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Abstract 
 

We describe differences between the commonly used version of the U.S. Census of Manufactures 
available at the FSRDCs and what establishments themselves report. The originally reported data 
has substantially more dispersion in measured establishment productivity. Measured allocative 
efficiency is substantially higher in the cleaned data than the raw data: 4x higher in 2002, 20x in 
2007, and 80x in 2012. Many of the important editing strategies at the Census, including industry 
analysts’ manual edits and edits using tax records, are infeasible in non-U.S. datasets. We describe 
a new Bayesian approach for editing and imputation that can be used across contexts. 
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I Introduction

Over the past twenty years, many economists (including us) have written papers and

lecture notes highlighting that within-industry misallocation of factors can help explain

cross-country differences in productivity (Restuccia and Rogerson, 2008; Hsieh and Klenow,

2009). The source of this belief is a robust stylized fact that developing countries like

China and India have more measured within-sector dispersion in establishment behav-

ior than wealthier countries like the US. This paper describes some challenges with the

measurement of this stylized fact.

The confidence we have in our claims about dispersion in establishment behavior -

either the “true” values for a particular country, or of cross-country differences - depends

on how worried we are about measurement error. In principle, measurement error has

an ambiguous effect on measured dispersion, since non-classical noise can either push

establishment’ reported values towards or away from what is typical in their sector. In

this paper, we discuss two potential sources of measurement error: establishments poten-

tially misreporting their own characteristics, and subsequent data processing potentially

introducing new errors.

Most statistics agencies initially ask firms to verify (or send in) information, but the

subsequent steps vary across surveys. Many statistical agencies in developed countries,

including the U.S. Census Bureau, both edit and impute responses.1 Over half of estab-

lishments have at least one characteristic which is affected by the cleaning process2. The

exact procedures vary across industries and time (White et al., 2018), but broadly take

two forms. First, the Census Bureau edits some outliers. If a reported variable fails one

1 Less developed countries are less likely to directly edit the raw data. For instance, for India and China
we have confirmed that there was no editing or imputation of the data (both in the data documentation,
and in email communications with the relevant national statistics agencies). There is some imputation of
prices in the Indian data post-2006, but we do not use the price information in our results.

2 Throughout the paper, we set aside edits to capital given well-known conceptual difficulties with mea-
suring it correctly (Hicks, 1981; Hulten, 1991; Pritchett, 2000; Collard-Wexler and De Loecker, 2016).
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or more edit rules, then it may be temporarily replaced with a missing value. Second,

the Census Bureau imputes missing information, using other information reported by the

plant (both in that year and in previous years) and other plants in the same industry.3 For

2002, 2007, and 2012 we have access to the original and cleaned values reported by firms

for plants in the Census of Manufactures,4 as well as the relevant edit flags.

We have three mains goals in this paper. Our first goal is to demonstrate the extent of

data cleaning efforts undertaken by the U.S. Census Bureau. Both responses to obvious

reporting errors (such as when establishments report distinct values for the same out-

come), as well as more subjective edits (such as manual edits by industry experts) have

large effects on measured dispersion. We compare the original responses to the cleaned

responses in a variety of ways, focusing on two measures of productivity: revenue pro-

ductivity (TFPR) and quantity productivity (TFPQ).5 For most establishments, at least one

of the variables needed to calculate TFP is imputed (White et al., 2018). First, we show vi-

sually that cleaning has large effects on the distributions, dramatically lowering the mass

in the tails while also shifting the distributions up for TFPR.

Most quantitative measures of misallocation use statistics that are broadly similar to

the standard deviation in revenue productivity (TFPR) (Asker et al., 2019). These types

of measures are sensitive to tails, and indeed we find that the standard deviation of TFPR

falls by half in the cleaned data. However, the data processing undertaken by the U.S.

Census Bureau does not only affect the tails: it lowers the measured interquartile range of

revenue productivity by almost as much. Both the effect of data processing and measured

3 Editing a variable normally involves deleting the original response, and then treating it as if it had never
been reported.

4 It is worth noting that when Hsieh and Klenow (2009) was published, neither imputation flags nor the
original firm responses were available for the Census of Manufacturers. Interested researchers now can
get access in RDCs.

5 There are well-known difficulties in measuring TFPQ and TFPR, both because estimating production
functions is difficult even with data on quantities, and because in many datasets the only measure of out-
put is revenues. We use simple methods to estimate TFPQ and TFPR. In ongoing work we are collecting
longer panel data, which will allow us to say more about measuring production function elasticities.
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dispersion (in the raw & cleaned data) are increasing over time.

The data cleaning matters most for smaller and younger plants: the average absolute

difference between captured and cleaned TFPR for the largest (or oldest) plants is around

2/3 of that for the smallest (or youngest) plants, with a fairly monotonic relationship in

between. There is a similar (though smaller) relationship for TFPQ. Nevertheless, there

is still a large difference between captured and cleaned productivity even for the largest

and oldest plants.

In many models (e.g. Hsieh and Klenow 2009) the covariance of TFPR and TFPQ is

important for measuring misallocation, with the logic that distortions matter more for

aggregate activity if they affect establishments who would be large in the counterfactual

absence of distortions. In order to operationalize this assumption, we use the same type

of model as in Bils et al. (2017) and Hsieh and Klenow (2009), where consumers have

CES demand, and establishments have Cobb-Douglas production functions and face id-

iosyncratic distortions on their inputs. This generates relatively intuitive expressions for

the aggregate productivity losses because of those frictions. If instead of using the U.S.

Census Bureau’s cleaned data we simply trim the 1% extremes in the data originally re-

ported by each establishment, we find that moving to the new measured U.S. efficiency

would decrease measured (Hsieh and Klenow, 2009) TFP by a factor of 8 for the Indian

formal sector. We do not take this result literally - we do not think that raw data gives

compelling evidence that the U.S. manufacturing sector is characterized by more misal-

location than India. Instead, we consider our results a “smoking gun” that measurement

(and data processing in particular) is deeply important to the study of misallocation.

Given that the overall cleaning effort has a large effect on measured misallocation, we

turn to describing the specific process of cleaning the data. After qualitatively describing

the different types of edits, we assess their effects by measuring how much each edit

type affects measured dispersion. We do so by describing their Shapley (1953) value;
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essentially the share of the total change that can be attributed to each type of edit.

The most important edits are “logical” edits and analyst corrections. Logical edits are

possible because the Census implicitly asks for the same information in multiple ways,

for instance by asking for the plant’s total value of shipments as well as the total value

of shipments for each product. If the two values for the same outcome diverge, the Cen-

sus may edit the reported total with the sum of the disaggregated components. Analyst

corrections rely on the expertise of full-time industry specialists employed by the U.S.

Census Bureau.

In many international datasets with microdata on establishments, many types of pro-

cessing done by the U.S. Census Bureau are infeasible.6 For instance, logical edits can

only be implemented when there are redundant questions. Given the importance of these

edits, it is difficult to interpret measured cross-country differences that use different pro-

cessing methods. Given the extent of measurement error, it is also difficult to trust differ-

ences in unprocessed data. Since we are not nihilists, we describe the effect of methods

which commonly clean data across contexts. Trimming is a popular data cleaning strat-

egy which can easily be implemented. However, it is a blunt instrument, and varies

paper to paper: for instance while Hsieh and Klenow (2009) trim static measured distor-

tions, other papers using the exact same data have trimmed other characteristics such as

growth rates (Allcott et al., 2016; Martin et al., 2017). We describe and implement a more

reproducible approach: a theoretically-motivated data cleaning exercise which could then

be used across establishment-level datasets without further need for data processing (Kim

et al., 2015).

Unlike trimming, which drops outliers and leaves missing values blank, the Kim et al.

(2015) method simultaneously edits and imputes the data. First, we look at the ratios of

6 There are also differences in enumeration, for instance in the United States the Census is filled out using
a web portal whereas few Indian manufacturing plants report having computers.
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reported variables and flag the outliers of the ratios–this is a standard first step in the

literature (Fellegi and Holt, 1976; Thompson et al., 2004). This step unfortunately remains

a little ad-hoc across countries. We use the actual bounds used by the U.S. Census Bureau,

and try to approximate their equivalents in the Indian data.7 We then impute entries

in order for the cleaned data to pass the edit checks. Unlike the imputation methods

the Census Bureau uses most frequently in the Census of Manufactures, the Kim et al.

(2015) method tries to preserve the joint distribution of the covariates, using a Bayesian

approach.8 Given the ratio outlier flags, we favor making edits that are likely given our

model for misreporting, and similarly impute values that are likely given the underlying

model for the data. The imputation step works for missing values as well as those which

are flagged as outliers.

Economists have a long tradition of studying (mis)measurement. Our paper is firmly

in the spirit of (Romer, 1986a,b, 1989), who study how differences in data quality matter

for understanding the historical incidence of business cycles and unemployment.9 We

also complement current efforts to link the Current Population Survey to administrative

records in order to, for instance, more reliably describe poverty in the US (Meyer and

Mittag, 2019; Medalia et al., 2019). In the misallocation (Banerjee and Duflo, 2005; Restuc-

cia and Rogerson, 2008; Hopenhayn, 2014) literature in particular, Bils et al. (2017); Gollin

and Udry (2019) and Esfahani (2019) all study the role of measurement. Their approaches

use economic theory to distinguish between measurement and “true” misallocation, for

instance by arguing that farmers are unlikely to misallocate resources across their own

7 There are many reasons why it is impossible and unhelpful to use the same bounds in the US and India.
One reason is that the US bounds are industry specific, and the industry classifications are different across
countries. Another is that some of the bounds are nominal (e.g. wage bill per worker), for which the
underlying units are different across countries.

8 The Census methods of imputation of missing data also lower measured misallocation relative to more
flexible approaches (White et al., 2018).

9 Similar issues have recently been discussed in the asset pricing literature, since measuring the correlation
of consumption with stocks is difficult (Savov, 2011; Kroencke, 2017).

6



plots. One value of our approach is that we leverage expert editing done by those with

their own goals for creating reliable data. Furthermore, researchers can use our proposed

data cleaning procedure regardless of their question, and even in settings with less rich

data collection and cleaning efforts than the US.

In the next section, we recap the theory of distortions underlying much of our analysis.

Section 3 discusses data collection and cleaning procedures for manufacturing data in the

United States. Section 4 describes the Kim et al. (2015) method for cleaning plant-level

data. In Section 5, we compare commonly-cleaned data for the U.S. and India. Section 6

concludes.

II A Theory of Misallocation

In order to keep our results parsimonious, we focus on describing how TFPR and TFPQ

are affected by data processing. Measuring the former requires estimating production

functions, which we do using cost shares (recognizing that even if establishments ac-

tually had constant returns to scale Cobb-Douglas production functions, cost-shares are

only an unbiased measure of production function elasticities in the absence of frictions).

Measuring the latter requires a model of demand. We follow Hsieh and Klenow (2009) in

imposing CES demand, although like Wang (2019) and Bils et al. (2017) we additionally

allow for frictions on intermediate goods.10

First, we start from the firm’s problem, showing how firm behavior is affected by id-

iosyncratic distortions on capital and output. In the model, variation in those distortions

is captured by variation in firm-level revenue productivity. We then turn to the (static)

equilibrium, and derive how aggregate productivity would be affected in a counterfac-

tual where the variation in revenue productivity is removed, which is our measure of

misallocation.

10For our descriptions of the theory, we refer to firms. In the data, we estimate frictions and production
functions at the establishment (i.e., plant) level.
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II.A Firm-level Distortions

Final good production Q is a Cobb-Douglas aggregate over sectoral gross output Qs,

Q = ∏ Qθs
s .

Normalizing the price of the final good, P, to 1, expenditure for each sector is a fixed

proportion

PsQs = θsQ

where Ps is the price index for sector s. The final good can either be consumed or used in a

roundabout fashion as an intermediate input (Krugman and Venables, 1995): Q = C + M.

All firms use the same intermediate input, denoted Msi, so M = ∑S
s=1 ∑Ns

i=1 Msi. Within

each sector, output takes a CES form over output of each variety Qsi:

Qs =

(
Ns

∑
i=1

Q
σ−1

σ
si

) σ
σ−1

and each firm produces gross output using capital, labor, and the intermediate input with

Cobb-Douglas production-function elasticities which vary across sectors:

Qsi = Asi(K
αs
si L1−αs

si )γs M1−γs
si .

The wage and rental rate are constant in the economy, but firms face idiosyncratic distor-

tions on labor, capital, and intermediate inputs. As a result, each firm’s profits are:

πsi = PsiQsi −
(
1 + τLsi

)
wLsi −

(
1 + τKsi

)
RKsi − (1 + τMsi)PMsi.
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II.A.1 Optimization Behavior

Firms are monopolistically competitive and face downward-sloping demand curves given

by Qsi = Qs

(
Psi
Ps

)−σ
. Profit maximization implies that the firm’s output price is a fixed

markup over its marginal cost and so there is complete pass-through of improvements in

TFPQ (Asi). As a result, revenue productivity, TFPRsi =
PsiQsi

(Kαs
si L1−αs

si )
γs M1−γs

si
, only varies due

to the distortions. In particular,

TFPRsi =
σ

σ− 1

((1 + τKsi

)
R

γsαs

)α((
1 + τLsi

)
w

γs (1− αs)

)1−α
γs [(

1 + τMsi

)
(1− γs)

](1−γs)

. (1)

Similarly, TFPQ can be inferred by taking advantage of the fact that the markup is

known:

TFPQsi≡Asi ∝
(PsiQsi)

σ
σ−1(

Kαs
si L1−αs

si

)γs
M1−γs

While we focus most of our attention on TFPQ and TFPR measured using gross-output

production functions, Hsieh and Klenow (2009) using a value added specification, and we

show how their results change as a function of the data cleaning as well. The value added

approach (where we follow a value-added approach, but firms actually make choices as

a function of gross output) gives

TFPRVA
si =

σVA

σVA − 1

((
1 + τKsi

)
R

γsαs

)α((
1 + τLsi

)
w

γs (1− αs)

)1−α [
1− (1− γs)(

1 + τMsi

)] (2)

and

TFPQVA
si ∝

(PsiQsi −M)
σVA

σVA−1

Kαs
si L1−αs

si

.
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In the next subsection, we show how variation in TFPR affects aggregate productivity.

II.B Aggregate Distortions

Aggregate productivity in each sector is

TFPQs =
Qs

(Kαs
s L1−αs

s )γs M1−γs
s

≡ TFPRs

Ps
, (3)

where, given cost-minimization, the price index for sector s is:

Ps =

(
M

∑
i=1

P1−σ
si

) 1
1−σ
(

M

∑
i=1

(
Asi

TFPRsi

)σ−1
) 1

1−σ

.

Plugging back in to Equation 3 gives the core Hsieh and Klenow (2009) expression for

productivity

TFPs =

(
M

∑
i=1

(
AsiT̃FPRsi

)σ−1
) 1

σ−1

, (4)

where T̃FPRsi =
TFPRs
TFPRsi

. Since we know from Equation 1 that TFPRsi would only be

different from TFPRs in the presence of distortions, the “efficient” counterfactual TFP is

As =
(

∑M
i=1 Aσ−1

si

) 1
1−σ . Aggregating over all sectors,

T̃FP =
TFP

TFP(e f f icient)
=

S

∏
s=1

[
Ms

∑
i=1

(
T̃FPQsi × T̃FPRsi

)σ−1
] θs

σ−1

, (5)

where T̃FPQsi =
Asi
As

. The index in Equation 5 ranges from 0 to 1 and can be calcu-

lated from observed data. The three main outcomes that we describe in the paper are

ln(T̃FPRsi) and ln(T̃FPQsi), and T̃FP. For notational convenience, although we only

present results for log and industry-scaled productivity measures, we describe them as

“TFPR” and “TFPQ” in our results.

Instead of measuring how sensitive our three measures of productivity are to differ-
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ent underlying assumptions, which has been the primary focus of much of the recent

methodological literature on misallocation (Haltiwanger et al., 2018; Asker et al., 2014),

we instead calculate them using different cuts of the data, which we describe in the next

section.

We also describe which types of establishments experience a larger change in mea-

sured characteristics when comparing the captured to the final data. We focus on two

measures, the age and the number of employees of the firm. For both, we run a local

polynomial regression comparing the difference (either regular difference or the absolute

difference) between measured and captured TFPR and TFPQ.

III Data Cleaning in the United States

We primarily use micro-data from the United States, from the 2002, 2007 and 2012 U.S.

Censuses of Manufactures. The quinquennial survey covers roughly 300,000 manufactur-

ing plants.11 Between those years, the Annual Survey of Manufactures collects informa-

tion on a rotating panel of establishments, with the largest establishments surveyed with

certainty, and smaller plants in the frame with some probability (which is increasing with

size). The sampling weights are available in the U.S. Censuses of Manufactures,12 and we

show how the measures change when using the sample instead of the Census.

As in most surveys, not all respondents answer all of the questions, and some re-

sponses are inconsistent with each other or inconsistent with administrative records data

(primarily IRS payroll tax records) from the same firms. The Census Bureau has created

imputation and edit rules for this data, the development of which are described in Sig-

man (1997) and Thompson and Sigman (1999). However, until recently, it was difficult

for researchers to identify which, if any, responses for a given plant were imputed.13 Us-
11Information for plants with fewer than 5 employees - roughly one third of the sample - are almost entirely

imputed. The standard is to exclude these so-called administrative records plants (Foster et al., 2016), and
we follow that standard throughout our analysis.

12Sample are selected at 5-year intervals beginning in years ending with 4 or 9.
13Item-level edit/impute flags for the 2002 and later censuses became available to researchers a few years
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ing the recently available imputation flags, White et al. (2018) shows that over 70% of

observations in the Census of Manufactures have imputed data for at least one variable

used to compute TFPR, and within-industry TFPR dispersion is significantly smaller in

the imputed data than in the non-imputed data. We go beyond the imputation flags and

use the newly available actual responses from the establishments themselves (the “raw”

data).

We focus on the four variables used by Hsieh and Klenow (2009) to measure plant-

level total factor productivity: total value of shipments, total cost of materials and en-

ergy, total salaries and wages, and the capital stock. The first three variables are directly

measured in the Census of Manufactures, and are present in both the raw data and the

final data. For the capital stock, we use the real capital stock variable constructed (from

the final data) as part of the BLS-Census Multifactor Productivity project, as described

in Cunningham et al. (2018). This variable is not available in raw data, so we use this

measure of the capital stock for all of our TFPR and TFPQ calculations.

The raw data differs from the final (“cleaned”) data in two respects.14 First, missing

values due to non-response in the reported data are imputed in the cleaned data, using

a variety of industry-specific regression-based and other imputation strategies. Second,

actual responses which fail edit rules in the reported data are also imputed or changed in

some way in the final data. The most important edit rules are balance edit rules (certain

variables have to add up) and ratio edit rules (ratios of certain variables must be within

certain bounds). Edit-rule-failing responses are replaced using a variety of methods, de-

scribed in Table 1, and the ones that affect measured misallocation the most are described

more fully in Subsection IV.C. We formally describe the logic of data cleaning in Section

ago, and item-level flags for the 1987, 1992, and 1997 censuses became available to researchers in the
Federal Statistical Research Data Centers (FSRDCs) in November 2018.

14Another convention for naming the data is “captured” data for the reported information, and “com-
pleted” for the cleaned data.
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V.

There are a few important parameters that are not directly reported in the data: the

production function elasticities and the demand elasticity of substitution. We use cost

shares for the former, and 4 for the latter (Redding and Weinstein, 2020).15

In the next subsections, we compare the clean and raw versions of the data. First we

show the differences in the distribution of productivity, then in measures of dispersion,

and finally on measures of misallocation.

III.A The distribution of TFPR and TFPQ

We start by describing how data processing affects the measured density of (scaled) TFPR.

We do this in the following way. First, we create bins for each 2% of the distribution of

TFPR and TFPQ in the final data. Then, in each of these bins, we plot the difference in

density between the raw and clean data (so positive values means relatively more density

in the bin in the raw data).16 The differences-in-densities are plotted in Figure 1, with the

left graph showing the difference in densities for TFPR, and the right graph for TFPQ.

For TFPR, in all three years there is more mass in the raw data in the tails, which is

presumably consistent with most forms of data cleaning that try to address outliers. How-

ever, at the lower end this is true only for the lowest (two) bins. All three years exhibit a

check-mark shape, where the lower-middle of the distribution is over-represented in the

clean data, and the extremes, especially the top of the distribution, are over-represented

in the raw data.

The TFPQ difference in density in graphs are essentially flipped: there is more density

in the raw data for the lowest values of TFPQ, with no qualitative change over time.

15We use an elasticity of substitution of 3 for the Value Added results.
16In order to limit the disclosure of the data, we slightly jitter the exact end points of each bin, so readers

cannot look with a magnifying class to identify the TFPR of, e.g. the 22nd percentile firm. Similarly, we
move the density in the top and bottom bins into their respective neighbors, so we are only plotting 48
bins.
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IV Who gets edited?

In this section, we describe which types of firms see large differences between their cap-

tured and final data, focusing on age17 and employment (we use measures of firm char-

acteristics, although we note that most firms are single-establishment firms). In Figure 2,

we plot the relationship between the absolute difference in measured TFPR between the

captured and final data.18 Figure 3 plots the absolute differences for TFPQ. The pattern is

similar for the three years for which we have data; the absolute difference is consistently

falling in both firm age and firm size. The average absolute difference for the largest firms

is large - and is often around 50% - but it is larger for the younger and smaller firms.

The absolute gap could be positive even if the cleaning were mean zero. Figure 4

shows that the edited data consistently has smaller measured TFPR (and TFPQ) than the

captured data. Again, the size of the average gap is decreasing in firm size and age,

although the pattern for firm age is somewhat flatter. Figure 5 shows that for TFPQ, the

larger and older firms have larger gaps than their peers (except for 2007, which is fairly

flat).

IV.A Dispersion of TFPR and TFPQ

In this section, we quantify the results from the previous subsections. Specifically, we

describe the effects of data cleaning on alternative measures of dispersion, specifically

the 90/10 ratio, the interquartile range, and the standard deviation.19 For simplicity, we

report values with no trimming. The first column in Table 2 reports the standard devia-

tion. For TFPR, the standard deviation in the cleaned data is around half of that in the

original data. Measured dispersion increases over time, although by relatively more in

17Firm age comes from the Census Bureau’s Longitudinal Business Database. That dataset begins with the
year 1976, so the age of firms born before 1976 is censored.

18For these graphs, to comply with Census Bureau disclosure avoidance practice, we drop the 1% outliers
of TFPQ and TFPR from the graphs.

19Recall that we are reporting TFPR and TFPQ measures in logs (and industry-scaled). Thus these 90/10
and 75/25 “ratios” are actually log-differences within each industry, averaged across all industries.
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the captured data: in the captured data, the standard deviation increased by over 20%

from 2002 to 2012. In the final data, it increased by under 10%. The change from captured

to cleaned data is even larger for TFPQ, with the cleaned data having around a third as

much dispersion as the captured data. There is a less clear time trend.

We see a similar pattern for the 90/10 ratio and the interquartile range. The captured

data has 2-3 times more spread than the final data does, both for TFPR and TFPQ. Even

the interquartile range is dramatically affected by the data cleaning undertaken by the

U.S. Census: the gross output range in 2012 fell by almost a factor of three. Similar to the

standard deviation, there have been a larger increases over time in the captured data than

in the final data.

Taken together, these results show that the cleaning undertaken by the U.S. census is

more nuanced than trimming tails, since it dramatically effects ratios of interior quantiles.

IV.B Measured Misallocation in the Raw U.S. data

For our final set of results comparing the cleaned and captured data, we use the model

described in Section 2. While further removed from the raw data, the advantage of the

calculation is that it gets closer to thinking about (measured) welfare costs: in most mod-

els, frictions are particularly important if they affect establishments’ firm size ranking

(Hopenhayn, 2014), which in the undistorted equilibrium is a function of (only) TFPQ.

First, we consider the effects on measured misallocation of replacing cleaned with raw

data in the U.S. manufacturing sector in 2002, 2007 and 2012. Table 3 shows the results of

calculations across a range of similar datasets.20 For gross output, in the raw data with

no trimming, allocative efficiency is nearly 0 and gets worse (lower) in 2007 and 2012.

Trimming the 1% tails raises measured allocative efficiency to 0.109 in 2002, implying that

the US manufacturing sector was about 11% as productive as it would be if there were no

20For all the results reported in the paper we set the elasticity of substitution σ = 3 when considering value
added production functions, and σ = 4 for gross output (Hsieh and Klenow, 2009; Bils et al., 2017).
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distortions. With this level of trimming, allocative efficiency still falls to 0.012 in 2007 and

0.004 in 2012. We see a similar pattern with 2% trimming except that allocative efficiency

levels off in 2012. When we use the Census-cleaned data, we find a similar pattern over

time for all 3 levels of trimming – allocative efficiency falls from 2002 to 2007 and levels

off or increases slightly from 2007 to 2012. The data cleaning done by the Census Bureau

has an enormous effect on measured allocative efficiency. With 1% trimming, measured

allocative efficiency ranges from 4 to 87 times higher in the cleaned data versus the raw

data.

Using a value added specification, as in Hsieh and Klenow (2009), requires dropping

establishments with negative value added (around 2% of the sample in the captured data

and 1% in the cleaned data). The potential gains from reallocation are subsequently much

smaller than the gross-output counterparts, but the relative effect of cleaning is substan-

tively similar, with an order of magnitude less misallocation in the untrimmed data. Trim-

ming brings the values for the captured and cleaned data closer, but measured allocative

efficiency is roughly twice as high in the cleaned data.

The Census of Manufactures is only undertaken quinquenially. In other years the de-

tailed manufacturing data only covers a sample of plants.21 In Table 4, we report the mea-

sured misallocation numbers from the Annual Survey of Manufactures sample within the

census year, where each plant is weighted by its ASM sample weight.22 Both for value

added and for gross output production functions, the switch from census to sample has

little effect on measured dispersion in the Census-Cleaned data. However, in the raw

data there tends to be somewhat less measured misallocation in the sample relative to the

census.

21In the Annual Survey of Manufactures, plants above a certain size are sampled with certainty every year.
Below the size threshold, plants are sampled with probability roughly proportional to size in a 5-year
rotating panel.

22Due to small differences between samples, we could not disclose the 2012 value added number with 2%
trimming.
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IV.B.1 Measured Cross-Country Differences in Misallocation

We now turn to discussing cross-country differences in measured misallocation. While

we have measured misallocation in the United Sates for a large set of data choices, in or-

der to avoid tedium we only describe cross-country differences in misallocation for two

extremes: the average of 2002, 2007, and 2012 for Census-cleaned data, and the corre-

sponding average in the Census raw data.23 We compare these averages to (Gross Out-

put) estimates from India’s Annual Survey of Industries in 2002 and 2007.24 The results

are shown in Table 5. While estimated allocative efficiency in India in 2002 and 2007 is

slightly higher than the average for the cleaned U.S. data, it is over 8 times higher than

average measured allocative efficiency in raw U.S. data. Taken literally, the latter result

would mean that (if there was no measurement error) the Indian manufacturing sector

would be only an eighth as productive as it is if it had the same allocative efficiency as

the U.S. manufacturing sector.

IV.C The effect of edits on measured misallocation in the raw U.S. data

There are many different data cleaning steps on the path from measured allocative effi-

ciency of 0.004 in the 2012 raw data to 0.349 in the corresponding cleaned data. In order

to determine if changes to the raw data are needed, the Census Bureau primarily uses

balance edit rules and ratio edit rules. Raw data that fails one or more of the edit rules is

replaced using one of the edits/imputations described in Table 1

In this subsection, we characterize the effect of each edit. For eight edit supercate-

gories, we measure misallocation in the U.S. using raw data for everything but those ed-

23For all values, when possible, we use the reported values from trimming the 1% extremes for TFPQ and
the distortions for capital, labor and intermediate inputs.

24The ASI is described in Appendix A.I. Most Indian manufacturing establishments (and employment) are
in the informal sector, which are covered in the NSS Schedule 2.2. Most labor for informal establishments
is owner labor - with a substantial additional share coming from workers who are neither owners nor
hired. As a result, the reported wage bill understates labor inputs. For this particular project, we focus on
the formal firms in order to avoid needing to impute. However, underreported owner wages may also be
an additional source of measurement error even in the U.S. data (Smith et al., 2019).
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its. The eight supercategories are: logical edits (separately for shipments, materials, and

payroll), administrative edits, regression imputes, rounding imputes, analyst corrections,

and the rest. We describe each supercategory in turn.

Logical edits are done when there are multiple survey questions which ask for the

same information. For instance, total value of shipments shows up in three different parts

of the survey: (1) there is a question that asks for the total value of the plants shipments;

(2) there are many questions about the value of shipments for specific products that a

given industry produces (these values can be summed by the U.S. Census Bureau); and (3)

there is a question – separate from (1) – that asks the respondent to total the values of the

products in (2). If these values differ by more than a certain amount (the same tolerance is

used for all industries within a year, but has varied over time), then the Census compares

each of them to annual payroll for the same plant and then takes the “best” one. The

“best” one is selected in a form similar to the regression imputes, described below.

Administrative edits are similar to logical edits, but differ in that the alternative source

of information is from administrative records. For instance, for payroll the administrative

records come from IRS payroll tax records. Again, if the administrative data differ from

the reported values, the reported values may be replaced.

Regression imputes are used to edit data when alternative sources of information are

not available. The U.S. Census Bureau uses a variety of industry-specific regression-based

imputation strategies. Since they do not require any observed alternative value, regres-

sion imputes are also used to impute missing values when no other information is avail-

able for a given variable. In general, regression imputes create predictions using one

other variable, and (for plants surveyed in the Annual Survey of Manufactures), one-year

lags of the imputed variable as well. Unlike administrative and logical edits, there is not

necessarily any direct evidence that the value reported by the the establishment may be
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incorrect.25

In order to measure the importance of each edit, we undertake the following exercise.

For each type of edit, we replace all of an establishment’s information with the clean data

if it was affected by the edit. For example, to understand the importance of logical edits

for total value of shipments, we use the cleaned outcomes for plants whose total value of

shipments has a logical edit flag, and the raw outcomes for the other plants. We show how

much measured misallocation in the U.S. is affected by each edit by showing its Shapley

value.26 For this context, the Shapley value is the value of the following thought exercise:

we first consider all possible combinations of edits, done one at a time. We credit each

edit for its marginal contribution within each (ordered) combination, and calculate the

Shapley Value as the average of those marginal contributions. The results are in Table ??,

which we summarize graphically in Figures 6-??. The mapping from how we categorize

the edit to the actual edit flag are in Appendix Table 7. We define “replicable” edits as

ones which, generously, could in principle be done in the Indian data.

For misallocation, analyst corrections and logical imputes for shipments are each re-

sponsible for around a fifth of the gain in measured allocative efficiency, with logical and

regression imputes for materials each responsible for around another sixth. Some cate-

gories matter for one particular year, for instance miscellaneous edits are responsible for

a fifth of the measured gains in 2002, but aren’t as relevant in 2007 and 2012. The rankings

for the distributions of TFPQ and TFPR are similar. The importance of the analyst correc-

tions are increasing over time; in 2012 they are responsible for the majority of the decline

in dispersion for TFPR and TFPQ. Imputes for missing data barely matter for measured

misallocation, and are among the least important categories for the distribution of TFPQ

25There may be strong indirect evidence that a reported value is incorrect, such as, hypothetically, if a plant
reported production worker wages of $5 billion and only 1 production worker.

26For disclosure reasons, we report values for no trimming (for Gross Output). This is because with trim-
ming, the exact sample varies depending on the edits used, leading to complicated implicit samples. The
qualitative rankings of the importance of each edit is similar across trimming types.
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and TFPR.

The results of Table 5 are unsatisfying - cross-country comparisons of measured mis-

allocation in datasets which have been cleaned differently will pick up differences due to

both underlying cross-country differences and cross-country differences in data cleaning.

However, while comparing raw data solves the latter problem, it does so at the expense

of introducing new errors. The natural solution is to compare datasets which have been

commonly cleaned. While one strategy may be to use the approach of the U.S. Census

Bureau everywhere, Table ?? shows that around 2/3 of the changes - the logical imputes,

analyst corrections, and administrative record edits - are difficult if not impossible to

replicate in other contexts (depending on the availability of alternative reports for the

same outcome and industry specialists). As an alternative, in section V we describe and

then implement an algorithm for editing and imputing raw establishment-level informa-

tion.

V An approach to Cleaning Firm-level Data

Establishment i reports p characteristics, yi =
{

yi1, yi2 . . . yip
}

(where items could be

missing). The corresponding true values are xi =
{

xi1, xi2 . . . xip
}

, with sij indicating

if response j for establishment i is incorrect. Given the dataset of reported values Y =

{y1, y2, . . . yn} the goal of data cleaning is to replace the faulty values so that (i) the

cleaned data for each record i is plausible and internally consistent and (ii) the cleaned

dataset is drawn from the same joint distribution as the true values X = {x1, x2, . . . xn}.

In order to do this, we use the approach of Kim et al. (2015), which we now describe.

First, we define the feasible region D of plausible reports. This region limits possible

values by two types of rules: balance rules which require entries to add up27 and a set of

ratio edit rules which bound the ratios of any two variables. While the balance rules are a

27For instance, non-production wages + production wages = total wages, or more generally(
xiT` −∑j∈β`

xij = 0
)

for xiT` as the total for the `th balance rule for the set of component variables β`.
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priori clear, the ratio edit rules can come either from industry specific knowledge, or from

outliers in the data itself. Fellegi and Holt (1976) note that the set of explicit ratio edit

rules can imply additional ones as well.28 While si is not directly observed, Ai indexes

the failed ratio & balance edit rules. If, e.g., yi1 fails multiple edits and yi2 fails only one,

then, other things equal, yi1 is more likely to be faulty than yi2.

After cleaning the data, we want our cleaned data to be likely given a model for re-

porting error, likely given a model for error indicators, and likely given a model for the

underlying data. More formally,

f (xi, si|yi, Ai) ∝ f (yi|xi, si, Ai) f (si, Ai|xi) f (xi) . (6)

For the model of reporting error, we maintain the U.S. Census Bureau’s (implicit) ap-

proach to ratio and balance edits: data reported with error provides no information on

the true value.29 Therefore, f (yi|xi, si, Ai) is uniform over the support of feasible values

if yij 6= xij.

However, unlike the Census Bureau, we also assume a uniform distribution for the

errors. That is to say, we do not use weights on which variables are more likely to be

reported with error, so all candidates si that result in feasible solutions are equally likely.

For the model for the underlying data, we assume that each establishment belongs to

one of K mixture components (z). After assuming K,30 we need to estimate the probability

of membership in each component (π), and within each component the mean vector (µ)

and covariance matrix (Σ). In order to ensure that all of the draws will pass both the

balance and ratio edits, we impose that the distribution of xi conditional on µ, Σ, zi, given

28For instance, rules x1 ≤ x2 and x2 ≤ x3 imply x1 ≤ x3.
29One important exception to this rule is units errors (a.k.a. “rounded” edits), where the original reported

value is divided by 1000 and then rounded to the nearest unit. Our approach did poorly replicating those
edits (partially because we imposed a flat prior for which variable was more likely to be reported with
error), and so we accepted all of the rounding edits and otherwise used raw data.

30In practice we set K=50, which is large enough that no data are in the lowest probability components.
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feasible region D is

f (xi|θi) = N
(

xi,NT|µzi
, Σzi

) q

∏
l=1

δ

(
xiT` − ∑

j∈β`

xij

)
1 [xi ∈ D]

where δ (·) is that Dirac delta function with the point mass at zero and xi,NT is the set of

reported values which are themselves totals of other reported values.

For each 6-digit NAICS industry-year, we run a single chain of Markov Chain Monte

Carlo with a burn-in of 2000 iterations, and then 5000 additional iterations, keep the data

from each 1000th iteration (for a total of 5 completed datasets for each industry-year in

each country). Each iteration consists of first proposing si which are consistent with Ai,

and then editing values yi given the draw of si and the underlying probability distribu-

tions for the responses which were not reported with error.

VI Cross Country Differences in Measured Misallocation

The main choice associated with the model in Section V is defining the feasible region

D. For the U.S. data, we use the industry-year-specific ratio edit rules (upper and lower

bounds) used by the Census Bureau for the 2002, 2007, and 2012 Censuses of Manufac-

turers.

For the Indian data, we define the feasible region by following the resistant fences

method, which is the starting point for how Census chooses its ratio bounds (Thompson

and Sigman, 1999). Within each industry, for each log ratio rjk = ln
(

yj
yk

)
, we calculate

its 25th and 75th percentiles, Q25
jk and Q75

jk , and therefore the interquartile range IQRjk .

We then flag all ratios that are either smaller than Q25
jk − C × IQRjk or larger than Q75

jk +

C × IQRjk where C is a pre-specified threshold. The variables we use are the total cost

of materials, total value of shipments, number of blue and white collar workers, blue

and white collar wages and (in India) the sampling weight, and we run the estimation

separately by industry (6 digit in the U.S. and 2 digit in India) and year. We calculate
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allocative efficiency separately for each year. In Table 6, we report the average of the 2000-

2011 results for India with C = 3 and for 2002, 2007, and 2012 in the US. For comparison,

we also report results from the Captured Data with 1% and 2% trimming.

The gap between the raw U.S. and raw Indian data shrinks after applying the com-

mon data editing procedure. In the commonly-cleaned data with 1% tail trimming, al-

locative efficiency in the U.S. in 2002 is slightly lower than the Indian time series average

(0.499 vs 0.521). In 2007 and 2012, allocative efficiency in the US is, respectively, 0.161

and 0.231—significantly lower than the Indian average. With 2% trimming, allocative ef-

ficiency is slightly higher in 2002 in the US vs India, and about 30% lower in 2007 and

2012.

VII Discussion

In this paper, we use previously unexplored versions of the United States Census of Man-

ufactures for 2002, 2007, and 2012 in order to investigate the role that measurement plays

for estimating misallocation. We have two complementary goals. The first is to quantify

the importance of data cleaning. We show that in the data that is reported directly to the

Census Bureau by U.S. establishments, measured TFP in the United States manufactur-

ing sector is less than an eighth of what it would be if it had the same level of allocative

efficiency as the Indian manufacturing sector. We do not take this result literally: there

are many reasons to believe that comparing the raw U.S. data to its counterparts in India

or other countries is not like-for-like.31 We also see large differences for other measures of

dispersion, such as the interquartile range. While editing matters more for younger and

smaller firms, even the oldest and largest ones have their responses relatively heavily

edited.

31For no country do we know if measured misallocation in the original establishment responses is larger
or smaller than it is in reality, nor do we have a way of comparing the relative precision of self-reported
information across countries. We do know that the vast majority of Indian firms are unable to fill out their
survey forms on a computer.
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Many of the important edits undertaken in the U.S. are infeasible for researchers using

other datasets, because they either use multiple responses for the same information or

because they rely on U.S. Census Bureau industry experts. When we use common data

cleaning strategies, we find little or no evidence that allocative efficiency is significantly

lower in India than in the United States, and for 2007 and 2012 we find that allocative

efficiency is significantly higher in India than in the US.

One important limitation of our approach highlighting the effect of data processing

done by the U.S. Census Bureau is that it does not provide any insight into why there

appears to be so much measurement error in the United States (nor do we have reduced

form evidence that there is more (or less) measurement error in the U.S. relative to other

countries).

Nevertheless, there is a large scope for different measurement choices to affect the es-

timation of misallocation and dispersion in manufacturing, and we show that the results

are sensitive to those choices. Neither ad-hoc approaches nor blissful ignorance are nec-

essary or desirable. In this project, and in ongoing work, we show the value in working

with experts in data cleaning (who currently tend to associate with other disciplines). To

that end, we suggest an alternative approach for cleaning establishment-level data using

a hierarchical Bayesian approach. In addition to being a consistent approach for com-

paring cross-country differences in outcomes, the method is more broadly useful for data

cleaning instead of more traditional ad-hoc approaches such as winsorizing.
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A Appendix

A.I Cross-Country Estimates of Misallocation

For India, we use the Annual Survey of Industries (the ASI). Factories with over 100 work-
ers are surveyed every year, while smaller establishments are surveyed every few years
(the ASI is designed to be representative at the State by Industry level, so establishments
without local competitors are more likely to be surveyed). Hsieh and Klenow (2009) use
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the same dataset, and we follow standard practice in generating measures of gross out-
put, intermediate inputs, capital, and payroll (Allcott et al., 2016). Industries are grouped
using India’s NIC (National Industrial Classification) codes, and we report the value of
reallocation for 2009. For the U.S. and India, we use cost-shares from the NBER-CES
Manufacturing Industry Database as our measures of industry production elasticities,
and multiply the book value of capital by 10% in order to impute the cost of capital.
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Figure 1: Difference in Densities between Raw and Cleaned Data

Panel A: 2002

Panel B: 2007

Panel C: 2012

Source: U.S. Census of Manufacturers.
Notes: Each figure shows the difference in densities between the raw and cleaned data in
the U.S. Census of Manufacturers, with each panel representing a different year, and the
left figures showing (log, industry-scaled) TFPR and the right figures showing TFPQ. The
cleaned data is binned into 50 groups, each representing 2% of the density of the distribu-
tion. The end-points of each bin reflect the high and low values for the plant characteristic
(±10% for disclosure avoidance). The y axis reflects the difference in densities for the raw
data relative to the clean data, with positive values for when there are more plants in that
bin in the raw data. The sum over all of the bins is therefore 0.
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Figure 2: Absolute Relationship between firm size/age & editing (TFPR)

Panel A: 2002

Panel B: 2007

Panel C: 2012

Source: U.S. Census of Manufacturers.
Notes: Each figure shows the relationship between size and the extent of data cleaning of
TFPR in the U.S. Census of Manufacturers, with each panel representing a different year,
and the left figures showing firm age and the right figures showing firm employment. All
figures plot smoothed values from kernel-weighted local polynomial regressions of the
absolute difference between raw and clean TFPR, and firm size. We use the Epanechnikov
kernel with the Stata default bandwidth.
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Figure 3: Absolute Relationship between firm size/age & editing (TFPQ)

Panel A: 2002

Panel B: 2007

Panel C: 2012

Source: U.S. Census of Manufacturers.
Notes: Each figure shows the relationship between size and the extent of data cleaning of
TFPQ in the U.S. Census of Manufacturers, with each panel representing a different year,
and the left figures showing firm age and the right figures showing firm employment. All
figures plot smoothed values from kernel-weighted local polynomial regressions of the
absolute difference between raw and clean TFPQ, and firm size. We use the Epanechnikov
kernel with the Stata default bandwidth.
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Figure 4: Relationship between firm size/age & editing (TFPR)

Panel A: 2002

Panel B: 2007

Panel C: 2012

Source: U.S. Census of Manufacturers.
Notes: Each figure shows the relationship between size and the extent of data cleaning of
TFPR in the U.S. Census of Manufacturers, with each panel representing a different year,
and the left figures showing firm age and the right figures showing firm employment.
All figures plot smoothed values from kernel-weighted local polynomial regressions of
the difference between raw and clean TFPR, and firm size. We use the Epanechnikov
kernel with the Stata default bandwidth.
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Figure 5: Relationship between firm size/age & editing (TFPQ)

Panel A: 2002

Panel B: 2007

Panel C: 2012

Source: U.S. Census of Manufacturers.
Notes: Each figure shows the relationship between size and the extent of data cleaning of
TFPQ in the U.S. Census of Manufacturers, with each panel representing a different year,
and the left figures showing firm age and the right figures showing firm employment.
All figures plot smoothed values from kernel-weighted local polynomial regressions of
the difference between raw and clean TFPQ, and firm size. We use the Epanechnikov
kernel with the Stata default bandwidth.
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Figure 6: Edits’ Shapley Share of Total Effect, 2002

Source: U.S. Census of Manufactures
Notes: Our model for calculating allocative efficiency is as described in the text. For each
year, we calculate allocative efficiency using all of the possible permutations of including
some edits. We then report the average marginal share of the total change, following
Shapley (1953). The absolute changes are in Table 3. We report changes for 0% trimming.
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Figure 7: Edits’ Shapley Share of Total Effect, 2007

Source: U.S. Census of Manufacturers.
Notes: See notes for Figure 6
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Figure 8: Edits’ Shapley Share of Total Effect, 2012

Source: U.S. Census of Manufacturers.
Notes: See notes for Figure 6
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Table 1: Edits Made to the U.S. Census of Manufacturers

Edit/Impute Action Occurs when...
Administrative (A) The item is imputed by direct substitution of corresponding administrative data (for

the same establishment/record).
Cold Deck Statistical (B) The item is imputed from a statistical (regression/beta) model based on historic data.
Analyst Corrected (C) The reported value fails an edit, and an analyst directly corrects the value.
Model (Donor) Record (D) The item is imputed using hot deck methods.
Receipts (F) Receipts posted from the nonemployer universe as a result of the Business Master File

EIN/SSN cross-reference match or primary SSN (one-for-one match).
High/Low (E) The item is imputed with a value near the endpoints of the imputation range.
Historic (H) The item is imputed by using historic ratio data for the same establishment.
Subject Matter Rule (J) The item is imputed using a subject matter defined rule (e.g. y=1/2x).
Prior Year Ratio (HQ) The item is imputed using a ratio of historic data times current reported values.
Raked (K) The sum of a set of detail items do not balance to the total. The details are then

changed proportionally to correct the imbalance.
Logical (L) The item’s imputation value is defined by an additive mathematical relationship (e.g.,

obtaining a missing detail item by subtraction).
Midpoint (M) The item is imputed by direct substitution of midpoint of imputation range.
Rounded (N) The reported value is replaced by its original value divided by 1000.
Prior Year Administrative (P) The item is imputed by ratio imputation using corresponding administrative data

from prior year (for same establishment).
Direct Substitution (S) The item is imputed by direct substitution of another item’s value (from within the

same questionnaire.)
Trim-and-Adjusted (T) The item was imputed using the Trim-and Adjust balancing algorithm.
Unable to Impute (U) The reported item is blank or fails an edit, and the system cannot successfully

substitute a statistically reasonable value for the original data.
Industry Average (V) The item is imputed by ratio imputation using an industry average.
Warm Deck Statistical (W) The item is imputed from a statistical (regression/beta) model based on current data.
Unusable (X) The sum of a set of detail items cannot be balanced to the total because none of the

scripted solutions achieved a balance.
Data Impute (2) Data item imputed from a reported data item
Payroll Quarterly (4) First quarter payroll reported higher than annual payroll; data adjusted during

general data prep or legacy edits

Notes: Edit/imputation descriptions for the U.S. Census of Manufacturers from Grim
(2011) and White et al. (2018), with a few additional categories.
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Table 2: Dispersion of TFPR and TFPQ in the U.S. Census of Manufactures

Captured Data Census-Cleaned Data
Outcome Outcome

Year St. Dev 90/10 75/25 St. Dev 90/10 75/25
Panel A: TFPR

2002 0.889 1.337 0.577 0.401 0.783 0.331
2007 0.955 1.716 0.902 0.442 0.87 0.356
2012 1.089 1.888 1.031 0.421 0.831 0.346

Panel B: TFPQ
2002 3.059 7.266 5.705 0.761 1.828 0.924
2007 2.669 6.602 4.761 0.947 2.337 1.078
2012 3.248 7.44 5.205 0.741 1.8 0.896

Source: U.S. Census of Manufactures
Notes: TFPR and TFPQ are calculated as described in the text. For each of the two
underlying data sources (firm responses with no edits, and final-cleaned data), we report
the Standard Deviation, the 90/10 and 75/25 ratio for each outcome.
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Table 3: Measured Allocative Efficiency in the U.S. Census of Manufactures

Captured Data Census-Cleaned Data
Trimming % Trimming %

Year 0% 1% 2% 0% 1% 2%
Panel A: Gross Output

2002 0.00005 0.109 0.176 0.14 0.461 0.554
2007 0.000005 0.012 0.024 0.042 0.302 0.425
2012 0.00000038 0.004 0.024 0.059 0.349 0.455

Panel B: Value Added
2002 0.021 0.49 0.55 0.452 0.649 0.714
2007 0.026 0.316 0.435 0.395 0.62 0.673
2012 0.005 0.274 0.392 0.452 0.652 0.696

Source: U.S. Census of Manufactures
Notes: Our model for calculating Allocative Efficiency is as described in the text. For
each of the two underlying data sources (firm responses with no edits, and final-cleaned
data), we report measured allocative efficiency for different values of trimming extreme
values of (industry-scaled) TFPQ and TFPR.
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Table 4: Measured Allocative Efficiency in the U.S. Annual Survey of Manufactures

Captured Data Census-Cleaned Data
Trimming % Trimming %

Year 0% 1% 2% 0% 1% 2%
Panel A: Gross Output

2002 0.003 0.209 0.415 0.160 0.458 0.555
2007 0.00004 0.026 0.058 0.085 0.294 0.416
2012 0.00007 0.004 0.074 0.077 0.340 0.457

Panel B: Value Added
2002 0.061 0.470 0.624 0.469 0.620 0.669
2007 0.101 0.442 0.503 0.431 0.585 0.637
2012 0.071 0.396 D 0.461 0.623 0.666

Source: U.S. Census of Manufactures, using only plants in the Annual Survey of
Manufactures sample
Notes: Our model for calculating Allocative Efficiency is as described in the text. For
each of the two underlying data sources (firm responses with no edits, and final-cleaned
data), we report measured allocative efficiency for different values of trimming extreme
values of (industry-scaled) TFPQ and TFPR. One value is marked “D” because, due to
small differences between samples, we could not disclose the 2012 value added number
with 2% trimming.
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Table 5: India / US Comparison of Measured Allocative Efficiency

Allocative Efficiency Indian AE relative to 2002-2012 Average in:
Year India Census-cleaned US Captured US

2002 0.329 1.12 12.65
2007 0.323 .95 80.75

Source: U.S. Census of Manufactures and Indian Annual Survey of Industry
Notes: Our model for calculating allocative efficiency is as described in the text. For each
of the years for which we have overlapping data (2002 and 2007), we report measured
allocative efficiency in India, as well as the ratio of measured Allocative Efficiency in
India divided by the average value in the U.S., where numbers larger than one imply
higher allocative efficiency in India. Values trim 1% extremes of TFPQ and TFPR.
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Table 6: Edits’ Shapley Share of Total Effect

TFPR TFPQ
Edit Year Misallocation St. Dev 90/10 75/25 St. Dev 90/10 75/25
Analyst Edits 2002 0.197 0.145 0.094 0.104 0.086 0.055 0.026
Analyst Edits 2007 0.230 0.178 0.128 0.129 0.181 0.169 0.135
Analyst Edits 2012 0.337 0.663 0.517 0.462 0.784 0.800 0.982
Regression imputes for Materials 2002 0.166 0.211 0.185 0.129 0.073 0.034 -0.002
Regression imputes for Materials 2007 0.175 0.161 0.119 0.079 -0.023 -0.015 -0.031
Regression imputes for Materials 2012 0.252 0.067 0.053 0.048 0.020 0.027 -0.011
Logical imputes for Shipments 2002 0.195 0.128 0.120 0.135 0.285 0.302 0.439
Logical imputes for Shipments 2007 0.199 0.133 0.068 0.007 0.491 0.451 0.692
Logical imputes for Shipments 2012 0.183 0.024 0.011 0.010 0.083 0.040 0.003
Logical imputes for Materials 2002 0.124 0.142 0.171 0.128 0.020 0.014 0.004
Logical imputes for Materials 2007 0.162 0.056 0.048 0.031 -0.011 -0.005 0.000
Logical imputes for Materials 2012 0.074 0.017 0.001 0.017 0.009 0.017 0.001
Divide by 1000 edit 2002 0.109 0.044 0.092 0.075 0.134 0.192 0.070
Divide by 1000 edit 2007 0.098 0.170 0.305 0.410 0.217 0.275 0.128
Divide by 1000 edit 2012 0.044 0.027 0.048 0.135 0.000 0.002 -0.006
Miscellaneous edits 2002 0.195 0.220 0.275 0.369 0.308 0.298 0.417
Miscellaneous edits 2007 0.009 0.019 0.020 0.019 -0.001 -0.003 -0.004
Miscellaneous edits 2012 -0.032 0.035 0.038 0.025 0.013 0.008 0.015
Other Replicable Edits 2002 0.002 0.054 0.009 0.004 0.077 0.095 0.038
Other Replicable Edits 2007 0.069 0.083 0.091 0.094 0.119 0.111 0.054
Other Replicable Edits 2012 0.082 0.018 0.028 0.000 0.052 0.054 0.011
Logical imputes for Payroll 2002
Logical imputes for Payroll 2007 0.035 0.132 0.152 0.164 0.011 0.007 0.012
Logical imputes for Payroll 2012 0.043 0.102 0.232 0.238 0.031 0.047 -0.001
Impute from administrative records 2002 0.017 0.004 0.003 0.015 0.012 0.008 0.002
Impute from administrative records 2007 0.020 0.017 0.020 0.029 0.004 0.004 0.004
Impute from administrative records 2012 0.008 0.020 0.036 0.041 0.001 0.002 0.000
Impute for Missing 2002 -0.004 0.051 0.051 0.041 0.006 0.003 0.006
Impute for Missing 2007 0.003 0.050 0.049 0.040 0.012 0.007 0.009
Impute for Missing 2012 0.008 0.027 0.035 0.025 0.007 0.004 0.005

Source: U.S. Census of Manufactures
Notes: Our model for calculating allocative efficiency is as described in the text. For each
year, we calculate allocative efficiency using all of the possible permutations of including
some edits. We then report the average marginal share of the total change, following
Shapley (1953). The absolute changes are in Table 3, we report changes for 0% trimming.
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Table 7: Measured Allocative Efficiency After Bayesian Editing and Imputation

Trimming %
Country Year(s) 0% 1% 2%
U.S. 2002 0.257 0.5 0.582
U.S 2007 0.037 0.161 0.369
U.S. 2012 0.029 0.231 0.385
India 2000-2011 0.465 0.521 0.554

Source: U.S. Census of Manufactures and Indian Annual Survey of Industry
Notes: Our model for calculating allocative efficiency is as described in the text. For each
year, we identify values to edit and how to replace them with imputations following the
method described in the text. In each column we then (potentially) further trim outliers.
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Table 8: Categorization of Edits Made to the U.S. Census of Manufacturers

Edit/Impute Label For edit flag
Analyst Edits Any variable in (C)
Impute from administrative records Any variable in (A)
Divide by 1000 edit Any variable in (N)
Impute for Missing Any flag with no originally reported value
Logical imputes for Materials Materials in (L)
Payroll logical impute Payroll in (L)
Regression imputes for Materials Materials in (B) or (W)
Shipments logical impute Shipments in (L)
Other Replicable Edits "Shipments in {(B), (E), (G), (H), (J), (M), (S), (V), (X)} or

Materials in {(E), (H), (M)} or
Payroll in {(H), (HQ), (J), (G), (2), (4)}

Not Elsewhere Classified The remainder
Notes: Edit rules are defined in Table 1. Categorization done by authors.
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