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Abstract 
 

Researchers have been using a variety of methods to estimate productivity at the firm level. Absent 
data on prices and quantities, these methods yield what have become known as revenue 
productivity measures. How these measures are related to physical productivity depends on the 
assumptions about the environment in which establishments operate. It is perhaps less recognized 
that the differences across estimation methods have important consequences for interpretation. 
One such difference concerns revenue function estimates: while cost-share-based coefficients are, 
in principle, equivalent to factor elasticities, regression-based estimates equal factor elasticities 
only under strict assumptions about product markets. This implies that revenue residuals are 
conceptually different under these two broad approaches. Using plant-level manufacturing data for 
the U.S., we look at the empirical relevance of such distinctions in the context of key stylized facts 
of the productivity literature. First, we find non-trivial differences in estimated elasticities and 
returns to scale. The variation in elasticities affects numerical results on dispersion, yet all methods 
imply large productivity differences across establishments. More productive plants are shown to 
be more likely to grow and survive by all reviewed methods, although differences remain in the 
quantitative marginal effects of productivity. Reallocation is found to be comparable and 
productivity enhancing by all methods considered, but within-plant growth seems to be more 
sensitive. We find evidence that imputation and imposing homogeneous elasticities negatively 
affect within-industry dispersion. In addition, imputation results in some attenuation in growth and 
exit coefficients but does not invalidate qualitative conclusions. 
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1 Introduction

A ubiquitous and influential finding in the empirical literature on firm dynamics is that there
is large dispersion in measured productivity across establishments within narrowly defined
industries. This finding has generated much analysis of the causes and consequences of such
dispersion. Explanations of possible causes include curvature in the profit function that prevents
the most productive firm from taking over an industry, frictions in adjustment of factors and
the entry and exit of plants, and distortions that drive wedges in the forces pushing towards the
equalization of marginal products across plants. In terms of consequences, there is a burgeoning
literature on the connection between reallocation dynamics, growth and productivity. Many
papers have found that more productive plants are more likely to grow and less likely to exit,
implying that the reallocation of inputs observed across plants is productivity enhancing. In
like fashion, there is increased attention to reasons why these reallocation dynamics may vary
over the business cycle and across countries and in turn how these account for differences in
economic performance across time and countries. In an important related area of inquiry, a
recent theoretical and empirical literature hypothesizes that gains from opening markets to
trade are due to the improved allocation of resources induced by trade.1

While there is considerable consensus that accounting for the dispersion of productivity
and its connection to reallocation are important for understanding differences in economic
performance, there is not a consensus about the basics of estimating plant-level productivity.
Given that typical micro datasets contain information about revenues and input expenditures
but not quantities, the majority of results are based on what have become known as revenue
productivity measures. How these measures are related to physical productivity depends on
the assumptions about the environment in which establishments operate.

A variety of methods are available to researchers to estimate revenue productivity. One ap-
proach, actively used by the statistical agencies in official aggregate and industry-level produc-
tivity statistics, is based on the cost-shares of input expenditures. We will call the productivity
measure implied by this approach tfprcs. If plants are cost-minimizing and the assumption of
constant returns to scale holds, then cost-shares are valid estimates of factor elasticities and
the implied revenue productivity measure will be a product of output prices and physical pro-
ductivity. Other approaches estimate elasticities using regression techniques. We will denote
the implied revenue productivity measure by tfprrr. Econometric issues aside2, the most impor-
tant property that distinguishes cost-share-based methods from regression-based techniques is
the fact that absent data on quantities or further assumption about demand, the latter yields
revenue elasticities, while the former in principle yields factor elasticities even when using data
on revenues and expenditures.3 This implies these revenue productivity measures are concep-

1See the survey in Syverson (2011) for relevant cites to the findings in the literature and the theoretical and
empirical literature that has developed in light of the large dispersion in productivity and its relationship to
reallocation, growth and aggregate productivity.

2Since ordinary least squares is problematic given the endogeneity of factor inputs, alternative estimation
methods based on instrumental variables techniques have been developed to address this endogeneity. While
these methods are attractive in principle, they are not commonly used given the lack of plausible instruments
on a wide scale basis to cover all industries over all time periods. Instead, methods have been developed that
seek to deal with the endogeneity issues by using proxies for the productivity residuals. Numerous alternative
proxy estimation approaches have been developed with a robust debate about the respective merits of the each
approach. Different approaches make alternative assumptions about the timing of input decisions with respect
to the realization of shocks and the relative importance of addressing the impact of selection on estimation.

3Although earlier papers recognized the difference between the two, researchers have not focused on such
distinctions. We believe this is due to the fact that, numerical differences notwithstanding, results under
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tually different. The two will be equal only in the case when output is homogeneous and/or
there is no price heterogeneity. Under these circumstances, revenue productivity differences
across plants can be interpreted as differences in technical efficiency.4 Decomposing revenue
elasticities into factor elasticities and demand elasticities requires more assumptions about de-
mand and alternative estimation techniques. Exploring the role of demand has become an
active area of research in recent years,5 and existing evidence suggests revenue residuals reflect
both technical efficiency and demand side factors and the estimated revenue elasticities reflect
both the technology and the demand structure. Exactly how these demand side factors impact
the interpretation of exercises resulting from a specific estimation method will depend on the
assumed demand structure.

In this paper, our objective is to assess the empirical relevance of such distinctions. First,
we compare cost-share-based elasticities to revenue elasticities. To interpret these we follow
the approach described in Klette and Griliches (1996) to derive factor elasticities after jointly
estimating revenue elasticities and demand elasticities. In addition, we find sizeable differences
among regression based methods themselves, particularly in terms of capital elasticities and
therefore estimated returns to scale. Second, our results show that cost-share-based measures
and regression-based measures have different implications for the productivity rank of plants
within industries, confirming earlier findings on the differences between these methods. Third,
in spite of these differences, the basic facts about productivity dispersion remain largely ro-
bust in the sense that all methods yield considerable within-industry dispersion of productivity.
However, there are quantitative differences and since the precise estimate of productivity dis-
persion matters for some analyses this variation is potentially quite important. Fourth, our
reduced form regressions suggest both approaches have generally similar implications about
the relationship between growth, survival and productivity at the establishment level. Numer-
ical differences aside, more productive establishments are found to be more likely to grow and
survive.

Finally, we assess whether the distinction between the two broad approaches matters for the
conclusions of the structural decomposition literature on aggregate productivity growth (APG).
We show that the difference between revenue and factor elasticities can be important and assess
whether this distinction is empirically relevant by implementing the decomposition proposed
by Petrin and Levinsohn (2012). We find that all estimation methods yield a substantial
contribution of reallocation to APG. However, there is variation across methods in terms of the
quantitative significance of within-plant productivity growth, fixed costs and frictions.

The generally similar conclusions we obtain in this paper have an important implication for
a popular area in productivity research. Hsieh and Klenow (2009) show that, under specific
assumptions about demand and production technology, the dispersion in cost-share-based pro-
ductivity measures reflects the effect of distortions. In contrast, Foster, Grim, Haltiwanger, and
Wolf (2016b) (hereafter FGHW) show that dispersion in regression-based productivity measures
are a function of physical productivity and demand shocks. These theoretical findings could in
principle be justified by the conceptual differences mentioned above. On the other hand, our
empirical findings in this paper indicate that these productivity indicators are positively corre-

alternative estimation methods show some degree of similarity.
4If prices are heterogenous reflecting exogenous quality differences in outputs and inputs, then variation in

revenue productivity reflects differences in technical efficiency adjusted for quality differences.
5See, e.g., Foster, Haltiwanger, and Syverson (2008) and De Loecker (2011) on the difference between rev-

enue productivity and physical productivity. FGHW (hereafter FGHW) further investigate the implications of
modeling demand in the context of the recent literature on misallocation.
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lated and that their implied dispersion is comparable. This is an interesting finding because if
the assumptions in Hsieh and Klenow (2009) hold, they imply distortions are positively corre-
lated with demand and technical efficiency shocks. One could argue for correlated distortions
but this explanation raises the question why more distorted firms are more likely to be hit by
positive demand shocks and technical efficiency shocks. An alternative interpretation attributes
dispersion to the effect of adjustment frictions. In the presence of such frictions, plants do not
adjust production factors instantaneously and therefore high-productivity plants will exhibit
high revenue productivity estimates.

We think the robustness of the core findings in the literature has not been settled. In his
survey, Syverson (2011) discusses this debate and observes that many papers in the literature
explore the robustness of their findings to alternative estimation methods. Our reading, like his,
is that many papers report that results are reasonably robust to alternative estimation methods.
But most papers focus on a specific question often for a narrow set of industries. It is less clear
to us how robust core findings are to these issues. The literature offers some guidelines, based
on Monte Carlo evidence6, as to which method is optimal in the presence of certain types of
measurement or specification error. Important examples include heterogeneity in input prices,
technologies or measurement error in output, primary inputs, or some combination of these.
These experiments tell us which estimation method is optimal conditional on isolated factors.
While such evidence is valuable, in practice there may be a variety of sources of error. An
equally important point is that existing Monte Carlo studies do not take into account the
wide disparities in sample size that are available for empirical estimation. A limitation of our
approach is that we cannot and do not take a stand on the optimal method. Instead, our
objective is to identify the nature of the sensitivity of key results to the distinction described
above.

The paper is organized as follows. We discuss our methodology and data in Sections 2 and 3.
Section 4 describes the effect of estimation methods on the distribution of elasticity estimates.
Section 5 describes the implications of the differences in elasticity distributions on productiv-
ity dispersion, plant growth and survival, and aggregate productivity growth decompositions.
Section 6 concludes.

2 Methodology

2.1 Productivity measures

A useful starting point is a conceptual measure of revenue per composite input under Cobb-
Douglas technology, that allows the decomposition of demand side and supply side factors.
Following the notation in FGHW, this measure can be written in logs as

tfpri =pi + qi −
∑
j

αjxij = pi + tfpqi, (1)

where i indexes plants, p, q and x denote output prices, quantities and inputs, respectively.
Equation (1) makes explicit that tfpri confounds the effect of output prices and physical produc-
tivity, denoted by tfpqi. Given that typical micro datasets contain information about revenues
and input expenditures but not quantities, this property has the important implication that

6Van Biesebroeck (2007) explores the behavior of a number of estimators in the presence of measurement
error and parameter heterogeneity. Martin (2008) investigates a case when variable inputs are measured with
error.
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the majority of results in the empirical productivity literature is based on what have become
known as revenue productivity measures.

One typical measure is equivalent to tfpri if one is willing to assume that returns to scale is
constant. The equality holds because under this assumption, cost shares equal their respective
factor elasticities, denoted by αj in equation (1).7 Formally,

tfprcsi =pi + qi −
∑
j

αcsj xij = tfpri. (2)

Other estimation methods rely on regression techniques to obtain revenue productivity. We
denote these measures by tfprrri in order to distinguish them from tfprcsi . Absent data on prices
and/or quantities, these methods yield revenue function estimates or elasticities, which are a
function of factor elasticities and demand parameters, in general. As a result, tfprrri depends on
both physical productivity and demand shocks and is not equal to either tfpri or its estimate,
tfprcsi :

tfprrri = pi + qi −
∑
j

βjxij 6=

{
tfpri
tfprcsi

(3)

To highlight the importance of the difference relative to tfprcsi and tfpri, we denoted revenue
elasticities by βj in equation (3). It can be shown that, under the assumption of isoelastic
demand, factor elasticities are equal to the ratio of revenue elasticities and a parameter that
determines the price elasticity of output: αj = βj/ρ. We will discuss this relationship in more
detail in section 4 and highlight the role of such distinctions in subsequent analyses where
appropriate.

2.2 Estimation methods

There are various estimation methods available to researchers; table 1 summarizes the pro-
cedures we use throughout the paper. We discuss the strengths and weaknesses of the most
popular methods from a practical point of view.

Table 1: Estimation methods.
Method Description Proxy Estimator Productivity

measure
GA Foster, Haltiwanger, and Krizan (2001) Cost-shares tfprcs

OLS Ordinary Least Squares LS tfprrr

OP Olley and Pakes (1996) Investment NLS tfprrr

LPGR Levinsohn and Petrin (2003) Materials GMM tfprrr

WLPE Wooldridge (2009) Energy Efficient GMM tfprrr

WLPM Wooldridge (2009) Materials Efficient GMM tfprrr

All productivity measures in the table are estimated using an output-based production function.

Cost-share-based or growth accounting methods (GA) exploit first order conditions from
the firm’s cost-minimization problem. There are several advantages to this procedure. For
example, this is the only estimator that - conditional on an assumption about returns to scale

7It can be shown that given output and input prices and a measure of returns to scale, the shares of input
expenditures in the plant’s total cost are equal to the corresponding factor elasticities.
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- provides direct estimates of factor elasticities without data on prices and quantities. This is a
useful property because it implies cost-share-based elasticities are robust to alternative demand
structures. In addition, using the share of input expenditures in total costs rather than in value
added has the advantage that the assumption of perfectly competitive markets is not required.
In addition, it allows the exact shape of technology to vary even at the plant-level.8 A potential
caveat is that a known estimate of, or an assumption about, returns to scale is necessary. In
addition, elasticity estimates may be biased if the first order conditions are violated. This
property is relevant because it is unlikely that first order conditions hold for every plant at
all points in time. Therefore, common factor elasticities across plants in the same industry
and/or over time are frequently imposed (see Syverson (2011)). We explore the implications of
these assumptions further in appendix A.5.3 and note that all alternative estimation methods
discussed in this paper require such restrictions.

Ordinary least squares (OLS) estimates of elasticities are inconsistent because unobserved
productivity shocks affect the decision problem of plants, see Marschak and Andrews (1944).
Additional biases may result if prices are unobserved and correlated with factor inputs, see
Klette and Griliches (1996).

The remaining methods we examine belong to a class often referred to as proxy methods
because they use firm-level indicators to control for the effect of unobserved productivity during
estimation. The original logic, developed in Olley and Pakes (1996) (OP hereafter), is based on
assuming a monotonous and increasing relationship between the proxy and productivity. On
condition that productivity is the only unobserved state variable, plant-level variation in the
proxy can be interpreted as a reflection of the variation in productivity shocks. This conclusion
together with timing assumptions about the plant’s decisions, can be used to recover all the
elasticities.9 OP propose investment as a proxy. There is ample evidence that plant-level
investment is lumpy (see for example Cooper and Haltiwanger (2006)), and lumpiness means
bursts of investment activity are followed by inactive periods where observed net investment is
zero rendering these observations uniformative for OP. To eliminate the potential efficiency loss,
Levinsohn and Petrin (2003) (LP hereafter) advocate using intermediate input expenditures or
energy costs.10 LP argue that if adjusting intermediate inputs is less costly, then they are likely
to be more responsive to productivity shocks. This is especially relevant in the presence of
non-convexities in capital adjustment.

The identifying assumptions regarding the timing of plants’ input decisions have been crit-
icized by Ackerberg, Caves, and Frazer (2015) (ACF hereafter). ACF argue that the optimal
labor allocation is also a deterministic function of productivity and therefore the labor elasticity
is not identified in the first step. They approach the identification problem by applying a two
step procedure that does not try to identify any of the elasticities in the first stage. Wooldridge

8Further, evidence in Van Biesebroeck (2007) suggests that this method is accurate if the data are not subject
to much measurement error.

9Proxy methods are multi-step procedures, where the first-step-estimates of variable input elasticities are
determined by OLS and the coefficients of quasi-fixed inputs such as capital are separately identified using
moment conditions formed by estimated productivity innovations and lagged capital values. These methods
rely on polynomial approximations at two points of the estimation algorithm. First, a polynomial of the state
variables and the proxy is included to approximate unobserved productivity. Second, the algorithm exploits a
Markovian assumption about the plant-level productivity process in order to extract productivity innovations. It
is important to note that while polynomial series approximations are flexible, higher order terms may exacerbate
measurement error likely present in microdata.

10LP highlight that firms almost always report positive use of these variables in their data implying truncation
due to zero proxy values is less severe.
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(2009) proposed to circumvent the identification problem by estimating all the coefficients in a
single GMM step and using earlier outcomes of both capital and variable inputs as instrumental
variables. His approach is advantageous because it is robust to the ACF critique and because
the efficiency loss that arises from two-step estimation is eliminated.

In closing this section we note that estimating factor elasticities under endogenous plant-
level prices requires additional assumptions about demand, see Klette and Griliches (1996) or
De Loecker (2011) as examples. We will see in section 4 that such considerations are empirically
relevant for inferences about returns to scale.

3 Data

3.1 Source data

Our industry-level data, including deflators, capital rental prices and depreciation rates, are
taken from the NBER-CES Manufacturing database11, the Bureau of Labor Statistics and the
Bureau of Economic Analysis. We use establishment-level information from the Annual Survey
of Manufactures (ASM), Census of Manufactures (CM) and the Longitudinal Business Database
(LBD).

The CM collects data in years ending in ’2’ and ’7’ for roughly 180,000 - 240,000 plants.
Establishments with less the five employees are not sent forms. Payroll and employment data
for these very small plants are imputed using administrative records.12 The ASM surveys
50,000-70,000 establishments in non-Census years and is part of the CM in Census years. It is
a rotating panel re-defined two years after the latest Census. The LBD contains the universe
of non-agricultural business establishments with paid employees and is based on both survey
information and administrative records. Appendix A in Foster, Grim, and Haltiwanger (2016a)
(FGH, hereafter) describes these data in more detail. Our initial dataset includes approximately
3.5 million plant-year observations between 1972-2010.

We use the ASM and CM to construct plant-level measures of inputs and output. Output
is measured as a deflated value of total value of shipments, corrected for the change in finished
goods and work-in-process inventories. Labor input, total hours worked, is constructed as the
product of production worker hours and the ratio of the total wage bill to production worker
wages. Our intermediate input variable is given by the the sum of three items: cost of parts,
contracted work and goods resold. The energy input consists of deflated electricity and fuel
costs. We create establishment-level capital stock measures using a version of the Perpetual
Inventory Method, which calculates current capital as a sum of the depreciated stock and
current investment. We set plants’ initial capital stock to a deflated book value taken from
the ASM and CM. More details on the construction of input and output measures can be
found in appendix B of FGH. The LBD serves two purposes in our analysis. First, high-quality
longitudinal identifiers help us determine the accurate time of establishments’ exit which is a
necessary indicator to estimate the relationship between productivity, growth and exit. Second,
the LBD acts as a universe file; we use employment and establishment age data from the LBD
to construct inverse propensity score weights that control for non-randomness in our sample.13

11The NBER-CES Manufacturing Industry database is available at http://www.nber.org/nberces. An
earlier version is documented in Bartelsman and Gray (1996).

12We drop administrative records cases.
13Employment data is useful to determine the probability of size-based selection into the ASM and CM.

Establishment age is an important determinant of the probability that the productivity level of an establishment
is calculated from imputed data.
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3.2 Analysis samples

The analyses in this paper exploit three different samples. For questions about the distributions
of elasticities, productivity dispersion and growth and survival, we look simultaneously at two
samples, which we refer to as the 10 and 50 largest industry samples. These samples need to
fulfill two potentially contradicting requirements. First, the number of plant-year observations
within each industry should be large enough so that elasticities can be estimated by all reviewed
methods. Second, industries should be defined narrowly enough so that we can plausibly assume
elasticities are constant across establishments.

Changes in industry classification systems over time make defining these samples more
complicated than simply choosing the 10 and 50 industries with the largest number of plant-
year observations. Since we estimate elasticities on an industry-by-industry basis, changes in
the classification system entail spurious breaks in plant-level time series and a drop in sample
size. In the first part of the analysis we address these issues by selecting sets of 4-digit SIC
industries which were not affected by changes or which were mapped one-to-one into another
industry. There are 292 such industries of which we selected the first 10 and 50 based on the
number of observations.

We create a third dataset to test whether the implications of the decomposition of aggregate
productivity growth described in Petrin, White, and Reiter (2011) (PWR hereafter) are sensitive
to the way productivity is estimated. Since we are attempting in part to replicate the results
in PWR, we create a roughly comparable dataset. PWR’s data spans the period between
1976-1996 so the 1987 change in SIC classification is relevant. To correct for these breaks, we
follow the first step of PWR’s procedure and assign the SIC code to any establishment observed
between 1987-1996. However, we deviate from their approach for cases only observed prior to
1987. If a plant is not assigned an industry code in the previous step, we apply a random
assignment procedure based on the share of shipments mapped from the 1972 to 1987 SIC
industry code. More details about the assignment procedure can be found in appendix A.2.

4 Elasticity distributions

We start by discussing differences in the distribution of capital elasticities. Next, we check
whether the elasticity-rank of industries varies with estimator choice. We conclude the section
by looking at the implications of estimator choice on returns to scale.

Figure 1 plots the density estimates of capital elasticities in the 50 most populous industries
and table 2 shows basic descriptive statistics. There are non-trivial differences in the mean,
dispersion and general shape of the distributions. Most notably, GA-based estimates tend to
be generally smaller than the rest. This is to be expected because GA-estimates are equivalent
to factor elasticities under the assumption of cost minimizing behavior and constant returns
to scale. In contrast, regression-based estimates yield revenue elasticities, which capture both
factor elasticities and demand side factors.

We now turn our attention to the revenue elasticity distributions and focus on indications
of possible biases in the discussion. Unfortunately, the differences in estimated distributions
alone do not tell much about the direction, much less the magnitude, of any bias. However, in
light of what we know about the way these methods address endogeneity, the differences may
give us clues as to whether or not they correct it in the right direction. The direction of the
bias in OLS-estimates is determined by several factors. First, since input demand functions are
increasing in productivity, OLS estimates are biased upward. If this is important in our data and
proxy methods correct for it, then we should see proxy-based distributions to the left of OLS.
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Figure 1 suggests that only LPGR is likely to yield lower β̂k. However, the direction of the bias
depends on additional factors. For example, Levinsohn and Petrin (2003) show that positive
correlation between capital and labor may cause β̂k to be biased downward, implying that the
elasticity distribution may emerge to the left of OLS not because LP corrects an upward bias
but because it includes a downward bias. A further complicating factor is selection. OP argue
that since plants’ profit and value functions are increasing in capital, larger establishments
anticipate larger future returns and therefore can operate at lower current productivity levels,
which also entails a negative bias in OLS. If OP corrects for such selection-induced negative
bias, and this effect is important in our data, then the OP-based β̂k distribution should be to
the right of OLS.
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Figure 1: Cross-industry distributions of β̂k.
The sample is 50 largest industries, estimators are described in table 1.

Table 2: Descriptive statistics of the between-industry distribution of β̂k.
Mean Median IQR Mean Median IQR

50 largest industries 10 largest industries
OLS .13 .10 .10 .14 .12 .15
OP .19 .14 .10 .21 .15 .27
LPGR .09 .06 .09 .11 .06 .09
WLPE .16 .15 .11 .17 .14 .07
WLPM .16 .12 .14 .15 .09 .14
GA .08 .07 .05 .09 .10 .06

See notes to table 1 for method definitions. 10 and 50 largest industries: most populous 4-digit industries
industries which were mapped 1-to-1 between classification systems.

We find that OP tends to result in higher β̂k than OLS suggesting that controlling for
selection-induced bias may be important. As for other proxy methods, WLPE and WLPM are
more likely to yield extreme β̂k even though the typical elasticities under these methods are
similar to those under OP. These results tell us that, in addition to proxy choice and addressing
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selection, the structure of the estimator - non-parametric two-step estimator versus efficient
GMM - may also have important consequences for capital elasticities. Similar conclusions hold
for the second moments of β̂k. The interquartile range measures, see the last column of table 2,
suggest that differences in the dispersion of these distributions are also non-trivial. For example,
the means of GA and LPGR are very close (.08 and .09 among the 50 largest industries) but
the difference in dispersion is almost twofold (.05 and .09). Finally, the elasticities of variable
inputs show stronger clustering, especially β̂l (figure 2). This is partly explained by the fact
that proxy methods estimate βl in an OLS step. The main conclusions about β̂e and β̂m are the
same, (figure A3): there are numerical differences in these distributions but they look generally
similar across estimation methods.
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kernel = epanechnikov, bandwidth = 0.0512

Figure 2: Cross-industry distributions of β̂l.
The sample is 50 largest industries, estimators are described in table 1.

Next, we explore whether the choice of estimator affects the ranking of industries by β̂k/β̂l.
If the estimation method is not crucial then industries’ rank should not vary across methods.
Our results suggest the opposite: we find there is a positive probability that different estimators
imply different industry rankings, see table A10 for details.14

In closing this section, we would like to highlight the different implications estimation meth-
ods have for returns to scale. GA-based elasticities are consistent with constant returns to scale,
by construction. In contrast, regression based revenue function estimators do not impose con-
stant returns to scale but do not provide direct returns to scale estimates either. However, if one
is willing to accept the assumption that plants’ face isoelastic product demand, joint estimation
of revenue elasticities and demand characteristics can be used to make inference about factor
elasticities and therefore returns to scale. We follow Klette and Griliches (1996), and jointly
estimate revenue function coefficients (βj) and a parameter that determines the price elasticity
of product demand (ρ) by regressing plant-level revenues on plant-level inputs and an indicator

14We further investigate the empirical properties of elasticity distributions in Appendix A.3. Those findings
highlight that some methods yield systematically more zero/negative elasticities than others. We find evidence
that, in certain cases, this can be attributed to small sample size and/or proxy choice.
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of industry-level demand. It can be shown that under isoelastic demand conditions, there is
a one-to-one mapping between the coefficient of industry-level demand (βq) and the demand

parameter: βq=1-ρ, implying that we can recover factor elasticities as α̂j=β̂j/ρ̂, and therefore
returns to scale

∑
jα̂j, see also FGHW and the web appendix therein for more details. Our

results, based on OP’s method,15 indicate that the elasticity of firm revenues with respect to
aggregate demand is a small positive number, implying a negative average price elasticity and
greater-than-1 markup value, see table A11 for more details. Consequently, factor elasticities
are larger than revenue elasticities in the average industry. However, the cross-industry dis-
tributions of these parameters suggest one should exercise caution when interpreting industry
specific results: the implied price elasticity estimate varies so much that it may even be positive
in certain industries which can be interpreted as a sign that demand parameters are poorly esti-
mated in these industries. To further illustrate the variation in these parameters, we compared
the densities of the sums of revenue and factor elasticities, see figure 3. The sum of estimated
factor elasticities shows large dispersion reflecting the variation both in revenue elasticities and
demand parameters suggesting that appropriate caution is needed when interpreting results,
especially on an industry-by-industry basis.
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Figure 3: Cross-industry distributions of
∑

j β̂j and
∑

j α̂j
β̂j and the demand parameter are jointly estimated using the method described in Olley-Pakes (1996).

5 Implications of the differences in elasticity distributions

In this section, we investigate whether the differences in elasticities matter for the core findings
in the empirical productivity literature. Specifically, we examine: productivity dispersion;
the relationship between productivity, growth and survival; and structural decompositions of
aggregate productivity growth (APG).

15We chose OP because adding more state variables in the available Stata implementation is straightforward.
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5.1 Productivity dispersion

Does the choice of estimator affect the second moment of the within-industry productivity
distribution? The answer is yes and no. The interquartile range (IQR) and standard deviation,
averaged over industries and time, suggest that differences in dispersion are nontrivial (table 3,
more details in table A12). The average IQR of the log-productivity distribution varies between
0.24 and 0.4 across methods. These values imply that the plant at the 75th percentile in the
average industry generates approximately 27-49% more revenue with the same amount of inputs
than the plant at the 25th percentile. However, the differences across methods suggest one must
exercise caution when using results for economic analysis where small changes in magnitudes
may make a big difference.

The choice of estimation method has consequences also for the within-industry productivity
rank of establishments. Table 4 shows that both the Pearson and Spearman rank correlations
are substantially smaller than 1 implying that where plants sit in the productivity distribution
is sensitive to choice of estimation method.16 Such differences notwithstanding, the results
confirm that productivity differences across establishments are invariably large no matter how
we measure it.

Table 3: Descriptive statistics of productivity distributions.
N (1000) IQR SD N (1000) IQR SD

50 largest industries 10 largest industries
OLS 455 0.26 0.26 185 0.22 0.20
OP 380 0.32 0.38 152 0.31 0.39
LPGR 457 0.29 0.31 188 0.29 0.28
WLPE 457 0.34 0.36 187 0.31 0.28
WLPM 457 0.40 1.88 188 0.33 0.35
GA 433 0.24 0.22 177 0.23 0.21

See notes to tables 1 and 2 for the description of methods and samples. All statistics are based on deviations
of plant-level log-productivity from industry- and time-specific means. All results shown were calculated using
non-outlier observations only (pre-, post-estimation). A version of the table including pre-estimation outlier
observations can be found in the appendix (table A12), results barely change.

Section 4 indicated that choosing one estimation method over another may have conse-
quences for elasticity distributions. The results in this section so far suggest that different
estimation methods imply invariably large dispersion, at least on average across industries and
time. However, table 3 demonstrates there are numerical differences. Should we think of these
as substantial? One way to answer this question is to test their equality by comparing confi-
dence bands around average dispersion or comparing industry-specific results. Figure 4 shows
simulated two-standard-error-wide confidence bands (narrow bars) around our dispersion es-
timates. If we interpret the narrow bars as approximately 95% confidence intervals, we can
conclude that dispersion measures under proxy methods are not significantly different from
each other. In other words, the sampling variation in revenue function estimates has similar
effects proxy-based estimates.17 The exception is GA, which generally yields lower dispersion.

Note that even if different methods yield similar average dispersion, industry-specific im-
plications may differ. To highlight the implications of estimators in economic analyses where

16WLPM yields especially low correlations with other methods.
17WLPM is more likely to yield extreme elasticity estimates and therefore dispersion. More details can be

found in table A16.
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Table 4: Correlations among within-industry productivity distributions, 50 largest industries.
OLS OP LPGR WLPE WLPM GA

Pearson
OLS 1
OP 0.51 1

LPGR 0.82 0.43 1
WLPE 0.51 0.46 0.52 1
WLPM 0.02 0.02 -0.15 0.15 1

GA 0.79 0.46 0.68 0.51 0.09 1
Spearman

OLS 1
OP 0.68 1

LPGR 0.87 0.61 1
WLPE 0.59 0.61 0.56 1
WLPM 0.35 0.36 0.26 0.49 1

GA 0.81 0.63 0.70 0.60 0.43 1

Correlations reflect distributional differences discussed above: proxy methods show greater similarity, while
WLPM seems more different. Rank correlations confirm. Including pre-estimation outliers has a minor effect
on correlations (see table A13).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

OLS OP LPGR WLPE WLPM GA

Figure 4: Bootstrapped standard errors of dispersion under selected methods.
The black bars are mean dispersion estimates from table 3, the red bars represent confidence bands based on
bootstrapped standard errors of dispersion statistics, see also table A16. GA has no interval around the mean

because coefficients are estimated using industry level data on input costs.

differences in magnitudes may matter a lot, we compare these measures across a selected set
of estimators in figure 5. In panels (a)-(b), almost all points are located above the 45-degree
line, which means that proxy methods (OP, LPGR) yield systematically larger dispersion than
cost-share-based methods (GA). One explanation behind such divergence may be related to
the conceptual differences mentioned earlier. On the other hand, comparing dispersion under
LPGR and OP suggests that differences between two methods of the same class may also exist,
see panel (c). These differences, smaller and less clear-cut than in the previous two panels, are
still non-negligible. They can be attributed to technical aspects like the chosen econometric
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Figure 5: Industry-specific dispersion under selected methods.
Each point shows a pair of industry-specific dispersion measures and the line represents the 45-degree line in

each chart.

procedure, and/or more substantive factors like the choice of proxy.
The main findings in this section have important implications for a popular area of inquiry

in the productivity literature. Hsieh and Klenow (2009) show that, under isoelastic demand and
constant returns to scale technology, the dispersion in cost-share-based productivity measures
(or tfprcs) reflects the effect of distortions. In contrast, FGHW show that the dispersion in
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regression-based productivity measures (or tfprrr) does not have this property and demonstrate
that revenue function estimation yields productivity measures that are a function of physical
productivity and demand shocks. Our results in this paper indicate that tfprcs and tfprrr

are positively correlated and that their implied dispersion is comparable. These findings are
important because if the assumptions in Hsieh and Klenow (2009) hold, they imply distortions
are positively correlated with demand and technical efficiency shocks. One could argue for
correlated distortions but this explanation raises the question why more distorted firms are
more likely to hit by positive demand shocks and technical efficiency shocks. An alternative
interpretation attributes dispersion to the effect of adjustment frictions. In the presence of
such frictions, plants do not adjust production factors instantaneously and therefore high-
productivity plants will exhibit high revenue productivity estimates. FGHW provide more
details on this narrative.

It is worth noting that many other factors are potentially important sources of revenue
productivity dispersion over and above physical productivity dispersion. FGHW show that
the dispersion in revenue residuals depends on both dispersion in physical productivity and in
demand shocks. In addition, the available empirical evidence in Foster, Haltiwanger, and Syver-
son (2008) suggests that physical productivity dispersion is higher than revenue productivity
dispersion, which reflects the inverse relationship between productivity and prices. But Foster,
Haltiwanger, and Syverson (2008) also highlight that demand shocks exhibit high dispersion
relative to physical productivity dispersion. Hsieh and Klenow (2009) highlight the role of dis-
tortions in generating dispersion in revenue productivity. Others emphasize the role of frictions
such as overhead factor costs (see, e.g., Bartelsman, Haltiwanger, and Scarpetta (2013)) and
adjustment frictions (see, e.g., Asker, Collard-Wexler, and De Loecker (2014)).18

5.2 Growth and survival

In this section, we explore whether one of the most important predictions from standard models
of firm dynamics is robust to the way productivity is estimated.19 These models share a common
ingredient: firms decide on exit or growth upon learning their ex ante uncertain productivity
level. That is, firm dynamics are determined endogenously and firms’ decisions are based on a
firm-specific productivity shock. A common prediction of these models is that more productive
firms are more likely to grow and survive than their less productive competitors. Empirical
work on the connection between growth and productivity also relies on the results of these
models. A study by FGH is a recent example of the research in this context. A comprehensive
survey of the literature from the past decade can be found in Syverson (2011).

We now turn to our own empirical analysis of the relationship between productivity, growth
and survival. Our discussion is centered on whether the most commonly found patterns hold
across productivity estimators. We build upon the existing literature concerning the properties
of productivity dynamics and test the robustness of these predictions using simple regression

18A related point concerns the sensitivity of dispersion measures to imputation. Recent research found that
dispersion analyses based on imputed data may underestimate true productivity differences. We explore this
question in more detail in appendix A.5.2. Our results confirm that accounting for imputation implies greater
dispersion. Dispersion may be sensitive also to the homogeneity assumption one must maintain in order to
be able use regression-based estimation methods. One can argue that plant-specific elasticities better capture
technological differences between establishments and also affect productivity differences across plants. Our
evidence, presented in detail in appendix A.5.3, shows that productivity dispersion is about two times higher if
we allow for such heterogeneity. However, other results suggest some of this increase is noise.

19The most influential theories of firm dynamics are described in the classic models by Jovanovic (1982),
Hopenhayn (1992), Ericson and Pakes (1995).
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models linking a set of outcomes to productivity and plant-level controls. We follow FGH when
considering the relationship between productivity and growth of all establishments, exiters and
incumbents separately. This approach is justified by theoretical and empirical considerations.
First, the basic models of firm dynamics themselves analyze these margins separately. Second,
earlier empirical research found that there are differences in the productivity levels of continuers,
entrants and exiters.20

Equation (4) describes our empirical specification, analogous to that in FGH:

Yi,t+1 = γ1ωit + γ2θstate + γ3θyear + γ4θsize + γ5us,t+1 + εi,t+1, (4)

where Yi,t+1 is the outcome of interest such as growth between t and t + 1, ω and u denote a
plant-level measure of productivity and state-level measure of change in unemployment from t
to t + 1. The θ-s denote state-, year- and establishment-size controls. i, t and s index plants,
time periods and states, respectively. This specification differs from the one in FGH in that
age effects, the Great Recession dummy and its interactions are omitted for simplicity.21

Table 5 shows γ̂1 from equation (4) using our sample of the 50 most populous industries.
Each row lists the effect of productivity on a specific outcome, shown in the row header.
The three outcomes are: employment growth among all establishments, the probability of
exit, and employment growth among continuers. The columns show results under productivity
estimator variants. For example, the first entry in column 1 says that a plant is estimated to
grow approximately 0.16% faster if it is 1% more productive under an OLS-based estimator.
All other entries are analogous. Point estimates suggest there are non-trivial differences in
the productivity effect. For example, the first entry in column 2 shows that the OP-based
productivity effect is less than half of the OLS-based one. The difference between the results
of these two estimators encompasses the variation in coefficients, ignoring for now WLPE and
WLPM. Despite these non-negligible differences, the estimates support the earlier finding that
more productive plants grow significantly faster than their less productive competitors. The
estimates in row 3 show that low-productivity establishments are significantly more likely to
exit than high-productivity establishments.

The results in the Panels B and C highlight the sensitivity of some methods to changes
in sample definition. Panel B shows results when elasticities are estimated pooling data from
all 4-digit industries within the same 3-digit industry. Pooling amounts to allowing stricter
assumptions about the homogeneity of elasticities, which may be justified in order to increase
precision. Comparing estimates between the top and middle panels suggests that some meth-
ods are sensitive to such changes. For instance, the absolute values of OP-based coefficients
of all three regressions increase indicating that pooling may be beneficial because if there is
no statistical association between two variables, their partial correlation coefficient would tend
towards zero. Other estimators seem less prone to such changes and remain in a comparable
range. WLPM yields the counter-intuitive result that more productive plants are less likely
to grow and more likely to exit. Increasing sample size by pooling data does not reverse this
result. However, if we drop industries with negative elasticities (see Panel C), the signs appear
to be more in line with other results. In addition, the absolute values of point estimates also

20See, for example, Baily, Hulten, and Campbell (1992), Foster, Haltiwanger, and Krizan (2001), Foster,
Haltiwanger, and Krizan (2006).

21We follow FGH by using the integrated LBD with the ASM data for this analysis. The ASM provides
the distribution of plant-level productivity in any given year and the LBD provides the growth and survival
outcomes for the full set of plants in the ASM in that year between t and t+1.
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Table 5: The effect of productivity on outcomes, sample is 50 largest industries. Outcomes are:
employment growth among all establishments (row 1), exit (row 2), employment growth among
continuers (row 3).

OLS OP LPGR WLPE WLPM GA

Panel A. 4-digit elasticities

overall growth 0.163*** 0.072*** 0.139*** 0.06*** -0.006*** 0.190***
exit -0.050*** -0.018*** -0.046*** -0.020*** 0.002** -0.064***
conditional growth 0.068*** 0.039*** 0.053*** 0.022*** -0.003*** 0.067***

Panel B. 3-digit elasticities

overall growth 0.190*** 0.155*** 0.152*** 0.100*** -0.017*** 0.183***
exit -0.066*** -0.048*** -0.030*** -0.030*** 0.005** -0.062***
conditional growth 0.061*** 0.065*** 0.071*** 0.043*** -0.008*** 0.064***

Panel C. 3-digit elasticities, industries with negative or non-estimable elasticities dropped

overall growth 0.197*** 0.153*** 0.164*** 0.104*** 0.076*** 0.183***
exit -0.069*** -0.044*** -0.030*** -0.036*** -0.028*** -0.062***
conditional growth 0.064*** 0.072*** 0.074*** 0.035*** 0.023** 0.064***

Estimates are taken from regressions of three outcomes (employment growth among all establishments, exit,
and employment growth among continuers) on a plant-level measure of productivity (columns), a state-level
measure of unemployment growth, year-, sizeclass- and state-fixed effects, see equation (4). Standard errors
are clustered at the state level.
** and *** denote 5% and 1% significance levels, respectively. All regressions are based on trimmed
productivity distributions. Sample size information can be found in table A17. Results for two additional
industry sets can be found in tables A18-A19.

increase and/or standard errors decrease, despite the decrease in sample size.22 These findings
are intuitive. The OP-example highlights a case where there is better chance of estimating
plausible elasticities by pooling data from neighboring industries. In such cases, sacrificing het-
erogeneity in revenue function coefficients by pooling data amounts to replacing less informative
observations with more informative ones. WLPM is an example where only pooling and also
dropping 3-digit implausibles help exclude less informative observations.23

To sum up, our estimates show positive (negative) and significant association between pro-
ductivity and growth (exit), irrespective of how productivity is estimated. Some methods yield
outlier elasticities that weaken the estimated relationship between productivity, growth and sur-
vival. In these cases, increasing sample size by using broader industry definitions yields results
that line up better across methods.24 The similarity of conclusions discussed in this section

22More information about sample size can be found in table A17.
23We carried out similar exercises using other samples from our default industry set. Without discussing

them in detail, we note that a combination of using 3-digit elasticities and dropping industries with implausible
elasticities yields expected growth and exit coefficients under all estimation methods in all the samples we
considered. See tables A18-A19 for more details.

24A related question concerns the effects of allowing for not less but more heterogeneity in elasticities. Ap-
pendix A.5.3 shows that using productivity numbers that are based on plant-specific elasticities result in sig-
nificantly higher productivity dispersion. The increase also implies weaker relationships between productivity,
growth and survival. We interpret the latter finding as indirect evidence that the increased dispersion is due at
least partly to measurement error implying that using plant-level shares is unlikely to be optimal. The effect of
imputation on these coefficients is similar. However, despite attenuated coefficients, the main conclusions hold,
see appendix A.5.2 for more details.
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is a good example of the reasons why researchers have not focused on the differences between
estimation methods. Finally, we return to the consequences of using revenue productivity as
opposed to physical productivity in these exercises. Foster, Haltiwanger, and Syverson (2008)
find that the marginal response of exit to revenue productivity is actually larger than that for
physical productivity. They show that this is because revenue productivity includes both the
effects of physical productivity and demand effects. We anticipate that similar remarks likely
hold in this context.

5.3 Structural decompositions of aggregate productivity growth

In this section, we examine whether the estimation method affects the results from structural
decompositions of aggregate productivity growth (APG). Productivity decompositions are iden-
tities that parse APG into components that are assumed to capture different sources of growth.
Numerous papers explored how APG is tied to the behavior of microeconomic agents; some
examples are Olley and Pakes (1996), Baily, Bartelsman, and Haltiwanger (2001), Petrin and
Levinsohn (2012) and PWR. The concrete decompositions in these papers are different in many
respects, but there is a common thread: they are all based on the general idea that APG sources
either from the productivity gains within firms or the more efficient allocation of factor inputs
between firms. We use a recent decomposition proposed by PWR primarily because the role of
elasticities is made explicit in their model. They show that the contribution to APG by real-
location is a weighted average of input growth rates where the weights are determined by the
difference between the marginal revenue product and marginal cost of inputs. The elasticities
affect reallocation via marginal revenue products. Another nice property of PWR’s approach is
that the measure of APG itself does not depend on the way productivity is estimated because
APG is defined as the growth in final demand in excess of capital and labor growth.25

Table 6 summarizes our results. Panel A shows the elements of the APG definition in PWR.
The annual average growth rate for labor (-0.3%) in our sample is similar to that in PWR (-
0.2%) but our value added and capital growth rates are smaller. These differences are due
partly to measurement differences and partly to an issue with PWR’s source data for implicit
deflators, see the notes to table 6 for more details. However, value added growth is closer to
PWR’s measure if we ignore the first years of ASM panels, where calculating aggregate growth
is problematic, see the rightmost columns in Panel A of table 6. Panel B lists the results
of decomposing APG ignoring the first years of ASM panels. Each row corresponds to the
contribution by a distinct component, calculated as an annual average between 1977 and 1996.
The contribution of reallocation is shown in the row labeled as Total RE. Our estimate of the
annual contribution by reallocation falls between 0.7-1.3 percentage points. These numbers
imply that approximately 35-70% of annual APG is attributed to reallocation, depending on
the chosen estimation method. The contribution of within-plant growth, shown in the row
labeled as Within, is at most 1.4 percentage points, about 74% of total APG.26 The variation
in these results is substantial. For example, if we estimate elasticities using the WLPE or
WLPM, we conclude that the engine of growth is reallocation. However, choosing LPGR would
imply that the majority of APG is attributed to within-plant dynamics. These results are

25Since final demand is not observed, PWR measure its growth using value added. This approximation is
exact only at the level of the total economy. It is therefore important to realize that by implementing the
decomposition for a subset of plants we compute the contribution of the subset to APG, not the APG of the
subset. To calculate the subset’s exact APG, we would have to observe final demand for that subset.

26Including the first years of ASM panels yield similar results for reallocation and somewhat lower contribu-
tions by within-plant growth.
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Table 6: Aggregate productivity growth and its decomposition. Annual averages calculated
between 1977 and 1996 using ASM continuers.

Panel A. APG definition (%)
All years Ignoring first years*

Our sample PWR Our sample PWR
VA 1.9 2.3 1.4 1.6
Capital 0.0 0.3 0.0 0.4
Labor -0.3 -0.2 -0.5 -0.4
APG 2.2 2.2 1.9 1.6

Panel B. Annual average contributions by components, ignoring first years.
OLS OP LPGR WLPE** WLPM** GA PWR

(1) (2) (3) (4) (5) (6) (7)
Total RE 0.8 0.7 0.7 1.3 1.3 0.5 2
Capital RE 0.2 0.2 0.3 0.8 0.6 0.1 0.9
Labor RE 0.0 0.0 -0.1 0.0 0.0 0.1 0.4
Materials RE 0.4 0.4 0.4 0.5 0.5 0.3 0.4
Energy RE 0.2 0.1 0.1 0.0 0.1 0.0 0.3
Within 0.8 0.7 1.4 -0.1 -0.1 1.1 -0.1
Fixed costs -0.3 -0.5 0.2 -0.8 -0.7 -0.3 0.2
σRE 0.8 0.5 0.7 0.9 0.8 1.2 1.7
σWithin 2.3 2.8 3.1 2.5 2.5 2.4 2.7

*Measuring growth in first years of ASM panels is problematic because weighted growth rates are based on
only large plants since growth rates do not exist for establishments just rotated in. **Instruments as in PWR:
second and third lags. The last column in each panel is based on tables 1, 2 and 3a in PWR.
PWR generate data on non-production worker hours using variation in the average number of non-production
workers and assuming a 40-hour working week and 50 weeks, while we estimate total hours as a function of
production worker hours and the ratio of the total wage bill to the wages of production workers. The
difference in capital growth is explained by a labeling issue in PWR’s source data for implicit deflators. As a
last point, we note there is a small difference in the way we calculate value added. While we use energy
deflators to calculate constant-dollar energy costs, PWR deflate energy costs together with other intermediate
inputs using material deflators, which may affect aggregate growth rates.

important because they highlight the fact that we may arrive at different conclusions about
the relative importance of reallocation and within-plant growth depending on what estimator
we use. It is important to emphasize that, despite the numerical differences mentioned above,
all estimators imply positive average contributions for reallocation. We can interpret this
as indication that reallocation was productivity-enhancing in U.S. Manufacturing industries
between 1977-1996. This is in line with both existing theories of firm dynamics and our intuition
about well functioning market economies.27

In the empirical implementation above, we followed PWR in assuming homogenous products
and price taking behavior. Under these assumptions, revenue elasticities are equal to factor
elasticities. However, this equivalence does not hold if prices are endogenous. In appendix
A.4, we illustrate how marginal revenue products are affected by both factor elasticities and
demand characteristics under endogenous prices and show that in this environment the correct
measure of the difference between marginal revenue products and marginal costs is obtained
using revenue elasticities in the decomposition. We assess the empirical relevance of the dis-
tinction between factor elasticities and revenue elasticities by evaluating decomposition results

27The timeseries underlying table 6 indicate that the contribution of reallocation is positive in the majority
of years which reinforces what our annual average results suggest. We also note that the time series standard
deviation of the total reallocation contribution is small relative to the within-plant productivity contribution.
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with and without controlling for demand effects during estimation, both summarized in table
7. The main finding is that accounting for demand characteristics implies marginally lower
contributions by reallocation (0.6 instead of 0.7) and much lower contributions by within-plant
growth (0.1 instead of 0.7) see table 7 for more details. These patterns are consistent with our
theoretical findings, see Appendix A.4 for details.

Table 7: The effect of controlling for demand characteristics in PWR’s decomposition of APG.
no demand demand

Total RE 0.7 0.6
Capital RE 0.2 0.2
Labor RE 0.0 0.0
Materials RE 0.4 0.2
Energy RE 0.1 0.2
Within 0.7 0.1
Fixed costs -0.5 -1.0

Results are based on OP and using data between 1977-1996, ignoring first years of ASM panels. Entries in the
column labeled ’no demand’ are identical to those in column 2 of Panel B in table 6. The column labeled
’demand’ shows results under joint estimation of revenue elasticities and demand parameters, see section 4.

6 Concluding remarks

Researchers have been using a variety of methods for estimating productivity at the firm-level.
Absent data on prices and quantities, these methods yield what have become known as revenue
productivity measures. How these measures are related to physical productivity depends on
the assumptions about the environment in which establishments operate. It is perhaps less
recognized that the differences across estimation methods have important consequences for
interpretation. One such difference concerns revenue function estimates: while cost-share-
based coefficients are, in principle, equivalent to factor elasticities, regression-based estimates
equal factor elasticities only under strict assumptions about product markets. This implies that
revenue residuals are conceptually different under these two broad approaches.

Our objective is to assess the empirical importance of such distinctions in the context of
basic stylized facts of the empirical literature. We find that the estimation methods affect
revenue elasticity distributions, especially that of capital. Our structural demand analysis,
admittedly restrictive, suggests this variation implies non-trivial differences in returns to scale
across methods. One needs to take this variation into account when answering questions related
to the magnitude of elasticities. The variation in elasticities maps into differences in within-
industry productivity dispersion. Our estimates indicate that an establishment at the 75th
percentile generates between 25%-50% percent more revenue with the same amount of inputs
than a plant at the 25th percentile. This is an average calculated over industries and time,
which suggests one must exercise caution when using industry-specific dispersion measures for
economic analyses where small changes may make a big difference. In addition, the ranking of
plants by productivity within industries is also sensitive to the estimation method. However,
these results also confirm that there is enormous heterogeneity in establishments’ productivity
levels, which is in line with what recent microeconomic research found.

Canonical models of firm dynamics describe growth and survival decisions of plants’ as
functions of idiosyncratic productivity shocks. The main prediction from these models is that
plants with positive shocks expand while plants with negative shocks downsize or exit. Our
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data confirms these predictions: we find that more productive establishments grow significantly
faster and are more likely to survive than their less productive competitors. However, outliers
in factor elasticities that arise more frequently from some methods non-trivially impact the
quantitative marginal effects of productivity on growth and survival.

Does the choice of estimation method have implications for the relative importance of the
sources of aggregate productivity growth? We find that although some methods seem to be
more sensitive than others and the relative importance of reallocation and within-plant growth
depends on the estimator, the main conclusions of the decomposition literature hold under
different estimator variants. Reallocation is productivity enhancing and within-plant growth
seems to be more important for cyclical fluctuations. However, the quantitative details differ
substantially. Some methods attribute the lion’s share of aggregate productivity growth to
reallocation while others imply that within-plant growth is more important. In addition, we find
that controlling for demand effects has implications for the relative importance of reallocation
and within-plant growth.

In sum, it is important to understand when the devil is in the details. One devil that
may remain in the details is the impact of heterogeneous and endogenous plant-level product
prices. The results from our - admittedly restrictive - demand analysis can be used to make
inference about factor elasticities and returns to scale. However, without plant-level data on
prices and/or quantities, the effects of prices on other key stylized facts are difficult to quantify.
We have commented on the likely impact of endogenous demand side factors throughout but it
would be of interest to consider this issue in more depth. We think that exploring the role of
endogenous demand side factors in the current context will require comparing and contrasting
approaches that include direct measures of prices and quantities (for the limited number of
products with such information) with methods that impose strong functional form assumptions
(i.e., isoelastic demand structures) to deal with these issues.

A more general conclusion from our analysis is that despite existing conceptual differences,
available revenue productivity measures tell broadly consistent stories about the most important
aspects of firm dynamics. This is a finding especially relevant in the context of the recent
literature on misallocation. Hsieh and Klenow (2009) show that, under isoelastic demand and
constant returns to scale technology, dispersion in cost-share-based productivity measures, or
tfprcsi , reflect the effect of distortions. On the other hand, FGHW show that regression based
revenue residuals, or tfprrri , are functions of physical productivity and demand shocks. Under
the assumptions in Hsieh and Klenow (2009), our results about tfprcsi and tfprrri imply that
distortions are positively correlated with demand and technical efficiency shocks. One could
argue for correlated distortions but this explanation raises the question why more distorted
firms are more likely to hit by positive demand shocks and technical efficiency shocks. An
alternative interpretation attributes dispersion to the effect of adjustment frictions. In the
presence of such frictions, plants do not adjust production factors instantaneously and therefore
high-productivity plants will exhibit high revenue productivity estimates. The previous result
demonstrates how the different assumptions affect interpretation and highlights the fact that
users of these measures should carefully consider the assumptions underlying revenue function
estimates when using and interpreting revenue productivity measures in subsequent analyses.
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A Appendix

A.1 Remarks on proxy methods

The details of the procedures described in Olley and Pakes (1996) and Levinsohn and Petrin
(2003) have been discussed in the literature, see for example Ackerberg, Caves, and Frazer
(2015). Caveats notwithstanding, these procedures have become widely used among practition-
ers in the past decade. The available versions of the empirical implementation differ according
to the production function type and the numerical procedure used to minimize the objective
function.
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For example, OP’s Stata commands are based on nonlinear least squares; while LP’s im-
plementation offers three options to minimize the GMM criterion function. If the dependent
variable is value added then the golden section search algorithm is applied.28 For output-based
specifications, either a gradient-based or a grid search based routine may be chosen. Both the
gradient-based and the golden section search guarantee to find optimum points if the objective
function is unimodal. If the criterion function has multiple modes, grid search can be used to
confirm global optimum but often at the cost of computational burden, especially if we are to
estimate elasticities for many industries.29 Our results in section 4 suggest these choices entail
non-trivial differences in the distributions of elasticities.

Table A1: Variants of LP.
Method Description Dependent Proxy Estimator Numerical

variable procedure*

LPVA Levinsohn and Petrin (2003) Value Added Materials GMM GSS

LPNL Levinsohn and Petrin (2003) Output Materials GMM NL

LPGR Levinsohn and Petrin (2003) Output Materials GMM GR

LPGSS Levinsohn and Petrin (2003) Output Materials GMM GSS

*NL: gradient-based technique, GSS: Golden Section Search, GR: Grid Search.

A.2 Random assignment of industry codes

As described in Section 3.2, we correct for the 1972 to 1987 SIC change in our third analysis
sample by following PWR by assigning the observed 1987 SIC code to the 1976-1986 observation
for any establishment observed between 1987-1996. However, we deviate from their approach
for cases only observed prior to 1987. If a plant is not assigned an industry code in the first
step, we apply a random assignment procedure. The basic idea of the random assignment
procedure is to choose from among plants such that the share of reassigned plants matches
the appropriate share in the concordance. Randomness is necessary to ensure the procedure
is not dominated by a few large establishments. As an illustration, suppose the mapping says
10% of industry i’s (SIC 1972) total value of shipments should be mapped into industry j (SIC
1987). First, we compute the time-average of each plant’s share in the shipments of industry i
and then we randomly sort them by these averages. Next, we calculate the cumulative sum of
shares and find the first n plants for which the sum does not exceed 10%. These establishments
are classified in industry j.

Table A2 shows frequency counts from the assignment. Panel 1 summarizes the initial
sample. About 66% of establishments show up in the years between 1987-1996, the remaining
observations need industry assignment (about 34%). Panel 2 shows statistics about instances
where we observed a switch in the industry identifier. Our assignment procedure implies that
approximately 29% of the 130 thousand original switching instances disappear. As a cross-
check, we compared the average shares our procedure implies to those in the crosswalk. The
results of this latter exercise, not shown here, suggest that random assignment approximately
replicates mappings in available concordances.

28The idea of GSS is successively narrowing the range of values inside which the extremum is known to exist.
The name of the algorithm sources from the fact that the procedure maintains the function values for triples of
points whose distances form a golden ratio.

29Estimating the 459 LPGR β-sets for the APG comparisons of section 5.3 took about 28 days given our
computing resources.
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Table A2: Descriptive statistics on industry assigment.
Panel 1. Distribution of plants, by year.
Observed year Frequency (1000) Percent
1987 1156 51.3
1988 5.1 0.2
1989 7.6 0.3
1990 9.8 0.4
1991 3.5 0.2
1992 230 10.2
1993 20.8 0.9
1994 30.3 1.3
1995 19.4 0.9
1996 15.1 0.7
1987-1996 1499 66.5
1972-1986 (random assignment) 754 33.5
Total 2252 100

Panel 2. The effect of industry assignment on switchers.
Assigned industry

Original industry no switch switch Total

frequency (1000) 38 92 130
percent 29 71 100

Panel 1 shows frequency counts of time periods which were used to assign plants into industries. Panel 2
breaks down switching instances (plants with 2 or more SIC codes in their time series) under the original
classification. The first entry in the last row says that 29% of the switching instances in the original
classification system disappear under random assignment.

A.3 Empirical properties of estimators

The distributions discussed in section 4 are based on elasticities from the 50 most populous 4-
digit industries. While 50 observations may seem sufficient to estimate cross-industry elasticity
distributions, it also means estimates are based on varying sample size. This is important
because the estimates from smaller industries are more likely to be less precise. Table A3 shows
that the sample size drops by more than 50% in the 10th, and by 80% in the 50th most populous
industry. What is the consequence of such variation? Are some methods more likely to yield
non-positive β̂-s than others?

In order to answer these questions, we re-estimate the above elasticity distributions using
all 459 industries and count the cases with positive, zero, and negative elasticities for every
method.30 All methods result in positive β̂l and β̂m in most industries (table A4, columns 6
and 9). Negative βk and βe estimates are generally more likely to occur, as shown by smaller
percentages in columns 3 and 12. There are differences across estimation methods, as well.
For example, LPGR always delivers positive β̂k, while other methods yield negative β̂k with a
positive probability. OP’s algorithm stops in 18% of the industries (columns 2, 5, 8 and 11) due
to the lack of information on exiters and LPNL yields zero β̂k in 16% of the industries (column
2). We obtain negative β̂e-s with especially high probability when using WLPE (column 10).

Can the variation in sample size explain these patterns? Comparing the average number of
plant-year observations in the problematic group (negative, zero or non-estimable) to that of the
positive group suggest the answer is at least partially yes. Problematic industries are generally

30The sample for this exercise is described in more detail at the end of section 3.2.
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Table A3: Descriptive statistics of 50 largest industries ordered by the within-industry number
of plant-year observations between 1976-1996. The industry classification contains SIC 1987
industry codes concorded 1-to-1 SIC 1972 and NAICS 1997.

(1) (2) (3) (4) (5)
rank SIC 1987 N(1000) T i Nj

1 2711 39 9.9 3.9
2 3273 37 10.1 3.7
3 2411 37 4.8 7.6
4 3441 32 11.8 2.6
5 2653 30 22.1 1.3

10 3442 16 12.4 1.3
20 3231 12 11.9 1
50 3613 8 18 0.4

1-50 total 710 11 67

Column 1: rank; column 2: SIC 1987 code; column 3: number of plant-year observations in thousands; column
4: average number of observations per plant; column 5: number of plants in thousands.

smaller, their average size is between 26-70% of the positive group (see table A5 for more
details). For example, in the industries where OP stops the average number of observations is
less than half of that in the positive group. However, we find two distinct cases where erratic
estimates are unlikely to be related to sample size. First, the zero-β̂k group for LPNL is of
very similar size as the positive group (second entry in column 2 of table A5). It is likely that
LPNL’s gradient-based numerical procedure stops at a local optimum point at zero. The second
exception is the negative β̂e group for WLPE where average sample size is similar to that in the
positive group (column 7 of table A5). These results suggest outliers may arise more frequently
from some methods than others. In practice, what should be done with negative elasticity
estimates that emerge from some methods? One approach would be to exclude industries with
negative elasticity estimates since such estimates are implausible but that would raise issues of
selection bias. An alternative is to make stronger assumptions of homogeneity – for example,
assuming plants within 3-digit SIC industries share the same factor elasticities. We explore this
approach in section 5.2 and show that this approach leads to more plausible elasticity estimates
and implied firm dynamics in many cases.
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Table A4: The number of industries with positive, negative and non-estimable elasticities, in
percent of the total number of industries. Results are based on 459 4-digit industries between
1972-2010, see section 3 for more details.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

β̂k β̂l β̂m β̂e
− 0* or + − 0 or + − 0 or + − 0 or +

n.e.** n.e. n.e. n.e.
OLS 2 98 2 98 100 4 96
OP 3 18* 79 2 18* 80 18* 82 3 18* 79
LPVA 4 96 3 97
LPNL 16** 84 4 96 100 6 94
LPGSS 8 92 4 96 100 6 94
LPGR 100 4 96 100 6 94
WLPE 10 90 6 94 100 32 68
WLPM 16 84 7 93 2 98 11 89

0*: β̂ is zero. n.e.**: β̂ could not be estimated.
For example, the first entry in column (2) says OP delivers error in 18% of industries. This happens because
the algorithm stops in industries with insufficient information on exit (or investment). The second entry in

column (2) says gradient-based optimization in LPNL yields β̂k = 0 in 16% of the industries.

Table A5: Average number of within-industry observations by groups, as in table A4.
(1) (2) (3) (4) (5) (6) (7) (8)

β̂k β̂L β̂M β̂E
- 0 or n.e. - 0 or n.e. - 0 or n.e. - 0 or n.e.

OLS 0.59 0.46 0.32
OP 0.56 0.39 0.58 0.39 0.4 0.42 0.39
LPVA 0.26 0.29
LPNL 0.96 0.55 0.42
LPGSS 0.35 0.55 0.42
LPGR 0.55 0.42
WLPE 0.4 0.56 0.14 0.93
WLPM 0.7 0.52 0.61 0.44

All entries are calculated respectively as N̄−/N̄+ and N̄0 or n.e./N̄+, where N̄−, N̄0 or n.e. and N̄+ denote the

average number of observations in industries with negative, zero or non-estimable and positive β̂j . See also the
notes below table A4.
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A.4 PWR’s decomposition under downward sloping isoelastic de-
mand

In contrast to section 5.3, assume that firms are not price takers in output markets but they
operate under isoelastic, downward sloping demand conditions as in Foster, Grim, Haltiwanger,
and Wolf (2016b), so the inverse demand function can be written as Pi=P (Q/Qi)

1−ρξi, where
ξi is an idiosyncratic demand shifter. We maintain the assumption that firms are price takers
on the market for intermediate inputs Mj. Under these assumptions, changes in the allocation
of inputs will have an effect on the marginal revenue products of inputs. The total differential
of the revenue function is given by

d(PiQi) = PQ1−ρξiρQ
ρ−1
i dQi

= PQ1−ρξiρQ
ρ−1
i

(∑
k

∂Qi

∂Xk

dXik +
∑
j

∂Qi

∂Mij

dMij +
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∂Ωi

dΩi − dFi

)
.

Summing the previous equation over firms gives the contribution by marginal revenue products,
and subtracting the change in aggregate input expenditures (both primary and intermediate)
and fixed costs yields APG:∑
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Under Cobb-Douglas technology, the k-th marginal revenue product can be written as ∂PiQi
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, and the reallocation term can be rewritten as
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Noting that the term in the squared brackets gives the firm’s revenues, the implication is that
when translating contributions into growth rates, the same logic applies as in PWR. We obtain∑

i

Di

∑
k

(ραk − srevik ) dlnXik, (5)

which shows that under these assumptions the correct way to measure the difference between
marginal revenue products and marginal costs is using revenue elasticities in the decomposition.
The contribution of within-firm growth under endogenous prices defined by iso-elastic demand
is obtained analogously. The final expression is given by

∑
i ρDidlnΩi.

These results show that the main difference relative to PWR’s decomposition is captured
by the demand parameter ρ. They highlight the fact that under downward sloping iso-elastic
demand (0 < ρ < 1), firms will take price effects into account when adjusting production inputs.
Specifically, the effect of input reallocation is less than or equal to the effect under exogenous
prices because revenue elasticities are smaller than factor elasticities. The contribution of
within-plant growth is different because the revenue residual is different (joint estimation) and
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also because the contribution of each industry is scaled by ρ.
What is the empirical relevance of accounting for demand during estimation? We answer

this question using the tools introduced in section 4. In that section we showed that if we esti-
mate revenue elasticities jointly with the demand parameter then there is an exact relationship
between revenue elasticities and factor elasticities: ραk = βk. In other words, using revenue
elasticities is theoretically justified under these assumptions. However, revenue elasticities may
be estimated also without accounting for demand effects, so the question is whether these mat-
ter for the basic results of the decomposition. As table 7 in section 5.3 shows, such distinctions
can be relevant in empirical terms.

A.5 Robustness

We next examine the robustness of our results about productivity dispersion and growth and
survival to concerns about imputation methods used in the underlying microdata and our
assumption that elasticities are homogeneous within industries. In contrast to previous exer-
cises, our approach here is to compare the same productivity measure across completed and
non-imputed samples rather than different productivity measures in the same sample.

A.5.1 Imputation and plant characteristics

U.S. Manufacturing data collected by the Census Bureau is subject to item nonresponse where
respondents answer some questions but not others. Such missing values are imputed by the
Census Bureau. Recent research found that certain imputation methods can impact analyses
that use completed data because imputation is non-random (see White, Reiter, and Petrin
(2012), WRP hereafter). Some of the imputation methods employed use industry level data
or fitted values from regression models implying that the variation in completed data can be
assumed to be smaller relative to what observed responses would imply. One consequence of this
is that within industry dispersion statistics based on completed data may be biased downward
(see WRP for an example). The presence or direction of possible biases is less clear for the
relationship between productivity, growth and survival for reasons we will outline shortly.

The effect of imputation on dispersion is easiest to illustrate by considering the results of
regression-based imputation, which also happens to be one of the most frequently used methods
at the Census Bureau to impute the components of productivity, see table A6 for more details.31

Regression-based imputation amounts to substituting fitted values of a regression for values of
the underlying distribution. That is, using the regression line, E(yi|xi), instead of draws from
the conditional distribution of yi. This essentially means a collapse in variation in the data.

How can we approximate the unobserved conditional distribution of yi? One way is to use
a known distribution to simulate data from it. Another is to draw from the set of non-imputed
observations with similar characteristics to the ones in the imputed sample, which is what clas-
sification and regression tree (CART) methods do (see WRP). Yet another approach is to use
non-imputed observations only, which works if imputation is random. However, if the prob-
ability of imputation is correlated with plant characteristics, excluding imputed observations
generates selection issues. Both earlier evidence and our analysis - as we will see shortly -
indicate that imputation is not random in our data. Consequently, empirical models based on
non-imputed data must take this issue into account otherwise selection renders results biased.

We address imputation in two steps. First, we use a logistic regression to describe the
relationship between plant characteristics and the probability that productivity is calculated

31We do not discuss individual imputation models further but more details are available upon request.
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Table A6: Estimated rates of imputation models within the most frequent impute types, as
a percentage of the total number of observations, ASM-CM 2007. The most frequent impute
types are based on linear regressions (flagged ’B’) and/or historical (flagged ’H’) information.

tvs ph cm
ASM CM
Overall imputation rate (fact) 28.5 58.8 41.1
Types: B or H flags (fact) 20.6 55.1 33.3

Models (estimate)*
multivariate regression 4.1 12.4 6.3
univariate regression 15 44.8 26.6
historical 0.9 5.8 0.5
total 20 62.9 33.4

ASM cases only
Overall imputation rate (fact) 24.1 39 34.3
Types: B or H flags (fact) 18.2 36.1 25.7

Models (estimate)*
multivariate regression 10.5 14.4 14.4
univariate regression 8.1 13.5 11.6
historical 1 9.7 1.4
total 19.6 37.6 27.4

*Census data indicates the impute type but not the model and there are more than one impute models within
a type. For example, within type-B imputes, both univariate and multivariate regression models are used. We
estimate impute model instances by evaluating the restriction each impute model implies. These results show
regression-based imputes are most common. In the ASM-CM, imputes are typically based on univariate
regressions, while ASM imputes are much more likely to be based multivariate regressions.

using non-imputed data. Next, we use inverse propensity scores to weight observations in the
non-imputed sample to calculate dispersion statistics and growth coefficients. To be specific,
we estimate the following equation separately for each year between 2002 and 2010:

log
p(Xit)

1− p(Xit)
= Xitθt + εit,

which amounts modeling the probability Pr(Iit = 1|Xt) = E[Iit|Xit] = F (Xitθt) + εit, where
F (x) = 1

1+e−x and Iit denotes an indicator variable equal to 1 if any of the components of plant-
level productivity is non-imputed. The main components are: plants’ total value of shipments
(TVS), production hours (PH), salaries and wages (SW), production workers wages (WW),
cost of parts (CP). Xit and θt denote a vector of controls and coefficients. Control variables Xit

are included to capture plant characteristics: industry effects, employment size class, payroll
deciles and age class fixed effects. We have 86 4-digit NAICS industries. To control for size, we
defined 10 size classes based on employment (1-9, 10-109, 20-29, 30-49, 50-99, 100-149 150-249,
250-499, 500-999, 1000+) in addition to the payroll deciles. Finally, we classify establishments
into 9 age classes (births, 1, 2, 3, 4, 5, 6-10, 11-15, 16+ years). As mentioned in the main
text, data for these variables source from the LBD. We use the Census Bureau’s impute flags to
determine whether an item is imputed. More details on imputation procedures at the Bureau
are available from the authors. See also table A1 in WPR.

Imputation rates differ across variables. The upper panel of table A7 shows that from
among the main components of productivity, PH and CP are imputed the most, and SW the
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least frequently. Imputation rates vary not only with variables but also sample definition.32

The last row in the upper panel indicates imputation tends to be less frequent among ASM
establishments. Overall, less frequent imputation implies almost 10-percentage-point smaller
imputation rate for productivity (last column in the lower panel). This suggests it may be
worth exploring the effects of restricting ourselves to ASM cases when estimating propensity
scores. Therefore, we present results also for a scenario where only ASM establishments are
included in the analysis.

Table A7: Imputation rates of the main components of productivity in the ASM/CM, as a per
cent of plant-year observations between 2002-2010.

Average imputation rates (2002-2010)
productivity TVS PH SW WW CP CM

ASM/CM* 59.1 28.1 42.6 14.2 29.2 42.6 37.5
ASM/CM/LBD** 58.3 27.6 42 14.1 28.5 41.7 36.3
ASM/LBD*** 48.9 25.5 35.3 13.2 25.1 34 31.9

Yearly imputation rates of productivity, per cent of plant-year observations
2002 2003 2004 2005 2006 2007 2008 2009 2010 Total

ASM/CM 68.8 45.8 42.6 43.8 49.9 69.2 53.2 52.4 53.9 59.1
ASM/CM/LBD 68 45.1 41.5 42.8 49.1 68.1 52.7 52 53.7 58.3
ASM/LBD 48.1 52.8 48.9

Productivity is considered imputed if at least one of its components is imputed by the Census Bureau.
Components: total value of shipments (TV S - changes in inventories are not considered here); total hours,
calculated as a product of production worker hours (PH) and the ratio of salaries and wages (SW ) and
production worker wages (WW ); cost of materials (CM), calculated as a sum of the cost of parts (CP ),
resales (CR) and contract work (CW ), but only CM and CP are included in the table. We excluded capital
from the analysis because plants’ time series on capital are created using the perpetual inventory method.
*ASM/CM: ASM and CM combined. **ASM/CM/LBD: observations in ASM and CM for which we observe
employment in the LBD. ***ASM/LBD: observations in ASM for which observe employment in the LBD.

Comparing size-, age-, and payroll distributions across non-imputed and completed samples
suggests imputation instances are correlated with plant characteristics.33 Productivity compo-
nents are more likely to be imputed for smaller and younger establishments with less payroll.
These three characteristics give a multitude of possible regressor sets for the probability model.
We experimented with six of those ([1] employment size; [2] payroll; [3] employment size, pay-
roll; [4] employment size, age; [5] payroll, age; [6] employment size, payroll, age) and found that
the basic implications do not change. However, we also found that including all three variables
provides a somewhat better fit34 than any of the remaining five. Therefore, we present results
based on propensity scores from a model with establishment size, payroll and age.

Figure A4 plots the point estimates from this model. We conclude that productivity data
for smaller and younger plants with less payroll are significantly more likely to be imputed.35 In

32We can measure imputation rates in the entire ASM/CM (row 1), restricting ourselves to using observations
for which there exists size and age information in the LBD (row 2), in the ASM only (row 3).

33These results are not shown here.
34As measured by the AIC, not shown here.
35Point estimates are precise enough such that we can confirm the positive relationship between plant-size,

-age and the probability of productivity being non-imputed. More details on point estimates and standard
errors are available upon request.
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section A.5.2, when calculating weighted dispersion measures and regression coefficients, we use
the inverse of probabilities implied by these models as weights. As a final point, we mention
that diagnostics indicate logistic regressions fit ASM establishments better than ASM/CM
establishments.36 The difference in the AIC is about a factor of 3 and 2 in 2002 and 2007,
respectively.

A.5.2 Imputation, dispersion and growth

One may address imputation in a variety of ways. One approach is to drop imputed observa-
tions, but this results in selection bias if the probability of imputation instances is correlated
with establishment characteristics. We take this approach below and attempt to correct for
selection bias by using inverse propensity score weights discussed in section A.5.1. Another op-
tion is to use multiple imputation methods (e.g., the classification and regression tree method
(CART) used by WRP) to improve on the methods that have been used to impute the plant-
level data. Calculating our results in this manner is beyond the scope of this paper but we do
compare the patterns of our findings to those in WRP.

We carry out two exercises to assess the effect of imputation. First, we compare dispersion in
the completed sample to statistics which are based on non-imputed observations only. Second,
we assess whether accounting for imputation affects our results on the relationship between
productivity, growth and survival. We address imputation by first constructing a set of propen-
sity score weights, which are inversely proportional to the probability of imputation and then
using these weights to calculate weighted dispersion measures. Note that we use another set of
weights to control for the fact that selection into the ASM is also non-random. We distinguish
between the two sets by labeling non-impute weights as ipw2 and the ASM-weights as ipw1.
Appendix A.5.1 describes how ipw2 was constructed. More details about ipw1 can be found in
Foster, Grim, and Haltiwanger (2016a).

Figure A1 summarizes the results of the first exercise. We find that the interquartile range
seems to be smaller in non-inputed data. This can be seen in figure 1(a) by comparing the
dotted and solid lines. However, if we weight non-imputed observations by the composite weight
[ipw1*ipw2], measured dispersion is higher.37 This is an important finding because results using
the CART multiple imputation method in WRP suggest dispersion measures based on imputed
data tend to be smaller than those that take imputation into account.38 If imputation causes
a downward bias in dispersion, our weighting scheme corrects for it in the right direction. We
note that imputation has similar effects on the standard deviation but the this measure seems
to be less sensitive to these issues (see figure 1(b)).

In the second exercise, we revisit the relationship between productivity, growth and survival
and re-estimate the growth and exit regressions using both completed and non-imputed data
between 2002 and 2010. The empirical model is the same as what we described in section 5.2.
We consider three samples. In the first one, we use all observations from the CM.39 In the second
case, only non-imputed observations are included but our non-impute weighting scheme is not
applied. In the last regressions we weight non-imputed observations by [ipw1*ipw2]. Table
A8 summarizes our results. The effect of productivity on growth among all establishments
(column 1) and on the probability of exit (column 2) seems smaller in the non-imputed sample,

36Available upon request.
37Similar patterns hold for the 90-10 ratio, not shown here.
38See columns 1 and 2 of table 4 in their paper.
39Note that as the estimates in section 5.2 were calculated using ipw1 weights, all regressions in this exercise

- based on either completed or non-imputed observations - are also weighted by ipw1.
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Figure A1: Time series of average within-industry dispersion measures in various samples, ASM
2002-2010, all industries.
Solid and dotted lines denote statistics which are calculated using completed and non-imputed data, respectively.
In the completed sample, weighted statistics are based on weights which account for the fact that selection into
the ASM and CM is non-random (ipw1). In the non-imputed sample, the weights are a composite of ipw1
and a weight that is inversely proportional to the probability that the plant’s productivity is calculated using
non-imputed data (ipw2).
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regardless of weighting. Point estimates of the effect on growth (exit) in the non-imputed
sample are about half (third) the size of those in the completed data. We do not detect such
attenuation among continuers (column 3). Such variation in the coefficients is by no means
negligible, particularly for economic analyses where differences in magnitudes may matter a
lot. But it is also familiar from earlier tables. Similarly to the results in section 5.2 our last
exercise offers evidence that, at least in terms of sign and order of magnitude, this relationship
is robust to imputation issues.

Table A8: The effect of productivity on outcomes between 2002-2010 in the ASM/CM, various
samples within the ASM/CM, growth accounting based productivity.

sample overall growth exit conditional growth
(1) (2) (3)

ASM-CM
Completed [ipw1]† 0.165*** -0.065*** 0.04***
Non-imputed [ipw1]†† 0.083*** -0.019*** 0.047***
Non-imputed [ipw1*ipw2]††† 0.079*** -0.021*** 0.041***

ASM cases only
Completed [ipw1] 0.149*** -0.06*** 0.035***
Non-imputed [ipw1] 0.086*** -0.022*** 0.044***
Non-imputed [ipw1*ipw2] 0.086*** -0.024*** 0.041***

Sample size (in thousands)
ASM-CM

Completed data [ipw1] 594 594 570
Non-imputed data [ipw1] 263 263 258
Non-imputed data [ipw1*ipw2] 263 263 258

ASM cases only
Completed data [ipw1] 400 400 386
Non-imputed data [ipw1] 218 218 214
Non-imputed data [ipw1*ipw2] 218 218 213

Triple-asterisks denote 1% significance levels. †Weighted Census data [ipw1]: All observations, propensity
score weighted, where the weight is inversely proportional to the probability that the plant is selected into the
ASM/CM (see FGH). ††Non-imputed [ipw1]: non-imputed subset of the same sample. †††Non-imputed
[ipw1*ipw2]: non-imputed subset of the sample, where observations are weighted by a composite propensity
score, where ipw2 is inversely proportional to the probability that a plant’s productivity is calculated using
non-imputed data. Probabilities were estimated separately for each year and are based on industry-, size-,
age-class and payroll-decile fixed effects.

A.5.3 Homogeneity, dispersion and growth

Throughout this paper, we assume that elasticities are homogeneous within industries and
constant over time. Whether or not such an assumption is restrictive depends on at least two
properties: the underlying within-industry differences in technology and sample size.40 If there
are within-industry differences in technology then pooling the data from an entire industry of
establishments may be too restrictive. In this case, allowing for plant-level heterogeneity in the
elasticities, empirical feasibility aside, better accounts for within-industry differences in factor
intensities. On the other hand, pooling data may be necessary to increase sample size in order to

40It is not straightforward to test for the true degree of heterogeneity because the results on which we base
inference about heterogeneity are endogenous to both the estimation method and the homogeneity assumption.
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reduce finite-sample bias and increase precision.41 A more general but equally important point
in this regard is that pooling also implies results are less likely to be sensitive to measurement
error, which is typically present in micro data.

In this section, we relax the homogeneity assumption and assess the consequences for pro-
ductivity dispersion and growth and exit regressions. Figure A2 shows that dispersion is sub-
stantially higher if we allow cost-shares to vary across establishments compared to when it is
constant within an industry. In particular, plant-specific shares increase the interquartile range
by a factor of almost two, see the difference between the thin and thick lines in the figure.
Results also indicate that allowing for time varying elasticities affects only the volatility of
dispersion but not its level. In figure A2 this is shown by observing the difference between the
thin dashed and solid lines. There is no significant difference in variation with industry-level
shares implying the overall conclusion that the effect of time series smoothing is dwarfed by
that of cross-section smoothing.
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0.65
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plant-level (time average) plant-level

industry-level (time-average) industry-level

Figure A2: Within-industry interquartile range measures of growth accounting based log-
productivity. Sample: 10 largest industries. Thin and thick lines denote dispersion measures based on
shares calculated at the establishment- and industry-levels, using the growth accounting framework. Solid lines
denote dispersion measures based on cost shares that are constant over time. Dashed lines denote statistics
calculated using time-varying cost shares.

Both theory and earlier research42 indicate that part of this increase in dispersion may
be spurious. Our own analysis also offers indirect evidence that the increased variation is at
least partly noise. Table A9 shows results from growth and exit regressions based on growth
accounting productivity estimates. Comparing columns 1-2 shows that using time-varying
industry-level shares leaves the effect of productivity virtually unchanged. In contrast, using
plant-level shares (columns 3-5) reduces the magnitude of estimates, although they remain

41Moreover, for some of the estimators reviewed in this paper whether one pools data from different industries
is not a matter of bias and precision but feasibility. See sections 4 and 5.2 for examples.

42See, for example, Syverson (2004).
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statistically significant. The consequence of using plant-level shares is that the growth effect of
productivity drops by almost 50% (columns 1 and 3) among all establishments (first row) or
continuers (last row). Among continuers, an additional 25% of this effect disappears if we also
allow for time series variation in the shares (columns 3-4). The effect on the exit probability
is smaller, about 33%. We interpret this attenuation as a sign that the data contains more
noise with respect to the relationship between productivity and growth. Note that constant
plant-level shares imply a higher point estimate among continuers (column 3 relative to 4 and 5)
suggesting there may be noise not only in the cross-section but also in the time series variation
of establishment-specific cost shares. Our overall conclusion is that calculating cost shares at
the plant level is unlikely to be optimal. Although plant-level shares may better capture within-
industry differences in technology, they are also prone to measurement error. This is reflected
in the smaller partial correlations between productivity, growth and the survival probability of
establishments.

Table A9: The effect of growth accounting productivity variants on outcomes, 50 largest indus-
tries.

Industry-level shares Plant-level shares
(1) (2) (3) (4) (5)

constant time-varying constant time-varying time-varying

[s̄j] [
sjt+s

j
t−1

2 ] [s̄ji ] [sjit] [
sjit+s

j
it−1

2 ]
overall growth 0.190*** 0.193*** 0.114*** 0.1*** 0.096***
exit -0.064*** -0.066*** -0.042*** -0.041*** -0.039***
conditional growth 0.067*** 0.067*** 0.032*** 0.018*** 0.018***

Outcomes are: employment growth among all establishments (rows 1-2), exit (rows 3-4), employment growth
among continuers (rows 5-6). Estimates are based on the same 50 largest industries used to generate the
results in table 5. The entries in column 1 above are identical to the last column of the first panel in table 5.
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A.6 Additional Tables
Table A10: Conditional probabilities of an industry moving from quintile i (row) to quintile j
(column) of the β̂K/β̂L-distribution, 50 largest industries.

OP 1 2 3 4 5
LPGR 1 0.5 0.2 0.1 0.1 0.1

2 0.3 0.3 0.2 0.2 0
3 0.1 0.3 0.3 0.1 0.2
4 0.1 0.1 0.3 0.2 0.3
5 0.1 0.1 0.4 0.3 0

GA 1 2 3 4 5
LPGR 1 0.1 0.2 0.3 0.2 0.2

2 0.3 0.2 0.3 0.2 0
3 0.3 0.2 0.2 0.2 0.1
4 0.2 0.3 0.1 0.3 0.1
5 0.1 0.1 0.1 0.3 0.4

WLPM 1 2 3 4 5
LPGR 1 0.4 0.3 0.1 0.1 0

2 0.2 0.1 0.3 0.2 0.1
3 0.3 0.2 0.3 0.1 0.1
4 0.1 0.3 0.2 0.2 0.2
5 0.1 0.3 0.6 0 0

See notes to table 1 for legends. The first entry in the table says that half of the industries in the lowest
quintile under LPGR (row) are also classified in the lowest quintile under OP (column). All other entries are
analogous.

Table A11: Descriptive statistics of parameter estimates under isoelastic demand.
Panel A. Demand parameters.

β̂q ρ̂ = 1− β̂q εQi

Pi
= 1

ρ−1 = − 1
β̂q

1
ρ = 1

1−β̂q

OLS OP OLS OP OLS OP OLS OP
mean 0.09 0.05 0.91 0.95 -11.83 -19.53 1.2 1.11
stdev 0.19 0.16 0.19 0.16 46.26 126.2 0.51 0.45

Panel B. Revenue elasticities: β̂j
β̂K β̂L β̂M β̂E

OLS OP OLS OP OLS OP OLS OP
mean 0.1 0.11 0.29 0.27 0.5 0.49 0.11 0.1
stdev 0.06 0.09 0.1 0.09 0.13 0.13 0.05 0.05

Panel C. Factor elasticities: α̂j = β̂j/ρ̂ = β̂j/(1− β̂q)
α̂K α̂L α̂M α̂E

OLS OP OLS OP OLS OP OLS OP
mean 0.13 0.13 0.35 0.31 0.58 0.54 0.14 0.11
stdev 0.12 0.14 0.2 0.2 0.23 0.23 0.12 0.07

We assume Pi=P (Q/Qi)
1−ρ in the estimation. The parameters related to demand exhibit large standard

deviation which is a sign that these parameters are poorly estimated in a non-trivial number of industries
(Panel A). The elasticity of plant-level revenues with respect to industry-revenues (β̂q) is on average a small

positive number, but varies a lot across industries. Consequently, ρ̂ and the demand elasticity (ε̂Qi

Pi
) and the

markup (1/ρ̂), also exhibit large variation. α̂j-s are greater than β̂j-s in the average industry (see Panels B

and C), which is to be expected under isoelastic demand. However, sd(α̂j) > sd(β̂j). Overall, these patterns

suggests that although the variation in factor elasticities reflects var(β̂j) and var(ρ̂), the contribution of the
latter likely dominates.
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Table A12: Descriptive statistics of productivity distributions. Estimators are described in
table 1, pre-estimation outliers included.

N (1000) IQR SD N (1000) IQR SD
50 largest industries 10 largest industries

OLS 568 0.29 0.28 230 0.23 0.21
OP 567 0.35 0.41 233 0.34 0.41

LPGR 572 0.33 0.35 235 0.32 0.31
WLPE 575 0.37 0.41 236 0.34 0.30
WLPM 575 0.46 2.21 236 0.37 0.39

GA 561 0.25 0.24 231 0.25 0.22

Table A13: Correlations among within-industry tfp-distributions, 50 largest 4-digit industries.
Pre-estimation outliers included.

OLS OP LPGR WLPE WLPM GA
Pearson

OLS 1
OP 0.52 1

LPGR 0.8 0.42 1
WLPE 0.49 0.47 0.5 1
WLPM 0.01 0.02 -0.15 0.15 1

GA 0.77 0.47 0.63 0.49 0.09
Spearman

OLS 1
OP 0.67 1

LPGR 0.86 0.6 1
WLPE 0.58 0.61 0.55 1
WLPM 0.34 0.36 0.25 0.48 1

GA 0.8 0.62 0.67 0.58 0.42 1

This table differs from table 4 in that we computed correlations including pre-estimation outlier observations.

Table A14: Correlations among within-industry tfp-distributions, 10 largest 4-digit industries.
OLS OP LPGR WLPE WLPM GA

Pearson
OLS 1
OP 0.48 1

LPGR 0.71 0.43 1
WLPE 0.71 0.54 0.8 1
WLPM 0.52 0.27 0.41 0.66 1

GA 0.88 0.42 0.68 0.66 0.5 1
Spearman

OP 0.71 1
LPGR 0.71 0.65 1
WLPE 0.71 0.73 0.79 1
WLPM 0.6 0.49 0.51 0.69 1

GA 0.88 0.63 0.68 0.67 0.56 1

Including pre-estimation outliers barely changes correlations.
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Table A15: Correlations among within-industry tfp-distributions, 10 largest 4-digit industries.
Pre-estimation outliers included.

OLS OP LPGR WLPE WLPM GA
Pearson

OLS 1
OP 0.51 1

LPGR 0.69 0.43 1
WLPE 0.69 0.57 0.78 1
WLPM 0.5 0.27 0.37 0.64 1

GA 0.85 0.43 0.64 0.63 0.48 1
Spearman

OLS 1
OP 0.7 1

LPGR 0.71 0.63 1
WLPE 0.7 0.73 0.78 1
WLPM 0.58 0.48 0.47 0.67 1

GA 0.86 0.61 0.66 0.65 0.54 1

This table differs from table A14 in that we computed correlations including pre-estimation outlier
observations.

Table A16: Monte Carlo results on productivity dispersion. Dispersion is measured using the
interquartile range. Standard errors of iqr measures are bootstrapped and are in parentheses.

Panel 1. Pooled data Panel 2. Unweighted cross-industry average
orig. smpl R=50 R=100 orig. smpl R=50 R=100

OLS 0.22 0.22 0.22 OLS 0.26 0.26 0.26
(0.0004) (0.0004) (0.0009) (0.0008)

OP 0.32 0.78 0.68 OP 0.36 0.39 0.39
(0.1014) (0.0933) (0.0145) (0.0203)

LPGR 0.29 0.60 0.65 LPGR 0.36 0.38 0.38
(0.0706) (0.0691) (0.0099) (0.0111)

WLPE 0.34 0.75 0.75 WLPE 0.58 1.02 1.05
(0.0794) (0.0817) (0.4614) (0.5588)

WLPM 0.42 1.82 1.80 WLPM 1.37 1.94 1.95
(0.3788) (0.3449) (1.1976) (1.0269)

GA 0.23 0.23 0.23 GA 0.26 0.26 0.26
(0.001) (0.001) (0.0011) (0.0011)

The moments of dispersion statistics in Panel 1 are calculated pooling data from all industries. Mean dispersion
calculated in this manner can be interpreted as a weighted average across industries where the weights depend on the
number of plant-year observations in an industry. This procedure is consistent with the way we calculated dispersion
statistics in table 3. In Panel 2, dispersion is calculated as an unweighted cross-industry average of within-industry
dispersion measures. Interestingly if we bootstrap dispersion statistics industry-by-industry and then calculate average
dispersion (Panel 2), simulated results under proxy methods are closer to those in the original sample. Our MC
approach implies that in this setup, larger and more heterogenous industries have smaller influence. The only
exceptions are WLPM and WLPE, which are more likely to yield extreme elasticity estimates (see section 4) and
therefore dispersion. For GA, coefficients are held constant while input and output observations vary across bootstrap
replications. This exercise helps us assess the effect of the variation in input and output observations. It is natural to
use GA coefficients for this exercise because the cost-shares are calculated using industry level information.
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Table A17: Sample size in the specifications shown in table 5. Sample size is measured as the
total number of plant-year observations used in a regression (in thousands).

OLS OP LPGR WLPE WLPM GA
4-digit elasticities
dlnE 410 415 413 414 414 405
exit 410 415 413 414 414 405
dlnEcont 393 398 396 397 397 388
3-digit elasticities
dlnE 405 413 414 413 413 405
exit 405 413 414 413 413 405
dlnEcont 389 396 398 396 396 388
3-digit elasticities, industries with negative
or non-estimable elasticities are dropped
dlnE 391 406 408 289 310 405
exit 391 406 408 289 310 405
dlnEcont 375 390 391 277 298 388
Total N 440 440 440 440 440 440

Total N denotes the original number of plant-year observations before estimation and post-estimation outlier
trimming.

Table A18: The effect of productivity on outcomes, all (292) largest industries. Outcomes are:
employment growth among all establishments, exit and employment growth among continuers

OLS OP LPGR WLPE WLPM GA
4-digit elasticities
dlnE 0.183*** 0.001 0.128*** 0.004** -0.004*** 0.203***
exit -0.066*** 0.001 -0.041*** -0.002* 0.001** -0.068***
dlnEcont 0.055*** 0.002*** 0.05*** 0.001 -0.001* 0.071***
3-digit elasticities
dlnE 0.202*** 0.115*** 0.15*** 0.001 -0.012*** 0.193***
exit -0.072*** -0.037*** -0.045*** 0.000 0.004** -0.066***
dlnEcont 0.062*** 0.046*** 0.067*** 0.000 -0.005*** 0.066***
3-digit elasticities, industries with negative or non-estimable
elasticities are dropped
dlnE 0.207*** 0.159*** 0.169*** 0.078*** 0.06*** 0.193***
exit -0.073*** -0.05*** -0.05*** -0.031*** -0.022*** -0.066***
dlnEcont 0.065*** 0.065*** 0.075*** 0.017*** 0.017*** 0.066***

Estimates are taken from equations of three outcomes on plant-level measure of productivity, state-level
measure of unemployment growth, and year-, sizeclass- and state-fixed effects. Standard errors are clustered at
the state level, asterisks denote standard significance levels.
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Table A19: The effect of productivity on outcomes, 10 largest industries. Outcomes are: em-
ployment growth among all establishments, exit and employment growth among continuers

OLS OP LPGR WLPE WLPM
4-digit elasticities
dlnE 0.206*** 0.051*** 0.154*** 0.099*** -0.027**
exit -0.067*** -0.002 -0.046*** -0.022*** 0.014***
dlnEcont 0.076*** 0.054*** 0.066*** 0.06*** 0.003
3-digit elasticities
dlnE 0.208*** 0.158*** 0.164*** 0.109*** 0.016
exit -0.068*** -0.032*** -0.049*** -0.026*** 0.002
dlnEcont 0.075*** 0.102*** 0.07*** 0.061*** 0.023*
3-digit elasticities, industries with negative or non-estimable
elasticities are dropped
dlnE 0.208*** 0.158*** 0.164*** 0.13*** 0.061***
exit -0.068*** -0.032*** -0.049*** -0.043*** -0.018***
dlnEcont 0.075*** 0.102*** 0.07*** 0.046*** 0.027*

Estimates are taken from equations of three outcomes on plant-level measure of productivity, state-level
measure of unemployment growth, and year-, sizeclass- and state-fixed effects. Standard errors are clustered at
the state level. *, ** and *** denote 10%, 5% and 1% significance levels.
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A.7 Additional Figures
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Figure A3: Cross-industry distributions of elasticities of β̂m and β̂e.
The sample is 50 largest industries, estimators are described in table 1. β̂m-s show similar general shape but

differences exist. For β̂e, results are also more similar except GA and WLPE.
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Figure A4: Point estimates from a logistic regression of the probability of productivity being
non-imputed.
Regressors: industry fixed effects, employment-, payroll-size and age classes. ASM cases only. We defined 10

size classes based on employment (1-9, 10-109, 20-29, 30-49, 50-99, 100-149 150-249, 250-499, 500-999, 1000+)
in addition to the payroll deciles. Finally, we classified establishments into 9 age classes (births, 1, 2, 3, 4, 5,

6-10, 11-15, 16+ years).
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