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Abstract 

We consider the problem of determining the optimal accuracy of public statistics when increased 
accuracy requires a loss of privacy. To formalize this allocation problem, we use tools from 
statistics and computer science to model the publication technology used by a public statistical 
agency. We derive the demand for accurate statistics from first principles to generate 
interdependent preferences that account for the public-good nature of both data accuracy and 
privacy loss. We first show data accuracy is inefficiently undersupplied by a private provider. 
Solving the appropriate social planner’s problem produces an implementable publication strategy. 
We implement the socially optimal publication plan for statistics on income and health status using 
data from the American Community Survey, National Health Interview Survey, Federal Statistical 
System Public Opinion Survey and Cornell National Social Survey. Our analysis indicates that 
welfare losses from providing too much privacy protection and, therefore, too little accuracy can 
be substantial. 

Keyword:  Demand for public statistics; Technology for statistical agencies; Optimal 
data accuracy; Optimal confidentiality protection 
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1 Introduction

This paper studies a novel, but important, problem regarding the optimal alloca-

tion of information stored in already-existing databases. We focus on the tradeoff

between two competing uses of a finite amount of data. On one hand, the data

can be used to produce statistical summaries that are germane to decision-makers.

However, as is well-understood, publication of statistical summaries necessarily

entails increased loss of privacy for those whose information is included in the

data (Dinur and Nissim 2003). As more statistics are published, more privacy is

lost.1

We contribute an economic framework for determining the optimal allocation

of the confidential information in a database between accuracy of published statis-

tics and privacy protection. The solution to this problem is based on the familiar

intuition that the optimal choice should equate the marginal willingness to pay for

increased statistical accuracy with the marginal technical rate at which accuracy

can be increased by sacrificing privacy. To date, no such framework exists to help

guide statistical agencies and private data custodians like Google or Facebook in

their decisions about data access and data publication. Such an analysis requires

an ability, first, to formalize the privacy loss associated with any specific data pub-

1There is a broad literature in statistical disclosure limitation (SDL) about the link between data
accuracy and privacy. See Abowd and Schmutte (2015) for an overview aimed at economists. The
privacy-preserving data publication results in computer science go much further. These results,
known generically as database reconstruction theorems, differ materially from the re-identification
attacks found in the SDL literature in that they use only the information contained in the data cu-
rator’s own publications–not external information. Dwork et al. (2007) provide an exact bound on
the fraction of randomly generated queries that can be answered exactly before exposing the entire
database with near certainty. Muthukrishnan and Nikolov (2012) tighten the O(

√
N) lower bound

on the cumulative noise required to limit database reconstruction. Kasiviswanathan et al. (2013)
prove that the reconstruction attacks in Dinur and Nissim can be extended to M -estimators, and
that they are polynomial-time algorithms. To drive the point home, Dwork et al. (2015) show that
reconstruction attacks on summary statistics from genome-wide association studies are feasible
using a single sample from the reference population.
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lication, even when it could be combined with an arbitrary amount of other prior

information. Second, it requires a formal description of, and ability to measure,

preferences for data accuracy and data privacy. These are daunting challenges.2

To make progress, we draw on insights from statistical disclosure limitation

(SDL) and recent developments on privacy-preserving data publication in com-

puter science (Dwork 2008; Dwork and Roth 2014). Using these tools, we model

the behavior of a public statistical agency, or data custodian, that operates un-

der a dual mandate to produce accurate statistical summaries of the population,

but also to protect the privacy of the entities on which it collects data. The data

custodian in our model uses a differentially private publication mechanism, which

characterizes privacy loss in terms of the maximum ex ante change in posterior

inferences about a sensitive characteristic.3 This characterization implies that the

privacy guarantee is independent of other sources of information. Furthermore,

given the publication technology we consider, the accuracy guarantee can only

be improved by relaxing the privacy guarantee. When doing so, the data cus-

todian must choose the maximum amount of privacy loss that can be tolerated,

which implies a minimum acceptable level of accuracy. The result is familiar to

economists: constrained optimization subject to a production possibilities frontier

with two public goods (Samuelson 1954; Mas-Colell et al. 1995).

The key contribution of economics for this problem, and of our paper in par-

ticular, is a theoretical and empirical framework for selecting the data publication

strategy that yields an optimal combination of statistical accuracy and data pri-

vacy. This depends on how the public values access to more accurate statistics

2Indeed, Chris Sims has argued that the related, and perhaps more challenging, task of cost-
benefit analysis for collection and dissemination of official statistics is logically impossible (Eisen
and Kaufman 1985, Chapter 3). Sims claims authorship for this chapter on his professional website
http://www.princeton.edu/˜sims/.

3Heffetz and Ligett (2014) provide an overview to differential privacy accessible to economists.
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when doing so entails a loss of privacy. We therefore need a model of the demand

for privacy and the demand for accuracy. Here, the existing literature provides

less guidance. We propose a simple extension of the basic model of preference

interdependence (Akerlof 1997). Utility depends on the consumer’s relative posi-

tion in the distribution of a characteristic of the population, income for example.

The twist is that utility is therefore a function of the accuracy of the published

statistics that characterize the distribution, as well as the loss of privacy from the

existence of such publications.4

From this model we derive the willingness to pay for increased privacy in

terms of foregone accuracy as a relatively simple function of the second moments

in the joint distribution of observed outcomes (income and health status in our

applications) and preferences for privacy and accuracy. In Section 5, we use data

from two surveys to quantify the parameters of the social planner’s problem. We

illustrate the optimal strategy for publishing statistics on the distribution of in-

come and body mass index (BMI), a health attribute. For the income application,

we characterize the social willingness to pay using new data from the Federal

Statistical System Public Opinion Survey (FSS POS), which contains income and

proxy measures of preferences for privacy and data accuracy. For the health ap-

plication, we use data from the Cornell National Social Survey, which also records

self-reported health status and preferences for privacy and diagnostic accuracy.

Using these statistics, we implement and simulate the data custodians’ optimal

4Our extension of the standard model of interdependent preferences has some empirical sup-
port. It can be difficult to show that relative status affects individual behavior because models
of interdependent preferences are not usually identified without restrictive assumptions (Postle-
waite 1998; Luttmer 2005). However, Card, Mas, Moretti and Saez (2012) find that the behavior
of university faculty responds to changes in the availability of information about their colleagues’
salaries. Their findings show that not only are social comparisons a meaningful determinant of
labor market behavior, but also highlight that the significance of social comparisons depends on
the availability or quality of data on others’ salaries.
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data publication strategy. We quantify the welfare loss from suboptimal over-

provision of privacy protection and under-provision of data accuracy.

Our goal is to draw the attention of researchers working on private-market

applications of the economics of privacy and electronic commerce to the issues

surrounding the appropriate use of confidential databases by national statistical

offices to produce population statistics. The welfare analysis in this paper is novel

and thorough, but also, as will be clear, limited. We need better models of the

demand for privacy and accuracy, and better data on these preferences. Interest

in these topics is not merely academic. At the U.S. Census Bureau, active research

is underway to use formal privacy systems like differential privacy in produc-

ing official statistics (Abowd, Schmutte and Vilhuber 2017).5 Similar research is

underway in the private sector at Apple, Google, and Microsoft.6

Like so many other ideas in information economics, George Stigler (1980) ini-

tiated the modern economic analysis of privacy. While Stigler’s focus was on the

origins of the demand for privacy, he identified the source of angst driving public

discussions in the 1970s with his observation that: “[g]overnments (at all levels)

are now collecting information of a quantity and in a personal detail unknown

in history” (p. 623). In the intervening decades, public concern over the prolif-

eration, use, and possible abuses of governmental databases has persisted, and is

now exacerbated by the omnipresent collection by private companies of records

on our economic and social interactions. The potential for linking personal infor-

mation across data sources means a breach of data security in one source could

5The U.S. Census Bureau was the first organization in the world to use a variant of differential
privacy in a production setting (Machanavajjhala et al. 2008).

6Differential privacy was invented at Microsoft (Dwork et al. 2006). Google published the al-
gorithms that allow anyone in the world to query the active websites of any Chrome browser user
in a differentially private manner with a toolkit known as RAPPOR (Erlingsson et al. 2014). Apple
has announced the use of differential privacy in iOS 10 (Apple previews iOS 10, the biggest iOS release
ever 2016), but has not released details.
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lead to financially or socially ruinous consequences through what Ohm (2010)

calls a “database of ruin.”

Stigler correctly observed that a key challenge was to properly constrain the

use of this information rather than to obstruct its acquisition in the first place.

Such obstruction is likely to be futile given the nature of technological change.

More importantly, the information in governmental and private databases is of

great value. Acquisti and Varian (2005) note, for example, that the privileged

informational position of sellers in this market allows individual-level price dis-

crimination on a massive basis. Consumers may have a strong interest in conceal-

ing the data that allow this price customization.

As the economy grows, so does the demand for official statistics published

with greater frequency, in finer detail, and with more accuracy. At the same time,

the public appetite, at least in the U.S., to fund data collection and to participate

in surveys has waned. These trends have led to the rapid and increasing use of

administrative data to augment the production of official statistics and the explo-

ration of alternative data sources.7 Our paper formalizes how the use of admin-

istrative data, while less burdensome to the public in pecuniary terms as well as

the demand for their time, still burdens the citizenry through foregone privacy. In

our formalization, that burden is explicit and measurable.

Our work builds directly on the electronic commerce literature by formally ad-

dressing the public-good nature of both the accuracy of published statistics and

the protection of privacy in statistical databases. Ghosh and Roth (2011) and Hsu,

Gaboardi, Haeberlen, Khanna, Narayan, Pierce and Roth (2014) model private

provision of statistical summaries for use by a private analyst. The latter paper

derives cost-minimizing mechanisms to compensate individuals for lost privacy

7A report from tge National Academies of Sciences, Engineering, and Medicine (2017) docu-
ments these trends, and considers some of the privacy issues we raise here.
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when their data are used in a published statistic. Both papers, like the formal pri-

vacy literature more generally, fail to address the public-good nature of published

data and privacy protection.

Our application is focused on the publication of official statistics, where it is

natural to think of the accuracy of those publications as being both non-rival and

non-excludable in consumption. Stigler noted that statistical summaries produced

from government databases would be public goods. A recent review of the eco-

nomics of privacy touches briefly on these public-good considerations (Acquisti

et al. 2016). In Section 3, we show that when accuracy and privacy are both public

goods, the former will be under-provided. A private producer using the correct

technology may internalize the full cost of privacy protection, but not the full de-

mand for data accuracy. This example shows why private provision of national

statistics may fail, and also sheds light on why public statistical agencies may

face incentives to over-weight privacy protection in official publications (National

Academies of Sciences, Engineering, and Medicine 2017, Chapter 5).

That privacy protection is also a public good was foreshadowed by Dwork

(2008, p. 3) when she wrote: “[t]he parameter ε ... is public. The choice of ε is

essentially a social question.” This observation has not previously made its way

into models of the market for privacy rights. The form of privacy protection we

use guarantees a provable limit on the information that can be disclosed about

any individual in the population, now or in the future, using any feasible real-

ization of the confidential data. As such, we argue that it satisfies a reasonable

interpretation of the legal notion of equal protection under the law–all persons in

the population represented by the confidential database receive the same confi-

dentiality protection. In addition, the benefits from increased privacy protection

for any individual in the population are automatically enjoyed by every other in-
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dividual, whether that person’s information is used or not–the privacy protection

is therefore strictly non-rival.

The paper is organized as follows. Section 2 presents definitions and the basic

model. Section 3 proves the under-provision of data accuracy when the privacy-

preserving data publication system is run by a private firm, as in the classic appli-

cations in electronic commerce. Section 4 solves the appropriate social planner’s

problem for data accuracy and privacy protection when both are public goods.

Section 5 presents the results of applying the full social optimum to the publica-

tion of income distribution and health statistics. Section 6 concludes.

2 Basic Model

We model the publication of statistics by a national agency from a confidential

database for which it is the trusted custodian. The agency’s publication method

yields a technological frontier that describes the rate at which privacy must be

sacrificed to increase the accuracy of published statistics. The optimal choice along

this frontier depends upon the willingness of individuals to pay for increased

accuracy with reduced privacy protection.

Our model assumes that the data have already been collected, subject to a fixed

collection technology. We do not, therefore model the design of the data collection

process, nor the monetary costs of collection.8 By deliberately abstracting from

these technical public-finance problems, we focus exclusively on the disutility that

arises from the foregone privacy. The collected data are a resource designated for

producing population statistics. Administrative data are collected in the process

8The design of many large-scale surveys is produced, in part, by minimizing the cost of estimat-
ing quantities for diverse subpopulations. Controlling the margin of error in these subpopulations
is an important component of this survey-cost management strategy. Although design optimiza-
tion may interact with overall data accuracy, we have abstracted from this consideration.
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of managing public programs. Our analysis describes how the information em-

bodied in both of these data sources should be optimally allocated between pri-

vacy protection and production of accurate statistics. In this paradigm, the social

cost of data accuracy is measured in terms of the privacy loss when the agency

publishes data, not when it collects those data.9

In addition to introducing our basic model, this section provides all formal

definitions used in our application of differential privacy. We highlight tools that

may be unfamiliar to economists and statisticians. Our summary draws on several

sources to which we refer the reader who is interested in more details (Hardt and

Rothblum 2010; Dwork and Roth 2014; Wasserman and Zhou 2010). Our notation

follows Dwork and Roth (2014).

2.1 Databases, Histograms, and Queries

A data curator possesses a database, D. We model D as a table in which each

row represents information for a single individual and each column represents a

single characteristic to be measured. The database D contains N rows. The set χ

describes all possible values the variables in the columns of the database can take.

Therefore any row that appears in the database is an element of χ.10 All variables

9Our conflation of the terms privacy and confidentiality is at odds with their conventional
uses in official statistics. Former Census Bureau Director Kenneth Prewitt (2011), reflecting the
position of many official statisticians, argues for using the term “don’t ask” to reflect the privacy
considerations associated with the design of the questionnaire, and “don’t tell” for the promise
to keep individuals’ responses confidential in publications arising from the survey. While we
agree with the ethical and public policy considerations embodied in this distinction, the conflation
of privacy and confidentiality in the privacy-preserving data publication literature, and in this
paper, reflects the view that the respondent has lost control of the data item once it is provided
(e.g., in a survey), or provided it for a different purpose than the statistical agency’s use (e.g., in
administrative data). In this context, there is very little difference between privacy protection and
confidentiality protection.

10In statistics, χ is the sample space. All structural zeros (combinations of values that are deemed
impossible a priori) are removed from χ. For example, if the variables recorded in the database
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are discrete and finite-valued, which is not restrictive since continuous data are

always given discrete, finite representations when recorded on censuses, surveys,

or administrative record systems.

2.1.1 Histogram Representation

For our analysis, we represent the database D by its unnormalized histogram x ∈

Z∗|χ|. The notation |χ| represents the cardinality of the set χ, and Z∗ is the set

of non-negative integers. Each entry in x, xi, is the number of elements in the

database D of type i ∈ χ. We use the `1 norm:

||x||1 =

|χ|∑
i=1

|xi| . (1)

Observe that ||x||1 = N , the number of records in the database. Given two his-

tograms, x and y, ||x − y||1 measures the number of records that differ between x

and y. We define adjacent histograms as those for which the `1 distance is at most

1.11

2.1.2 Queries

A linear query is a mapping f : [0, 1]|χ|×Z∗|χ| → R∗ such that f(m,x) = mTx where

x ∈ Z∗|χ|, m ∈ [0, 1]|χ|, and R∗ is the set of non-negative real numbers. A counting

query is a special case in which mi is restricted to take a value in {0, 1}. Counting

are a binary indicator for gender, g ∈ {0, 1}, and a categorical indicator for six different levels of
program eligibility, s ∈ {1, . . . , 6}, then χ = {0, 1} × {1, . . . , 6}, and |χ| = 12. If the pair (0,6) is
impossible, then χ = {0, 1} × {1, . . . , 5} ∪ (1, 6), and |χ| = 11.

11If x is the histogram representation of D, y is the histogram representation of D′, and D′ is
constructed from D by deleting exactly one row, then ||x − y||1 = 1. So, D and D′ are adjacent
databases and x and y are the adjacent histogram representations of D and D′, respectively. Some
caution is required when reviewing the related literature because definitions may be stated in
terms of adjacent databases or adjacent histograms.
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queries return the number of observations that satisfy particular conditions. They

are the tool an analyst would use to calculate multidimensional margins from the

contingency table representation of the database, which is precisely our histogram

representation. A normalized linear query is a mapping f : [0, 1]|χ| × Z∗|χ| → [0, 1]

such that if f̃ is a linear query, then f(m,x) = f̃(m,x)/||x||1.

We model queries about population proportions rather than counts. These cor-

respond to the proportions from a saturated contingency table. To that end, we

work with normalized linear queries unless otherwise specified. The use of nor-

malization is not restrictive. It affects the functional form of privacy and accuracy

bounds only through their dependence on the database size ||x||1. Any bound

stated in terms of the unnormalized histograms and queries can be restated in

terms of normalized histograms and queries.

2.2 Query Release Mechanisms, Privacy, and Accuracy

We model the data release mechanism as a randomized algorithm. The data cu-

rator operates an algorithm that provides answers to a set of k normalized linear

queries drawn from the query set Q.

Definition 1 (Query Release Mechanism) LetQ be a set of normalized linear queries,

and |Q| the number of queries to be answered. A query release mechanism M is a

random function M : Z∗|χ| × Q → [0, 1]|Q| whose inputs are a histogram x ∈ Z∗|χ|

and a set of normalized linear queries Q with cardinality |Q|. The mechanism

output consists of responses to the |Q| queries. The probability of observing B ⊆

[0, 1]|Q| is Pr [M(x,Q) ∈ B|x,Q], the conditional probability, given x and Q, that

the published query answer is in B ∈ B, where B are the measurable subsets of

[0, 1]|Q|.
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Differential Privacy

Our definitions of differential privacy and accuracy for the query release mecha-

nism follow Hardt and Rothblum (2010) and Dwork and Roth (2014).

Definition 2 (ε-differential privacy) Query release mechanismM satisfies ε-differential

privacy if for ε > 0, for all x, x′ ∈ Nx, all Q, and for all B ∈ B

Pr [M(x,Q) ∈ B|x,Q] ≤ eε Pr [M(x′,Q) ∈ B|x′,Q] ,

where Nx =
{

(x, x′) s.t. x, x′ ∈ Z∗|χ| and ||x− x′||1 = 1
}

is the set of all adjacent

histograms of x, and where B are the measurable subsets of the query output space.

Accuracy

We can now define our measure of accuracy. For each query, fk ∈ Q, the query

release mechanism returns an answer, ak, that depends on the input database,

the content of the query response, and the randomization induced by the query

release mechanism.

Definition 3 ((α, β)-accuracy) Query release mechanism M satisfies (α, β)-accuracy

if for fk ∈ Q and ak output from M(x,Q),

min
1≤k≤|Q|

{Pr [|ak − fk(x)| ≤ α|x,Q]} ≥ 1− β.

This definition guarantees that the error in the answer provided by the mech-

anism is bounded above by α with probability (1 − β) for the entire set of |Q|

queries. The probabilities in the definition of (α, β)-accuracy are induced by the

query release mechanism.

11



2.3 Interpretation

We now clarify the relationship between differential privacy and inferential dis-

closure. Without loss of generality, the histogram x can be treated as the realiza-

tion of a random variable with Multinomial(N, π) distribution, where the prob-

abilities π are defined over χ, N is the number of records in the database, and

the query set Q is given. Then x′ is the same realization with exactly one record

deleted, for an individual who contributed one count to cell x` of the histogram.

Using Definition 2, consider the ratio that results from using the query release

mechanism on these two adjacent histograms, conditional on x, x′, and Q.

Compute Pr [x |π,N,Q ] and Pr [x′ |π,N − 1,Q ] from the Multinomial assump-

tion. A direct application of Bayes Theorem yields

e−ε ≤ Pr [M(x,Q) ∈ B |x,Q ]

Pr [M(x′,Q) ∈ B |x′,Q ]
=

Pr[x|B,π,N,Q ]
Pr[x′|B,π,N−1,Q ]

Pr[x|π,N,Q ]
Pr[x′|π,N−1,Q ]

≤ eε, (2)

where the left-hand side is the ε-differential privacy condition, the numerator of

the right-hand-side is the posterior odds of the confidential database being x ver-

sus x′ after B is released, and the denominator is the prior odds.12 But the right-

hand side simplifies to the odds of x` versus x`−1 givenB, π, N , andQ relative to

the odds of x` versus x` − 1, given only π, N , and Q. This odds ratio is the Bayes

factor for updating any hypothesis about the deleted individual on publication

of B. The Bayes factor for all individuals is bounded between e−ε and eε by the

properties of differential privacy. By the symmetry of the definition of differen-

tial privacy, this result holds whether we add or remove an individual from the

12The presence of the lower bound e−ε occurs because x′ is explicitly constructed by remov-
ing one row from the database D used to construct the histogram x. The direction of change in
the posterior odds is not determined a priori. Increases and decreases are both bounded by the
definition of differential privacy because x and x′ are interchangeable.
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population N .

The bound on the Bayes factor for all individuals in the population, and for all

possible populations, states precisely the Duncan and Lambert (1986) formaliza-

tion of inferential disclosure. Note, especially, it is impossible to prevent a disclo-

sure in the sense considered by Dalenius (1977): “[i]f the release of the statistics S

makes it possible to determine the value of [the confidential data item] more accu-

rately than is possible without access to S, a disclosure has taken place...” (p.433).

Dwork and Naor (2010) prove that inferential disclosure in this sense is impossi-

ble to prevent. In the language of cryptography, the trusted data curator must leak

some information about the confidential data because the release of statistics that

fully encrypt those data (ε = 0) would be worthless. In the language of economics,

some risk of privacy breach is the marginal social cost of releasing any useful sta-

tistical information from the confidential database.13 It should now be clear why

we characterize differential privacy as worst-case privacy protection. Because the

definition applies to all histograms of size N that could have been realized, all in-

dividuals who may or may not have been used to compute the statistics B, and all

possible statistical releases in B, the Bayes factor for all allowable configurations

of population characteristics is bounded by eε. The worst privacy breach that can

ever occur for any individual in any population described by χ is the logarithm of

the bound on the Bayes factor in equation 2, namely ε.

13Dwork and Naor (2010) use the cryptographic language that perfect semantic security (Gold-
wasser and Micali 1982; 1984) is impossible in any privacy-preserving data publication system
where the utility of the published statistics depends upon their accuracy. Perfectly semantically
secure published data must be fully encrypted, and therefore have no accuracy when used in any
subsequent analysis or decision. Perfect semantic security is equivalent to zero inferential dis-
closures. Evfimievski et al. (2003) developed a similar approach based on posterior probabilities.
Kifer and Machanavajjhala (2011) clarified the role of the probability assumptions when using for-
mal privacy methods by showing that the semantics associated with any particular Bayes factor
bound depend upon the assumptions used to specify the joint distribution of all the rows in the
database.
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3 The Suboptimality of Private Provision

Using the differential privacy framework, we explicitly illustrate the potential for

suboptimal private provision of public statistical data by adapting the very inno-

vative model of Ghosh and Roth (2011). Ghosh and Roth (GR, hereafter) show that

differential privacy can be priced as a commodity using a formal auction model.

They prove the existence of a mechanism that yields the lowest-cost method for

answering a database query with ε-differential privacy and (α, β)-accuracy.14

Their model takes the desired query accuracy as exogenous. The producer of

the statistic purchases data-use rights from individuals whose data are already in

the population database for the purpose of calculating a single statistic–the an-

swer to one database counting query–that will then be published in a scientific

paper. Funds for the purchase of the data-use rights come from a grant held by

the scientist. GR assume that the statistical release is the private good of the pur-

chaser of the data-use rights.

In this section, the accuracy of the statistic computed via the GR mechanism

is a public good whose demand is endogenous. We show that private provision

results in a suboptimally low level of accuracy and too much privacy protection.

That is, we show that allowing the quality of the scientific research modeled in

GR to matter to the population being studied results in an external benefit from

the data publication that their model does not capture.

To model the demand for accuracy, we assume that the published statistical

data deliver utility to the consumers from whom the rights to use the confidential

inputs were purchased. The purchase of data-use rights takes the form of a pay-

ment to all consumers who agree to sell their data-use rights when the publication

14They prove their results for β = 1/3, but note that generalizing this is straightforward. See
Dwork and Roth (2014, pp. 207-213) for this generalization.
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mechanism delivers ε-differential privacy. The value of the published statistical

data to all consumers, whether they sell their data-use rights or not, depends upon

the accuracy of those data. Furthermore, this accuracy is a public good–it summa-

rizes the quality of the information that any consumer may access and use without

reducing its accuracy for some other consumer (it is non-rival), and no consumer

can block another consumer’s use (it is non-excludable). In plain English, the

other scientists and general readers of the papers published in the GR world learn

something too. They value what they learn. And they understand that what they

learn is more useful if it is more accurate.

Suboptimal private provision of data accuracy is caused by the external benefit

of data accuracy to all consumers that is not captured in the GR model. We for-

mally model the demand for data accuracy. The demand for privacy protection,

on the other hand, is derived from the private data publisher’s cost-minimization

problem. In the competitive equilibrium for privately-provided data accuracy,

a supplier using a Vickrey-Clarke-Groves (VCG) mechanism buys just enough

privacy-loss rights to sell the data accuracy to the consumer with the highest data-

accuracy valuation. All other consumers use the published data for free.15

3.1 Model Setup

Following Ghosh and Roth (2011), each ofN private individuals possesses a single

bit of information, bi, that is already stored in a database maintained by a trusted

curator. In addition to their private information, each individual is endowed with

income, yi. Individuals each consume one unit of the published statistic, which

has accuracy I defined in terms of (α, β)-accuracy, that is I = (1− α). Since I is a

15Study of this case may be of special interest for some business-data collection for industries
with a small number of dominant organizations.
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public good, all consumers enjoy the benefits of I , but each consumer is charged

the market price pI , to be determined within the model, for her “share” of I , which

we denote Ii, and the balance of the public good, which we denote I˜i is paid for

by the other consumers. Thus, I = Ii + I˜i for all consumers.

The preferences of consumer i are given by the indirect utility function

vi
(
yi, εi, Ii, I

˜i
)

= ln yi + pεεi − γiεi + ηi
(
Ii + I˜i

)
− pIIi. (3)

Equation (3) implies that preferences are quasilinear in data accuracy, I , privacy

loss, εi, and log income, ln yi.16 Income and accuracy are added to the Ghosh

and Roth utility function because they are required for the arguments in this sec-

tion. In Section 4 we develop a more complete model of the demand for accurate

public-use statistics. The term pε is the common price per unit of privacy, also

to be determined by the model. The receipt pεεi represents the total payment an

individual receives if her bit is used in an ε-differentially private mechanism. The

individual’s marginal preferences for data accuracy (a “good”) and privacy loss

(a “bad,” really an input here), (γi, ηi) > 0, are not known to the data provider,

but their population distributions are public information. Therefore, the mecha-

nism for procuring privacy has to be individually rational and dominant-strategy

truthful.

We do not include any explicit interaction between the publication of statisti-

cal data and the market for private goods. This assumption is not without con-

sequence, and we make it to facilitate exposition of our key point, which is that

data accuracy may be under-provided due to its public-good properties. Viola-

16In this section, we keep the description of preferences for data accuracy and privacy protection
as close as possible to the original Ghosh and Roth specification. They allow for the possibility that
algorithms exist that can provide differential privacy protection that varies with i; hence εi appears
in equation (3). They subsequently prove that εi = ε for all i in their Theorem 3.3.
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tions of privacy might affect the goods market through targeted advertising and

price discrimination as noted in Section 1. The accuracy of public statistics may

also spill over to the goods market by making firms more efficient. We reserve

consideration of these topics for future work.

In what follows we present the GR results using our notation and definitions.

See Appendix A.2 for a complete summary of the translation from their notation

and definitions to ours.

3.2 Cost of Producing Data Accuracy

A supplier of statistical information wants to produce an (α, β)-accurate estimate,

ŝ, of the population statistic

s =
1

N

N∑
i=1

bi (4)

i.e., a normalized query estimating the proportion of individuals with the property

encoded in bi. Theorems 3.1 and 3.3 in GR prove that the estimator

ŝ =
1

N

[
H∑
i=1

bi +
αN

2
+ Lap

(
1

ε

)]
(5)

with (α, 1/3)-accuracy requires a privacy loss of εi = ε = 1/2+ln 3
αN

from H = N −
αN

1/2+ln 3
members of the population. The term Lap

(
1
ε

)
represents a draw from the

Laplace distribution with mean 0 and scale parameter 1
ε
.

GR prove that purchasing the data-use rights from the H least privacy-loving

members of the population; i.e., those with the smallest γi, is the minimum-cost,

envy-free implementation mechanism.17 They provide two mechanisms for im-

17We note for completeness that the statistic ŝ, while computed on only H cases from the popu-
lation of N , is evaluated relative to the population quantity s. GR use the same accuracy measure
as we do; namely Definition 3 with a single query in the query set. Statisticians often use mean
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plementing their VCG auction. We rely on their mechanism MinCostAuction and

the properties given in their Proposition 4.5. See Appendix A.2 for additional

details.

We now derive the producer’s problem of providing the statistic for a given

level of data accuracy, which we denote by I = (1 − α). If pε is the payment per

unit of privacy loss, the total cost of production is c(I) = pεHε, where the right-

hand side terms can be defined in terms of I as follows. Using the arguments

above, the producer must purchase from H(I) consumers the right to use their

data to compute ŝ. Then,

H(I) = N − (1− I)N

1/2 + ln 3
. (6)

Under the VCG mechanism, the price of privacy loss must be pε = Q
(
H(I)
N

)
,

where Q is the quantile function with respect to the population distribution of

privacy preferences, Fγ . The lowest price at which the fraction H(I)
N

of consumers

do better by selling the right to use their bit, bi, with ε (I) units of differential

privacy is pε. H(I) is increasing in I . The total cost of producing I is

CV CG(I) = Q

(
H(I)

N

)
H(I)ε(I), (7)

where the production technology derived by GR implies

ε(I) =
1/2 + ln 3

(1− I)N
. (8)

squared error instead of the absolute error embodied in this definition. Nevertheless, the statistic
ŝ trades-off bias and variance relative to the correct population statistic. The term αN/2 is a bias
correction.
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3.3 Private, Competitive Supply of Data Accuracy

Suppose a private profit-maximizing, price-taking, firm sells ŝwith accuracy (α, 1/3),

that is, with data accuracy I = (1− α) at price pI . Then, profits P (I) are

P (I) = pII − CV CG(I).

If it sells at all, it will produce I to satisfy the first-order condition P ′
(
IV CG

)
= 0

implying

pI = Q

(
H(I)

N

)
H(I)ε′(I) +

[
Q

(
H(I)

N

)
+Q′

(
H(I)

N

)(
H(I)

N

)]
H ′(I)ε(I) (9)

where the solution is evaluated at IV CG.18 The price of data accuracy is equal to

the marginal cost of increasing the amount of privacy protection–data-use rights–

that must be purchased. There are two terms. The first term is the increment to

marginal cost from increasing the amount each privacy-right seller must be paid

because ε has been marginally increased, thus reducing privacy protection for all.

The second term is the increment to marginal cost from increasing the number of

people from whom data-use rights with privacy protection ε must be purchased.

As long as the cost function is strictly increasing and convex, the existence and

uniqueness of a solution is guaranteed.

18The second order condition is P ′′
(
IV CG

)
< 0, or d2CV CG(I)

dI2 > 0. The only term in the second

derivative of CV CG (I) that is not unambiguously positive is H(I)H′(I)2ε(I)
N2 Q′′

(
H(I)
N

)
. We assume

that this term is dominated by the other, always positive, terms in the second derivative. Sufficient
conditions are that Q () is the quantile function from the log-normal distribution (as we assume in
Section 4) or the quantile function from a finite mixture of normals, and that H(I)

N is sufficiently
large; e.g., large enough so that if Q () is the quantile function from the lnN

(
µ, σ2

)
distribution,

Q∗′′
(

H(I)
N

)
+ σ2Q∗′

(
H(I)
N

)2
≥ 0, where Q∗ () is the standard normal quantile function.
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3.4 Competitive Market Equilibrium

At market price pI , consumer i’s willingness to pay for data accuracy will be given

by solving

max
Ii≥0

ηi
(
I˜i + Ii

)
− pIIi (10)

where I˜i is the amount of data accuracy provided from the payments by all other

consumers, as noted above. Consumer i’s willingness to pay is non-negative if,

and only if, ηi ≥ pI ; that is, if the marginal utility from increasing I exceeds the

price. If there exists at least one consumer for whom ηi ≥ pI , then the solution to

equation (9) is attained for IV CG > 0.

We next show that there is only one such consumer. It is straightforward to

verify that the consumers are playing a classic free-rider game (Mas-Colell et al.

1995, pp. 361-363). In the competitive equilibrium, the only person willing to pay

for the public good is one with the maximum value of ηi. All others will purchase

zero data accuracy but still consume the data accuracy purchased by this lone

consumer. Specifically, the equilibrium price and data accuracy will satisfy

pI = η̄ =
dCV CG

(
IV CG

)
dI

,

where η̄ is the maximum value of ηi in the population–the taste for accuracy of

the person who desires it the most. However, the Pareto optimal consumption of

data accuracy, I0, solves
N∑
i=1

ηi =
dCV CG (I0)

dI
. (11)

Marginal cost is positive,
dCV CG(I0)

dI
> 0, and

∑N
i=1 ηi ≥ η̄; therefore, data ac-

curacy will be under-provided by a competitive supplier when data accuracy

is a public good as long as marginal cost is increasing, which we prove below.
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More succinctly, IV CG ≤ I0. Therefore, privacy protection must be over-provided,

εV CG ≤ ε0, by equation (8).19

For readers familiar with the data privacy literature, we note that the statement

that technology is given by equations (7) and (8) means that the data custodian

allows the producer to purchase data-use rights with accompanying privacy loss

of ε = 1/2+ln 3
(1−I)N from H (I) individuals for the sole purpose of computing ŝ via the

query response mechanism in equation (5) that is 1/2+ln 3
(1−I)N -differentially private and

achieves (1− I, 1
3
)-accuracy, which is exactly what Ghosh and Roth prove.

3.5 Proof of Suboptimality

Theorem 1 If preferences are given by equation (3), the query response mecha-

nism satisfies equation (8) for ε-differential privacy with
(
1− I, 1

3

)
-accuracy, cost

functions satisfy (7) for the VCG mechanism, the population distribution of γ

is given by Fγ (bounded, absolutely continuous, everywhere differentiable, and

with quantile function Q satisfying the conditions noted in Section 3.3), the pop-

ulation distribution of η has bounded support on [0, η̄], and the population in the

database is represented as a continuum with measure function H (absolutely con-

tinuous, everywhere differentiable, and with total measure N ) then IV CG ≤ I0,

where I0 is the Pareto optimal level of I solving equation (11), and IV CG is the

privately-provided level when using the VCG procurement mechanism.

Proof. The proof appears in Appendix A.1.
19The reader is reminded that a smaller ε implies more privacy protection. It is also worth

commenting that in the GR formulation the single consumer with positive willingness to pay is the
entity running the VCG auction. That person is buying data-use rights from the other consumers,
computing the statistic for publication, then releasing the statistic so that all other consumers may
use it. That is why we have modeled this as a public good. It is fully consistent with GR’s scientist
seeking data for a grant-supported publication.
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4 The Optimal Provision of Accuracy and Privacy

Having shown that both data quality and privacy loss have public-good proper-

ties when modeled using private supplier markets, we now formalize the prob-

lem of choosing their optimal levels. We invoke the classic public goods model of

Samuelson (1954) as explicated in Mas-Colell et al. (1995, pp. 359-361) to solve for

the Pareto optimal quantities of each public good.

4.1 Modeling Production Possibilities

We model a data custodian tasked with releasing public statistics calculated from

a confidential database,D. The database contains a measurement from a domain χ

for each member of a population of size N . As in the formal privacy literature, we

assume the domain is finite. In practice, the set of acceptable values for continuous

data is always finite. As in Section 2, x is the histogram representation of D.

The custodian publishes the results of a set of linear queries using an ε-differentially

private mechanism. This formalization generalizes the conventional task of pub-

lishing contingency tables from underlying microdata. Our goal is to determine

how the custodian should set the privacy-loss parameter, ε, to optimally allocate

data information between privacy protection and accuracy of the published statis-

tics. For concreteness, in what follows, we assume the custodian operates the

Multiplicative Weights Exponential Mechanism (MWEM) introduced by Hardt,

Ligett and McSherry (2012). However, our analysis is generally valid for all dif-

ferentially private mechanisms that yield a convex relationship between privacy

loss and accuracy.20

20One such mechanism is the Private Multiplicative Weights (PMW) mechanism, due to Hardt
and Rothblum (2010), which is very similar to MWEM, but for a setting in which users address
queries to the underlying database interactively. The theoretical accuracy guarantee of PMW is
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4.1.1 The Multiplicative Weights Exponential Mechanism

We summarize here the basic features of MWEM. A more complete description ap-

pears in Appendix A.4. To operate MWEM on database x, the custodian chooses

a set,Q, of feasible normalized linear queries to publish, and sets the privacy-loss

parameter ε.

To understand MWEM, it is useful to first consider a simpler, but less efficient,

algorithm: the Laplace mechanism. One can think of the parameter ε as represent-

ing a fixed privacy-loss budget to be allocated across answers to various queries.

The simplest approach is to calculate the answer to each query using the true data.

The custodian can guarantee ε-differential privacy by publishing the true answer

plus a random error drawn from the Laplace distribution with scale parameter
|Q|
ε

. This approach works because the LaPlace mechanism for ε-differential pri-

vacy composes additively (for a proof see Dwork and Roth (2014, pp. 49-51)).

When the set of queries is large, or the extent of privacy loss is low, the amount of

noise added by the Laplace mechanism is correspondingly large.

MWEM economizes on the expenditure of the privacy-loss budget relative to

the Laplace mechanism as follows. The algorithm stores the true data histogram

and a synthetic histogram of the same size that is derived from the confidential

data according to the following procedure. The synthetic histogram can be initial-

ized with a uniform distribution across cells, and the weights mentioned below

can be initialized at unity. For each of a finite number of rounds, the algorithm

computes every query on the true and the synthetic histograms. Each query’s

score is the absolute value of the difference between the true answer and the an-

swer from the synthetic histogram. The algorithm selects a query at random with

qualitatively similar to MWEM. We prefer MWEM for this analysis because the interactive setting
envisioned by PMW is a less common form of data publication for public statistical agencies and
also because, as far as we know, there is no practical implementation of PMW.
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probability proportional to the query score, so that queries approximated poorly

by the synthetic data are at higher risk of selection. The algorithm adds Laplace

noise to the selected query’s true answer. Then, the algorithm updates its weights

so that the entries in the synthetic database match the noisy query responses. In

MWEM, the privacy budget is drawn down only for queries that are answered

poorly in the synthetic data. Upon completion, the custodian can publish answers

to all queries, or the synthetic data, or both.

The strengths of MWEM relative to the Laplace mechanism are twofold. First,

the approximation to the true histogram minimizes error, given the queries al-

ready answered. Second, the algorithm only adds noise when the approximate

(i.e., already public) answer is sufficiently far from the truth. Doing so conserves

on privacy loss and controls the total error efficiently.

4.1.2 The Feasible Trade-off between Privacy Loss and Accuracy

The MWEM algorithm delivers an increasing and convex relationship between

privacy loss and accuracy. That is, to increase accuracy, it is necessary to increase

privacy loss, and there are diminishing returns to increasing privacy loss in ob-

taining increased accuracy. MWEM therefore provides the basis for a well-defined

production possibilities frontier.

Theorem 2 Given histogram x with ‖x‖1 = N , query set Q, accuracy failure rate

0 ≤ β ≤ 1, and privacy-loss parameter ε > 0, MWEM satisfies the following

conditions:

1. Privacy: MWEM satisfies ε-differential privacy;
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2. Accuracy: MWEM satisfies (α, β)-accuracy, with

α =
K(β, |χ|, |Q|, N)

εb
. (12)

Furthermore, the constant K is decreasing in N and increasing in |χ| and |Q|. For

MWEM, the parameter b = 1
3
.

Proof. The proof appears in Appendix A.1.

4.1.3 The Production Possibilities Frontier

We show here that the accuracy guarantee obtained in Theorem 2 has a direct

interpretation as a production possibilities frontier (PPF). The key accuracy pa-

rameter is α, which measures the worst-case deviation on a single query. Higher

values of α correspond to lower accuracy.

We define data accuracy as I = (1 − α), and characterize the PPF between I

and differential privacy loss, ε, by a transformation function

G (ε, I) ≡ I −
[
1− K(β, |χ|, |Q|, N)

εb

]
(13)

where the functional form of K is given in the proof of Theorem 2. All feasible

pairs (ε, I) are contained in the transformation set

Y = {(ε, I) |ε > 0, 0 < I < 1 s.t. G(ε, I) ≤ 0} . (14)

The PPF is the boundary of the transformation function defined as

PPF (ε, I) = {(ε, I) |ε > 0, 0 < I < 1 s.t. G(ε, I) = 0} . (15)
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Equation (15) specifies the maximum information accuracy that can be published

for a given value of privacy loss.

Solving for I as a function of ε, the data publication problem using the MWEM

query release mechanism produces the production possibilities frontier

I (ε; |χ|, |Q|, N) =

[
1− K(β, |χ|, |Q|, N)

εb

]
. (16)

The marginal social cost of increasing data accuracy I in terms of foregone

privacy protection ε–the marginal rate of transformation–is

MRT (ε, I) ≡ dI

dε
= −∂G/∂ε

∂G/∂I
=
bK(β, |χ|, |Q|, N)

εb+1
, (17)

where the marginal rate of transformation is positive because privacy loss is a

public bad. Application of the implicit function theorem yields the sign change in

the middle equality.21

Figure 1 illustrates the PPF for our application to the publication of statistics on

the distribution of income, which we describe in detail in Section 5. We graph the

PPF described by equation (16) with ε on the horizontal axis and I on the vertical

axis. Because ε is a public bad, the PPF is similar to the efficient risk-return fron-

tier used in financial economics as well as the offer curve used in hedonic wage

theory. The PPF separates feasible (ε, I) pairs, which are on and below the PPF,

from infeasible pairs, which are above the PPF. The PPF also exhibits diminish-

ing marginal rate of transformation: it is increasingly costly, in terms of foregone

privacy, to increase information accuracy.

21As the proof of Theorem 2 shows, the equation that defines the transformation set is con-
tinuously differentiable with respect to both ε and I . This fact is not obvious from the text of
Hardt et al. (2012), which introduced MWEM. In their presentation the relevant accuracy bound
is reported using big-O notation. They did so for convenience as the exact bound is messy, but
straightforward to derive.
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We treat the parameters (β, |χ|, |Q|, N) that determine K as outside the choice

problem facing the data custodian. Doing so is not without consequence, as these

parameters affect the location of the PPF. We think of them as determining the size

of the “information budget” at the custodian’s disposal. Our model envisions a

custodian in possession of a fixed database and a charge to publish a fixed set of

queries (contingency tables). Given these constraints, the custodian must choose

the levels of privacy and accuracy to deliver the published statistics. The PPF

determines the set of feasible pairs given the information budget.

4.2 The Optimal Levels of Accuracy and Privacy

Given the data publication technology, the data custodian must choose a level of

privacy protection and a guaranteed level of accuracy in the published statistics.

In practice, the data custodian’s choice may depend on a host of legal, economic,

and political considerations. Our goal is to characterize the optimal level of data

accuracy and privacy protection. When data accuracy and privacy protection are

public goods, the solution is not obtained through market pricing. We therefore

ask in this subsection what levels of accuracy and privacy a utilitarian social plan-

ner would choose to deliver.

4.2.1 Preferences

We assume a closed system in the sense that data are collected from all members

of the population, and all members of the population may benefit from use of the

published statistics. Every person also consumes a set of pure private goods, the

prices of which are exogenous. Our formulation allows for arbitrary heterogene-

ity in preferences for privacy loss and for the accuracy of published statistics. In

doing so, we allow for the empirically relevant possibility that one group of peo-
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ple cares primarily about privacy, while getting little utility from consuming the

data, while another set cares primarily about data accuracy.

The indirect utility function, vi, for each individual is

vi (yi, ε, I, x, p) = max
q
ui (q, ε, I, x) s.t. qTp ≤ yi (18)

where q is the bundle of L private goods chosen by individual i at prices p. The

direct utility function ui (q, I, ε, x), also depends upon the privacy-loss public bad,

ε, the data-accuracy public good, I , and on the data collected from all other indi-

viduals, which we represent here by the histogram vector, x. In our applications,

x will contain data describing the distribution of income or the distribution of

body-mass index.22

4.2.2 The Social Planner’s Problem

We adopt the utilitarian linear aggregation form of the social welfare function

SWF (ε, I, v, y, x, p) =
N∑
i=1

vi (yi, ε, I, x, p) (19)

where v and y are vectors of N indirect utilities and incomes, respectively. The

social planner’s problem is

max
ε,I

SWF (ε, I, v, y, x, p) (20)

subject to the set of production possibilities characterized by Equation (16).

22We have abstracted from the problem of multivariate characteristics in x. That is, one might
consider other demographic variables like race or birth date to be among the sensitive character-
istics that the privacy-preserving publication system needs to protect. One might also note that
individuals could have heterogeneous preferences about the sensitivity of these characteristics.
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Assuming the indirect utility functions are differentiable, the conditions that

characterize the welfare-maximizing levels of ε and I subject to the feasibility con-

straint are
∂G(ε0,I0)

∂ε
∂G(ε0,I0)

∂I

=
∂
∂ε

∑N
i=1 vi (yi, ε

0, I0, x, p)
∂
∂I

∑N
i=1 vi (yi, ε

0, I0, x, p)
(21)

and PPF (ε0, I0). The left-hand side of equation (21) is the marginal rate of trans-

formation from the production possibilities frontier while the right-hand side is

the marginal rate of substitution between privacy loss and data accuracy. See Ap-

pendix A.3 for the technical details.

5 Applications

We conduct two empirical exercises to illustrate the normative content of our

model. Our goal is to show how these methods can provide guidance to data

providers about the optimal rate at which to trade off privacy loss for statistical

accuracy. We present results for two applications where privacy loss and data

accuracy are both highly salient: (1) publication of income distribution statistics;

(2) publication of relative health status statistics. We use data from the Amer-

ican Community Survey (ACS) to simulate publication of detailed statistics on

the income distribution. We use data from the National Health Interview Sur-

vey (NHIS) to simulate publication of statistics on the distribution of body-mass

index (BMI). In each case, we characterize the PPF by specifying parameters the

data custodian will use with the MWEM algorithm, as described in Section 4.

To find the optimal levels of data accuracy and privacy loss, we use a specific

utility function to implement the interdependent preferences studied in Section

4 (Pollak 1976; Akerlof 1997; Card et al. 2012). In our first application, individ-

uals care about the quality of income statistics because they want to know their
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relative standing in the income distribution. The model yields a closed-form so-

lution for willingness to pay that depends on the joint distribution of preferences

for data accuracy and privacy, along with income, and health status. We use data

from opinion surveys to estimate the willingness of the social planner to pay for

decreased privacy loss with reduced accuracy.

5.1 The Specification of Preferences

For clarity, we focus here on the publication of income statistics. Our applica-

tion to health statistics uses an identical specification up to relabeling. We assume

each individual cares about her position in the income distribution. We also as-

sume heterogeneity in individual tastes for privacy loss and data accuracy. A

specification of the indirect utility function that captures the required features is

v
(
yi, ε, I, y

˜i, p
)

= −
L∑
`=1

ξ` ln p` + ln yi (22)

−γi (1 + ln yi − E [ln yi]) ε

+ηi (1 + ln yi − E [ln yi]) I

where (γi, ηi) > 0 for all i = 1, . . . , N , ξ` > 0 for all ` = 1, . . . , L and
∑L

`=1 ξ` = 1.23

The term (ln yi − E [ln yi]) represents the deviation of individual i’s log income

from the population mean.24

23In equation (22) and what follows, expectation, variance, and covariance operators are with
respect to the joint distribution of ln yi, γi and ηi in the population of N individuals.

24In Appendix A.3, we verify that the vector v of indirect utility functions is homogeneous of
degree zero in (p, y), strictly increasing in y, non-increasing in p, quasiconvex in (p, y), and continu-
ous in (p, y). Therefore, v

(
yi, I, ε, y

˜i, p
)

is a well-specified indirect utility function in this economy
with relative income entering every utility function with the same functional form provided equa-
tion (22) is quasiconvex in (ε, I), which is trivially true for equation (22), as long as (γi, ηi) > 0
for all i, since it is linear in (ε, I). Hence, equation (19) is a well-specified social welfare func-
tion, quasiconvex in (ε, I), and the social planner’s problem is well-specified since equation (16) is

30



Equation (22) is motivated by Akerlof (1997), and subsequent work on public-

good provision with interdependent preferences as described in Aronsson and

Johansson-Stenman (2008) and the references therein. If we assume I = 1 and

ε = 0, then our indirect utility function is consistent with the prior literature,

which assumes that the income distribution is known by everyone with perfect

accuracy and without disutility from privacy loss.

Substitution of equation (22) into equation (21) yields

∂G(ε0,I0)
∂ε

∂G(ε0,I0)
∂I

=
∂
∂ε

∑N
i=1 vi

(
yi, ε

0, I0, y˜i, p
)

∂
∂I

∑N
i=1 vi (yi, ε

0, I0, y˜i, p)
(23)

bK(|χ|, |Q|, N)

(ε0)b+1
=

∑N
i=1 γi (1 + ln yi − E [ln yi])∑N
i=1 ηi (1 + ln yi − E [ln yi])

(24)

=
E [γi] + Cov [γi, ln yi]

E [ηi] + Cov [ηi, ln yi]

Note that a sign change occurs on both sides of equation (24) because we are mod-

eling one public good, I , and one public bad, ε. The full solution is

I0 (.) = 1−
{

1

b
K(|χ|, |Q|, N)1/b

E [γi] + Cov [γi, ln yi]

E [ηi] + Cov [ηi, ln yi]

}b/(b+1)

(25)

and

ε0 (.) =

{
bK(|χ|, |Q|, N)

E [ηi] + Cov [ηi, ln yi]

E [γi] + Cov [γi, ln yi]

}1/(b+1)

. (26)

5.2 Application 1: Publication of Income Statistics

To illustrate our method as it applies to the publication of income statistics, we

first describe production possibilities applied to income data from the ACS, derive

the marginal rate of transformation, and then estimate willingness to pay from the

quasiconcave in (ε, I).
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FSS POS. We then solve the social planner’s problem to derive the optimal level

of privacy loss and data accuracy.

5.2.1 Publication Technology

The data custodian is in possession of a database with the exact income for all eli-

gible members of the U.S. population. To illustrate the feasibility of our approach,

we construct a population-scale database of incomes from the 5-year ACS files for

2010–2014. Specifically, we generate a database with N = 197, 040, 596 records,

which is the size of the 2012 adult population ages 18 to 64, inclusive, estimated in

the ACS. To generate the database, we use the Bayes bootstrap to draw N records

from the 2010–2014 ACS files using expected probability proportional to the sam-

pling weights. The details of data preparation and analysis appear in Appendix

A.5 and the associated code archive.

To simulate publication of the income distribution, we group income into 797

evenly-spaced bins, which is the size of the data domain, |χ|. The bin sizes and

labels are non-private. The set of queries to be answered consists of all interval

queries; that is, all queries of the form “how many records fall between bin a and

bin b, inclusive?”. There are |Q| = 318, 003 such queries.25 The custodian operates

MWEM to publish statistics from this database.

5.2.2 Measuring Preferences

To estimate the marginal rate of substitution in the social planner’s problem, we

use the FSS POS. Our goal is to empirically quantify the distribution of the indirect

utility function parameters.26

25Calculated as the number of ways to choose one or two bins from the full set of 797 bins.
26For more details of the the FSS POS see Childs et al. (2012) and Childs et al. (2015). See also

Appendix A.5.
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The FSS POS is a national public opinion survey conducted in conjunction with

Gallup Daily Tracking Poll. From it, we use the following questions:

• FS11, which records responses on a five-category Likert scale measuring

agreement with the following statement: “People can trust federal statistical

agencies to keep information about them confidential.”

• FS14, which records binary responses to the following question: “Would

you say that federal statistical agencies often invade people’s privacy, or

generally respect people’s privacy?”

• FS7, which records responses on a five-category Likert scale measuring the

extent of agreement with the following statement: “Policy makers need fed-

eral statistics to make good decisions about things like federal funding.”

• Family income, recorded in five categories.

We use FS11 and FS14 as proxy measures of the latent preference for privacy

γi and FS7 as a proxy measure of the latent preference for accuracy ηi. We com-

pute the polychoric correlations between each preference measure and income:27

• Based on FS7, we find Corr [γi, ln yi] = 0.082 (±0.003)

• Based on FS14, we find Corr [γi, ln yi] = 0.083 (±0.003)

• Based on FS11, we find Corr [ηi, ln yi] = 0.040 (±0.003)

27For many respondents, income is missing, and the data exhibit moderate levels of non-
response on the opinion variables. The preceding estimates are based on a complete data analysis
in which the missing values are multiply imputed 500 times conditional on the observed data,
and we account for the imputation uncertainty by combining the within and between implicate
variance. The results are qualitatively similar if we drop missing cases.
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To compute the MRS based on Equation (23) using the correlations reported

above, we need additional modeling assumptions. Specifically, we assume log

income and the latent preference parameters, η and γ are normally distributed,

and that η and γ have unit variances. The data are informative about Corr [γi, ln yi]

and Corr [ηi, ln yi]. To pin down the location, we assume E [γi] = E [ηi] = σln y.

This assumption puts variation in utility that arises from the direct valuation of

privacy loss and data accuracy on the same scale as variation in utility that arises

from the interaction with relative income.28

Invoking these assumptions, we have

E [γi] + Cov [γi, ln yi]

E [ηi] + Cov [ηi, ln yi]
=

1 + Corr [γi, ln yi]

1 + Corr [ηi, ln yi]
(27)

Substituting the polychoric correlations obtained from the FSS POS data, we esti-

mate the MRS = 1.040. At the social optimum, a one-unit increment in privacy

loss must be compensated by a 1.040 unit increase in data accuracy.

5.2.3 Solution

Figure 1 illustrates the solution to the social planner’s problem when the statisti-

cal agency operates the MWEM algorithm. The social welfare function is based

on the indirect utility function in equation (22). The solid line represents the pro-

duction possibilities frontier under MWEM given the parameterization based on

ACS data. The dashed lines are contour plots of the social welfare function (19) at

representative non-optimal (SWF0) and optimal (SWF1) attainable levels of social

28We recognize that our assumptions on E [γi] and E [ηi] are somewhat arbitrary. We could, for
example, also assume that individuals only care about ε and I through the relative income chan-
nel, in which case the terms involving E [γi] and E [ηi] would drop from the utility function. The
implied MRS would be considerably different with those modeling assumptions. These considera-
tions highlight the need for much better models and data on the demand for privacy and statistical
accuracy.
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Figure 1: Solution to the Social Planner’s Problem

welfare. The expansion path is the straight line that intersects the horizontal axis.

Evaluated at the point where the MRT = 1.040, we find the optimal accuracy

and privacy are I0 = 0.862 and ε0 = 0.042. We can also evaluate the welfare cost of

choosing suboptimally low privacy loss at the expense of data accuracy. This is the

relevant scenario in the case of private provision since, as we showed in Section

4.2, the costs of privacy loss are internalized but the benefits of data accuracy are

not. Choosing a point with ε = 0.021, which is equivalent to a 50 percent decrease

in privacy loss, the corresponding value of I on the PPF, I = 0.826, results in an

expected change in utility of −0.013 per person. This is equivalent to a loss of 1.3

percent of national income.
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5.2.4 Simulations

The theoretical accuracy guarantee says that the worst-case query is answered to

within 0.174 of it’s true value. This bound is informative, but allows a considerable

amount of noise. If the distribution of incomes were uniform, each entry would

be on the order 0.001 in the normalized histogram. Our analysis is based on the

worst case guarantee, which is the reliability of the method across all possible

datasets and realizations of the randomized mechanism. In practice, the MWEM

algorithm can outperform this worst-case bound, as shown by Hardt et al. (2012)

and subsequently by Schmutte (2016).

Using our population data from the ACS, we run the MWEM algorithm 30

times using the optimal parameter configuration. The maximum error across all

queries, averaged across the 30 implementations, is 0.0014, which is on the same

order as the uniform histogram, and considerably lower than the worst-case guar-

antee. These results indicate that, beyond offering a framework for reasoning

about optimal privacy protection, MWEM may be a practical method for publish-

ing data; at least in this relatively simple context. Finally, note that when we cut ε

by half to ε = 0.021, as in the policy counterfactual considered above, the average

worst-case empirical error doubles to 0.002.

5.3 Application 2: Publication of Health Status Statistics

Our analysis of the publication of health statistics parallels the preceding analy-

sis of income statistics. We use the same model for interdependent preferences,

assuming that individuals care about their relative health status rather than rel-

ative income. These specifications yield an expression for the social willingness

to pay for reduced privacy loss that depends on the correlation of health status

with preferences for privacy and accuracy. We estimate these quantities using
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data from the Cornell National Social Survey (CNSS) and use them to compute

the socially optimal levels of privacy loss and data accuracy.

5.3.1 Publication Technology

We assume the data custodian is in possession of a database with the body-mass

index (BMI) for all members of the U.S. population. To illustrate the feasibility

of the mechanism, we construct a population-scale database based on BMI mea-

sured from the 2015 National Health Interview Survey (NHIS). Specifically, we

generate a database with the distribution of BMI as collected in the NHIS of size

N = 242, 977, 154. This is the size of the population, as reported from the ACS

public-use tables, for all individuals age 18 and older not residing in group quar-

ters, which is the universe for which BMI is collected in the NHIS. To generate this

synthetic population database, we draw N BMI observations from the 2015 NHIS

using the Bayes bootstrap with expected probability proportional to their sam-

pling weights. The details of data preparation and analysis appear in Appendix

A.5 and the associated code archive.

To simulate publication of the income distribution, we group BMI into |χ| =

800 evenly-spaced bins. The bin sizes and labels are non-private. The set of

queries to be answered consists of all interval queries; that is, all queries of the

form “how many records fall between bin a and bin b, inclusive?”. There are

|Q| = 320, 400 such queries. The custodian operates MWEM to publish statistics

from this database.

5.3.2 Measuring Preferences

Our model for preferences is identical to Equation 22 except we substitute the

latent health status, lnhi, for income ln yi in the terms involving ε and I . Making
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the same distributional assumptions, it follows that we can estimate willingness

to pay by

WTP =
1 + Cov [γi, lnhi]

1 + Cov [ηi, lnhi]
. (28)

We measure the joint distribution of preferences for privacy, accuracy, and

health status, using data from the Cornell National Social Survey (CNSS) from

2011, 2012, and 2013. The CNSS is a nationally representative cross-sectional tele-

phone survey of 1,000 adults each year. The survey collects basic household and

individual information, including income. In 2011, 2012, and 2013, the CNSS in-

cludes questions that elicit subjective health status along with attitudes toward

the privacy of personal health information and the value of accurate health statis-

tics.29 We use the following questions from the CNSS:

• JAq6, “In general, how would you rate your overall health?” measured on

a five-category scale;

• “If medical information could be shared electronically between the places

where a patient receives medical care, how do you think that would:”

1. JAq4@b, “. . . affect the privacy and security of medical information?”

measured on a on a five-category scale (proxy for privacy preferences,

γ).

2. JAq4@a, “. . . affect the quality of medical care?” measured as a on a

five-category scale (proxy for accuracy preferences, η).

Once again, we compute the polychoric correlations between the ordinal mea-

sures:
29For the CNSS (Cornell Institute for Social and Economic Research and Survey Research Insti-

tute n.d.), see https://www.sri.cornell.edu/sri/cnss.cfm.
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• Corr [γi, lnhi] = 0.015 (±0.021)

• Corr [ηi, lnhi] = 0.076 (±0.022)

Concern about the privacy of health status is negligibly correlated with health

status. Concern for the quality of medical information, is more positively cor-

related with health status. Making the relevant substitutions implies that at the

social optimum

MRT
(
ε0, I0

)
= 0.94,

which implies that a one-unit increase in privacy loss must be compensated with a

0.94 increase in data accuracy. The estimated shadow price of reduced privacy loss

is, therefore, lower in the context of health data than in the context of publishing

income statistics.

5.3.3 Solution

Evaluated at the point where the MRT = 0.94, we find that the optimal accuracy

and privacy loss are I0 = 0.872 and ε0 = 0.0451, respectively. Once again, we

evaluate the welfare cost of choosing suboptimally low privacy loss at the expense

of data accuracy. Choosing a point with ε = 0.0226, which is equivalent to a 50

percent decrease in privacy loss, the corresponding value of I on the PPF, I =

0.839, results in an expected change in utility of −0.013 per person.

5.3.4 Simulations

Using our synthetic population data based on the NHIS, we run the MWEM al-

gorithm 30 times using the optimal parameter configuration. The maximum error

across all queries, averaged across the 30 implementations, is 0.0015. When we cut

ε by half to ε = 0.226, as in the policy experiment above, the average worst-case
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empirical error rises to 0.002. As was the case with income statistics, these simu-

lations show that the optimal choice for MWEM may yield a practical publication

strategy in the context of publishing an indicator of health status.

5.4 Discussion

Our analysis suggests how data providers can combine information about their

publication technology with data on the value of privacy and data accuracy to

guide decision-making. We note, however, that the preference data from the sur-

veys are not ideally suited to our applications. Obtaining our results using the

available data requires a number of ancillary assumptions. We make careful note

of these assumptions, and why they are needed. Progress on the questions iden-

tified by this paper will require better information on individual and social pref-

erences for privacy and for data accuracy. We defer further speculation on these

measurement issues to the conclusion.

One might also suppose that a straightforward combination of the indirect util-

ity functions that generated demand for income distribution and health statistics

should lead to a model in which the statistical agency provides both types of data

to the population. Indeed, it is a rare government whose statistical agencies pub-

lish only one characteristic of the population. We do not develop that model here.

If the statistical agency wished to publish both the income distribution data

with accuracy I0y = 0.862 and the health status statistics with accuracy I0h = 0.872,

which are the two optimal values derived above, then the level of privacy protec-

tion would be the sum of ε0y = 0.042 (income distribution) and ε0h = 0.045 (health

statistics). We have introduced the subscripts y and h to distinguish the solu-

tions to the two problems. By the composability of ε-differential privacy, the ac-

tual privacy protection afforded by this publication strategy is εyh = 0.087. There
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is no proof in our work (or anywhere else that we know) that the combination

I0y = 0.862 and I0h = 0.872 with εyh = 0.087 is optimal in any sense. All of the pro-

posed publications must be considered simultaneously in order to get the correct

optimum. This is feasible for the technology we have adopted, which can handle

the economies of scope implied by the composability of differential privacy, but

we have not done these calculations.

6 Conclusion

This paper provides the first comprehensive synthesis of the economics of privacy

with the statistical disclosure limitation and privacy-preserving data publication

literatures. We develop a complete model of the technology associated with data

publication constrained by privacy protection. Both the accuracy of the published

data and the level of formal privacy protection are public goods. We solve the full

social planning problem with interdependent preferences, which are necessary in

order to generate demand for the output of government statistical agencies. The

PPF is directly derived from very recent technology for ε-differential privacy with

(α, β)-accuracy.

We compute the welfare loss associated with suboptimally providing too much

privacy protection and too little accuracy. Income distribution statistics are pro-

vided when individuals care about their income relative to the population distri-

bution. Reducing privacy loss in the published data by half relative to the social

optimum and commensurately reducing data accuracy results in a utility loss of

0.013 log points – approximately equivalent to a 1.3% decrease in national income.

A comparable welfare loss arises in our application to publication of health statis-

tics, when the privacy loss is reduced by half.
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A major barrier to research in this area is the lack of data on preferences for

privacy and data accuracy. Self-reported attitudes toward privacy are increas-

ingly collected in opinion surveys, but more information is needed on the price

people attach to privacy loss; particularly as regards the sort of inferential dis-

closures considered in this paper. Data on the individual and social benefits of

population statistics is even more scarce. New research is required, including

carefully designed controlled experiments that identify the components of utility,

such as relative income, that can only be assessed with statistical data on the rel-

evant comparison population. Such experiments have already informed the role

of relative income in the study of subjective well-being (Luttmer 2005; Clark et al.

2008) and the acquisition of private data for commercial use (Acquisti et al. 2013).

The concept of differential privacy allows a natural interpretation of privacy

protection as a commodity over which individuals might have preferences. In

many important contexts, privacy protection and data accuracy are not purely

private commodities. When both are public goods, the market allocations might

not be optimal. We show that it is feasible, at least in principle, to determine the

optimal trade-off between privacy protection and data accuracy when the public-

good aspects are important. We also use another feature of differential privacy,

composability, to show that even though relatively accurate statistics can be re-

leased for a single population characteristic such as income distribution or rela-

tive health status, each statistic requires its own budget. If an agency is releasing

data on many detailed characteristics of the population, a small total privacy-loss

budget may not allow many of the statistics to be released with accuracy compa-

rable to the accuracy shown in our applications. This is an important warning for

the Information Age.
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APPENDIX

A.1 Proofs Omitted from the Text

Proof of Theorem 1 Proof. Given a target error bound α, corresponding to data

accuracy level I = (1−α), the private producer must procure data-use rights from

the respondents in the confidential data with ε(I) units of privacy protection from

a measure of H(I) individuals. Define

pV CGε = Q

(
H(I)

N

)
.

Note that pV CGε is the disutility of privacy loss for the marginal participant in the

VCG mechanism. The total cost of producing I = (1 − α) using the VCG mecha-

nism is equation (7):

CV CG(I) = Q

(
H(I)

N

)
H(I)ε(I).

Differentiating with respect to I

dCV CG(I)

dI
= Q

(
H(I)

N

)
H(I)ε′(I) +

[
Q

(
H(I)

N

)
+Q′

(
H(I)

N

)
H(I)

N

]
H ′(I)ε(I).

0 < dCV CG(I)
dI

for all I , since ε′(I) > 0, H ′(I) > 0, and Q′ () > 0. The result in the

theorem follows by using the equilibrium price for the private market sale of I ,

which is pI in equation (3),

pI = η̄ =
dCV CG(IV CG)

dI
.
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Hence, IV CG ≤ I0, since
∑N

i=1 ηi ≥ η̄, and the conditions onQ that imply d2CV CG(I)
dI2

≥

0.

Proof of Theorem 2 Proof. Hardt, Ligett and McSherry (2012), henceforth

HLM, prove that MWEM satisfies ε-differential privacy with (α, β)-accuracy us-

ing definitions based on unnormalized histograms and queries. They give an ex-

act accuracy bound for MWEM in their Theorem 2.2. Their reported bound for

unnormalized queries is 2N
√

log |χ|
T

+ 10T log |Q|
ε

, where T is the number of itera-

tions of MWEM. We rescale the error bound by the database size N to account

for our normalization. Converting to normalized queries yields accuracy bound

α = 2
√

log |χ|
T

+ 10T log |Q|
Nε

. HLM note that the optimal number of iterations is the

value of T that minimizes the bound. The optimal value is easily found to be

T =

(
εN
√

log |χ|
10 log |Q|

)2/3

. Our result follows by substituting T into the expression for

the exact α bound. Note that substituting I = 1− α yields an exact, differentiable

expression for I with respect to ε as described in equation 16.

A.2 Translation of the Ghosh-Roth Model in Section 3 to Our

Notation

In this appendix we show that the results in our Section 3, based on the definitions

in the text using database histograms and normalized queries, are equivalent to

the results in Ghosh and Roth (2011). In what follows, definitions and theorems

tagged GR refer to the original Ghosh and Roth (GR, hereafter) paper. Untagged

definitions and theorems refer to our results in the text.

GR model a databaseD ∈ {0, 1}n where there is a single bit, bi, taking values in

{0, 1} for a population of individuals i = 1, . . . , n. In GR-Definition 2.1, they define
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a query release mechanismA (D), a randomized algorithm that maps {0, 1}n → R,

as εi-differentially private if for all measurable subsets S of R and for any pair of

databases D and D(i) such that H
(
D,D(i)

)
= 1

Pr [A (D) ∈ S]

Pr [A (D(i)) ∈ S]
≤ eεi

where H
(
D,D(i)

)
is the Hamming distance between D and D(i).

Notice that this is not the standard definition of ε-differential privacy, which

they take from Dwork et al. (2006), because a “worst-case” extremum is not in-

cluded. The parameter εi is specific to individual i. The amount of privacy loss

algorithm A permits for individual i, whose bit bi is the one that is toggled in D(i),

is potentially different from the privacy loss allowed for individual j 6= i, whose

privacy loss may be εj > εi from the same algorithm. In this case, individual j

could also achieve εj-differentially privacy if the parameter εi were substituted

for εj . To refine this definition so that it also corresponds to an extremum with

respect to each individual, GR-Definition 2.1 adds the condition that algorithm A

is εi-minimally differentially private with respect to individual i if

εi = arg inf
ε

{
Pr [A (D) ∈ S]

Pr [A (D(i)) ∈ S]
≤ eε

}
,

which means that for individual i, the level of differential privacy afforded by

the algorithm A (D) is the smallest value of ε for which algorithm A achieves ε-

differential privacy for individual i. In GR εi-differentially private always means

εi-minimally differentially private.

GR-Fact 1, stated without proof, but see Dwork and Roth (2014, p. 42-43 ) for

a proof, says that εi-minimal differential privacy composes. That is, if algorithm

A (D) is εi-minimally differentially private, T ⊂ {1, . . . , n} , and D,D(T ) ∈ {0, 1}n
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with H
(
D,D(T )

)
= |T |, then

Pr [A (D) ∈ S]

Pr [A (D(T )) ∈ S]
≤ e{

∑
i∈T εi},

where D(T ) differs from D only on the indices in T .

In the population, the statistic of interest is an unnormalized query

s =
n∑
i=1

bi.

The εi-minimally differentially private algorithm A (D) delivers an output ŝ that

is a noisy estimate of s, where the noise is induced by randomness in the query

release mechanism embedded in A. Each individual in the population when of-

fered a payment pi > 0 in exchange for the privacy loss εi > 0 computes an

individual privacy cost equal to υiεi, where υi > 0, p ≡ (p1, . . . , pn) ∈ Rn
+, and υ ≡

(υ1, . . . , υn) ∈ Rn
+.

GR define a mechanism M as a function that maps Rn
+ × {0, 1}

n → R × Rn
+

using an algorithm A (D) that is εi (υ)-minimally differentially private to deliver

a query response ŝ ∈ R and a vector of payments p (υ) ∈ Rn
+. GR-Definition 2.4

defines individually rational mechanisms. GR-Definition 2.5 defines dominant-

strategy truthful mechanisms. An individually rational, dominant-strategy truth-

ful mechanism M provides individual i with utility pi (υ) − υiεi (υ) ≥ 0 and

pi (υ) − υiεi (υ) ≥ pi
(
υ˜i, υ′i

)
− υiεi

(
υ˜i, υ′i

)
for all υ′i ∈ Rn

+, where υ˜i is the vec-

tor υ with element υi removed.

GR define
(
k, 1

3

)
-accuracy in GR-Definition 2.6 using the deviation |ŝ− s| from

the output ŝ produced by algorithm A (D) using mechanism M as

Pr [|ŝ− s| ≤ k] ≥
(

1− 1

3

)
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where we have reversed the direction of the inequalities and taken the comple-

mentary probability to show that this is the unnormalized version of our Defi-

nition 3 for a query sequence of length 1. GR also define the normalized query

accuracy level as α, which is identical to our usage in Definition 3.

GR-Theorem 3.1 uses the GR definitions of εi-minimal differential privacy,(
k, 1

3

)
-accuracy, and GR-Fact 1 composition to establish that any differentially

private mechanism M that is
(
αn
4
, 1
3

)
-accurate must purchase privacy loss of at

least εi ≥ 1
αn

from at least H ≥ (1− α)n individuals in the population. GR-

Theorem 3.3 establishes the existence of a differentially private mechanism that

is
((

1
2

+ ln 3
)
αn, 1

3

)
-accurate and selects a set of individuals H ⊂ {1, . . . , n} with

εi = 1
αn

for all i ∈ H and |H| = (1− α)n.

In order to understand the implications of GR-Theorems 3.1 and 3.3 and our ar-

guments about the public-good properties of differential privacy, consider the ap-

plication of GR-Definition 2.3 (Lap (σ) noise addition) to construct an ε-differentially

private response to the counting query based on GR-Theorem 3.3 with |H| =

(1− α)n and the indices ordered such that H = {1, . . . , |H|}. The resulting an-

swer from the query response mechanism is

ŝ =
H∑
i=1

bi +
αn

2
+ Lap

(
1

ε

)
,

which is the counting query version of equation (5) in the text. Because of GR-

Theorem 3.3, we can use a common ε = 1
αn

in equation (5).

If this were not true, then we would have to consider query release mecha-

nisms that had different values of ε for each individual in the population and

therefore the value that enters equation (5) would be much more complicated. To

ensure that each individual in H received εi-minimally differential privacy, the
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algorithm would have to use the smallest εi that was produced for any individ-

ual. In addition, the FairQuery and MinCostAuction algorithms described next

would not work because they depend upon being able to order the cost functions

υiεi by υi, which is not possible unless εi is a constant or υi and εi are perfectly

positively correlated. Effectively, GR-Theorem 3.3 proves that achieving (α, β)-

accuracy with ε-differential privacy requires a mechanism in which everyone who

sells a data-use right gets the best protection (minimum εi over all i ∈ H) offered

to anyone in the analysis sample. If a change in the algorithm’s parameters results

in a lower minimum εi, everyone who opts to use the new parameterization re-

ceives this improvement. In addition, we argue in the text that when such mech-

anisms are used by a government agency they are also non-excludable because

exclusion from the database violates equal protection provisions of the laws that

govern these agencies.

Next, GR analyze algorithms that achieve O (an)-accuracy by purchasing ex-

actly 1
αn

units of privacy loss from exactly (1− α)n individuals. Their algorithms

FairQuery and MinCostAuction have the same basic structure:

• Sort the individuals in increasing order of their privacy cost, υ1 ≤ υ2 ≤ . . . ≤

υn.

• Find the cut-off value υk that either exhausts a budget constraint (FairQuery)

or meets an accuracy constraint (MinCostAuction).

• Assign the set H = {1, . . . , k} .

• Calculate the statistic ŝ using a differentially private algorithm that adds

Laplace noise with just enough dispersion to achieve the required differen-

tial privacy for the privacy loss purchased from the members of H .
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• Pay all members of H the same amount, a function of υk+1; pay all others

nothing.

To complete the summary of GR, we note that GR-Theorem 4.1 establishes that

FairQuery is dominant-strategy truthful and individually rational. GR-Proposition

4.4 establishes that FairQuery maximizes accuracy for a given total privacy pur-

chase budget in the class of all dominant-strategy truthful, individually rational,

envy-free, fixed-purchase mechanisms. GR-Proposition 4.5 proves that their al-

gorithm MinCostAuction is a VCG mechanism that is dominant-strategy truth-

ful, individually rational and O (αn)-accurate. GR-Theorem 4.6 provides a lower

bound on the total cost of purchasing k units of privacy of kυk+1 GR-Theorem 5.1

establishes that for υ ∈ Rn
+, no individually rational mechanism can protect the

privacy of valuations υ with
(
k, 1

3

)
-accuracy for k < n

2
.

In our application of GR, we use N as the total population. Our γi is identi-

cal to the GR υi. We define the query as a normalized query, which means that

query accuracy is defined in terms of α instead of k; hence, our implementation of

the VCG mechanism achieves
(
α, 1

3

)
-accuracy rather than

(
αN, 1

3

)
-accuracy. We

define the individual amount of privacy loss in the same manner as GR.

A.3 Properties of the Indirect Utility Function in Section 4

We specify the indirect utility function for a given consumer as

vi
(
yi, ε, I, y

˜i, p
)

= −
L∑
`=1

ξ` ln p`+ln yi−γi (1 + ln yi − E [ln yi]) ε+ηi (1 + ln yi − E [ln yi]) I

where (γi, ηi) > 0, ξ` > 0,
∑L

`=1 ξ` = 1 and E [ln yi] = 1
N

∑N
i=1 ln yi. To establish that

this is an indirect utility function for a rational preference relation, we prove that
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the vector v is homogeneous of degree zero in (p, y), nonincreasing in p, strictly

increasing in y, quasiconvex in (p, y), and continuous in (p, y).

To prove that vi (yi, I, φ, y, p) is homogeneous of degree zero in (p, y), note that

for all λ > 0

vi
(
λyi, ε, I, λy

˜i, λp
)

= −
L∑
`=1

ξ` ln (λp`) + ln (λyi)− γi (1 + ln (λyi)− E [lnλyi]) ε

+ηi (1 + ln (λyi)− E [lnλyi]) I

= −
L∑
`=1

ξ` lnλ−
L∑
`=1

ξ` ln p` + lnλ+ ln yi

−γi (1 + lnλ+ ln yi − E [lnλ]− E [ln yi]) ε

+ηi (1 + lnλ+ ln yi − E [lnλ]− E [ln yi]) I

= −
L∑
`=1

ξ` ln p` + ln yi − γi (1 + ln yi − E [ln yi]) ε

+ηi (1 + ln yi − E [ln yi]) I

= vi
(
yi, ε, I, y

˜i, p
)

(29)

since
∑
ξ` = 1 and lnλ = E [lnλ] . Since homogeneity of degree zero holds for

every vi, it holds for v.

For all λ > 1,

vi
(
yi, ε, I, y

˜i, λp
)

= − lnλ−
L∑
`=1

ξ` ln p` + ln yi − γi (1 + ln yi − E [ln yi]) ε

+ηi (1 + ln yi − E [ln yi]) I

< −
L∑
`=1

ξ` ln p` + ln yi − γi (1 + ln yi − E [ln yi]) ε

+ηi (1 + ln yi − E [ln yi]) I

= vi
(
yi, ε, I, y

˜i, p
)
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since λ > 1, ξ` > 0 for all ` and
∑
ξ` = 1. Therefore, v is nonincreasing in p.

For all λ > 1,

vi
(
λyi, ε, I, λy

˜i, p
)

= −
L∑
`=1

ξ` ln p` + ln (λyi)− γi (1 + ln (λyi)− E [lnλyi]) ε

+ηi (1 + ln (λyi)− E [lnλyi]) I

= −
L∑
`=1

ξ` ln p` + lnλ+ ln yi

−γi (1 + lnλ+ ln yi − E [lnλ]− E [ln yi]) ε

+ηi (1 + lnλ+ ln yi − E [lnλ]− E [ln yi]) I

> vi
(
yi, ε, I, y

˜i, p
)

since λ > 1 and lnλ = E [lnλ] . Therefore, v is strictly increasing in y.

To prove quasiconvexity in (p, y), since we already showed vi
(
yi, ε, I, y

˜i, p
)

is

homogeneous of degree zero in (p, y), it suffices to show that the set
{
p ∈ RL

++ : vi(p, y) ≤ v̄
}

is convex. But this follows simply from the concavity of the logarithmic function.

Continuity in (p, y) follows from the continuity of ln (x). Therefore, v is a vector

of proper indirect utility functions.

A.4 The Multiplicative Weights Exponential Mechanism Algo-

rithm

We provide a complete description of the MWEM mechanism based on the pre-

sentation in HLM.

To maintain consistency with the presentation in Sections 2 and 4, we present

the MWEM algorithm using an unnormalized histogram to represent both the

confidential and synthetic databases, and normalized linear queries operating on

both the confidential and synthetic databases. This represents a departure from
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the original presentation by HLM, which they give using an unnormalized his-

togram and unnormalized queries. All symbols in the algorithm described below

have the same meaning as in our main text.

Algorithm Multiplicative Weights Exponential Mechanism

Input: An unnormalized histogram, x, from a database whose elements have car-

dinality |χ|; number of records in the original database, ||x||1 = N ; differen-

tial privacy parameter ε > 0; a number, T , of iterations; and a list of allow-

able normalized linear queriesQwith cardinality |Q|. Each normalized linear

query, f(x) ≡ 1
N
mTx where m ∈ [−1, 1]N .

1. Set the Laplace scale parameter: σ = 2T/ε.

2. Initialize the synthetic database: x̃0 = N
|χ|u|χ|, where u|χ| is the unit vector of

length |χ|.

3. Initialize a probability distribution over Q: p0 = 1
|Q|u|Q|.

4. for t← 1 to T

5. for each f ∈ Q

6. Define score s(x, f)← |N(f(x̃i−1)− f(x)|.

7. Define r(f)← exp(ε× s(x, f)/4T ).

8. end for

9. Update: pt ← [r(f)]f∈Q.

10. Normalize: pt ← pt
||pt||1 .

11. Sample ft from Q given probability distribution pt over Q (This is the

exponential mechanism component.)

12. Sample At from Lap(σ).

13. Compute the noisy answer to ft using the original database, ât ←

ft(x) + At. (This is the Laplace mechanism component.)

14. Compute the answer to ft using the synthetic database, ãt ← ft(x̃[t−1]).
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15. Compute the difference between the noisy and synthetic answers: dt ←

ât − ãt.

16. update mechanism: expend some of the privacy budget to update the

synthetic data.

17. for i← 1 to |χ|

18. Update: yt[i]← x̃t−1[i]× exp(ft(i)× dt/2).

19. Normalize: x̃t[i]← N × yt[i]∑
i yt[i]

.

20. end for

21. end for

22. Output: x̃← Avgt<T x̃t

Here we highlight the key ideas as they relate directly to the notation we

use in our analysis. HLM establish that the MWEM algorithm is ε-differentially

private (their Theorem 2.1). In each of the T iterations, both the exponential

mechanism and the Laplace mechanism are parametrized by ε/2T . Composition

therefore implies ε-differential privacy. HLM state an error bound for MWEM

in their Theorem 2.2. Their reported exact bound for unnormalized queries is

2N
√

log |χ|
T

+ 10T log |Q|
ε

. We rescale the error bound by database size to account for

the normalization. Converting to normalized queries gives an exact bound on α

of 2
√

log |χ|
T

+ 10T log |Q|
Nε

. HLM note that the optimal number of iterations is the value

of T that minimizes the α bound. The optimal value is T =

(
εN
√

log |χ|
10 log |Q|

)2/3

.

In practice, the basic algorithm requires some adjustment to give acceptable

performance. None of these adjustments affect the privacy or accuarcy guaran-

tees. HLM suggest such adjustments in their Sections 2.3.1 and 2.3.2. In particu-

lar, within each iteration the update rule may be applied to all previously sampled

queries, multiple times, which can improve the fit of the synthetic database to the

full query set without additional privacy loss. We include these variations in our
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own experiment. The exact implementation details are reported in the replication

archive that accompanies this article (Abowd and Schmutte 2017).

A.5 Details of Data Sources and Data Preparation

We use data from several different sources in our empirical applications. These

data and the code used to prepare them are available in a replication archive

(Abowd and Schmutte 2017).

A.5.1 Preparation of Synthetic Population Data on Income

To simulate publication of income statistics from a population database, we use

the Bayesian bootstrap (Rubin 1981) to construct a synthetic population from the

five-year ACS 5-year Public-Use Microdata Samples (ACS PUMS) for the years

2010–2014 (U.S. Census Bureau 2016). Our process is as follows:

• From the raw ACS files, retain the variables ADJINC (adjustment income

factor), PWGTP (person weight), AGEP (age), PINCP (total income).

• Retain records for individuals with AGEP reported between 18 and 64, inclu-

sive.

• Let nyr be the number of records for 18–64 year-old individuals in each year.

So n2010 is the number of such records from 2010, for example.

• We want to generate a synthetic population with size equal to the estimated

population of 18–64 year old individuals in 2012, N = 197, 040, 596, re-

ported by Census from the full ACS (U.S. Census Bureau, Population Di-

vision 2013).

• Let nacs = n2010 + n2011 + n2012 + n2013 + n2014
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• Let wi be the person-weight attached to individual i, reported as PWGTP.

• Let xi be the data record of individual i.

• Let yr(i) be the year associated with record i.

• Define α as a vector of length
∑

(nyr) = nacs whose entries are (w̃i ∗ nyr(i)),

where w̃i = wi/
∑

(wi, all years).

• Sample θ from the Dirichlet(α) distribution.

• Draw from the Multinomial(N, θ) distribution. This gives the list of obser-

vations from the survey data to retain in the population-level database.

• For the population database, convert reported income to 2012 dollars and

then group income into bins with width $2,000. This choice of width is arbi-

trary, and, importantly, non-private.

• As implemented, there are 797 bins for income. Bin 0 for income < −16000,

Bin 796 for income ≥ 1,574,000, Bins 1 through 795 are in 2000 dollar incre-

ments. 2000 was selected arbitrarily. The upper and lower bins were set to

match the bottom- and top-coding limits in the ACS PUMS.

A.5.2 Preparation of Synthetic Population Data on Health Status

We simulate publication of the population distribution of body-mass index (BMI)

using the Bayesian bootstrap to construct a synthetic population from the Na-

tional Health Interview Survey for the year 2015 (Minnesota Population Center

and State Health Access Data Assistance Center 2016). Our process is as follows:
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• From the raw data retain the variables year, sampleweight, and bmi. Re-

tain only records for from 2015 and remove records that are out of universe

or missing BMI.

• Let nnhis be the number of records in NHIS year 2015 with reported BMI.

• The sampling frame for the BMI variable in NHIS is designed to be repre-

sentative of the civilian non-institutional population age 18 or above in 2015.

The size of that population is estimated to be N = 242, 977, 154 according to

the Census 1-year ACS estimates for 2015 (U.S. Census Bureau, Population

Division 2015).

• Let wi be the person-weight for individual i (sampleweight).

• Let xi be the data record of individual i.

• Define α as a vector of length nnhis whose entries are (w̃i∗nnhis), where w̃i =

wi/sum(wi, observed samples only). This rescales the weights to account for

dropped observations with missing bmi.

• Sample θ from the Dirichlet(α) distribution.

• Draw from the Multinomial(N, θ) distribution. This gives the list of obser-

vations from the survey data to retain in the population-level database.

• We bin BMI into 800 bins of equal length between the allowed lower and

upper limits of the bmi.

A.5.3 The Federal Statistical System Public Opinion Survey (FSS POS)

The FSS POS is a national public opinion survey conducted in conjunction with

Gallup daily tracking surveys. It was developed by the Census Bureau in collab-
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oration with other statistical agencies with the primary goal of measuring pub-

lic trust in official statistics. After preliminary testing, the FSS POS was initially

rolled out as a set of 25 questions added to the Gallup Overnight Tracking Poll.

Between 2012 and 2015 there have been three waves of the FSS POS, with multiple

rotations.

The set of variables collected in the FSS POS component change within and

across each wave. However, the questions we focus on in this paper, as described

in Section 5.2.2, are asked in every interview. In addition to the FSS POS compo-

nent, the data include Gallup Daily Questions routinely asked of all respondents.

Of these, we use categorical variables measuring gender, race, ethnicity, age (in

nine bins), and monthly income (in 12 bins).

Not all respondents answer all questions. Rather than ignore the missing data,

we multiply impute the missing values under a model that conditions on the ob-

served values. Because the missing data pattern is not monotone, we use the fully

conditional specification (FCS) method (Buuren et al. 2006). We specify a logistic

regression model for each variable conditioning on the remaining variables, al-

lowing the questions on privacy and accuracy attitudes to be fully interacted with

each other and with income. We produce 500 implicates. The reported correla-

tions and standard errors are computed using combining formulas that account

for the within- and between-implicate variance (Gelman et al. 2013). As we note

in the text, the results are qualitatively similar if we simply drop those cases with

missing data values.

All variables used in the analysis are shown in the main text.
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A.5.4 The Cornell National Social Survey

We use raw data from the the Cornell National Social Survey(CNSS) obtained

from the CNSS integrated data application, obtained via [http://www.ciser.

cornell.edu/beta/cnss/] by selecting all variables for all years (Cornell In-

stitute for Social and Economic Research and Survey Research Institute n.d.). All

variables used in the analysis are shown in the main text.

App. 16

http://www.ciser.cornell.edu/beta/cnss/
http://www.ciser.cornell.edu/beta/cnss/

	37 abowd-schmutte-privacy_WP.pdf
	1 Introduction
	2 Basic Model
	2.1 Databases, Histograms, and Queries
	2.1.1 Histogram Representation
	2.1.2 Queries

	2.2 Query Release Mechanisms, Privacy, and Accuracy
	2.3 Interpretation

	3 The Suboptimality of Private Provision
	3.1 Model Setup
	3.2 Cost of Producing Data Accuracy
	3.3 Private, Competitive Supply of Data Accuracy
	3.4 Competitive Market Equilibrium
	3.5 Proof of Suboptimality

	4 The Optimal Provision of Accuracy and Privacy
	4.1 Modeling Production Possibilities
	4.1.1 The Multiplicative Weights Exponential Mechanism
	4.1.2 The Feasible Trade-off between Privacy Loss and Accuracy
	4.1.3 The Production Possibilities Frontier

	4.2 The Optimal Levels of Accuracy and Privacy 
	4.2.1 Preferences 
	4.2.2 The Social Planner's Problem


	5 Applications
	5.1 The Specification of Preferences 
	5.2 Application 1: Publication of Income Statistics
	5.2.1 Publication Technology
	5.2.2 Measuring Preferences
	5.2.3 Solution
	5.2.4 Simulations

	5.3 Application 2: Publication of Health Status Statistics
	5.3.1 Publication Technology
	5.3.2 Measuring Preferences
	5.3.3 Solution
	5.3.4 Simulations

	5.4 Discussion

	6 Conclusion
	A.1 Proofs Omitted from the Text
	A.2 Translation of the Ghosh-Roth Model in Section 3 to Our Notation
	A.3 Properties of the Indirect Utility Function in Section 4 
	A.4 The Multiplicative Weights Exponential Mechanism Algorithm 
	A.5 Details of Data Sources and Data Preparation
	A.5.1 Preparation of Synthetic Population Data on Income
	A.5.2 Preparation of Synthetic Population Data on Health Status
	A.5.3 The Federal Statistical System Public Opinion Survey (FSS POS)
	A.5.4 The Cornell National Social Survey






