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Abstract 
 

Using a newly constructed dataset that links 2000 U.S. Census long-form records to Social 
Security Administration data files, I evaluate the effect of college education on mortality. In an 
OLS regression, women and men who have at least some college education have 20% lower 
mortality rates than those with a high school degree or less. I proceed with an empirical design 
intended to illuminate the extent to which this relationship is causal, estimating marginal treatment 
effects (MTEs) using the proximity of the nearest college to individuals' birthplace as an 
instrument. Results indicate positive selection into college education (in terms of longevity) for 
both women and men. Selection drives almost all of the mortality gap for women. For men, 
longevity gains from college attendance are concentrated among individuals with unobserved 
variables that make them unlikely attend college. This suggests that men who would benefit most 
from receiving college education in terms of mortality reductions are those who are not attending. 
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1 Introduction

Well-educated people live longer and healthier lives than do their poorly-educated

counterparts. This generalization holds across many countries, and has been true for

more than a century [Cutler and Lleras-Muney, 2010]. The education-mortality gra-

dient in the U.S. is dramatic; an analysis of 2000 mortality rates by Meara, Richards,

and Cutler [2008] shows that the life expectancy for a 25-year-old with at least some

college education was approximately seven years longer than for an individual with

a high school degree or less. It appears that the education-mortality gradient is, if

anything, increasing over time. However, while the relationship between education

and mortality is well documented, we have only modest evidence about the extent to

which it is causal.

My contribution is an analysis evaluating the impact of education on mortality in

the U.S. Like Meara et al. [2008], I focus attention on mortality among those who

have attended at least some college, in comparison to those with high school education

or less. This is a highly relevant margin of schooling progression; among cohorts I

study over 30% of women and 40% of men attained education above the high school

level.1 In the U.S., we are currently engaged in an active debate concerning policies

that promote college education. Benefits in terms of improved health and increased

longevity may represent a substantial portion of the total gains of college education,

so an understanding of causal impacts is crucial for this debate.

My empirical approach is designed to take on two important empirical challenges

that arise when analyzing causal effects of education on such outcomes as income,

health, or mortality: First, individuals who receive higher education differ along many

unobserved characteristics that may impact the outcomes; put differently, there is

selection into college education. Second, the effect of education on outcomes may

1Among individuals now in prime working years, more than 60% have at least some college.
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vary across individuals, and, in particular, may differ for those who have unobserved

characteristics which make them more or less likely to obtain higher education. This

type of heterogeneity in the treatment effect is called “essential heterogeneity” by

Heckman, Urzua, and Vytlacil [2006b].

I use an instrumental variable approach that relies on distance to the nearest college

or university (at age 17) from an individual’s birth county. This instrument was used

by Card [1995] to estimate the effect of education on earnings, and proximity to a

nearby college has served as an instrument in many subsequent empirical analyses,

including Cameron and Taber [2004] and Carneiro et al. [2011].

To calculate treatment effects which may be heterogeneous in both unobserved and

observed variables, I employ estimators of marginal treatment effects (MTEs) devel-

oped by Heckman and Vytlacil [1999, 2005, 2007]. The estimation of MTEs provides

improved conceptual clarity about impacts of education on mortality. As noted by

Carneiro, Heckman, and Vytlacil [2011], understanding how treatment effects vary

across individuals is crucial in evaluating the marginal benefits of any policy which

may increase access to college education. For example, it may be that gains are high-

est among individuals who already would attend college, i.e., the average benefits

realized by individuals induced to attend college by the expansion policy are lower

than the average benefits of those who would have attended anyway.

I estimate the MTE in two different ways—an approach using local instrumental

variables, which evaluates the derivative of the expected outcome with respect to

the estimated propensity score, and the separate estimation approach discussed in

Heckman and Vytlacil [2007], and implemented in the recent work of Brinch, Mogstad,

and Wiswall [forthcoming, 2016]. The separate approach involves the use of stronger

parametric assumptions, with a corresponding benefit in terms of increased precision

on estimation. This proves valuable in my application.
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My analysis uses a newly constructed dataset that links the 2000 U.S. Census

to NUMIDENT records from the U.S. Social Security Administration.2 These data

include records for almost 5 million individuals born in the United States, 1911–1940.

The data contain educational attainment (recorded in the 2000 Census) and place of

birth, date of birth, and date of death for the deceased (from the NUMIDENT file).3

The analysis of mortality focuses on the time span 2000-2010.

Consistent with the literature, I find a strong association between college education

and mortality for both men and women. In an OLS specification, individuals with

at least some college have a 10-year mortality rate 20% lower than those with a high

school degree or less.

I implement a simple selection test proposed by Black, Joo, LaLonde, Smith, and

Taylor [2016]. There is strong evidence of positive selection on longevity into college

education for women. That is, women with a higher unobserved inclination towards

education tend to have lower mortality whether they receive college education or

not. For women, selection explains all of the differences in observed mortality rates

between high and low education groups. For men, I only find evidence of positive

selection on the untreated outcome. I do not find selection on the treated outcome,

which suggests a “reverse Roy” pattern of selection for men.

In the MTE analysis, I find a heterogeneous treatment effects of college on mor-

tality. For women, I estimate no treatment effect on old-age mortality. For men,

MTE results show “essential heterogeneity” in treatment effects; individuals with un-

observed characteristics that make them more likely to attend college have smaller

treatment effects on mortality. I estimate an average treatment effect on mortality of

zero for individuals who had at least some college, but find that college attendance

would have reduced mortality by about 15% among individuals who did not attend

2NUMIDENT is an acronym for the Social Security Administration’s “Numerical Identification System.”
3I would like to acknowledge several colleagues with whom I am collaborating on the place-of-birth matching

algorithm used in constructing data files: Martha Bailey, Bryan Stuart, and Reed Walker.
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college. Taken at face value results suggest that for the cohorts of men I study, a pol-

icy that increased college attendance at the margin would have produced a substantial

decline in mortality among affected men.

Studies such as Carneiro, Heckman, and Vytlacil [2011] and Moffitt [2008] suggest

that the impact of college education on wages is concentrated among individuals

whose unobservable characteristics make them most likely to attend college. Both

papers find that individuals sort into college based on gains. These MTEs of education

on income, in combination with my results, are consistent with Cutler, Deaton, and

Lleras-Muney [2006] contention that the positive impact of education on longevity is

likely not through any effect on adult income. I find that the individuals with little

gains in terms of income receive large benefits in mortality.

My work contributes to an emerging literature that uses modern econometric meth-

ods to evaluate the effect of education on health and mortality. Much of the previous

work has used changes in mandatory schooling laws, which exploit variation in the

lower parts of the schooling distribution. The results of these studies have been mixed.

Lleras-Muney [2005] finds large negative effects of increased education on mortality

in the U.S. for whites born 1901–1925. Mazumder [2008] and Black, Hsu, and Taylor

[2015a] find no evidence of causal effects using somewhat different data and/or ap-

proaches. Albouy and Lequien [2009] and Clark and Royer [2013] estimate the effect

of education in France and the UK, respectively, and find no evidence of an effect.

Using Swedish data, Meghir, Palme, and Simeonova [2012] find that negative effects

on mortality induced by changes in compulsory schooling are concentrated among

men from low SES backgrounds.

Also related to my study is recent empirical work from Buckles, Hagemann, Mala-

mud, Morrill, and Wozniak [2016], who use variation in draft avoidance behavior

during the Vietnam War and find that college education reduces mortality. In con-
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trast to my work, Buckles et al. [2016] focus on mortality among those aged 28–65,

and study men only (women were not subject to the military draft). Also, they did

not estimate MTEs.4

The paper proceeds as follows: In the next section, I discuss the literature on the

relationship between education and health. In section 3, I explain the definition and

estimation of marginal treatment effects. In section 4, I develop a model of education

and mortality which fits the MTE framework. The next section describes the data.

In sections 6 and 7, I show results from the selection test and main results from

the MTE analysis. The following section gives discussion of the results and possible

mechanisms. The final section concludes.

2 Relationship between Education and Health

The positive correlation between education and health is well documented. Many

factors contribute.

First, there are many reasons why even in the absence of a causal effect of education

on health, we may see an association between the two. Adverse health circumstances

experienced in infancy and early childhood can harm prospects for learning and reduce

human capital accumulation,5 and the same health deficits that impair learning early

in life likely have an adverse impact on adult health. For instance, poor childhood

nutrition may affect adult health [Fogel, 1997, 2004], as might adverse health events

in utero [Barker, 1998]. Further, expectations about increased longevity could induce

individuals to acquire higher levels of human capital [Ram and Schultz, 1979].

In addition, models of human capital investment—pioneered by Becker [1967],

Mincer [1974], and Griliches [1977], and further developed by Card [2001], Heckman,

4Buckles and co-authors uses data at a cohort by birth-state level, and have two endogenous regressors (college
and veteran status), making MTE estimation impossible.

5See Currie [2009, 2011] and Almond and Currie [2011] for comprehensive discussions of the evidence on this point.

6



Lochner, and Todd [2006a] and Heckman, Humphries, and Veramendi [2016], among

others—lead us to understand that along unobservable dimensions, well-educated

individuals differ from those with less education. There are two distinct forms of

systematic selection into higher education at work. People may be sorting on gains

(e.g., if those who have the most to gain are most likely to acquire schooling) and

there may be selection bias unrelated to gains (e.g., if there is an individual fixed

effect in the earnings function that is correlated with completed schooling). Even

if education has no direct impact on health and longevity, we would observe an

education-mortality gradient if components of income-related selection are correlated

with health-related outcomes.

Finally, there are many theories as to why education may have a causal impact on

health and mortality. The theory of human capital accumulation has been adapted

to investments in health by Grossman [1972, 2000], Rosenzweig and Schultz [1982],

Cutler and Lleras-Muney [2010] and Lochner [2011], among others.6 Grossman [1972]

argues that education can directly impact mortality and health by increasing the

marginal productivity of health inputs, which he calls “productive efficiency.” Cutler

and Lleras-Muney [2010] suggest a number of channels through which education can

improve health outcomes, and note that “better educated people are less likely to

smoke, less likely to be obese, less likely to be heavy drinkers, more likely to drive

safely and live in a safe house, and more likely to use preventative care.”7 Many

studies provide additional evidence on this topic, including Conti, Heckman, and

Urzua [2010], who identify heterogeneous beneficial causal effects of education on

health behaviors, including smoking and exercise. Walque [2007] and Grimard and

Parent [2007] find evidence that college education reduces smoking rates among men.

6Lochner [2011] offers a theoretical synthesis and overview of the literature.
7Cutler and Lleras-Muney [2010] are careful to note that these associations cannot be interpreted as causal in their

framework. They do provide an informed judgment that “education seems to influence cognitive ability, and cognitive
ability in turn leads to healthier behaviors. As best we can tell, the impact of cognitive ability is not so much what
one knows but how one processes information. Everyone ‘knows’ that smoking is bad and seat belts are useful but
the better educated may understand it better.”
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Education generally causes increases in earnings [Card, 1999]. If higher income

allows individuals to afford better health care and nutrition, then education will

have a positive effect on longevity. Cutler and Lleras-Muney [2010] suggest that

about 20% of the education-health gradient can be explained by changes in economic

resources. Caution is warranted when it comes to interpretation, however, because of

the possibility of reverse causality; Smith [1999] argues that poor adult health causes

decreases in income.

Clearly, the links between health and education are multi-faceted. One point of

view, articulated by Cutler, Deaton, and Lleras-Muney [2006], suggests a central role

for education: “It seems clear that much of the link between income and health is

a result of the latter causing the former, rather than the reverse. There is most

likely a direct positive effect of education on health.” In an essay on the injustice of

health inequality, Deaton [2013] provides a set of arguments for why it is important

that we develop a conceptually clear empirically-grounded understanding of these

relationships. For instance, if there is little impact of adult income on health, a

transfer policy that increases income among the poor may have little impact of health

inequalities.

3 Marginal Treatment Effects

3.1 Model

I first introduce the standard Marginal Treatment Effects framework used in Heckman

and Vytlacil [1999]. The outcome variable is Y , which I define as a 10-year survival

dummy. D is a binary indicator for treatment, which I define as 1 if the individual

has at least some college education, and 0 if the individual is a high school graduate

or less. I discuss the reasoning behind this definition in the next section. I have

observable characteristics X and instruments Z. Let Y1 denote the outcome when an
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individual is treated and Y0 denote the outcome when an individual is not treated.

Crucially, when an individual is treated we only observe Y1, and not the missing

counter-factual Y0, and vice-versa. Then, Y = DY1 + (1 − D)Y0. Suppose that the

conditional mean functions for Y are as follows:

Y1i = µ1(Xi) + U1i (1)

Y0i = µ0(Xi) + U0i, (2)

where the vectorXi in empirical specification below include observable characteristics—

birth state fixed effects, birth-county economic variables, cohort effects—that may

affect survival in either treatment condition.

The indicator variable Di reflects individual choice. The choice model is given by

Di = 1(f(Xi, Zi) > Vi); (3)

the college attendance decision is influenced by both Xi and the instrument Zi.

Let FV be the CDF of Vi, FV (Vi) = UDi and FV (f(Xi, Zi)) = P (Xi, Zi). We can

rewrite (3) as

Di = 1(P (Xi, Zi) > UDi), (4)

where P (X,Z) = E[D|X,Z] is the propensity score and UD is distributed uniform

over (0, 1).8 For Z to be a valid instrument, we need conditional independence:

(U0, U1, UD) ⊥⊥ Z|X. Vytlacil [2002] shows the equivalence of the latent index model

shown above and the standard IV assumption of monotonicity [Angrist, Imbens, and

Rubin, 1996].

In this set-up, it is surely possible that there will be a relationship between errors

8The use of the uniform distribution is a convenient normalization.
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in the outcome equations (U0, U1) and the error in the choice equation, UD. The term

UD represents all the unobservable determinants in the college attendance decision.

These could include parents’ wealth and educational attainment, latent “ability” or

motivation, the individual’s personal discount factor and childhood health. Going

forward it is helpful to take note that in this formulation agents with low UD are

more inclined to attend college. Thus low UD is likely associated with high parental

SES, high ability, stronger childhood health, etc.

Figure 1 outlines three possible patterns of correlation between the error terms:

First, suppose that the treatment effect is homogeneous and individuals from ad-

vantaged backgrounds are generally healthier, i.e., have high values of both U0i and

U1i, and are more likely to attend college. Thus, individuals with lower UDi will tend

to have U1i = U0i > 0. This pattern, shown in Panel A, is the familiar “ability bias”

[Griliches, 1977]. In this instance, if we estimate the impact of college on survival in

an OLS regression, we overstate the treatment effect.

Second, Panel B shows a case in which there is heterogeneity in gains from college

attendance (in terms of increased longevity) and those individuals who have the most

to gain attend college. In other words, there is selection on gains as in Roy [1951].

Here individuals with high values of (U1i − U0i) disproportionately have UDi close

to 0. Now it is possible that OLS understates the treatment effect of college among

those most likely to attend college—those with UD close to 0—while overestimating

the potential value of college on those who do not attend.

Finally, Panel C illustrates an interesting alternative. Perhaps children from ad-

vantaged backgrounds build strong health capital and develop good health-related

habits that persist into adulthood regardless of college education, and those same

children are disproportionately likely to attend college (i.e., U0i and UDi are nega-

tively correlated). Individuals that benefit the most from college are lower SES and
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have high UD. This has been called a “reverse Roy” selection pattern. In the exam-

ple illustrated, OLS overstates the impact of college on those who attend college, but

does not necessarily overstate the potential impact of college on those who are not

currently attending. The MTE approach is designed to help us distinguish among

possible patterns.

We work with the conditional expectation functions of the error terms,

c1(x, p) = E[U1|X = x, UD = p] (5)

c0(x, p) = E[U0|X = x, UD = p]. (6)

Then the marginal treatment effect is defined as

∆MTE(x, p) = E[Y1 − Y0|X = x, UD = p] (7)

= µ1(x)− µ0(x) + c1(x, p)− c0(x, p). (8)

The MTE is the expected difference in potential outcomes (i.e., the average treatment

effect) for individuals who have observables X = x and are indifferent between getting

treatment and not when P (X,Z) = p.

3.2 Estimation through Local IV and Separate Approach

Define K(x, p) ≡ E[Y |X = x, P (X,Z) = p]. As shown by Heckman and Vytlacil

[1999], the marginal treatment effect can be estimated by taking the derivative of the

expectation of the outcome with respect to P , as follows:

∆MTE(x, uD) = ∆LIV (x, uD) =
∂K(x, p)

∂p

∣∣∣∣
p=uD

. (9)

This is the method of local instrumental variables.
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Heckman and Vytlacil [2007] examine a second approach, which is based on es-

timating E[Y |X,P,D = 1] and E[Y |X,P,D = 0] separately rather than estimating

E[Y |X,P ]. In parametric estimation, the parametric assumptions for this approach

are somewhat stronger. For example, if estimating an MTE which is linear in param-

eters, in the separate approach both E[Y1|X,UD] and E[Y0|X,UD] are assumed to be

linear in X and UD, whereas in Local IV only the difference, the MTE, is assumed to

be linear. This can lead to large increases in precision of the estimates.9

Define K1 and K0 as such:

K1(x, p) ≡ E[Y |X = x, P (X,Z) = p,D = 1] =

∫ p
0
c1(x, uD)duD

p
+ µ1(x) (10)

K0(x, p) ≡ E[Y |X = x, P (X,Z) = p,D = 0] =

∫ 1

p
c0(x, uD)duD

1− p
+ µ0(x). (11)

Differentiating with respect to p and solving for c1 and c0 we get

c1(x, p) = p
∂K1(x, p)

∂p
+K1(x, p)− µ1(x) (12)

c0(x, p) = −(1− p)∂K0(x, p)

∂p
+K0(x, p)− µ0(x). (13)

Plugging the above into (8), we get10

∆MTE(x, p) = p
∂K1(x, p)

∂p
+K1(x, p) + (1− p)∂K0(x, p)

∂p
−K0(x, p). (14)

To generalize these two methods, define

K̃(x, p, d) ≡ E[Y |X = x, P (X,Z) = p,D = d] = dK1(x, p) + (1− d)K0(x, p). (15)

9In unpublished work in progress, I discuss the relative merits of each estimation strategy and show solutions when
the stronger parametric assumptions of the separate approach are incorrect [Taylor, 2016].

10Notice that both µj(X) cancel out. In general, these are not identifiable separately from Kj . See Heckman and
Vytlacil [2007].
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Then

∆MTE(x, uD) = K̃(x, uD, 1)− K̃(x, uD, 0) +
∂K̃(x, p, 0)

∂p

∣∣∣∣∣
p=uD

+ uD

(
∂K̃(x, p, 1)

∂p

∣∣∣∣∣
p=uD

− ∂K̃(x, p, 0)

∂p

∣∣∣∣∣
p=uD

)
. (16)

To estimate the MTE, we estimate the function K̃(x, p, d), and substitute it into

the equation above.

4 Model of Education and Mortality

I introduce and develop a simple model of educational attainment and mortality. The

model builds on the canonical model of Becker [1967]. Individuals maximize expected

utility U(y, S), which is a function of earnings (y) and years of schooling (S). For

my purposes, y can include the value of health and longevity, as in Lochner [2011].

Alternatively, it may be that individuals are unaware of benefits from education in

terms of health improvements or increased longevity, or in any event that they do not

take them into consideration when making human capital investments. For simplicity,

let utility take a separable form, Ui(yi, Si) = f(yi)−φi(Si), and then let yi = gi(Si), as

in Card [1994]. φi(Si) represents the total costs of schooling, including monetary and

non-monetary costs. Finally, let mi(Si) represent the individuals expected mortality

rate as a function of their schooling.

In my research design, the key assumption is that the instrument, college proximity,

alters the cost curve, φi(·), but does not have an impact on the mortality function

mi(·) nor the function that generates returns from schooling gi(·).

Note that for the instrument to be valid, it can only shift individuals across the

treated or untreated states and cannot shift people to different educational attain-
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ments that are within either the treated or untreated state. This follows from the

MTE assumption that (U1, U0) ⊥⊥ Z|X.11 If we rewrite the schooling cost curve,

φi(Si) = φ′i(Si) + λi1(Si > 12), then the instrument can only affect λi, but not φ′i(·).

The assumption is that the distance to the nearest college will only affect the fixed

cost of first attending college, while having little impact on the marginal cost of each

year of school thereafter. Similarly, the instrument must also not affect the marginal

cost curve for S < 12.

This is plausible if most of the cost reduction coming from proximity is a one-

time “transition cost” (e.g., migration cost), which includes all monetary and non-

monetary costs. I will return to concerns about biases that are introduced if college

proximity also affects marginal costs beyond the first year of college.

This model guides the choice of the definition of the treated state as “some college”

and the untreated state as “high school or less.” If the cutoff for treatment was defined

as at least a college degree and some college was part of the untreated state, then the

instrument could not affect the initial cost of going to college and only the margin

between attending and graduating. This latter set of assumptions is less credible.

For each individual, there is an optimal level of schooling that is less than or equal

to 12-years (high school or less), and an optimal level of schooling that is greater than

12 years (at least some college). These can be written as S0i = arg maxS≤12 Ui(y, S)

and S1i = arg maxS>12 Ui(y, S). Then Y0i = mi(S0i) and Y1i = mi(S1i). The indi-

vidual attends college if Ui(yi, S1i) > Ui(yi, S0i). Figure 2 shows an example of the

cost curve, φ(S) and benefit curve f(g(S)). The instrument can make parallel shifts

of the cost curve for S > 12, which do not affect the optimal conditional choices S0

and S1. Thus, the treatment effect does not simply encompass the marginal gain be-

tween 12 and 13 years of school. The treatment effect evaluates the gain from college

11Alternatively, it could be the case that the mortality function mi(Si) is flat except for a discontinuity at Si = 12.
Given the results from the health literature which show constant gains in health throughout the education distribution,
see Cutler and Lleras-Muney [2010], this makes the latter improbable.
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attendance, relative to non-attendance, for an individual who makes the preferred

schooling decision within each treatment state.

5 Data

5.1 Census and NUMIDENT

As discussed in the introduction, many papers measuring the effect of education on

mortality in the U.S., such as Lleras-Muney [2005], Black et al. [2015a], Buckles et al.

[2016], have exploited variation at a state-by-cohort level, and measured state-by-

cohort mortality rates using census and vital statistics data. While these strategies

can be used to estimate an IV, they are unsuitable for the evaluation of essential

heterogeneity in treatment effects. To estimate MTE, we require a large sample of

individual level data which contains both information on educational attainment and

mortality, and we need an instrument which can be measured at the individual level

at an early age.

The primary data in the analysis comes from two sources, the 2000 U.S. Census

and the NUMIDENT from the Social Security Administration. The two sources have

been linked using the Protected Identification Key (PIK). Every individual in the

NUMIDENT file is given a unique PIK, which is then matched to the 2000 Census

based on personal information.

The 2000 U.S. Census contains information on completed years of education, race,

gender and age. The NUMIDENT has basic demographic information, as well as the

individual’s date of birth and date of death if they are deceased. The NUMIDENT

also contains a 12-character place of birth field and a 2-character state of birth field.

This is used to match the individual to a physical location. The algorithm used to

perform this match is an augmented version of the algorithm my co-authors and I

developed in Black, Sanders, Taylor, and Taylor [2015b]. We take place names from
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the U.S. Geological Service’s Geographic Names Information System (GNIS). The

GNIS is a list of all place names in the United States, including both current and

historic. From this we match individuals to a county of birth.12 A relatively small

percentage of individuals cannot be matched to place of birth, either because the

place of birth field is missing, because we cannot determine their place of birth from

the 12-character string, or because do not have PIKs and cannot be linked to the

NUMIDENT. These people are not included in the analysis.

My sample contains almost 5 million white individuals born in the continental

United States from 1911–1940, who are in the 2000 U.S. long-form Census and can

be linked to a birthplace through NUMIDENT.13 I do not include individuals that

have imputed education, whose age in the Census was five or more years different

than their age in the NUMIDENT, and whose race or gender was not the same in

the Census and the NUMIDENT.14

Of the 2.7 million women in the data set, 34% attended at least some college. Men

in the data attended college at higher rates; 43% of the 2.2 million men had at least

some college. For the dependent variable in my analysis, I use a 10-year survival

indicator from 2000–2010. The indicator is equal to zero if the individual is deceased

in 2010 or earlier, and one otherwise. In the sample, the average 10-year mortality

rate was 32% for women and 39% for men.

5.2 College Data

The college data come from the Integrated Postsecondary Education Data System

(IPEDS), published by the National Center for Education Statistics (NCES). The

IPEDS data extend back to the year 1980, so the data contain all 2-year and 4-year

12For individuals who were born in a county that has changed borders, the algorithm will match to the current
county of the individual’s birthplace.

13A separate analysis for blacks showed the instruments were weak, even when restricting the distance measure to
historically black college and universities. More work is needed to estimate the effect of college education on blacks.

14When there is a discrepancy between birth year in the Census and NUMIDENT, I use the NUMIDENT birth
year.
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colleges that were open in the United States in 1980, but not colleges that closed

prior to 1980.15 IPEDS contains information on the location as well as the year that

the college opened.

5.3 Instrument

Using these data, I construct the instrument—proximity from the individual’s county

of birth to the nearest college, including both two and four-year colleges. From the

NUMIDENT data it is possible for most individuals to construct a city of birth rather

than county of birth. However, for all individuals, I use distance from the individual’s

birth county, even if it is possible to determine the city of birth. The county of birth

measure is less likely to violate the exclusion restriction, given that all economic

covariates are at a county level. This approach also allows for geographic sorting

within a county. To approximate the average distance faced by a resident of a county,

I calculate the distance from the centroid of the county to the nearest college. The

measure includes all colleges that are open when the individual turns 17.

There are several potential threats to exogeneity of the instrument. First, parents

who have a strong preference towards sending their children to higher education may

choose to live in counties nearer to colleges. If the children of these parents are also

of higher “ability” or are different in some other unobserved way that is correlated

with later life mortality, then the exclusion restriction would be violated. In this

situation, all estimated treatment effects would be biased upwards. If these parents

instead choose to live in places that are observably wealthier without thought to how

close the nearest college is, then the instrument remains valid.

Secondly, places that have colleges may be healthier for reasons beyond the effect

of increased education for the individuals that are born there. If, controlling for other

15This may affect the power of the instrument, but not the exclusion restriction as long as locations that had a
closed college are no different than locations that never had a college along unobservable characteristics that affect
mortality.
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wealth measures, counties near colleges are healthier—perhaps because they have

better access to medical care or because they have better primary and secondary

public education—then the exclusion restriction would be violated. Again, in this

case, estimated treatment effects would be biased upwards.

A third possible violation is that the presence of college can shift individuals not

only across the no college versus some college threshold, but to different educational

attainment categories within these groups. For example, consider an individual who

was born far away from a college and dropped out of high school. It would be a

violation of the exclusion restriction for that individual to get a high school degree

in the state of the world where she is born close to the college. As shown in the

model, the presence of the college can only affect the marginal cost of moving from

the 12th year of school to the 13th year of school. In this case, the instrument will

only shift individuals across the some college threshold. Note that this is a stricter

set of assumptions than needed to use the instrument on a continuous measure of

education. This assumption is necessary because of the use of the binary measure of

education, which is needed to estimate a marginal treatment effect.

I control for several observed characteristics of the individual’s birth county, to

eliminate the potential effects of colleges being located in wealthier areas. These

are an array of county-level economic characteristics from near the birth years and

present day. From the Bureau of Economic Analysis, I use the average per capita

income from 1969-2010 to control for the modern day wealth of a county. These data

only go back to 1969, and the Census data on prosperity measures vary by decade. I

include the median housing value in 1930, the percentage of households which owned a

radio in 1940, and the median household income, by decile, in 1950.16 While these old

measures are likely somewhat noisy measures of wealth, they are generally strongly

correlated with each other, as shown in Table 1.

16Where data is missing, I impute zeros and include an indicator variable for missing data in all specifications.
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6 Selection Test

Black, Joo, LaLonde, Smith, and Taylor [2016] provide a simple selection test with

a binary dependent variable and an instrument. The test is two separate OLS re-

gressions for treated and untreated individuals—regressing the outcome Y on both

X and Z:

Y1i = α1Xi + β1Zi + ε1i, for Di = 1, and (17)

Y0i = α0Xi + β0Zi + ε0i, for Di = 0. (18)

β1 6= 0 implies selection on unobserved variables on the treated outcome. That is, the

unobserved variables that enter the choice equation are correlated with the unobserved

variables that enter the treated outcome equation. Similarly, β0 6= 0 implies selection

on the untreated outcome.

If the instrument is valid, in the absence of selection E[Y1|X,Z] and E[Y0|X,Z] are

determined by X only. With positive selection on Y1, we expect that as we decrease

the distance to college we increase the marginal propensity score and move further

into the UD distribution. This in turn decreases the expected value of the outcome,

as in Figure 3. Thus, in this case β1 > 0. Similar intuition shows that with positive

selection on the untreated outcome, Y0, we have β0 > 0.

These tests also provide a sanity check on the validity of the exclusion restriction.

Given the evidence discussed in the prior literature, our prior on the nature of selection

into education suggest that it should be weakly positive on both the treated and

untreated outcomes. Therefore, β1 < 0 and β0 < 0 imply that either selection into

education is negative or that the exclusion restriction is violated such that counties

further from colleges have lower survival rates. This would constitute evidence that

the exclusion restriction is violated, as negative selection into college on health goes
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strongly against our priors.

6.1 Results for the Selection Test

Estimates for the selection tests for women and men appear in Table 2. The results

for women show evidence of positive selection on both the treated and untreated

outcomes. For men, there is strong evidence of positive selection on the untreated

outcome, but no evidence of selection on the treated outcome. Any bias coming from

the instrument, in which individuals born in closer proximity to colleges are more

likely to live longer, would bias these coefficients downward, making it more difficult

to find positive selection. These tests provide credible evidence of positive selection

into education in terms of mortality.

Results from the selection tests foreshadow the MTE analysis. Consider results for

men. Among those who attend college, expected longevity Y1 (conditional on X) is

approximately the same for those who are born close to a college and those born far

from a college (β1 ≈ 0). Among who do not attend, expected longevity Y0 is lower for

men born close to a college than those born far away (β0 > 0). These suggest a pattern

of selection as in Panel C of Figure 1—“reverse Roy” sorting. The MTE curve for

survival is upward-sloping in UD. For women, the similarity in the coefficients from

the selection regressions may imply a flatter MTE curve, and that selection likely

explains a large portion of the observed differences in mortality between the treated

and untreated.
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7 Results

7.1 OLS Regression

To explore basic relationships, I begin with OLS regressions of college education on

10-year survival, using variants of the following specification:

Yi = α + βXc(i) + λb(i) + ζs(i) + γDi + εi, (19)

where Yi = 1 if an individual survives past year 2010, and Yi = 0 if the individual

is deceased in year 2010 or earlier. Xc(i) are birth county covariates, λb(i) are cohort

fixed effects, ζs(i) are birth state fixed effects, and Di = 1 if the individual has at least

some college.

Results are presented in Tables 3 and 4. Women with at least some college have a

10-year survival rate 6 percentage point higher than women with high school or less.

This is roughly a 20% reduction in the 10-year mortality rate. The results for men

are similar. Men who attended college have a 21% lower 10-year mortality rate than

men who did not.17

Birth-county covariates and even birth-county fixed effects do not dramatically

change the result after controlling for state level fixed effects. The coefficients on

college for both men and women are slightly larger when including birth-county fixed

effects than when just including birth-state fixed effects. This indicates that, condi-

tional on education and birth state, individuals have a higher survival rate if they

were born in a county with lower average college attendance. This is consistent with

a story of positive selection. With positive selection, as the college attendance rate

17For a comparison, Lleras-Muney [2005] found in OLS that each additional year of schooling reduces 10-year
mortality rate by 0.036, using 1901-1925 birth cohorts in the U.S. with mortality measured from 1960-1980. The
difference in education between the high and low groups was four years, which suggest roughly 0.02 reduction in 10-
year mortality per extra year of schooling. Lleras-Muney [2005] use state-cohort level data rather than individual level
data, which makes a direct comparison difficult. However, it is consolatory that the estimates are not substantially
different.
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rises within a county, it digs further into the “ability” distribution, reducing the av-

erage survival rates of both treated and untreated groups. Without selection, this

would indicate that counties with higher education rates, conditional on the birth

state, were less healthy places. This seems implausible.

The estimates with birth-state fixed effects and birth-county fixed effects are fairly

similar, which is somewhat reassuring for the validity of the instrument. If estimates

from a birth-county fixed effects model were substantially lower that with birth-state

fixed effects, it would indicate that individuals born in counties with high educa-

tional attainment had much better health outcomes, even conditional on their own

education. This would be damaging evidence for the validity of the instrument.

7.2 IV Regression

For comparison to OLS and MTE results, I present instrumental variable regressions.

For men and women, I estimate first stages using linear, quadratic and cubic polyno-

mials in the distance to nearest college. First stage results are presented in Tables 5

and 6. F-stats from the different first stage models are between 22 and 37, well above

the rule-of-thumb cutoffs for weak instruments [Stock, Wright, and Yogo, 2002]. For

women, an increase in distance of 100 miles reduces college attendance by three per-

centage points, which amounts to an effect of approximately 9%. The instrument has

a larger effect on men. A 100 mile increase in distance reduces college rates by five

percentage points, approximately 12%.

IV results are presented in Table 7. In none of the specifications for men or

women are the point estimates on college education significantly different than zero.

If we made the (likely incorrect) assumption of a homogeneous treatment effect, these

results would not provide clear evidence on the magnitude or sign of the effect. If

treatment effects are heterogeneous, then IV estimates are a weighted average of
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marginal treatment effects.18

7.3 MTE

I start with a simplifying assumption common in the estimation of MTEs that

(U0, U1, UD) ⊥⊥ (X,Z), which implies that the MTE is additively separable in UD

and X.19 I allow the treatment effect to vary on unobserved and observed variables,

but restrict to no interactions between the observed and unobserved variables in the

treatment effect. Here X includes birth-state and cohort fixed effects, as well as

county level economic covariates.

To estimate the propensity score, I use a logit model. The model includes inter-

actions between a cubic polynomial in the instrument and the birth state. I also

include interactions between all covariates and decade of birth, to allow for the ef-

fect of all variables to vary over time. This specification includes a large number of

parameters so we may be worried about weak instruments. However, results are ro-

bust to the first-stage model specification. Less flexible models raise concerns about

misspecification of the first stage, which would bias our estimates of the MTE.

Densities of the propensity score estimates from this model are shown for women

and men in Figures 4 and 5, respectively. Display of the histogram has been trimmed

at 5% on both tails, per U.S. Census Bureau guidelines. The trimmed observations

are still included in all analysis.

As discussed above, MTE can be estimated in two different ways: local instrumen-

tal variables and the separate approach, which estimates the second stage separately

for treated and untreated individuals. When estimating a linear MTE, the parametric

assumptions behind the separate approach are slightly stronger than for local IV.20 In

18Heckman and Vytlacil [2005] provide formulas for weights. They note that weights are not always guaranteed to
be non-negative.

19This assumption has been used in Carneiro et al. [2011] and Moffitt [2008] among others.
20Brinch et al. [forthcoming, 2016] show how these assumptions can be used to estimate a MTE in cases where local

IV cannot, such as with a binary instrument.
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the separate approach, both E[Y1|X,UD] and E[Y0|X,UD] are assumed to be linear

in X and UD, whereas in local IV only the difference, the MTE, is assumed to be

linear. In this case, the slightly stronger assumption of the separate approach leads

to huge efficiency gains, whether allowing for heterogeneity in the treatment in X or

not. The separate approach also allows estimation of both conditional expectation

curves, E[Y1|X,UD] and E[Y0|X,UD], whereas local IV only estimates the difference.

Thus, the separate approach can inform us about the nature of heterogeneity and

selection.

I estimate the marginal treatment effect model as follows:

∆MTE(X,UD) = α + βUD + γX. (20)

Results for the slope coefficient on UD when using the separate estimation ap-

proach appear in Table 8. For women and men, the point estimates are positive.

This suggests that individuals with unobserved characteristics that make them more

likely to attend college had lower treatment effects on survival (recall the low UD

is associated with higher unobserved proclivity towards college). For men, results

using the preferred first stage specification, flexible logit, are significant at 10% level.

Results are similar when using a less flexible logit or linear probability model in the

first-stage. In these specifications I include a cubic in the instrument, but do not

include interactions of the instrument with birth-state. These specifications still in-

clude full interactions with decade of birth in the first-stage. All subsequent analyses

use only the preferred flexible logit first-stage specification.

Table 9 shows estimates using local IV and the separate approach with and without

allowing for heterogeneity in the treatment effect in X. Column (1) shows a constant

effect model. Columns (2) and (3) show results using local IV. Standard errors are

five to nine times larger using local IV than the separate approach. The slightly
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stronger parametric assumptions under the separate approach induce huge efficiency

gains. The standard errors in Column (3), which does not restrict γ = 0, are too

large for meaningful interpretation of the parameters.

Columns (3) and (5) allow the treatment effect to vary on observed characteris-

tics of the individuals birth county and state.21 As in Moffitt [2008], allowing for

heterogeneity on observed and unobserved variables results in much larger standard

errors. For women, the sign of β flips when making the restriction that γ = 0. As it

seems improbable that the treatment effect could vary on unobserved variables but

not observed variables, estimates in columns (2) and (4) are given for completeness

only. However, for men, the restricted and unrestricted models are almost identical

under the separate approach.

7.4 Average Treatment Effects for Treated and Untreated

The marginal treatment effect is only identified for UD over the support of the propen-

sity score, P (X,Z). However, using linear extrapolation we can calculate average

treatment effects on the treated and untreated. The perils of such extrapolation

are well known; results should be interpreted with caution. I calculate these effects

because it adds substantial clarity to the patterns of selection and treatment hetero-

geneity found in the MTE analysis, and to give estimates of the average treatment

effects implied by the results.

Results are presented in Table 10. The treated group is comprised of individuals

with at least some college, and the untreated have a high school degree or less. Birth

cohorts have been balanced across treated and untreated groups, so as to eliminate

any effect rising educational attainment over time.

Results for women show average treatment effects are close to zero for both treated

and untreated groups. Differences in survival rates between the treated and untreated

21Note that caution should be taken in interpretation of α in these models.
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groups shows the strong patterns of positive selection into college education. My

findings are consistent with an interpretation that selection explains essentially all

of the observed difference in mortality rates between college-educated women and

women with no college. This can be seen by comparing the differences in conditional

outcomes between the groups (0.074 when untreated and 0.050 when treated) to the

OLS estimate (0.061).

For men, we see evidence of positive selection only on the untreated outcome,

mirroring the results found in the Black et al. selection test. I find evidence of a

beneficial treatment effect for the individuals who did not attend college. The point

estimate for the average treatment on the untreated is close to OLS result for men,

suggesting a rather large effect.

Table 11 shows the same analysis, but with all observed covariates balanced across

the untreated and treated individuals. Results are largely unchanged, showing that

the selection and heterogeneity patterns found are almost completely driven by un-

observed rather than observed characteristics. How this analysis would change if we

could observe more individual-level characteristics which are observed in other data

sets, such as parental education or some measure of ability, is an open question.

8 Mechanisms and Discussion

In summary, my study of marginal treatment effects imply a large positive effect for

men who did not attend college, and no effect for those who did. I find no evidence

of a causal impact of college education on the mortality of women. In this section,

I explore implications of these findings and possible mechanisms consistent with the

empirical results.
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8.1 Income

While I cannot directly separate the effects of education and income, the MTE anal-

ysis provides suggestive evidence on the causal impact of income on mortality.

Using data from the NLSY, Carneiro, Heckman, and Vytlacil [2011] find the

marginal treatment effect of college education on income is positive and decreasing

in UD. That is, individuals with unobservables that make them more likely to attend

college are the ones who benefit the most in terms of income. With parametric mod-

els, Carneiro et al. estimate that the average treatment effect on the treated of a year

of college is a 14% increase in earnings, and the average treatment on the untreated is

zero. This is consistent with the findings of Moffitt [2008], who estimates the MTE of

higher education on income using data from the UK.22 In combination, these results

and my findings imply that men who experience the largest income gains from college

have the lowest benefits in terms of reduced mortality. The individuals who would

have received near-zero gains in income from attending college had large longevity

benefits. This is consistent with arguments of Cutler et al. [2006] and Deaton [2013],

who believe that the impact of income on mortality is small.

8.2 Behavioral and Environmental

As noted earlier, there are a number of papers that discuss the potential pathways by

which education might reduce mortality, and there is a literature that provides evi-

dence about the causal impact of education on health behaviors and outcomes, such

as smoking, drinking, and BMI. However, we know little about heterogeneity in the

effect of education on these behaviors. It is possible that this heterogeneity is driving

the results found here. For example, if individuals from high socio-economic back-

22For my analysis I do not have some of the variables observed in other studies, e.g., parental education. Thus,
there is not a direct one-to-one correlation between the UD in my work and the error term in those studies. However,
they should be strongly correlated given that treatment status cannot change for any given observed variables. These
papers also study later cohorts than the ones in my analysis.
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grounds (which are associated with low UD) are already predisposed not to smoke,23

then it is plausible that the treatment effect of education on smoking is smaller for

individuals with lower UD. Further research is needed to know if the behavioral ef-

fects of education on health-related decisions and activities are heterogeneous across

observed and unobserved variables.

For the cohorts I study, it is possible that education has an effect on the types of

jobs individuals worked, which in turn had health impacts. There may have been im-

portant gender differences in any such relationships as well. Table 12 shows counts by

gender and education from the 1960 Census for three different occupational categories

that have may have been especially high risk in terms of health.24 While these are

a select group of occupations, the differences by gender and education are striking.

Men from these cohorts without college education were much more likely to work in

potentially dangerous factory or mining jobs. In all probability, men from advantaged

socio-economic backgrounds, associated with low UD, were less likely to work in the

dangerous jobs regardless of their education. Men from poorer backgrounds, on the

other hand, may have only been able to avoid working the most dangerous jobs if they

acquired a college education. Women were less likely to be working in low-skill mining

or smelting jobs irrespective of their education. Again, further research is needed to

understand the causal effects of education on work-related health conditions.

8.3 Migration

There has been little attention to the role of lifetime migration in the relationship

between education and mortality. Johnson and Taylor [2016] and Black, Sanders,

Taylor, and Taylor [2015b] show that migration had a negative causal effect on older-

23Soteriades and DiFranza [2003] found that parental education and income were strongly negatively correlated
with adolescent smoking rates.

24The differences in college attainment rates between this table and the 2000 Census arise from the differences in
cohort distribution caused by mortality prior to 2000.
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age mortality for individuals born in the early 20th century U.S. These papers also

show that well educated individuals were more likely to migrate.25

With my data, I can provide some additional evidence about how education might

impact migration. Using the same method to estimate MTEs of higher education on

survival, I examine MTEs of college education on lifetime migration. I define lifetime

mobility as living outside one’s birth state as of 2000.

OLS results, shown in Table 13, indicate that higher educated people have higher

lifetime migration rates. Conditional on education, individuals that migrate have

lower survival rates. The estimated association between survival and migration is

small relative to the association with college education, but it is non-trivial.

I estimate MTEs of college education on migration. Estimates of β are −0.531

(s.e. 0.096) for men and −0.409 (s.e. 0.094) for women. I estimate average effects of

0.355 (s.e. 0.079) for men and 0.262 (s.e. 0.090) for women. College education induces

higher lifetime mobility,26 and individuals with unobservables that make them most

likely to get college education have larger average treatment effects of education on

migration. Individuals with high UD have only a small treatment effect of education

on migration.

These results are consistent with the possibility that some of the heterogeneity

in the impact of education on mortality could be the consequence of the auxiliary

effect of education on migration. Individuals with low UD have the largest effect

of education on migration, which could mute any positive direct effect of education

on mortality. However, this reasoning is somewhat speculative, because we cannot

directly estimate the effect of migration on mortality in this framework. Johnson and

Taylor [2016] suggests that the effect of migration on mortality is not homogeneous

25In ongoing work, Aaronson, Mazumder, Sanders, and Taylor [2016] find that the mortality benefits of Rosenwald
Schools for African-Americans in the South were positive but counter-balanced by the negative effect of education on
migration and migration on health.

26This result is consistent with Malamud and Wozniak [2012].
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across the population. Furthermore, MTEs on migration do not differ much between

men and women, so they do not explain gender differences in the effect of education

on mortality.

8.4 Exclusion Restriction and Bias

As discussed above, most of the potential violations of the exclusion restriction point

to an upward bias in the treatment effects. Thus results might best be interpreted as

upper bounds on the true effects. However, all the average treatment effects estimated

are near zero except for the treatment effect on men with high school education or

less. If all estimates exhibit meaningful upward bias, this implies that for most groups

the true effect of education is to increase mortality. This strongly flies against our

priors on models of education and health. It also seems unlikely that the instrument

would cause positive bias only in the estimated effect on low-educated men, while

leading to unbiased estimated effects for the other groups.

9 Conclusion

In this paper I estimate the marginal treatment effects of college education on mortal-

ity. OLS estimates show a strong association between college attendance and reduced

mortality. Positive selection into education, for both men and women, accounts for

part of that association. I find no evidence of a causal effect of college education on

mortality for women; all of the observed differences in mortality rates between edu-

cation groups can be explained by selection. For men, education reduces mortality,

but only for individuals whose unobserved characteristics that make them relatively

less likely to attend college. Thus there is evidence of essential heterogeneity in the

treatment of college on mortality; men with the largest potential gains were those

who did not attend college.
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My findings, in conjunction with prior research on the impact of college education

on income, suggest that income is not the channel through which education reduces

mortality. Longevity benefits are highest for the individuals that have the smallest

income gains. As Deaton [2013] argues, it may be that “education directly promotes

health . . . because the knowledge and life lessons learned in school and college enable

people to take better care of themselves and to take good advantage of the health

care system when they need it.” For example, a recent study by Case and Deaton

[2015] shows that mortality rates for whites aged 45–54 has been increasing over the

last 15 years, in part due to increase in opioid use. They find this mortality increase

has been confined to individuals with high school education or less.

Cutler et al. [2006] hypothesize that the “greater speed of introduction of new

health-relevant knowledge and technology will tend to raise the health gradient . . .”

If so, my results may well generalize to current cohorts of young people. My study

of MTEs indicates that policies that increase college access at the margin will have

health benefits for the men induced into higher education. For women, my results are

less optimistic in terms of predicting improvements in women’s longevity, but college

attendance may nonetheless have important payoffs in terms of the health of the next

generation.27

On the other hand, generalization on the basis of historical precedent is necessarily

speculative. If these causal effects are driven primarily by the role of education in

shifting men out of dangerous factory and mining jobs, college may now have a

smaller effect on health outcomes than it did for previous generations, as these jobs

become less common (and also likely safer). Changes in health care and medicine

in the next 40 and 50 years could have dramatic and unpredictable impacts on any

possible old-age mortality effects for current youth. Any efforts to predict how these

changes will affect the mortality gains from education are fraught. Further research

27Currie and Moretti [2003] show that maternal education at the college level increases infant health.
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on the mechanisms driving the results found in this paper is crucial for evaluating

the external validity for contemporary generations.
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Figure 1: Patterns of Selection into Treatment (College Attendance)
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C. Treatment Effect Highest among those Selecting Out of Treatment
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Figure 2: An Example of Benefit and Cost Curves for Schooling Choice

S1S0 Schooling S12

φ(S)

f(g(S))

U = f(g(S))− φ(S)

The instrument can only induce parallel shifts of the cost curve, φ(S) for S > 12,
and have no effect on the benefit curve, f(g(S)). S0 shows the optimal choice of
schooling for S ≤ 12 and S1 shows the optimal choice of schooling for S > 12.
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Figure 3: An Example of Positive Selection on the Treated Outcome

Expected Survival,
College Educated Men

UD10

← High propensity to attend college

Low propensity to attend college →

P (Z ′) for
Z ′ > Z P (Z)

E[Y1]

When P = P(Z), all individuals to left of the right most vertical line become
treated. When P = P(Z’) the indifference line shifts left, which increases the average
outcome for treated individuals.
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Figure 4: Histogram of Propensity Scores for College, White Women born 1911-
1940

Density is trimmed at 5 pct on both sides per Census guidelines

Figure 5: Histogram of Propensity Scores for College, White Men born 1911-1940

Density is trimmed at 5 pct on both sides per Census guidelines
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Table 1: Correlations between County Level Covariates

Median Housing Radio Median Family
Value, 1930 Percent, 1940 Income, 1950

Median Housing Value, 1930 1
Percent of HH with Radio, 1940 0.585 1
Median Family Income, 1950 0.575 0.832 1

Correlation coefficients between county level covariates, not weighted by population.
Median Family Income is measured in deciles, with ten being the highest and one
being the lowest

Table 2: The Black et al. [2016] Selection Test

Women Men
Treated Untreated Treated Untreated

(College) (HS or Less) (College) (HS or Less)

College Proximity (100s Miles) 0.00582 0.00681 -0.00278 0.00906
(0.00359) (0.00376) (0.00357) (0.00381)

Two-sided P-Value 0.105 0.070 0.436 0.018
Observations 923,000 1,786,000 954,000 1,266,000
Estimated OLS regression coefficients on the instrument. The dependent variable
is ten-year survival. Regressions are estimated separately for those with at least
some college (“College”) and those with high school education or less. County level
economic covariates, birth state and cohort fixed effects are included.
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Table 3: OLS Results on 10-year Survival, Women

(1) (2) (3) (4)

College Attendance 0.0625 0.0607 0.0613 0.0609
(0.0007) (0.0007) (0.0007) (0.0007)

Avg Per Capita Income (1969–2010) 0.0002
(0.0002)

Median Housing Value (1930) 0.0006
(0.0004)

Percent of HHs with Radio (1940) 0.0030
(0.0081)

Cohort FE x x x x
Birth State FE x x
Birth County FE x

Observations (rounded) 2,709,000 2,709,000 2,709,000 2,709,000
R-squared 0.186 0.188 0.189 0.188
Clusters 3103 3103 3103 3103
Standard errors are clustered at the birth-county level. Mortality is measured from
2000–2010. “College Attendance” indicates at least some college. Fixed effects (FE)
in deciles of 1950 Median Family Income also included in (4). Mean of the dependent
variable is 0.69.
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Table 4: OLS Results on 10-year Survival, Men

(1) (2) (3) (4)

College Attendance 0.0855 0.0833 0.0841 0.0833
(0.0011) (0.0009) (0.0009) (0.0009)

Avg Per Capita Income (1969–2010) 0.0002
(0.0002)

Median Housing Value (1930) 0.0006
(0.0005)

Percent of HHs with Radio (1940) -0.0185
(0.0081)

Cohort FE x x x x
Birth State FE x x
Birth County FE x

Observations (rounded) 2,220,000 2,220,000 2,220,000 2,220,000
R-squared 0.180 0.185 0.187 0.185
Clusters 3105 3105 3105 3105
Standard errors are clustered at the birth-county level. Mortality is measured from
2000–2010. “College Attendance” indicates at least some college. Fixed effects (FE)
in deciles of 1950 Median Family Income also included in (4). Mean of the dependent
variable is 0.62.
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Table 5: Linear First Stage on College, Women

(1) (2) (3)

College Proximity (100s Miles) -0.0296 -0.0947 -0.1682
(0.0059) (0.0130) (0.0225)

Proximity Squared 0.0814 0.2800
(0.0130) (0.0460)

Proximity Cubed -0.1190
(0.0244)

Avg Per Capita Income (1969-2010) -0.0005 -0.0004 -0.0003
(0.0005) (0.0005) (0.0004)

Median Housing Value (1930) 0.0107 0.0100 0.0095
(0.0011) (0.0011) (0.0011)

Percent of HHs with Radio (1940) 0.1454 0.1427 0.1451
(0.0206) (0.0204) (0.0203)

Observations (rounded) 2,709,000 2,709,000 2,709,000
Partial F-Statistic 25.2 26.7 21.7
Clusters 3103 3103 3103
All regression include birth-state and cohort fixed effects, and deciles of birth-
county 1950 Median Family Income. The dependent variable is an indicator
equal to one for at least some college. College proximity measures the distance
from the birth-county to the nearest college. Standard errors are clustered at
the birth-county level.
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Table 6: Linear First Stage on College, Men

(1) (2) (3)

College Proximity (100s Miles) -0.0506 -0.1390 -0.2438
(0.0083) (0.0179) (0.0325)

Proximity Squared 0.1110 0.3940

(0.0172) (0.0650)
Proximity Cubed -0.1700

(0.0329)

Avg Per Capita Income, (1969-2010) -0.0033 -0.0032 -0.0031
(0.0010) (0.0010) (0.0009)

Median Housing Value (1930) 0.0229 0.0220 0.0213
(0.0020) (0.0019) (0.0019)

Percent of HHs with Radio (1940) 0.2557 0.2522 0.2552
(0.0296) (0.0293) (0.0292)

Observations (rounded) 2,220,000 2,220,000 2,220,000
Partial F-Statistic 36.9 30.7 22.4
Clusters 3105 3105 3105
All regression include birth-state and cohort fixed effects, and deciles of birth-
county 1950 Median Family Income. The dependent variable is an indicator
equal to one for at least some college. College proximity measures the distance
from the birth-county to the nearest college. Standard errors are clustered at
the birth-county level.
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Table 7: IV Results on 10-year Survival

Women Men
(1) (2) (3) (4) (5) (6)

Deg(Z), 1st Stage: Linear Quadratic Cubic Linear Quadratic Cubic

College Attendance -0.1561 -0.0509 -0.0558 -0.0289 0.0321 0.0537
(0.1059) (0.0670) (0.0614) (0.0567) (0.0423) (0.0404)

Avg Per Capita 0.0000 0.0001 0.0001 -0.0002 0.0000 0.0001
Inc (1970-2010) (0.0002) (0.0002) (0.0002) (0.0004) (0.0003) (0.0003)

Median Housing 0.0030 0.0019 0.0020 0.0033 0.0019 0.0014
Value (1930) (0.0013) (0.0009) (0.0008) (0.0015) (0.0011) (0.0011)

Pct of HHs with 0.0377 0.0209 0.0217 0.0130 -0.0042 -0.0102
Radio (1940) (0.0194) (0.0136) (0.0129) (0.0179) (0.0142) (0.0138)

Obs. (rounded) 2,709,000 2,709,000 2,709,000 2,220,000 2,220,000 2,220,000
Clusters 3103 3103 3103 3105 3105 3105
All regressions include birth-state and cohort fixed effects, and deciles of birth-county
1950 Median Family Income. Mortality is measured from 2000–2010. College Attendance
indicates at least some college. Standard errors are clustered at the birth-county level.

Table 8: Estimated Slope of the MTE of College Attendance on Survival

Panel A. Women
First Stage: (1) Flexible Logit (2) Linear Probability (3) Logit

β̂ 0.052 0.059 0.082
(0.040) (0.046) (0.046)

Panel B. Men
First Stage: (1) Flexible Logit (2) Linear Probability (3) Logit

β̂ 0.086 0.074 0.079
(0.050) (0.062) (0.061)

All regressions include birth-state and cohort fixed effects, and deciles
of birth-county 1950 Median Family Income. Mortality measured from
2000–2010. College Attendance indicates at least some college. Standard
errors are clustered at the birth-county level.
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Table 9: Parameter Estimates of ∆MTE(X,UD) = α + βUD + γX,
with and without Heterogeneity in Observables X

Panel A. Women
(1) Constant (2) Local (3) Local (4) Separate (5) Separate

Effect IV IV Approach Approach

α̂ -0.003 0.086 -0.094 0.014 -0.042
(0.024) (0.048) (0.118) (0.025) (0.030)

β̂ -0.241 0.597 -0.049 0.052
(0.102) (0.396) (0.014) (0.040)

γ = 0 yes yes no yes no

Panel A. Men
(1) Constant (2) Local (3) Local (4) Separate (5) Separate

Effect IV IV Approach Approach

α̂ 0.028 0.004 -0.067 -0.012 0.005
(0.018) (0.038) (0.106) (0.019) (0.027)

β̂ 0.061 0.291 0.085 0.086
(0.080) (0.285) (0.014) (0.050)

γ = 0 yes yes no yes no

Mortality measured from 2000–2010. Standard errors are clustered at the birth-
county level.
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Table 10: Average Treatment Effects for the Treated and Untreated

Panel A. Women

Untreated Treated Difference

Average Y0 0.665 0.739 0.074
(0.003) (0.031) (0.030)

Average Y1 0.679 0.728 0.050
(0.028) (0.003) (0.029)

Average Treatment, Y1 − Y0 0.014 -0.010 -0.024
(0.028) (0.030) (0.035)

Observations 1,786,000 923,000

Panel B. Men
Untreated Treated Difference

Average Y0 0.586 0.666 0.080
(0.003) (0.025) (0.024)

Average Y1 0.648 0.668 0.020
(0.023) (0.003) (0.023)

Average Treatment, Y1 − Y0 0.062 0.002 -0.060
(0.023) (0.025) (0.032)

Observations 1,266,000 954,000

Birth cohorts are weighted for balance across treatment and untreated.
Calculations are conducted using extrapolation of the Marginal Treat-
ment Effect. Standard errors clustered at the county level.
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Table 11: Average Treatment Effects for the Treated
and Untreated with Balanced Observables

Panel A. Women
Untreated Treated Difference

Average Y0 0.667 0.737 0.070
(0.003) (0.031) (0.029)

Average Y1 0.680 0.727 0.047
(0.028) (0.003) (0.028)

Average Treatment, Y1 − Y0 0.013 -0.010 -0.023
(0.028) (0.030) (0.034)

Observations 1,786,000 923,000

Panel B. Men
Untreated Treated Difference

Average Y0 0.589 0.663 0.075
(0.003) (0.024) (0.023)

Average Y1 0.650 0.666 0.016
(0.022) (0.003) (0.022)

Average Treatment, Y1 − Y0 0.061 0.003 -0.058
(0.023) (0.025) (0.030)

Observations 1,266,000 954,000

All observed covariates are balanced across the treated and untreated.
Calculations are based on extrapolation of the Marginal Treatment
Effect. Standard errors clustered at the county level.
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Table 12: Gender and Education in Selected Dangerous Occupations, 1960

Men Women
Occupation College HS or Less College HS or Less

Furnacemen, smeltermen,
and pourers 75 1,375 1 41

Mine operatives and
laborers, n.e.c. 595 10,481 5 48

Motormen, mine, factory,
logging camp, etc. 6 415 0 1

Total observations 328,869 915,512 254,468 1,029,656

Author’s calculations using the 1960 IPUMS, Ruggles et al. [2015].
Counts are for whites born in the U.S., 1911–1940. “College” indicates
at least some college.
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Table 13: OLS Regressions of Location and Survival Rates

Panel A. Women
Dependent Variable

Live Outside 10-Year 10-Year
Birth State Survival Survival

College Attendance 0.1464 0.0623
(0.0037) (0.0007)

Live Outside Birth State -0.0008 -0.0095
(0.0009) (0.0008)

Observations (rounded) 2,709,000 2,709,000 2,709,000
Clusters 3103 3103 3103

Panel B. Men
Dependent Variable

Live Outside 10-Year 10-Year
Birth State Survival Survival

College Attendance 0.1912 0.0844
(0.0038) (0.0009)

Live Outside Birth State 0.0106 -0.0058
(0.0008) (0.0007)

Observations (rounded) 2,220,000 2,220,000 2,220,000
Clusters 3105 3105 3105
“Live Outside Birth State” is an indicator equal to 1 if an individual lives
in a different state than the state of birth as of 2000. Mortality measured
from 2000–2010. All regression include birth-state and cohort fixed effects.
Standard errors clustered at birth-county level.
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