural gas than traditional boilers. Hence, to maintain

process steam production, we would expect the adopting plant to raise their consumption of natural gas.

More cogenerated electricity there is in a 3-digit zip code area, the lower is the average electricity prices.

The effect of cogeneration on the investment, fuel consumption, and carbon emissions in the utilities sector

still need to be studied, in combination with the within-plant adoption effects.

The research design is to first estimate the adoption elasticities with respect to energy prices and regula-

tory factors, also estimate the crowding out effects of electricity generation (as well as capital investment) in

the utilities sector, and the size of the environmental externalities associated with cogeneration. Then given

these parameters we estimated using micro level data, we can attempt to do some calibration and simulate

several scenarios with general equilibrium effects in place. This can help provide guidance on what would

happen to the equilibrium electricity price, fuel consumption, and carbon emissions if we were to increase

the cogeneration electricity share to different desired levels. Section 2 will briefly offer a simple model of

cogeneration. Section 3 will provide information on available data resources. Section 4 will introduce my

empirical strategies and discuss the preliminary results. Section 5 concludes and details future research

design.

2 A Simple Model of Cogeneration

From the engineering perspective, cogeneration system is most efficient when the power and steam de-

mand are balanced at all times (GAO, 1980). In practice, this is difficult to do and most plants choose their

cogeneration capacity primarily based on their steam load. Individual cogeneration plants set up arrange-

ments with local utilities to purchase electricity when the steam load is low and does not generate sufficient

electricity for plant operation, and to sell excess cogenerated electricity when the steam load is high. So

meeting the steam demand is the dominant consideration for non-utility adopters of cogeneration technology,

while efficient power generation is the dominant consideration for utility. Therefore, for electricity generation

alone, utilities are more efficient using the same amount of fuel as cogenerators.

The primary function for switching from a conventional boiler to a cogeneration system is to recycle

rejected/wasted heat from steam (or other useful thermal output) generation. There is no theoretical reason

to believe this technology switch would affect the actual amount of electricity usage, or final output (total
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value of shipment), or plant productivity. Preliminary results also confirm this understanding. If we think

of convert fuel input to final goods in two steps, first to convert fuel to steam and electricity, then use steam,

electricity, and other intermediate inputs to generate the final output, both the results and intuition suggest

that the adoption of cogeneration change only the first step in the production process and not the second.

Holding final output and plant productivity fixed, the input requirements should be the same prior and after

cogeneration technology adoption.

This allows us to model the adoption decision at individual plants abstracting from the second stage in

the production process. Consider the following discrete choice model with fixed input requirements1. In

order to generate the same amount of steam and electricity, a plant with conventional technology o has fixed

input requirements of Eo units of purchased electricity and Go units of natural gas (or other type of fuel it

uses to generate steam), whereas a plant employing cogeneration technology c has fixed input requirements

of Ec units of purchased electricity and Gc units of natural gas. Eo>Ec and Go < Gc since cogeneration

plants need more natural gas as input to generate both steam and electricity, thus the expected quantity of

electricity purchased would be lower.

The per-period variable profit function for a type α plant (α ∈ {o, c}) is

πα(P,m) = P − (PPEEα + PGGα) + PSEfα(Gα) (1)

where P is the final good price that is exogenous to the plant since plants are price takers; m is market

condition (a price vector that includes all input prices); PPE is the purchase price of electricity; PSE is the

sell price of electricity; PG is the purchase price of natural gas; function fα(Gα) is the amount sold out of

the cogenerated electricity. fo(·) = 0 assuming without cogeneration, no electricity is generated. Quantity

of final output is omitted since the adoption decision is independent of the second stage production for any

individual plant in the simple model. In reality, however, the scale effect matters. When steam load factor

is too low, the capital related cost will outweigh fuel related cost, which makes the system uneconomical to

operate. The sets of plants suitable for this model are those with enough steam load requirements and have

the technical potential to be an adopter of cogeneration technology. In my empirical analysis, I control for

the plant hours by quintile indicators2, allowing the elasticity parameters be non linear in plant scale.

1Model assumes cogenerated electricity is tied proportionally to plant’s steam load, and does not allow plants to choose the
amount of electricity to be cogenerated on site (unlike Rose et. al 1990, 1991). This is reasonable since the my primary objective
is to understand the adoption decision making process, not the utilization of the technology. Also, from the engineering side,
the proportionality assumption is reasonable as well since that is the most efficient use of the technology.

2Although the manufacturing data at US Census Bureau do not have steam load figures, plant hours capture load demand.
When load factor is high, that means the plant runs close to 8760 hours a year, as maintenance requirements permit (GAO,
1980).
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Any incumbent plant making a decision to switch technology from conventional to cogeneration would

have to consider the fixed cost of installing the technology. Suppose market condition goes from m to m̄ and

persists forever, with discount rate β, fixed cost F , a plant would switch to cogeneration if and only if

πc(P, m̄)

1− β
− F >

πo(P, m̄)

1− β

This result is intuitive. It says an incumbent plant with conventional technology would only switch to

cogeneration if the cumulative net profit generated by cogeneration discounted to its present value is more

than the fixed cost of installation. Notice that this is a technology switching problem, the fixed cost of

installing the conventional technology in the first place is already sunk at this point. Insert per-period profit

function (eqn 1) into the above condition, the net profit generated by cogeneration can be break down into

three components: purchased electricity cost saved, plus additional revenue generated by selling electricity,

then subtracts off the additional cost on natural gas consumption.

PPE (Eo − Ec)︸ ︷︷ ︸
electricity cost defrayed

+ PSEfc(Gc)︸ ︷︷ ︸
additional revenue generated

− PG(Gc −Go)︸ ︷︷ ︸
additional cost onnatural gas

> (1− β)F︸ ︷︷ ︸
discounted fixed cost

(2)

As PPE goes up, all things equal, we would expect an increase in the adoption rate. Similarly, a plant that

expects to generate more electricity on site is more likely to adopt the technology. Eo −Ec kind of captures

the steam load scale effect. With a high steam load, plants with same Eo can expect a large difference

in Eo − Ec assuming variety of cogeneration technologies are equal efficient in converting wasted heat into

electricity. My empirical design in Section 4 heavily depends on this simple model in the background.

Thus far, the model only speaks to decentralized adoption (technology switching) decision making for

incumbent non-utility plants. Its goal is to provide clear theoretical guidance to what should be included in

the regression analysis, instead of a structural estimation model.

3 Data

This primary data source for this project is from the US Census Bureau3 and the US Energy Information

Administration. The US Census Bureau has detailed information on manufacturing plants that has been

exploited greatly by researchers. However, the energy usage dimension of the data has not been touched

3Author is under Special Sworn Status to use the confidential data from the US Census Bureau.
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Table 1: Cogeneration Capacity Added

Time Period (1) (2) (3) (4)

1900-1978 18.91 23.03% 16.17 85.49%

1978-2005 60.32 73.46% 48.81 80.94%

2005-2013 2.88 3.51% 1.29 44.64%
Total 82.11 100% 66.27 80.71%

Notes: Column 1 lists the cogeneration capacity (GW) added. Column 2 lists the share of cogeneration capacity added in terms of the
total cogeneration capacity installed as of 2013–82 GW. Column 3 lists the cogeneration capacity (GW) added in the manufacturing sector.
Column 4 lists the share of manufacturing cogeneration capacity added in terms of the same-period overall cogeneration capacity added.
Data is from the ICF International Combined Heat and Power Installation Database; last updated in July, 2013. Maintenance of this
database is supported by the U.S. Department of Energy and Oak Ridge National Laboratory.

nearly as much. In combination with labor, capital, and productivity data at the plant level, we can paint

a broader picture of plant performance when studying the effect of a change in energy efficiency. More

importantly, majority of the cogeneration technology employment is in the manufacturing sector. Table

1 column 3 shows that overall, roughly 80 percent of the economy wide cogeneration capacity in the US

is in the manufacturing sector. From 1985 to present (most recent 2010), in three- to four-year intervals,

the Census Bureau distributed and collected data from the Manufacturing Energy Consumption Survey

(MECS), which not only ask about annual fuel consumption, but also technology on site, specifically the

cogeneration technology. Supplementing the MECS with Annual Survey of Manufactures (ASM), the Census

of Manufactures (CM), and the Longitudinal Business Database (LBD), we have information on plant’s 6-

digit NAICS code, age, size (by value of shipment or employment size), plant hours, zip code, county, exit

year, annual expenditure on various fuel use, quantity of fuel purchased, presence of cogeneration technology,

and amount of electricity cogenerated on site. Since MECS only have a small certainty sample, we do not

have a large balanced panel. But for each cross section, we have roughly 6,000-10,000 plants. In total we have

roughly 72,000 plant-year observations. However, a large portion of these plants only appeared once in the

data set. Average number of appearance in the data is lower than three. Most of these plants are in energy

intensive industries and bigger in size than the average manufacture plant in the universe of manufactures

(CM). The estimation of manufacturing plant’s adoption elasticity with respect to energy input prices uses

entirely the data from within the Census Bureau. However, there is no data on the utilities sector, which

makes estimating the effect of industrial cogeneration on utilities impossible.

The US Energy Information Administration (EIA) fortunately has detailed information on all electricity

generators above 1 MW or greater of combined nameplate capacity, which means both non-utilities and

utilities are included in the sample. 4For utilities, the EIA has annual data from 1970s to present, with

4Some cogenerators have smaller capacity than 1 MW. But in total, missing these plants do not make up a large difference.
The ICF International Combined Heat and Power Installation Database have very basic capacity and location information for
each cogenerator regardless of size. US Department of Energy uses this data to produce the 82 GW current capacity figure in
2013. Data from EIA disagrees with the 82 GW figure, and only have roughly 70 GW. From author’s calculation using ICF
database, total cogenerator capacity from plants with less than 1 MW generating capacity amounts to less than 0.6 GW. It
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information on name plate capacity, first year in operation, fuel expenditure, quantity purchased, and net

electricity generated. For non-utilities, the EIA started to collect the data quite a bit later, almost 20

years later. But with information on first year in operation, we can back track some years ago. The data

also indicates whether the non-utility uses cogeneration, and whether it is FERC certified cogeneration

QF, which the Census data does not have. This is particularly useful for analyzing the policy effect on

cogeneration utilization and adoption. Due to confidentiality protection, the EIA does not publish fuel

cost data for non-utilities. Other variables that are collected in the survey forms but not publicly available

are revenue and equipment costs. These information would undoubtedly increase our understanding of

cogeneration technology in the US. But for now, I hope to use the already available data at hand to establish

and demonstrate the impact of non-utilities cogeneration adoption on utilities and the environment. If the

results deem promising, then it might be worthwhile to go through the confidential data access application

process, which may take more than a few months.

The EIA non-utilities data include not only the cogenerators in the manufacturing sector, but also in

other sectors such as schools and commercial buildings, which represents over half of the technical potential

for future cogeneration adoption according to US Department of Energy estimates5. Thus, the EIA data is

more comprehensive in the coverage of cogeneration plants, while the Census data is better positioned in

studying the technology in manufacturing sector. In combination of both, we can hope to provide a complete

picture about the development and employment of cogeneration for the past 40 years, and be able to address

the proposed research questions with sufficient data6.

4 Empirical Strategies and Preliminary Results

At the current moment, the EIA data still needs some preparation to be ready for analysis. The MECS

carries the backbone for most of the work presented in this paper. Although MECS was originated in 1985,

it is not until 1994 the survey started asking question on the cogeneration technology. But the survey did

consistently ask about the amount of electricity cogenerated on site throughout 1985 to present. Hence,

four definitions of technology adoption are used in the analysis: usage adoption, direct adoption, narrow

remains unclear where the differences might be coming from. But since EIA is the main agency in charge of collecting electricity
generator level data, and plants with less than 1 MW capacity seems to make up a small portion of the total capacity, I will
use the EIA data for empirical analysis.

5See Figure 9 in Appendix
6Technically, one can link the EIA data with Census data at plant level. Since the two institutions use different plant

identifier, merging would need to be done using name and location of the plants. I do not have access to the names of the
plants at Census, and would need additional application and data clearance. Therefore, for now, when using data from both
sources, I aggregate plants up to 3 digit zip code level. Ideally, with the confidential data from both agencies, we would be able
to construct a data set that covers from 1970s to present on annual basis (instead of MECS every three- to four- year, and from
1985 onward) of detailed energy consumption and technology usage among manufacturing plants as well as power plants in the
utility sector. This would greatly increase the size of current unbalanced panel used in the analysis both cross-sectionally and
longitudinally.
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adoption, and broad adoption. Usage adoption is defined as a plant going from cogenerating zero electricity

to positive amount (data from 1985-2010). Direct adoption is defined as a plant going from reporting not

having any cogeneration technology present to having at least one type of cogeneration technology present

(data from 1994-2010). Narrow adoption takes the intersection of the two and braod adoption takes the

union of the two. For all these adoption definitions, the adoption indicator turns on if and only if the plant

reports a non user for both the previous survey year and the year prior to that, and a user of the technology

for two consecutive periods after. A few plants adopted more than once by broad and usage adoption, but

very few adopted more than once by narrow or direct adoption definitions. Given the nature of cogeneration,

if a plant operates at all, it will have to generate both steam and electricity, unless the plant has a separate

conventional boiler. But since cogeneration is much more efficient than the conventional boiler without much

increase in machine start up cost, it is hard to imagine a plant would not use the cogeneration to generate

their steam load. It is puzzling to have plants report having the technology on site but cogenerated zero

electricity, if it were not reporting error. This problem could potentially be resolved if we merge the EIA

data at plant level since they specialize in electricity generation side of the business reporting. For now, I use

all four definitions and hope to obtain a consistent picture across definitions. It turns out that narrow and

direct adoption produce close to identical results, while broad and usage adoption produce similar results.

The two primary objectives I aim to achieve using the Census data is to estimate the adoption elastic-

ities with respect to energy price shocks, and to estimate the fuel consumption elasticities with respect to

cogeneration adoption, all in the manufacturing sector. The EIA data will help us understand the effect of

adoption on utility sector and the effect of regulation on adoption. This section focuses on exploiting the

Census data, while section 5 contains more design for exploiting available public information from the EIA.

4.1 Adoption elasticity estimation

The derived decision rule 2 for technology adoption in Section 2 helps to pin down the key variables

of interest: electricity prices, fuel prices, expected change in fuel quantity purchased, expected revenue

generated, fixed cost of adoption, and the discount rate. Suppose fuel prices today perfectly forecast fuel

prices tomorrow or the uncertainty in future prices can be hedged away in a complete market, but realized

shocks persists indefinitely. Suppose further that within any plant, the expected saving in fuel quantity pur-

chased/generated and fixed cost of technology adoption are constant over time. The shock in fuel/electricity

prices, therefore, drives the adoption decision. A plant would then adopt the technology at earliest moment

when the present value of benefits from adoption exceed that of costs. The option value of waiting is zero.

While this assumption is a strong one and perhaps unreasonable for general technology adoption, it is less
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so for cogeneration technology since the technology is very mature and existed for hundreds of years. The

real fixed cost of installation declined slowly and only started to decline sharply in recent years.

To non-parametrically find evidence (or the lack thereof) on how price shocks impact adoption decisions,

I first group plants that do not have cogeneration technology at time t by log(
Pi,t

Pi,t−1
), where Pi,t is the

purchase electricity price plant i faces. Then count the number of plants within each group that adopted the

technology between t to t+ 1. Graph the adoption rate on the raw log price ratio. The implicit assumption

here is that any plant regardless of age, industry, size, electricity demand (proxy control for expected fuel

savings) , survey year, plant hours (proxy control for steam load), when facing the same proportion shock

in purchase electricity price, adopt the technology with same probability. To be free of these effects, I also

graphed predicted log price ratio on adoption rate. Specially, regress log price ratio on quintile indicators

of age, size (measured by total value of shipments), plant hours, electricity usage, and 4-digit NAICS by

year fixed effects. This allows for different adoption slopes for each of the observable characteristics. Use

the predicted log price ratio tells us similar stories as the raw log price ratio. The left panel of figure 4

shows the adoption rate on raw log price ratio, while the right panel shows the adoption rate on predicted

log price ratio. Overall, only a weak link exists between large log price differences and high adoption rates.

In this set of figures, it appears that narrow definition of adoption has the strongest positive correlation

between adoption rate and price shocks. Figure 5 shows the same idea with log price ratio weighted by

energy cost as a share of total material costs (
Pi,t

Pi,t−1

Ei,t+Ei,t−1

2 ) . Notable difference is largely in the broad

adoption definition, where there exists a clearer and more significantly positive correlation between price

shocks and adoption rate than that of unweighted figures. Weighting by energy cost allows for the fact that

more energy intensive plants might be more price sensitive than the less energy intensive guys in making

adoption decisions. One can also weight price shocks by electricity cost as a share of total energy costs,

which allows for more electricity intensive plants to be more price sensitive. Here, in figure 6, we still observe

a stronger pattern between price shocks and adoption rate than that of the unweighted figures, but weaker

than that of the figures weighted by energy costs. It could be the case that electricity intensive plants are

not energy intensive. This would potentially explain the weaker correlation since the primary objective for

plants to adopt the cogeneration technology is not to generate electricity, but to produce electricity as a side

product of reusing the manufacturing energy waste. Suppose energy intensity is highly correlated with steam

load requirement, the more energy intensive a plant is, the higher the steam load requirement it has, and the

more waste heat it generates and can be used in producing electricity by cogeneration. Therefore, the energy

intensity might be more relevant for the adoption of cogeneration and not electricity intensity. Overall, these

figures show that the relationship between adoption rate and price shocks are unclear, weak (strong in just

a few cases), and sensitive to both the definition of technology adoption and the relative weights used for
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price shocks.

For parametric analysis, I start with a Cox hazard model, then use a cross section linear probability

model. The two models give different answers for adoption price elasticities by design. Cox hazard model

aims to answer the question from the angle of not-yet-adopters and measures the likelihood of adoption with

respect to price shocks. Linear probability model measures sort of the equilibrium cumulative likelihood

of technology presence with respect to price levels. The interpretation for the linear probability model is

tricky because the sample is not representative of the whole manufacturing industry, with focus on some

industries more than others. With a few hundreds of plants sampled with certainty and others (somewhat)

at random, more than a third of the plants in total 77,000 plant-year observations only appeared once in the

data. The sampling could be correlated with cogeneration technology usage and would bias the estimates,

but the direction is unclear. If the certainty plants over-represents the cogeneration plants, then we likely

overestimated the adoption elasticity. Likewise, if the certainty plants under-represent the cogeneration

plants, we likely underestimated the adoption elasticity in the cross section. If the sample is truly at random

so that cogeneration plants and non-cogneration plats are represented fairly, then the interpretation of the

estimates would be that how does the average level of electricity prices affect the average likelihood of any

plant in the manufacturing sector having cogeneration technology present. This potential sampling bias is

of concern, particularly when comparing to both EIA and ICF data. While EIA and ICF both show an

increase in adoption in the manufacturing sector between 1980 to 2005, and a decline after, the Census

data show roughly consistent number of plants having cogeneration technology. Out of roughly 4000 plant-

year observations reporting having technology on site, the number of plants reporting with the technology

first decreased from 1994 level, then increased only slightly each year after 1988 (See table 2). Due to

confidentiality reasons, the numbers are rounded to the nearest hundred. If we were to expect ICF and

EIA data being correct, we would expect to see the number of cogeneration plants increase till 2005 and

become steady afterwords. But the Census data seems to suggest the peak was in 1994 and many reversed

the adoption. Therefore, it is very likely that cogeneration plants are under represented in the Census

sample. We would expect the estimates from linear probability model be biased downwards and less than

the estimates obtain in the Cox hazard model.

In the hazard model analysis, I treat plants that have not adopted the cogeneration technology by 2010

as censored. Once a plant becomes an adopter, it is no longer in the sample for the potential adoption in

the later periods as “at-risk” in the Cox model. The adoption event is modeled as an absorbing one, which

happens to a plant at most once. This is not far from what is observed in the data. Only a very small

number of plants adopted more than once by usage adoption definition, even smaller number of plants by

direct adoption definition. The first adoption time is defined to be the time the plant enters into the absorbing

13



Figure 4: Adoption Rate on Price Shocks

Notes: Data is from the US Census Bureau. Each number on x-axis represents the mean log price difference
in the perspective bin. The left panel is the adoption rate on raw data, while the right panel is the adoption
rate on predicted values. Data covers from 1988 to 2006 for usage adoption and from 1994 to 2006 for direct
adoption.
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Figure 5: Adoption Rate on Price Shocks Weighted by Energy Cost Share

Notes: Data is from the US Census Bureau. Each number on x-axis represents the mean log price difference
in the perspective bin. The left panel is the adoption rate on price data weighted by energy cost share
(energy cost as a share of total material cost), while the right panel is the adoption rate on predicted values.
Data covers from 1988 to 2006 for usage adoption and from 1994 to 2006 for direct adoption.
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Figure 6: Adoption Rate on Price Shocks Weighted by Electricity Cost Share

Notes: Data is from the US Census Bureau. Each number on x-axis represents the mean log price difference
in the perspective bin. The left panel is the adoption rate on price data weighted by electricity cost share
(electricity cost as a share of total energy cost), while the right panel is the adoption rate on predicted values.
Data covers from 1988 to 2006 for usage adoption and from 1994 to 2006 for direct adoption.
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Table 2: Rough Number of Cogeneration Plants and Concentration Ratio in MECS

Penetration Ratio Num of Est.
(1) TVS (2) TE (3) Num (4) Direct (5) Usage (6) Broad (7) Narrow

1985 0.044 0.101 0.043 – 500 500 –

1988 0.059 0.130 0.056 – 600 600 –

1991 0.056 0.130 0.052 – 600 600 –

1994 0.082 0.157 0.078 900 600 1000 500

1998 0.103 0.180 0.099 600 500 700 400

2002 0.082 0.179 0.077 600 400 700 400

2006 0.122 0.208 0.116 600 400 600 400

2010 0.111 0.201 0.106 600 400 600 400

Notes: Data is from the US Census Bureau. First three columns are penetration ratios. Column 1 is measured by total value of ship-
ment. Divide the total value of shipments from the plants with cogeneration technology (technology usage definition: cogenerated nonzero
electricity on site) by total value of shipments from all the plants in a given year. Similarly, column 2 is measured by total employment.
Column 3 is measured by number of establishments. Last four columns are number of establishments with cogeneration technology in a
given year. Column 4 uses direct technology definition: plant reports to have cogeneration technology on site. Column 5 uses usage tech-
nology definition: plant cogenerates nonzero electricity on site. Column 6 uses broad definition, which is the union of the direct and usage
definition. Column 7 uses narrow definition, which is the intersection of the direct and usage definition. Due to confidentiality protection,
the numbers are rounded to the nearest hundred.

state. Plants that have missing observations in some survey years between 1985 and 2010 are considered

as truncation records. Their contribution to the overall likelihood are properly dealt with. The following

semiparametric Cox proportional hazard model (Cox, 1972) is used as baseline model in the analysis:

λit = λ0(t) exp[β∆Pijt + 1j +Xit] (3)

where λit is the hazard rate for plant i, the conditional probability that plant i adopts the cogeneration

technology at time t, given that it has not yet adopted the technology. λ0(t) is a fully flexible, nonparametric

baseline hazard and is specified with respect to calendar time as well. Hence, no year fixed effect is included

in the model. ∆Pijt = Pijt−Pijt−1 is the log price difference of purchased electricity plant i faces from time

t to t− 1. ∆Pijt is assumed to be exogenous to the plants. 1j is a fixed effect on four digit NAICS industry

classification. Xit consists a rich set of plant level controls at time t, including plant hours, age, size (value

of shipments), and electricity usage (all as quintile indicator, so no linearity is assumed). Electricity usage

captures the electricity demand and plant hours somewhat captures the steam load. Both attempt to control

for the expected savings in quantity of purchased electricity.

β here is our parameter of interest. It is identified through spacial variation of otherwise similar plants

facing different exogenous price shocks. Most of the spacial variation is coming out of location: plants face

different price shocks in different states. Suppose two plants A and B are identical in all the control variables,

and in the same industry, A faces a price increase that is 1 unit higher than B. λAt

λBt
=

exp(β(∆Pijt+1))
exp(β∆Pijt)

= exp(β).

1 unit here is equivalent to e (≈2.718) times the price difference relative to B. In other words, if price today
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is 4 times the price yesterday for B (log( 4
1 )), for A to have a hazard rate of exp(β) relative to B, A has to

face a price increase of 4 × 2.718 ≈ 10 times (log( 4
1 × e) = log( 4

1 ) + 1) of that yesterday. If exp(β) < 1, A

faces a hazard rate that is only exp(β)× 100 percent of the hazard faced by B; B has a higher hazard rate.

If exp(β) > 1, A is then (1− exp(β))× 100 percent more likely to adopt the technology at time t.

Table 3 reports the estimates for exp(β) (Hazard Rate) in various specifications. The additional spec-

ifications are to control for different fuel usage and prices the plants face, since instead of adopting an

energy-preserving technology, the plant can always choose to switch fuels. β is consistent across within each

adoption definition as a robustness check. However, across adoption definitions, β values vary and becomes

statistically insignificant at times. Narrow adoption definition shows the largest response of adoption to

price shocks. On average, the log electricity price difference is close to 0.36, which means the price of today

is about 1.43 times the price of yesterday. Using the results from narrow adoption definition, one standard

deviation (1.45) increase in log price difference above the mean (0.36) would translate into a 10 percent

(exp(β × (1.45 + 0.36))/ exp(β × 0.36) ≈ exp(0.0677 × 1.81)/ exp(0.0677 × 0.36)) increase in probability of

adoption. One can also interpret the results as that for any plant faces a price increase of four fold (1.43×e),

it is 7 percent more likely than the average plant to adopt the cogeneration technology. The mean price

level in the sample is roughly 6 cents per kwh for purchased electricity. Increase that by four fold would

give us a price level of 24 cents per kwh. This is quite high. So even though 7 percent is large and sig-

nificant (since in the overall cross section, only slightly more than 7 percent of the plants reported having

the cogeneration technology on site), the price incentive would need to be at a somewhat implausible range.

Alternatively, we can also translate the results to that for a plant to increase the likelihood of adoption by 1

percent more than the average adoption probability, the electricity price today has to be 1.158 times more

than that of yesterday, going from 6 cents to 7 cents. Usage, direct, and broad adoption, however, seems

to suggest ambiguous results in both the magnitude and direction. Not much can be inferred from these

numbers. Since the ultimate goal for adoption is to use the technology, narrow definition captures both. So it

is our preferred estimate. Somewhat puzzling is that energy cost share does not seem to have the impact on

adoption decisions as much as it suggests from the previous nonparametric analysis figures. There seems to

be no reason to believe energy cost shares interact with price shocks nonlinearly. Perhaps the cost shares are

already captured in the quintile indicators of fuel consumption, or other plant characteristics in the control

variables. So we do not see the effect we expected.

The baseline specification for cross section linear probability model is

Aijt = α+ βPijt + 1j × 1t +Xit (4)
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where Aijt is an indicator for cogeneration technology presence at plant i in industry j at time t. Pijt is the

log of purchased electricity price plant i faces at time t. Xit are defined the same way as in the hazard model.

1t × 1j is 4-digit NAICS by year fixed effect. Parameter of interest β is again identified through spacial

variation. Since the dependent variable here is the presence of technology, not the adoption of technology,

it makes sense to switch the price difference to price levels, because price differences are not indicative of a

state of being, but a change in the state. The likelihood of having the technology presence is expected to

be increasing the level of purchased electricity price. This is indeed what we observe in the regressions and

consistent across various adoption definitions. Table 4 shows the regression results. Direct technology and

narrow technology definitions give almost identical estimates, while usage technology and broad technology

definition gives similar estimates. The direction for which energy prices moves the technology presence is

within our expectation. However, the magnitude is puzzling, particularly when comparing across definitions.

If we were to increase the price of electricity by 1 cent, from 6 cent kwh to 7 cent kwh, direct technology

predicts an increase in the likelihood of a plant having the technology present by 0.7 percent (0.046× log( 7
6 )).

Usage/broad technology definition, on the other hand, with the same price increases, predicts only an increase

of 0.06 (0.004× log( 7
6 )) percent in the likelihood of technology presence. This difference in relative magnitude

can be arriving from two aspects. First is from the definition. Usage definition encompasses two dimensions

of the technology, the presence and utilization. Conditional on technology presence, the utilization should

be relatively unaffected by electricity price shocks, since the utilization is based on steam load at the plant

as a feature of the technology. The direct definition only considers the presence of technology, so it is more

responsive to the price shocks. Second is from the sample differences. Usage definition sample has more than

50 percent more observations than direct definition sample. Per discussion at the beginning of this section,

samples are not drawn randomly. It could be the case that the more observations we have, the more bias

we have. But this argument is not very convincing because the extra sample points in usage definition are

largely from non-certainty plants (which are drawn more randomly than certainty plants). Therefore, because

the main objective here is to study the adoption elasticities, not necessarily the utilization elasticities, our

preferred estimate for the linear probability analysis is also using narrow technology definition as in the Cox

hazard model analysis. For a 1 cent increase in electricity purchase price from 6 cents to 7 cents per kwh,

linear probability model suggests an increase of technology presence by 0.7 percent and Cox model suggests

1 percent.

Another specification uses the same right hand side variables, but change the dependent variable to the

raw count of the number of cogeneration technologies on site. The MECS survey starting from 1994 asks

for the presence of five different types of cogeneration technologies. Previously, Aijt = 1 if any of these five

is present on site. By looking at the number of cogeneration technologies, we treat all these technologies
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Table 4: Cross Section Linear Probability Regression
Dep: Aijt Direct Technology Presence Usage Technology Presence Narrow Technology Presence

(1) (2) (3) (1) (2) (3) (1) (2) (3)

Log(price of elec) 0.0428** 0.0464** 0.0465** 0.0039** 0.0038** 0.0039** 0.0457** 0.0486** 0.0487**

(0.0081) (0.0089) (0.0089) (0.0007) (0.0007) (0.0007) (0.0080) (0.0087) (0.0086)

Log(price of natural gas) -0.0031 -0.0039∼ -0.0021∼

(0.0023) (0.0022) (0.0018)

Quintile indicator for Xit X X X X X X X X X

Indicator on fuel type X X X X X X

Interaction (fuel type X fuel price) X X X

N (approx.) 43,000 43,000 43,000 76,000 76,000 76,000 43,000 43,000 43,000

R2 0.2618 0.2884 0.2889 0.2617 0.2846 0.2856 0.2582 0.2893 0.2904

Broad Technology Presence Number of Cogen Tech

(1) (2) (3) (1) (2) (3)

Log(price of elec) 0.0038** 0.0037** 0.0037** 0.0696** 0.0738** 0.0740**

(0.0007) (0.0007) (0.0007) (0.0127) (0.0133) (0.0132)

Log(price of natural gas) -0.0037 -0.0060

(0.0026) (0.0046)

Quintile indicator for Xit X X X X X X

Indicator on fuel type X X X X

Interaction (fuel type X fuel price) X X

N (approx.) 76,000 76,000 76,000 43,000 43,000 43,000

R2 0.2709 0.2913 0.2920 0.2218 0.2313 0.2318

Notes: Standard errors clustered at the state level are in parentheses. Data is from U.S. Census Bureau. All figures are unweighted. Table
reports regressions of the pooled cross section (from years 1985-2010) indicator of cogeneration technology on corresponding plant level
controls. Column 1Xit consists a rich set of plant level controls at time t, including plant hours, age, size (value of shipments), and electricity
usage. All regressions include a constant and year by 4-digit NAICS fixed effect. Direct technology adoption equals 1 if a plant reports
to have cogeneration technology on site but not in the previous survey year. Usage technology adoption equals 1 if a plant cogenerates
nonzero electricity on site but cogenerated zero electricity in the previous survey year. Broad definition is the union of the direct and usage
definition. Narrow definition is the intersection of the direct and usage definition. Due to confidentiality protection, number of observations
are rounded to the nearest thousand.Each observation is a manufacturing plant in the survey. ˜ p <0.1, * p<0.05, ** p<0.01

symmetrically and assume that the technologies were perfect substitutes. The estimates give us the same

magnitude as the Cox model: with a 1 cent increase in price from 6 cents to 7 cents, the likelihood of having

one more cogeneration technology present on site increases by about 1 percent. This is comforting as it

not only confirms the robustness of the elasticity parameters we estimated using different models, but also

confirms the understanding that cogeneration technologies are likely close substitutes of one another.

4.2 Effects of adoption

For potentially providing a recommendation on the socially optimal level of cogeneration adoption, un-

derstanding the effects of adoption is almost as important as understanding what drives adoption. Adoption

at individual non-utility plant has effects on both the plant itself and the utility sector. It leads to a change

in total fuel consumption and carbon emissions for electricity generation purposes and impacts the average

electricity prices. Some of these effects are internalized by the non-utility plants when making adoption
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decisions, while others are not, particularly for carbon emissions. The desired layout for this subsection

is to split evenly on the internalized effects and externality effects. Currently, I can only report on how

manufacturing plants changed their fuel consumption pattern prior and after the adoption of cogeneration.

It is part of the research agenda to complete the picture in external adoption effects.

We use a simple event study empirical design to study the effects of adoption on manufacturing plants:

∆yijt =

3∑
a=−3

αaAij(t+a) +Xit + 1j × 1t

where ∆yijt is the log first difference of the variable of interest, here we use the log values of TFP, total

value of shipment, total employment, total electricity usage, quantity of purchased electricity, and quantity

of purchased natural gas (since 70 percent of cogeneration technology use natural gas as primary fuel input).

Xit and 1j ×1t are defined the same way as in the previous regressions.7 Event is defined as the adoption or

dis-adoption of a cogeneration technology. Event window covers three pre-event periods and three post-event

periods. Each event period is roughly 3-4 years corresponding to survey frequencies. Since there are only 8

MECS samples, to be in the regressions, a plant has to have a longitudinal dimension that covers at least 7

of the survey years8. This reduces our sample to roughly 600 plants. Again, if we were to merge the EIA

data with the Census data, we would have a much larger longitudinal panel. But with the small sample we

do have, results demonstrated significant change of fuel consumption patterns for adopting plants.

Not surprisingly, adoption of cogeneration technology has small effects on the shipment, or employment,

and no effect on the TFP (see figure 8). The primary purpose of the technology is not to alter the main

business model of the manufacturing plants, but to use the waste in the manufacturing process to defray

electricity costs and potentially generate some revenue by selling excess electricity. There is also not much

effect on the amount of electricity used on site. This again confirmed our understanding. The large effects

are seen in quantity of purchased electricity and quantity of purchased natural gas (see figure 7). Both effects

are expected since the adopting plants no longer need to purchase as much electricity from the utilities, but

now needs to purchase more natural gas since more fuel is required to generate the same amount of useful

thermal output as before.

Figure 7 and 8 shows the results graphically and table 5 reports the coefficients on selected variables.

Immediately going from not having the technology to adoption (column (2) in table 5), a plant experienced

a decrease in quantity of purchased electricity by 75 percent (1-exp(−1.3556)) at event time 0. The effect

7Plant controls suppose to be in differences as well in the specification. However, Xit are quintile indicators and are not
continuous. We are allowing for differential trends in adoption effects for each quintile.

8For this reason, here we use usage definition for Aijt since direct/narrow definition do not have enough survey year coverage.
Using usage definition is reasonable because we are studying the effect of fuel consumption change due to the utilization of the
cogeneration technology.
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persists through all three post periods. The cumulative effects amounts to a total reduction of 90 percent from

pre-adoption period (1 − exp(−1.3556) exp(−0.6796) exp(−.2202) exp(−.0978)). Similarly, the cumulative

effects of adoption amount to an increase in the quantity of purchased natural gas by 6 times than that of the

level in pre-adoption period (exp(1.5629) exp(0.3644) exp(−0.0321) exp(−0.0608)). The effect immediately

after adoption at event time 0 is close to a 5-time (exp(1.5629)) increase in fuel consumption. If we were

to include reserve-adoption events in the sample (column (1) in table 5), the effects are not as large, but

still significant. The adopting plants would decrease purchased electricity quantity by close to 50 percent,

increase purchased natural gas by 68 percent right after adoption, and sustain the change through later

periods. These numbers are a little difficult to interpret since we do not know if the sharp increase in

natural gas consumption is also due to fuel switching. For example, one can imagine a plant prior adoption

uses natural gas, but not as primary fuel, which supposes to be coal, for manufacturing production. After

adoption, the plant decides to switch primary fuel to natural gas. This would lead to a sharp increase in

natural gas consumption, and should not be interpreted as a pure substitution effect between purchased

electricity and purchased natural gas. If the change is driven entirely by the proposed substitution effects,

we can then compute the efficiency cogeneration technology provides in converting natural gas to electricity.

This efficiency can be used to compare with that of the utility power plants to help with determining the

socially optimal level of cogeneration adoption. We suspect the increase in natural gas consumption is largely

driven by fuel switching and less so by the substitution effect. More analysis needs to be done to confirm

our hypothesis.

Nonetheless, due to the large decrease in purchased electricity, the demand for electricity will go down for

areas with many cogeneration plants. Since the electricity is mostly a side product, cogeneration plants can

sell the excess electricity at lower price than central power plants. Both demand and supply factors should

drive down the cost of electricity locally. Very preliminary results do show a reduction in electricity prices

in 3-digit zip code areas with more cogenerated electricity, using the within zip code variation across time.

[The results are not reported because it is a recent finding and need to receive disclosure clearance.]

The effects on utilities and carbon emissions are not yet studied but are on our schedule. The effects we

studied so far are significant for changing fuel consumption behavior of the adopting plants in the manufac-

turing sector and are expected to have important externalities to be considered.

5 Conclusion and Future Plan

Preliminary results show that electricity and fuel prices might not be a deciding factor for cogeneration

technology adoption in the US manufacturing sector. With a 1 cent increase in electricity prices, going from
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Figure 7: Effect of Adoption on Manufacturing Plants

Notes: Data is from the US Census Bureau. Event time is zero when a plant reports to have cogenerated
nonzero amount of electricity on site for the first time. The left panel defines event equals 1 if a plant goes
from being a non user to a user of the technology, -1 if goes from user to non user; while the right panel
does not include the -1 events in the left panel. Data covers from 1988 to 2010. N is roughly 600 for the left
panel and 500 for the right panel.
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Figure 8: Effect of Adoption on Manufacturing Plants

Notes: Data is from the US Census Bureau. Event time is zero when a plant reports to have cogenerated
nonzero amount of electricity on site for the first time. The left panel defines event equals 1 if a plant goes
from being a non user to a user of the technology, -1 if goes from user to non user; while the right panel
does not include the -1 events in the left panel. Data covers from 1988 to 2010. N is roughly 600 for the left
panel and 500 for the right panel.
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Table 5: Effect of Adoption on Manufacturing Plants
Dep: ∆quantity of purchased electricity ∆ quantity of purchased natural gas

(1) (2) (1) (2)

Event time 0 -0.6822** -1.3556** 0.5182** 1.5629**

(0.2082) (0.3493) (0.1804) (0.2709)

[Cumulative effect] [0.5055] [0.2578] [1.6790] [4.7726]

Post-event time 1 -0.6547** -0.6796* 0.2630∼ 0.3644*

(0.1960) (0.2880) (0.1600) (0.1651)

[Cumulative effect] [0.2627] [0.1307] [2.1841] [6.8709]

Post-event time 2 -0.2921* -0.2209 0.0230 -0.0321

(0.1291) (0.1414) (0.1402) (0.1161)

[Cumulative effect] [0.1961] [0.1048] [2.2349] [6.6539]

Post-event time 3 -0.0463 -0.0978 -0.0964 -0.0608

(0.1110) (0.1294) (0.1849) (0.1832)

[Cumulative effect] [0.1872] [0.0951] [2.0295] [6.2614]

Quintile indicator for Xit X X X X

Indicator on fuel type X X X X

Interaction (fuel type X fuel price) X X X X

N (Approx.) 600 500 600 400

R2 0.5286 0.6051 0.2551 0.3852

Notes: Standard errors clustered at the state level are in parentheses. Data is from U.S. Census Bureau. The column (1) defines event
equals 1 if a plant goes from being a non user to a user of the technology, -1 if goes from user to non user; while column (2) does not include
the -1 events in the column (1). All figures are unweighted.Xit consists a rich set of plant level controls at time t, including plant hours,
age, size (value of shipments), and electricity usage (all as quintile indicator). All regressions include year by 4-digit NAICS fixed effect.
Due to confidentiality protection, number of observations are rounded to the nearest hundred. ˜ p <0.1, * p<0.05, ** p<0.01

6 cents per kwh to 7 cents per kwh, the likelihood for cogeneration adoption increases by 1 percent. We hope

to further study the impact of regulatory factors on the adoption of cogeneration technology, using more data

from the EIA. The plants that did experience an adoption event reduce their purchase quantity of electricity

immediately by at least 50 percent and increase their purchase quantity of natural gas by at least 68 percent.

This change of fuel consumption pattern persists through later periods, while shipment, employment, and

TFP remain largely unchanged with the adoption. The industrial average electricity purchase price decreases

with an increase in the amount of cogenerated electricity.

There are much more needed to be done. Top on the list is to estimate the effects of cogeneration usage

on utility sector as well as on carbon emissions overall. Second is to better understand the role regulatory

factors play in the adoption decision as well as the utilization of the technology. I plan to use reduced

form methods to study these two proposed questions. Both need to exploit the EIA data. Variation from

within 3-digit level zip code across time can be used to address the effect of adoption on local utilities

and environmental factors. After 2005, cogeneration plants with more than 20 MW nameplate capacity

loses the “must-purchase” privilege. The discontinuity around this 20 MW figure can be used for regression

discontinuity design and estimate the effect of this “must-purchase” regulatory obligation on various plant

outcomes. It may also help to explain the sharp drop in adoption after 2005.

26



To complete the analysis, particularly to provide policy recommendations for the optimal cogeneration

investment level, some measures on cost are needed. It is not yet clear what the best approach to this is. One

way is to simply request the confidential data from the EIA, which has measures on equipment costs. But it

might take more than three months to receive clearance. Alternatively, we can try to merge EIA onto Census

data on plant level by year. Census has good manufacturing data with capital investment figures readily

available while EIA can supplement with better data in electricity generators (better in both frequency and

coverage than MECS). The downside is that EIA’s data covers not only the manufacturing sector. We are

losing information on overall cogeneration employment by merging plants only in the manufacturing sector.

While at the current moment, over 70 percent of cogeneration capacity is in manufacturing, more than half of

the technical potential capacity for future adoption is sectors outside manufacturing. A complete model that

takes into consideration for both investment in utility sector and non-utility sector is still needed, particularly

in generating counterfactual simulation.

If we were to complete the desired goals, we would be in a position to be able to explain the observed pat-

tern in cogeneration adoption in the US, as well as addressing the general equilibrium effects of cogeneration

adoption on electricity prices and carbon emissions, which both affect consumers in important ways.
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Figure 9: Technical Potential for CHP Adoption

Source: U.S. Department of Energy, CHP: A Clean Energy Solution

Appendix

One of the potential reasons behind the drop in adoption rate after 2005 could be because the market

at this point has been penetrated by the technology. This is not the case by US Department of Energy

estimates, nor by author’s calculation from the MECS data from US Census Bureau. Figure 9 from the

US Department of Energy shows that we could still increase the amount of cogeneration capacity in the

manufacturing sector by a factor of two, and could increase cogeneration capacity in other sectors by even

more, with largest potential in commercial buildings that amounts to over twenty. Table 6 shows the top

ten 3-digit NAICS industries that cogenerated largest amount of electricity in year 1985 and 2010. The

ranking has not changed much at all between the 15 years. In many of these industries where cogeneration

technology were exploited the most, the penetration ratio (across different measures) was low in 1985 and

remained low in 2010 (except for paper manufacturing, and petroleum and coal products manufacturing).

This suggests that even among the most penetrated industries, there is still space for adoption. Outside of

top three industries, no industry has a penetration ratio higher than 20 percent by all measures in 2010. Of

course, a more careful cost benefit analysis would be needed to estimate the adoption potential. But from the

technical side (plants with high steam load factor that could use the waste heat for electricity generation),

there is ample room to grow.
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