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Abstract 
 

We present LFCMV, a Bayesian file linking methodology designed to link records using 
continuous matching variables in situations where we do not expect values of these matching 
variables to agree exactly across matched pairs. The method involves a linking model for the 
distance between the matching variables of records in one file and the matching variables of their 
linked records in the second. This linking model is conditional on a vector indicating the links. We 
specify a mixture model for the distance component of the linking model, as this latent structure 
allows the distance between matching variables in linked pairs to vary across types of linked pairs. 
Finally, we specify a model for the linking vector. We describe the Gibbs sampling algorithm for 
sampling from the posterior distribution of this linkage model and use artificial data to illustrate 
model performance. We also introduce a linking application using public survey information and 
data from the U.S. Census of Manufactures and use LFCMV to link the records. 
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1 Introduction

In the energy economics literature, there is interest in examining the “energy-efficiency

gap”, or failure to implement cost-effective technologies to improve energy efficiency (All-

cott and Greenstone, 2012; Gerarden et al., 2015). Lack of information about cost-effective

technologies and practices is commonly cited as a market failure resulting in the energy

efficiency gap. Some government policies aim at filling the information gap to enable im-

provements in energy efficiency. The U.S. Department of Energy Industrial Assessment

Center (IAC) program is one such policy intervention, providing no-cost efficiency assess-

ments to small and medium enterprises (SME). Assessments are conducted by teams of

university faculty and students who visit manufacturing plants to assess productivity, en-

ergy use and waste. Visits result in a report detailing all cost-saving opportunities identified

during the assessment (U.S. Department of Energy, 2016).

While the IAC program has assembled a wealth of data, the SME self-select their par-

ticipation and there is little information about the SME after the assessment. In short, the

IAC data do not include information about non-participants or about participants after

the assessment. This reality limits the research into the energy efficiency gap that can be

conducted using IAC data. One way to extend the research potential of the IAC database

is to link the data to a longitudinal data base that includes pre- and post-assessment infor-

mations. Ideally, this longitudinal data base would also include information on plants that

did not receive IAC assessments, facilitating the comparison of plants receiving assessments

to a peer group of plants that did not.

Such longitudinal plant-level data is available in the U.S. Census of Manufactures

(CMF). The CMF is a census containing information on every U.S. manufacturing plant.

In addition to information on sales, production, and product information, the CMF con-

tains information related to energy usage. Manufacturing plants that receive IAC energy

assessments represent a subset of the plants in the United States, and hence a subset of

the plants in the CMF. Linking a record in the IAC to a record in the CMF is synonymous

with declaring that the manufacturing plant associated with the Census record received

an IAC energy assessment. Such a link would provide information on the energy efficiency

recommendations provided to a plant by IAC, enabling researchers to examine CMF energy
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data within the context of the IAC recommendations.

Records from the IAC assessments are publicly available. However, due to privacy re-

strictions, identifying information such as plant name have been removed from the released

IAC records. Linking IAC records to CMF records therefore relies on a set of categori-

cal and continuous variables common to both files. However, linking in this scenario is

complicated by a few characteristics of the data. First, the number of IAC assessments

conducted in a given year is much smaller than the number of CMF records available for

the same year. This means that linking on common categorical variables rarely results in

unique matches in the CMF. Second, the continuous variables common to both files do

not necessarily agree for true matches. For instance, values in the IAC relating to sales

information appear to be rounded, and information for each completed form is provided at

potentially different times of the year. This means that even for true matches, we do not

expect values of common continuous variables to agree exactly.

To facilitate linking, we develop a linking methodology that incorporates these chal-

lenges into the modeling structure and accounts for some uncertainty in the matching

process. The method utilizes common categorical variables, which we call blocking vari-

ables (BVs), to define groups, known as blocks, of records in the larger file that contain

possible matches for each record in the smaller file. This version of blocking is a common

file linking technique that restricts the number of possible matches for any given record by

requiring that any potential matches agree exactly on the BVs. In contrast to the work

in Dalzell and Reiter (2017), we assume all variables used for blocking are known to be

fault-free. Once blocks of records are identified, we utilize common continuous variables,

which we call matching variables (MVs), to estimate which in-block record in the larger

file is a match for each record in the smaller. We assume that these MVs may not agree

exactly across matched pairs. We refer to the entire model as LFCMV, which stands for

linking with faulty continuous matching variables.

LFCMV linking proceeds in four main steps. First, we group records into blocks based

on patterns of agreement in the BVs. Second, we utilize a linking model that models the

distance between the MVs of records in the smaller file and the MVs of their matching

records in the larger file. This linking model is conditional on a vector C that indicates
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which record in the larger file is matched to each record in the smaller. Third, we specify

a mixture model for the distance component of the linking model. This latent structure

allows the distance between MVs in matched pairs to vary across types of matched pairs.

Finally, within each block defined by the BVs, we specify a model for the corresponding

elements of C.

The remainder of this paper is organized as follows. In Section 2, we introduce the

LFCMV methodology. In Section 3, we describe the Gibbs sampling steps used to obtain

posterior estimates of the linkage structure. In Section 4, we use simulation studies to

illustrate the performance of LFCMV. In Section 5, we present results of additional studies

that investigate the performance of LFCMV under a variety of fault scenarios. In Section

6, we apply the model to link records from the 2007/2008 IAC assessments to the 2007

CMF. We conclude in Section 7.

2 Model

In this section, we describe the LFCMV methodology. Notation and key concepts are

presented Section 2. We then present the model for C in Section 2.2, and the linking

model in Section 2.3.

2.1 Notation

Let the two files to be linked be denoted F1 and F2, containing n1 and n2 records, respec-

tively. Without loss of generality, we assume that n1 < n2. We further assume that each

record i ∈ F1 has a match i
′ ∈ F2, that is, the set of individuals in F1 is a subset of the

set of individuals in F2. This assumption is motivated by the application in which the IAC

assessment records (F1) represent a subset of the records in the CMF (F2). We assume

each record corresponds to a single true individual.

Our goal is to link each record i ∈ F1 to a record i
′ ∈ F2. To reduce the number of

possible matches for each i, we place each of the n1 records in F1 in its own block. Let (i)

denote the block defined by i ∈ F1. For each record i, we limit the possible matches to a

set of records i
′ ∈ F2 which are assigned to block (i). Possible matches i

′ ∈ F2 are assigned
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to (i) as follows.

Let J denote the number of BVs, i.e., the number of categorical variables common to F1

and F2 that are used for blocking. It is not necessary to use all common categorical variables

for blocking; analysts can select variables appropriate for blocking for each application. As

blocking restricts possible matches to record pairs with identical values of the BVs, BVs

should be selected in such a way that the variable values are expected to agree across

matched pairs. Let Bfik denote the BV value for record i in file f on field k, where

k = 1, . . . , J , i = 1, . . . , nf , and f = 1, 2. For all (f, i), let Bfi = (Bfi1, . . . , BfiJ). For

each i ∈ F1, define F2(i) as the set of all i
′ ∈ F2 such that B1ik = B2i′k for all k = 1, . . . , J .

Assign all records in F2(i) to block (i). In other words, for each i, we restrict the set of

possible matches to records i
′

in F2 with the same BV values as record i.

The BVs available in the CMF and IAC are the state in which a plant is located and

the 6-digit NAICS code (U.S. Census Bureau, 2016) corresponding to the specific products

made by the plant. We require that all possible matches agree on both BVs. This is a

reasonable first step because we expect that if (i, i
′
) is a match, values of state and NAICS

should agree across files. As an example, consider an IAC record for a plant in Oregon with

NAICS code 342156. The block of possible matches, or block, for this record then contains

all CMF records corresponding to plants in Oregon with the NAICS code 342156.

Under the LFCMV blocking structure, it is possible that a record i
′

in F2 can be

considered a possible match for more than one record i in F1. Each record i in F1 is

placed in its own block, and the set of possible matches F2(i) are defined only by the BV

combination Bfi. If two records a and b in F1 have the same BV combination, their sets

of possible matches, F2(a) and F2(b), contain the same records from F2. This yields the

possibility that both a and b can be linked to the same record in F2. For our application,

this is not a concern. Our goal is to identify records in the CMF that have received an

IAC assessment, not necessarily to generate a set of matched pairs. If unique matches are

required for a given application, one could imagine adapting this blocking structure to suit

this need. For instance, blocks may be defined such that more than one F1 record may be

assigned to a block. Matching would then assign each record in F2(i) to at most one record

i in F1.
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With n1 records in F1, we have n1 blocks of records from F2. Each block F2(i) represents

potential matches for the accompanying record i ∈ F1. Let n(i) be the number of records

in F2(i). For each i ∈ F1, the goal of file linking is to determine which of the n(i) records is

a match for i. We define Ci = i
′

such that i
′ ∈ F2(i) and (i, i

′
) is a match. The n1 element

vector C = (C1, . . . , Cn1) then specifies which records from F2 match the records in F1.

Finally, let p be the number of common continuous variables (MVs) used for matching.

For linking the IAC and CMF, p = 2 continuous variables, sales (TVS) and number of

employees (TE), serve as the MVs. TVS is a continuous variable for the sales of each

plant in U.S. dollars, and TE refers to the total number of employees for the plant. For all

j = 1, . . . , p, let Yij denote the standardized value for MV j for record i in F1. We provide

details on this standardization in Section 4.1. For all i = 1, . . . , n1, let Yi = (Yi1, . . . , Yip).

Similarly, let Yj = (Yij, . . . , Yn1j) for all j. We define Y as the n1× p matrix of MV values

for F1. Similarly, for all j, let Xi′j denote the standardized value for MV j for record i
′ ∈ F2

where i
′

= 1, . . . , n2. Let Xi = (Xi1, . . . , Xip) and Xj = (Xij, . . . , Xn1j). We define X as

the n2 × p matrix of MV values for F2.

2.2 Model for C

Within a block F2(i), there are n(i) possible values of Ci. We denote these values as `, where

` ∈ {1, . . . , n(i)}. We assume that a priori, each i
′

in F2(i) is equally likely to be linked with

i, so that for all `,

p(Ci = ` | B1i) =
1

n(i)

. (1)

Conditional on B1i, which defines the block for record i, each Ci is modeled independently.

Similar modeling structures are used in Gutman et al. (2013).

2.3 Linking model

Conditional on C, we assume that for each matching pair (i, i
′

= Ci), the values of Yi

are related to XCi
through a linking model. This model reflects the belief that for true

matches (i, i
′

= Ci), we may have Yij 6= Xi′j for some j = 1, . . . , p. Such a discrepancy

could occur due to incorrect recording, time differences in data collection, different accuracy
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thresholds, etc. The notion of linking based on examining distances between variables

common to both files is an example of distance-based record linkage. Distance-based record

linkage is commonly used for re-identification purposes in disclosure and privacy research

(e.g., Pagliuca and Seri, 1999; Domingo-Ferrer and Torra, 2002a, 2003; Torra et al., 2006).

In these applications, distances between each record i and i
′

are computed using some

distance metric, and the record pair that has the smallest distance according to this metric

is considered a link (Domingo-Ferrer and Torra, 2002b).

We model Yi with a multivariate normal distribution centering Yi at its corresponding

XCi
. This choice of linking model favors matched pairs with similar values of Y and X. The

variance component of the linking model represents the distance between Yi and XCi
that

is considered plausible for matched pairs. In our application, each IAC record corresponds

to a manufacturing plant. It is reasonable to assume that the distance in the MVs across

matched pairs may vary with state, plant type, or other characteristics of the records.

In more general applications, the distance may vary across certain blocks, or with other

features in the data. To allow the linking model to capture these distributional features,

we utilize a mixture of multivariate normals. Mixtures of multivariate normals are highly

flexible and, with enough components, can represent any distribution. For LFCMV, the

mixture framework allows the distance across types of matched pairs to vary with latent

class.

Following standard conventions for a mixture model, assume each pair (i, i
′

= Ci)

belongs to one of H latent classes. For convenience, we associate the latent class with

record i. Let zi ∈ {1, . . . , H} represent the latent class assignment for i ∈ F1, with

z = (z1, . . . , zn1). For h = 1, . . . , H, we assume that Pr(zi = h) = πh for all i. Let

π = (π1, . . . , πH).

Conditional on z and C, we model Yi with a multivariate normal distribution centered

at XCi
and class-specific variance Σh. This mixture model can be written as

Yi|X, C,Σ, zi ∼ Np (XCi
,Σzi) (2)

zi|π ∼Multinomial (1;π1, ...., πH) . (3)

This is an adaption of the standard mixture of multivariate normals in which each Yi is

modeled as Yi | µ,Σ, z ∼ Np (µzi ,Σzi). In the standard formulation, each Yi is assumed
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to have a component specific mean µzi . In our framework, we center each Yi at its cor-

responding XCi
. This reflects a belief that for matched pairs, Yi and XCi

should be close

together. When linking the IAC and CMF data, p = 2, so (2) is bivariate normal.

Following Kim et al. (2014), we select a conjugate prior structure for each Σh as follows:

Σh ∼ InvWishart (f0, G0) , (4)

where G0 = Diag(φ1, ..., φp) and

φj ∼ Gamma(aφ, bφ), (5)

with E(φj) = aφ/bφ. This conjugate prior structure facilitates posterior updates, as dis-

cussed in Section 3. In order to ensure a proper posterior distribution, we set f0 = p + 1.

We set the hyper-parameters aφ = bφ = 0.25, a choice which allows substantial prior mass

at modest sized variances (Kim et al., 2014).

For the latent class weights π, we use a stick-breaking representation of the truncated

Dirichlet process (Sethuraman, 1994; Ishwaran and James, 2001). In this framework, the

mixture probabilities are

πh = Vh
∏
g<h

(1− Vg), h = 1, ..., H (6)

Vh ∼ Beta(1, α), VH = 1 (7)

α ∼ Gamma(aα, bα). (8)

We set aα = bα = 0.25, reflecting a low prior sample size and hence a vague prior for α.

As noted in Escobar and West (1995), such a choice allows the data to dominate in the

posterior.

The stick-breaking representation allows the data to inform the number of latent classes

that are occupied at any iteration of the posterior sampler. As H represents the maximum

number of occupied classes, we recommend starting with a large value, such as H = 30.

When posterior runs indicate that all H classes are consistently occupied, we increase H

and restart the sampling.

There are a few considerations to take into account when using LFCMV for file linking.

First, as is true for file linking methodologies in general, block size is important to the
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performance of the model. Smaller blocks tend to lead to a higher match rate, while for

extremely large blocks, the model often selects a match essentially at random. It is there-

fore important to select a blocking scheme that results in small blocks. Second, the linking

model described in Section 2.3 is based on distance between Yi and its corresponding XCi
.

As we illustrate in Section 4, in the posterior, the model tends to assign high probability to

matches with small distances across matched pairs. The determination of what is a reason-

able distance across a matched pair is influenced by the class-specific variance component

of the linking model.

3 Posterior sampling

In this section, we describe the Gibbs sampler used to estimate the posterior distribution

of the LFCMV model.

3.1 Initialization

We initialize C(0) such that

C
(0)
i =

(
i
′ | d(i, i

′
) = min

(
d(i, `), ` ∈ F2(i)

))
, (9)

where

d(i, i
′
) =

√√√√ p∑
j=1

(
Yij −Xi′j

Yij

)2

. (10)

In other words, within a block, we initialize Ci such that d(i, i
′
) is minimized. The two

closest records according to this metric will be initialized as links. Because Yi and XCi
are

standardized variables, d(i, i
′
) assigns equal weight to the distances in each of the p MVs.

The importance of such standardization in distance-based linkage is discussed in Pagliuca

and Seri (1999).

For the linking model, we set α(0) = 1, and initialize V, π, z, and Σ by drawing from

the appropriate distributions from Section 2.3.
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3.2 Posterior sampling algorithm

With the truncated representation of the Dirichlet process, posterior sampling for the entire

model is facilitated with a Gibbs Sampler as follows.

1. For h = 1, ..., H, update Σh from the full conditional

Σ
(s+1)
h |Y,X, C(s), z(s) ∼ InvWishart

(
f0 + n

(s)
h , G0 + S

(s)
h

)
, (11)

where n
(s)
h =

∑
i

I(z
(s)
i = h) denotes the number of individuals in latent class h at

iteration (s) and S
(s)
h =

∑
i:[z

(s)
i =h]

(Yi −XC
(s)
i

)(Yi −XC
(s)
i

)T .

2. For h ∈ {1, ..., H − 1}, update Vh from the full conditional,

V
(s+1)
h |z(s), α(s) ∼ Beta

(
1 + n

(s)
h , α(s) +

H∑
g=h+1

n(s)
g

)
. (12)

Set V
(s+1)
H = 1.

3. Set π(s+1) = V
(s+1)
h

∏
g<h

(1− V (s+1)
g ) for all h ∈ {1, ..., H} per (6).

4. For j = 1, . . . , p, update φj from the full conditional

φ
(s+1)
j |Σ(s+1) ∼ Gamma

(
aφ +

1

2
Hf0, bφ +

1

2

H∑
h=1

(
Σ−1h [j, j](s+1)

))
, (13)

where
(
Σ−1h [j, j]

)(s+1)
represents the jth diagonal entry of (Σ−1h )(s+1).

5. Update α from the full conditional,

α(s+1)|π(s+1) ∼ Gamma
(
aα +H − 1, bα − log(π

(s+1)
H )

)
. (14)

6. For i ∈ 1, ..., n, sample the latent class indicator zi ∈ {1, ..., H} from a multinomial

full conditional,

z
(s+1)
i |φ(s+1), C(s) ∼Multinomial(π1

∗, π2
∗, ..., πH

∗), (15)

where

πh
∗ =

π
(s+1)
h f(Yi|XC

(s)
i
,Σ

(s+1)
h )

H∑
g=1

π
(s+1)
g f(Yi|XC

(s)
i
,Σ

(s+1)
g )

. (16)
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7. For i = 1, ..., n1, we update each Ci. For each i
′ ∈ F2(i),

Pr
(
Ci = i

′ |Yi,X, z(s+1)
i ,Σ(s+1)

)
=

f(Yi|X, Ci = i
′
,Σ

(s+1)
h )∑

`∈F2(i)

f(Yi|X, Ci = `,Σ
(s+1)
h )

. (17)

The update in (17) represents draws from the multinomial Bernoulli posterior distribution

of C. Because each block contains only one Yi, computing (17) requires enumerating

n1 ×
(∑

i

n(i)

)
multivariate normal likelihoods at each MCMC iteration. Unlike many file

linking applications in which there are multiple records from each file in each block, for

LFCMV this direct updating is fairly efficient in terms of computation time.

4 Illustrative simulation

In this section we illustrate the performance of the LFCMV model before applying it to

the IAC and CMF model in Section 6. For this simulation, we use IAC data to create both

F1 and F2. F1 and the corresponding matches are constructed using records from 2007 and

2008, while the remainder of F2 is constructed using records from the remaining IAC years.

In Section 4.1, we describe the process of creating F1 and F2 and introduce the BVs and

MVs used in linking. Simulation results are presented in Section 4.2.

4.1 Data

The complete downloaded IAC database (up through the year 2016) contains 17583 records

with 56 variables. In this simulation, as well as in the creation of the linked data product

described in Section 6, we use two categorical variables, NAICS code and state, as the BVs.

NAICS codes are nested up to the 4-digit level, meaning that all plants that produce a

certain type of product, say dairy products, must agree on at least the first 4 digits of their

NAICS codes. In this simulation we define blocks using state and the first 4-digits of the

6-digit NAICS code.

Two continuous variables, sales and number of employees, serve as our MVs. Sales is a

continuous variable for the sales of each plant in U.S. dollars, and employees refers to the

total number of employees for the plant. We let j = 1 refer to sales and j = 2 to number

of employees.

11



Table 1: Creating F1 and F2U . Left column: describes a data cleaning step necessary before

linking. Center column: the number of records in F1 after each cleaning step is performed.

Right column: the number of records in F2U after each cleaning step. The final row gives

the number of records in the final subsets F1 and F2U used for linking.

Action F1 Records F2U Records

Initialize All 2007/2008: 797 All other years: 16786

Remove records from Puerto Rico 786 16779

Remove States Unique to F1 or F2 778 16440

Remove Missing States 778 13622

Remove Missing Sales 764 13476

Remove Missing Employees 764 13464

Remove Missing Electricity Usage 763 13429

Remove Missing Cost of Energy 763 13422

Require Matching State/4-Digit NAICS 512 1170

Final Total: 512 1170

4.1.1 Create F1

To create F1, we use the IAC records from 2007 and 2008, comprising 797 records. We

reduce this set to the final set of 512 F1 records using the steps outlined in the second

column of Table 1. For this simulation, we use use 16786 IAC records from years other

than 2007 or 2008 to create possible matches for F1. If a record in F1 has a state and 4-digit

NAICS combination which is not found in these 16786 records, we remove these records

from consideration for F1. For simulation purposes, we also exclude from F1 any records

containing missing data. The process of incorporating missing data imputation into the file

linking process adds an additional level of uncertainty. The selection process for F1 results

in the final count of n1 = 512 records.
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4.1.2 Create F2

We create F2 in two stages. First, for each record i in F1, we create a matching record by

adding noise to the MVs in record i. The collection of these n1 matches is denoted F2M .

Second, we use the 16786 IAC records from years other than 2007 or 2008 to create sets

of possible matches for each record i in F1. These records represent the false matches, or

possible options for i based on state and NAICS agreement which are in fact not a match

for i. The collection of these records is denoted F2U . We let F2 = (F2U , F2M).

We create F2M as follows. For each record i in F1, we generate a matching record using

the following steps. Assign each record i in F1 to one of H = 30 latent classes zi with

zi ∼Multinomial(1; 1/H, . . . , 1/H). (18)

To generate the variance matrix, we sample from the following model:

Σh ∼ InvWishart (50, G0h) , (19)

where G0h = Diag(φ1h, φ2h) and

φ1h ∼ Gamma(1, 1), φ2h ∼ Gamma(25, 3), (20)

with E(φj) = aφ/bφ. Let Y(0) be the n1 × p matrix containing all non-standardized MV

values in F1. For each i with latent class zi = h, we define

F2M,i = Y
(0)
i + εi, εi ∼ N2((0, 0),Σzi). (21)

Here F2M,i, Y
(0)
i and εi are vectors of length p = 2. We repeat this match generating process

100 times for each i, creating 100 replicates F
(m)
2M,i, m = 1, . . . , 100. Let F

(m)
2M = {F (m)

2M,i | i =

1, . . . n1}.

We create F2U using the 16786 IAC records from years other than 2007 or 2008. After

removing missing data and other records as outlined in Table 1, we select 1170 records

which have a state/4-digit NAICS combination that is observed in the F1 data. Denote

these 1170 records as F2U . We let F
(m)
2 = (F2U , F

(m)
2M ), where m = 1, . . . , 100. For each

replicate m, we link F1 and F
(m)
2 .

Each of the n1 records from F1 is assigned to a block (i). Based on the BVs, we assign

each of the 1170 records in F2U to these blocks. For each record i ∈ F1, let F2U(i) denote
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Table 2: Block sizes for the illustrative simulation. Block Size: the number of records from

F2U assigned to each block (i). Count: the number of blocks of each block size.

Block Size 2 3 4 5 6 7 8 9 10 11 12 13 14

Count 129 106 76 39 20 17 30 14 11 23 4 4 10

Block Size 16 17 18 19 24 25 26

Count 2 3 4 4 8 3 5

the subset of F2U assigned to block (i). As seen in Table 2, this results in blocks which

range in size from 2 to 26. Blocks sizes, F2U , and F1 are consistent across replicates.

4.1.3 Standardization of Y and X

Before linking F1 and F
(m)
2 , we log transform the MVs. Let Ỹj refer to the log-transformed

MV values for field j in F1, and X̃
(m)
j refer to the log-transformed MV values for field j in

F
(m)
2 . For ease of posterior computation in the linking model, we standardize Ỹj and X̃

(m)
j

as follows. Denote S(m) = (Ỹ1, X̃
(m)
1 ) and E(m) = (Ỹ2, X̃

(m)
2 ). Let Ē(m) be the mean of all

n1 + n2 elements of E(m) and let S̄(m) be the mean of all n1 + n2 elements of S(m), with

sd(E(m)) and sd(S(m)) representing the standard deviations of E(m) and S(m), respectively.

We then standardize each transformed value as

Y
(m)
1 = (Ỹ1 − S̄(m))/sd(S(m)), X

(m)
1 = (X̃

(m)
1 − S̄(m))/sd(S(m)), (22)

Y
(m)
2 = (Ỹ2 − ¯E(m))/sd(E(m)), X

(m)
2 = (X̃

(m)
2 − Ē(m))/sd(E(m)). (23)

4.2 Results

For each of 100 replicates, we apply the LFCMV model to link F1 and the replicate specific

F
(m)
2 . We run the Gibbs sampler described in Section 3.2 for 5000 iterations with a burn

in length of 200 iterations. For purposes of comparison, we also link each pair of data sets

using a “naive” matching method. Specifically, for the naive method, we select a match

i
′
= Ci such that

Ci =
(
i
′ | d(i, i

′
) = min

(
d(i, `), ` ∈ F2(i)

))
, (24)
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Figure 1: Average match rates for 100 simulations. Upper Boxplot: Match rates obtained

by linking records by the naive method. Lower Boxplot: Average match rate for the

LFCMV runs.

where

d(i, i
′
) =

√√√√ p∑
j=1

(
Yij −Xi′j

Yij

)2

. (25)

The primary metric used in this simulation is the match rate (MR), or the percentage of

the n1 records from F1 that are correctly matched. For each replicate, the naive matching

method yields one estimate of C. Conditional on this C, we compute a single estimate of

the match rate. As a Bayesian procedure, LFCMV yields a set of posterior draws for C.

For each replicate, we compute the MR for each posterior draw of C. We then average

these MR values to obtain one estimate of the posterior MR for each replicate.

Results are displayed in Figure 1. For all but 2 of the 100 replicates, the MR obtained

using LFCMV is higher than the MR obtained using the naive approach. A 95% posterior

interval for the improvement in MR using LFCMV over the naive method is (.2%, 22%)

with an average increase in match rate of 9%. This translates to an average of 47 additional

records that are correctly matched using LFCMV.

As seen in Figure 1, the range of MR values is fairly wide. This range is due to the

process of generating the Xi values. The average distance across matched pairs, i.e., the
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Figure 2: Average posterior match rates by average distance across matches pairs for sales

from the 100 replicates. Lower PMR values are associated with greater distance.

average value of Yij−XCij, is different across each replicate. Consider Figure 2. Replicates

with smaller average PMR have, on average, more distance between the MV values for sales

across matched pairs. By design, LFCMV is searching for a match with small distance

between Yi and XCi
. If the data generation process creates a matching XCi

which is far

from Yi, the model sometimes selects records Xi′ 6=Ci
with a smaller distance between Y and

X. This behavior is consistent with the intuition discussed in Section 2.3.

5 Sensitivity to distance across matched pairs

In this section, we illustrate the performance of LFCMV linkage when the mechanism

that introduces distance across matched pairs of MVs is not normally distributed. The

creation of F1 and F2U is the same as the simulation study in Section 4. However, we

vary the process of creating F2M by using different distributions to create the distance

across matched pairs. In Section 5, we apply uniform distance at three levels: 10%, 20%

and 30%. For this simulation, we are interested in examining the performance of LFCMV

with increasing distances between matches pairs. In Section 5.2, we introduce distance

16



across matched pairs dependent upon the number of employees in a plant. This simulation

leverages the ability of LFCMV to allow the distance between matched pairs to vary across

types of pairs.

5.1 Uniform distance

In Section 4.2, the MR obtained by LFCMV tends to vary with the distance across matched

pairs. To further explore this concept, we conduct a simulation in which distance between

matched Y and X is generated uniformly at three different levels. Specifically, for each

replicate, we generate F
(m)
2M using

F
(m)
2M,i1 = Y

(0)
i1 (1 + κij), κij ∼ Uniform(0, u) (26)

F
(m)
2M,i2 = Y

(0)
i2 (1 + κij), κij ∼ Uniform(0, u), (27)

where u = .1, .2, and .3. We run 100 replicates at each setting of u.

Figure 3 displays the results across all three settings of u. As is true in Section 4,

LFCMV generally yields higher match rates than the naive approach, and this result holds

across all three settings of u. As u increases and true matched pairs have a greater distance

between the MVs of matched pairs, both the naive and LFCMV linking methods have

reduced performance. As previously mentioned, block size also has an impact on MR.

Table 3 shows the breakdown of posterior MR by block size. The average PMRs for

smaller blocks tend to be higher than average PMR for larger blocks, with some variation

attributable to the number of blocks of a given size.
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Figure 3: Match rates under uniform distance. Left Boxplot in each panel: Composed of

average PMR for each of 100 replicates. Right Boxplot in each panel: Match rate for each

replicate obtained by linking records by the “naive” approach, i.e., minimizing d(i, i
′
).
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Table 3: Average posterior match rate for each block size. The first column indicates the

size of the block, with the number of blocks of that size in parentheses. Block sizes are

consistent for each simulation. Remaining columns denotes the average posterior MR, as

computed by averaging the block-specific MR across each of the 100 replicates.

Block Size (Count) 10% 20% 30%

2 (129 ) .99 .98 .94

3 (106 ) .99 .97 .93

4 (76 ) .99 .94 .88

5 (39 ) .98 .92 .80

6 (20 ) .97 .90 .82

7 (17 ) .98 .90 .78

8 (30 ) .95 .89 .80

9 (14 ) .91 .78 .66

10 (11 ) .82 .56 .41

11 (23 ) .93 .79 .64

12 (4 ) 1 1 1

13 (4 ) .97 .85 .67

14 (10 ) .99 .89 .72

16 (2 ) 1 .80 .57

17 (3 ) 1 .98 .82

18 (4 ) 1 .89 .61

19 (4 ) .91 .50 .30

24 (8 ) .99 .69 .40

25 (3 ) 1 .83 .57

26 (5 ) 1 .95 .80

Overall PMR .98 (.003) .92 (.007) .84 (.008)
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Table 4: Average posterior match rate for the SD and LD simulations. Bold values indicate

the PMR associated with the plant size with smaller distance between matched pairs in

each simulation. Large plants: the PMR for large plants, averaged over the 100 replicates of

the SD and LD simulations, respectively. Small plants: the PMR for small plants, averaged

over the 100 replicates of the SD and LD simulations, respectively. Overall PMR: the PMR

for all plants, averaged over the 100 replicates of the SD and LD simulations, respectively.

Values in parentheses represent the standard error.

SD LD

Large plants .90(.008) .78(.01)

Small plants .76(.009) .88(.003)

Overall PMR .85(.006) .84(.006)

5.2 Size dependent distance

One of the features of LFCMV is the ability to model distances between the MVs that

vary with types of matched pairs. To illustrate this capability, we conduct a simulation

in which we introduce correlation between the number of employees in a plant and the

distance across matched pairs of MVs. We classify the 261 plants in F1 with more than

130 employees as “large” and classify the remaining 251 plants in F1 with 130 or fewer

employees as “small”. We run a simulation, denoted LD, in which MVs for matched pairs

corresponding to large plants tend to be farther apart than the MVs for matched pairs

corresponding to small plants. We then run a second simulation, denoted SD, in which the

opposite is true. For simulation LD, we generate F
(m)
2M from

F
(m)
2M,i,j = Yij(1 + κij), κij

iid∼

 Uniform(0, .4) : if Y
(0)
i2 > 130

Uniform(0, .15) : otherwise.
(28)

Similarly, for simulation SD, we generate F
(m)
2M from,

F
(m)
2M,i,j = Yij(1 + κij), κij

iid∼

 Uniform(0, .4) : if Y
(0)
i2 ≤ 130

Uniform(0, .15) : otherwise.
(29)

20



We run 100 replicates of the LD and SD simulation settings.

With these simulations, we are interested in assessing two aspects of LFCMV. First,

we examine the match rate for different types of matched pairs for both the SD and LD

simulations. The matching results are summarized in Table 4. As with the results from

Section 4, larger distance across matched pairs tends to be associated with lower MRs

than smaller distance across matched pairs. However, an examination of the match rate by

plant size reveals that the naive approach and LFCMV perform differently in the different

size groups. Consider Figure 4, displaying the match rates for the LD replicates. For

large plants, which have greater distance across matched pairs in this simulation, LFCMV

matches more accurately than the naive approach. However, the opposite trend is evident

for smaller plants. This suggests that LFCMV overestimates the distance reasonable for

matched pairs in the smaller plants, resulting in a lower match rate. Figure 5 shows

similar tendencies for the SD simulation; LFCMV’s match rate is better on average for

the smaller plants, with the naive approach matching more accurately for the larger plants

with less distance across matched pairs. Despite this behavior, LFCMV results in an overall

improvement in match rate over the naive approach in both the SD and LD replicates.
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Figure 4: LD: Match rates under when large plants have greater distance across matched

pairs than small plants. Left Boxplot in each panel: Composed of average PMR for each

of 100 replicates. Right Boxplot in each panel: Match rate for each replicate obtained by

linking records by the “naive” approach, i.e., minimizing d(i, i
′
).
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Figure 5: SD: Match rates under when small plants have larger distance across matched

pairs than larger plants. Left Boxplot in each panel: Composed of average PMR for each

of 100 replicates. Right Boxplot in each panel: Match rate for each replicate obtained by

linking records by the “naive” approach, i.e., minimizing d(i, i
′
).
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Figure 6: Average number of latent classes for the SD and LD simulations. For each of the

100 replicates of simulation SD (Figure 6a) and LD (Figure 6b), we compute the number of

latent classes at each posterior iteration with more than 5 records. We then average these

counts to obtain a single estimate of the average number of occupied latent classes for each

replicate. The boxplots are composed of the 100 replicate-specific counts.

The second aspect of LFCMV we illustrate with the SD and LD simulations is the

ability of LFCMV to capture the relationships inherent in the different types of matched

pairs using the mixture model formulation of the linking model. In the simulation studies

described in Section 5, the distance across matched pairs is uniform, so latent classes are

not needed to describe the distribution of distances across matched pairs. Accordingly,

the number of occupied mixture components collapses to a single component during the

posterior sampling. However, for the SD and LD simulations, there are two clearly defined

types of matched pairs, as for each simulation, small and large plants are associated with

a certain degree of distance across matches. Accordingly, Figure 6 indicates that multiple

mixture components are occupied in the SD and LD simulations. In Figure 7, we examine

these components for a single iteration of a replicate of the SD simulation. The figure

indicates that latent class 1 is associated with smaller plants than latent class 2, while

latent class 3 contains a blend of plant sizes. As distance across matched pairs is directly

related to plant size, these results suggest that the latent class structure of the linking

model may be useful for capturing features in the data associated with differing amounts
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Figure 7: SD: The box plots display the log(employees) value for the three latent classes at

MCMC iteration 1000. Each boxplot represents a latent class, and the y-axis represents the

value of X̃2, denoted log(employees), for each record in that latent class. A paired t-test

comparing the log(employees) value of latent classes 1 and 2 leads statistically significant

results (p < 0.05). Specifically, latent class 1 tends to contain smaller plants than latent

class 2.

of distance across matched pairs.

5.3 Summary of findings

The simulations conducted in Sections 5 and 5.2 highlight a few features of LFCMV linking.

First, as is evident in Section 4.2, large distances among the MVs for matched pairs can lead

to a reduction in PMR. This underscores the importance of the considerations discussed

in Section 2.3. Second, the simulations in Section 5.2 provide an example the utility of the

latent class structure of the linking model. The latent class structure provides the potential

for distribution in distance to vary across matched pairs. If such a structure is unnecessary

in an application, the sampler tends to collapse to using single class to estimate Σ.
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6 Linking the IAC and CMF

In this section, we describe the process of linking IAC and CMF records. We created a

linked data product using records from the 2007 CMF, but the approach could be applied

to other years to facilitate additional research. For simplicity of notation, unless otherwise

noted we let CMF denote all records in the 2007 CMF records and IAC denote all 2007/2008

IAC records. In Section 6.1, we describe the data processing performed prior to linking the

data. In Section 6.2, we describe the links resulting from applying LFCMV. In Section 6.3,

we perform a post-linking analysis exploring energy efficiency.

6.1 Data cleaning, blocking and transformation

The purpose of linking in this application is to identify which records in the CMF received

IAC energy assessments. However, the IAC and CMF records were collected by two different

organizations. Some variables common to both files are recorded using an organization

specific scale, variable name, and accuracy level. For instance, in the IAC, NAICS code

is recorded as a 6-digit identifier, while in the CMF, up to 9-digits are recorded for each

plant. Because of these discrepancies, pre-processing is required to convert the IAC and

CMF records into the subsets F1 and F2, respectively, used for linking. We use F1 to denote

the subset of IAC records used for linking, while F2 denotes the subset of CMF records

considered as possible matches for F1.

6.1.1 BVs and MVs

To create F1 and F2, we begin by examining the BVs used to block the records. As in

the simulations in Section 4, we use the BV fields of state and NAICS code. In the CMF,

the state where an plant is located is denoted using the standard notation of two upper

case letters. A small number of records are missing the variable for state, and we exclude

these records from consideration for F2. In the IAC, however, the BV “state” is recorded

with a variety of upper-lower case combinations. For instance, “AL”,“Al” and “al” all refer

to the state Alabama. We convert the IAC labels to match the double capital format in

the CMF, i.e., for plants referring to Alabama, state is recorded as “AL”. Once the state
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Table 5: Description of the matching variables used to link the data in Section 6. The first

column gives the name of the variable in IAC database. The second columns lists the name

of the associated variable in the CMF, with the abbreviation for that variable in the third

column.

IAC Variable CM Variable Abbr.

Sales (in $) Total Value of Shipments (in thousands of $) TVS

Number of Employees Total Employment TE

variable is standardized, we create a list of all states associated with plants in the IAC. We

then exclude from F2 all CMF records from states not on this list. In addition to records

pertaining to the 50 states, the IAC contains 11 records from plants in Puerto Rico. As

there are no records corresponding to Puerto Rican plants in the CMF, these records are

also excluded from F1.

After blocking on state, we proceed to the BV of NAICS code. For each record in the

IAC, we create a list of CMF records pertaining to the same 6-digit NAICS code and state

as the IAC record. However, such direct blocking leads to a number of IAC records with

no possible matches in the CMF. The IAC records are a subset of the CMF, and as such all

records in the IAC should have a match in the CMF. The lack of matches for some records

after direct blocking suggests that some of the NAICS codes in IAC or CMF may have

some uncertainty. To account for this, we considering blocking on three different levels of

NAICS agreement. Specifically, we create subsets with agreement on 4-digit, 5-digit and

6-digit NAICS codes. We refer to these as levels of NAICS blocking.

Let F
(x)
1 denote the subset of IAC records that have a non-empty block F

(x)
2(i) when

blocking is performed on state and x-digit NAICS code. Here, x = 4, 5, 6. Similarly, let

F
(x)
2 denote the set of possible matches for F

(x)
1 when blocking on state and x-digit NAICS.

Recall that NAICS codes are nested up to the 4-digit level, meaning that every record in

F
(6)
2 will also be in F

(5)
2 and F

(4)
2 . By the same logic, F

(4)
2 is the largest subset of CMF

records to be linked, 5-digit blocking restricts this linking to a smaller subset F
(5)
2 , and

6-digit blocking yields the smallest subset F
(6)
2 .

27



Table 6: The number of IAC records to be matched at each level of NAICS blocking, i.e.,

the cardinality of F
(x)
1 for x = 4, 5, 6. There are 786 original IAC records from 2007/2008,

excluding records for plants in Puerto Rico.

NAICS Level 4-digit 5-digit 6-digit

IAC Records 550 480 330

Once records are moved into blocks defined by state and x-digit NAICS, MVs are used

to determine which records in F
(x)
2(i) are a match for each i in F

(x)
1 . The MVs are listed in

Table 5, and we use the abbreviations from the CMF to denote the MVs. The scale of the

TVS variable is different in the IAC than it is in the CMF. Specifically, the CMF variable

TVS is recorded in thousands of dollars while the IAC variable is recorded in dollars. We

divide the IAC value by 1000 to match the scale of the CMF variable.

6.1.2 Agreement filters

Blocking with respect to 4-, 5- and 6-digit NAICS all lead to some large blocks. To reduce

the block size, we apply what we call an agreement filter to narrow the possible options for

each IAC record. Let TV Sfi denote the recorded value for TVS in file f for record i, and

similarly let TEfi denote the recorded value for employment. For each i in F
(x)
1 and each

i
′

in F
(x)
2(i), we compute

d1(i, i
′
) =

TV S1i − TV S2i′

TV S1i

, (30)

and

d2(i, i
′
) =

TE1i − TE2i′

TE1i

. (31)

Here, d1(i, i
′
) and d2(i, i

′
) are the percent difference between IAC record i and the observed

Census record i
′

on TVS and TE, respectively. If either (30) or (31) is greater than .3,

we declare i and i
′

a non-link and remove i
′

from F
(x)
2(i). Otherwise, we allow i and i

′
to

be possible links. While this agreement filter does reduce the block sizes, it also results in

some IAC records which have no possible matches in the CMF. We drop these IAC records

from F1. Table 6 shows the resulting size of F1 at each level of NAICS blocking.
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The agreement filter chosen here reflects a belief that for true matches, the values of

TVS and TE in the IAC and CMF should be similar. The threshold of 30% allows some

room for noise, recording error and time variation. In general applications, the choice to

apply an agreement filter, as well as the choice of appropriate threshold, is at the discretion

of the analyst.

6.1.3 Transformations and standardization

After applying the agreement filter described in Section 6.1.2, we have our final subsets

F
(x)
1 and F

(x)
2 for each x. Before linking, we transform the MVs by taking the log. Taking

the log puts the data on a similar scale, meaning that the mixture model should require

fewer components to describe the distribution of the data. In a final pre-processing step,

we standardize the MVs, as necessitated by the linking model in Section 2.3. The stan-

dardization is performed as described in Section 4.1. Let j = 1 refer to TVS and j = 2

refer to TE. Let Y
(x)
ij denote the standardized value for MV j for record i in F

(x)
1 . Similarly,

let X
(x)

i′j
denote the standardized value for MV j for record i

′
in F

(x)
2 .

6.2 Evaluating the links

We run LFCMV to link each pair of data sets (F
(x)
1 , F

(x)
2 ) for x = 4, 5, 6. As described in

Section 4, for x = 4, 5, 6, we initialize C by selecting, for each record i in F
(x)
1 , the record

i
′

in F
(x)
2(i) such that

d(i, i
′|x) =

√√√√√ 2∑
j=1

Y (x)
ij −X

(x)

i′j

Y
(x)
ij

, (32)

is minimized. We then fit the LFCMV model using the posterior sampling steps described

in Section 3.2.

Applying LFCMV results in 5000 post burn-in posterior estimates of C at each level

of NAICS blocking. We use these estimates to compute posterior probabilities that each

record i
′ ∈ F2(i) is a match to record i in F

(x)
1 by computing the proportion of posterior

draws such that each i
′
in F

(x)
2(i) is linked to its corresponding record i. For each i, we look at

the posterior probabilities associated with possible matches i
′

in F
(x)
2(i). If at least one of the

potential matches in F
(x)
2(i) has a posterior probability > .5, we say i has a high probability
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Table 7: Displays the types of links obtained after linking at each level of NAICS blocking.

We define a link as high probability if the posterior probability of linking (i, i
′
) is greater

than .5.

Link Type

NAICS Level High Prob Low Prob Total

4-digit 320 230 550

5-digit 330 150 480

6-digit 270 60 330

match. Otherwise, we say i has low probability matches. Table 7 shows a summary of

the counts of IAC records having high and low probability matches at each NAICS level.

Counts have been rounded to satisfy disclosure protocols.

As we shift from one level of NAICS blocking to another, the subset of records F
(x)
1 and

F
(x)
2 result in different possible links. For instance, a record in F

(4)
1 that has a possible match

in F
(4)
2 may not be in F

(5)
1 , i.e., may have any possible matches in the CMF when blocking

on 5-digit NAICS. This can be seen in the difference in Tthe total column in Table 7. For

instance, when shifting from 4-digit to 5-digit blocking, there are 70 records that, according

to our choice of blocking and agreement filter, no longer have any possible matches in the

CMF. Table 8 displays the number of IAC records which are lost, i.e., no longer have

possible matches in the CMF, as the blocking level changes. Table 8 also displays rounded

counts for the number of these lost records that correspond to high probability matches.

While some record links are lost as we compare results across different levels of NAICS

blocking, some record links remain consistent. We use the posterior probabilities associated

with each CMF record to determine which record in F
(x)
2 is the most likely match to each i

in F
(x)
1 . In other words, we determine which record in F

(x)
2 is the highest probability match.

We note that these matches are not necessarily high probability matches. For some IAC

records, the highest probability match remains consistent across different levels of NAICS

blocking. Table 9 indicates the counts of such records at 4-digit to 5-digit NAICS blocking,

as well as 5-digit to 6-digit blocking.
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Table 8: Displays the types of links from IAC records that cannot be matched as we move

from one level of NAICS blocking to a more restrictive blocking level. We define a link as

high probability if the posterior probability of linking (i, i
′
) is greater than .5.

Link Type

NAICS Change High Low Total

4 to 5 60 10 70

5 to 6 110 40 150

4 to 6 150 70 220

Table 9: At each NAICS blocking level, for each i in F
(x)
1 there is a highest-probability

match in F
(x)
2 . The counts above indicate how many of these highest-probability matches

stay the same across x-digit NAICS levels.

NAICS Level 4 to 5 5 to 6

Count 350 250

At each level of NAICS blocking, there are also some singleton IAC records, or records

in F
(x)
1 that have exactly one option in F

(x)
2(i). Similar to the seeds discussed in Section

2.3 in Dalzell and Reiter (2017), singleton pairs are linked independently of the process

of estimating C; the pairs are declared links at every iteration. These singletons therefore

inform the process of estimating Σ, providing iteration-consistent links from which to

estimate distance across matched pairs. Singletons are dependent both on x and the choice

of agreement filter threshold. Because we have applied the agreement filter described in

Section 6.1.2, all singletons are to be within 30% of the F1 value for TVS and TE. Ideally,

the relationship in the linked singleton pairs will be reflective of relationships present in

the rest of the data. However, the latent class structure of LFCMV means that if the

relationship in the singletons is different than the relationship across pairs in other blocks,

the model can assign these records to their own latent class (or classes) with a reflective
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covariance matrix. The number of singletons varies across x-digits NAICS blocking. To

satisfy disclosure protocols, we do not provide counts of singletons at any level of NAICS

blocking.

6.3 Post-linking analysis

The links estimated in Section 6.2 can be used to construct identifiers for the records in

the CMF, specifying which records received an IAC energy assessment. In this section,

we examine energy efficiency in plants that received IAC energy assessments versus those

that did not. In addition to examining the data to see if there are year-specific trends, we

are also interested in examining that trend across time. As the CMF is conducted every

5 years, we examine energy efficiency trends in 2007 and 2012. We do not make a causal

argument about the relationship between receiving an assessment and energy efficiency, as

many factors, including plant size, may impact the relationships observed in the data.

As a basis for our analysis, we begin with all CMF records from 2007 and 2012 that

have a 4-digit NAICS code observed in the IAC. This limits our analysis to industries that

were assessed in the time period of interest. We further limit our analysis sample to plants

meeting IAC standards for assessment. IAC assessments are typically performed for plants

with no more than 500 employees and with a gross annual sales of no more than $100 million

(Muller, 2001, pg. 13). Let A2007 denote the set of CMF records from 2007 that satisfy

the IAC restrictions for sales and employees and have 4-digit NAICS codes that appear in

the IAC. Similarly, let A2012 denote the set of CMF records from 2012 that satisfy the IAC

restrictions for sales and employees and have 4-digit NAICS codes that appear in the IAC.

We refer to A2007 and A2012 as our analysis samples.
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6.3.1 Energy metric

For each record i
′

in A2007 and A2012, we compute an energy efficiency metric as follows:

EFi′ = log

(
TV Si′

CFi′ + EEi′

)
. (33)

Here, (33) represents the log of the inverse of the energy cost share. The denominator

represents total energy cost and is computed by adding the cost of fuels (CF) to the

electricity expenditure (EE).

Energy efficiency is known to vary across different industries, or, equivalently, across

NAICS codes. Producing aluminum foil, for instance, has different energy requirements

from producing potato chips. This suggests that rather than directly comparing values of

(33) across plants, an analysis might be conducted at the NAICS specific level. However,

there are not enough IAC-assessed plants within most NAICS codes to make such an

analysis feasible. Instead, we adjust the metric in (33) so that it can be compared across

all NAICS codes. To do this, we convert the efficiency metric in (33) into a standardized

energy score as follows.

For each record i
′

in A2007, we sort the records into groups defined by 6-digit NAICS

codes. Within each group, we compute the mean and standard deviation of values of (33)

for CMF records in the group. Let EF g denote the group g specific mean, and similarly

let SD(EF )g be the group specific standard deviation. For EFi′ in group g let

ẼF i′ =
EFi′ − EF g

SD(EF )g
, (34)

be the standardized value of EFi′ . We refer to the value of (34) as the energy score. The

energy scores are on a common scale, describing how many standard deviation each plant’s

value of EFi′ is from the group specific mean. This allows each corporation to receive an

energy score relative to their peers as defined by 6-digit NAICS. For records in A2012, we

create energy scores for 2012 analogously.

6.3.2 Results

The records in A2007 and A2012 are divided into two categories. The first category, labeled

“With Assessments”, refers to plants in a given year that received an IAC assessment. The
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remaining plants are categorized as “Without Assessments”, meaning that these plants did

not receive an IAC assessment in 2007 or 2008. The process of assigning records in A2007 and

A2012 to these categories is dependent upon the linking structures estimated in Section 6.2.

For each x-digit NAICS blocking level, and for each posterior sample s = 1, . . . ,M = 5000

of C, we create a binary vector I(s) of length a2007, where a2007 denotes the number of

records in A2007. Here, a 1 in position i
′

means that record i
′

in A2007 is linked to an

IAC record at iteration s; such plants are categorized as “With Assessment” records for

iteration s. All other plants are categorized as “Without Assessment” records.

In order to compare the energy scores in 2007 and 2012, we also consider records in A2012.

Linking is performed on the 2007 records, meaning that the indicators for IAC assessments

are associated with a 2007 CMF record. However, the Census Bureau uses a longitudinal

identifier called SURVU ID that can be used to identify records for a given plant across

time. For each iteration, we identify the set of SURVU ID numbers that, conditional on

each I(s), received an energy assessment in 2007. The 2012 records corresponding to these

unique identifiers compose the 2012 “With Assessment” samples.

Data cleaning is necessary before using SURVU ID as a longitudinal identifier. Explo-

ration of the data revealed that SURVU ID is not unique within either the 2007 nor the

2012 CMF. This means multiple records with the same SURVU ID identifier exist within

each year-specific data set. However, these records appear to be true duplicates, meaning

every field value is the same. We delete all but one record with each SURVU ID to create

a unique identifier.

For each iteration s and each level of NAICS blocking, we compute the density of energy

scores for “With Assessment” plants, and separately for “Without Assessment” plants, for

2007 and 2012. We use fixed bins across the iterations. Within each year, and each of

the two categories, we then average the density in each bin at each iteration and plot the

results. The resultant average density curves for 2007 are displayed in Figures 8, 10 and

12, and the resultant averaged density curves for 2012 are displayed in Figures 9, 11 and

13.

In Figures 8 through 13, solid lines are used for the “Without Assessment” group and

dashed lines are used for the “With Assessment” group. Each curve has a plotted 95%
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Table 10: Displays 95% MI intervals for the mean of the “With Assessments” versus “With-

out Assessment” group at each level of NAICS blocking. Similar trends are evident across

all three levels of NAICS blocking.

NAICS4 Mean 95% Interval

2007 With Assessments -0.18 (-.27,-.09)

Without Assessments -0.007 (-0.01,-0.005)

2012 With Assessments 0.03 (-0.04,0.11)

Without Assessments 0.008 (0.006,0.011)

NAICS5 Mean 95% Interval

2007 With Assessments -0.17 (-0.26,-0.08)

Without Assessments -0.007 (-0.01,-0.005)

2012 With Assessments 0.02 (-0.06,0.10)

Without Assessments 0.009 (0.006,0.011)

NAICS6 Mean 95% Interval

2007 With Assessments -0.18 (-0.29,-0.08)

Without Assessments -0.007 (-0.009,0.005)

2012 With Assessments 0.04 (-0.05,.12)

Without Assessments 0.009 (0.06,.011)

interval, representing the 95% interval for the density within each bin. The trends in the

density curves are very similar across the three levels of NAICS blocking. In 2007, the

density curve for the “With Assessment” group appears to be shifted further left than

the “Without Assessment” curve. This suggests that the energy scores for assessed plants

seem smaller than plants without assessments. In other words, relative to their peer group,

plants receiving IAC audits appear less energy efficient. This trend appears to vanish in

the plots corresponding to 2012. In Figures 9, 11 and 13, there is essentially no difference

in the curves between the “Without” and “With Assessment” groups.

To supplement the graphical exploration of the data, we leverage the combining rules

of Rubin (1987) to perform inference across the M estimated linkage structures at each
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level of NAICS blocking. Using the “With” and “Without Assessment” groups described

above, we compute the average energy score for each of the two groups for each of the M

iterations. Using the combining rules of Rubin (1987), we compute 95% confidence intervals

for the mean of each group. Results are displayed in Table 10 by NAICS blocking level.

The intervals in the table suggest the same general trends observed in the density curves.

In 2007, the average energy score tends to lower for the “With Assessment” groups, with

non-overlapping intervals for the “With” and “Without” groups. This difference is much

less pronounced in 2012, and the intervals overlap, suggesting no statistically significant

difference in the means between the groups.

7 Conclusion

In this paper, we have developed an approach for file linking that incorporates some of

the uncertainty from the matching into the linked data product. The methodology allows

faulty continuous variables to be used for matching within a blocking structure defined

by fault-free variables. We applied the method to create of a database with the potential

to allow novel research to be conducted on the policy interventions of detailed energy-

efficiency assessments to SME. By combining information from the Census Bureau with

publicly available IAC records, we increase the utility of the IAC database by enabling

longitudinal research, as well as cross sectional comparisons to SME that do not receive

assessments. LFCMV results in multiple linked data sets, allowing any statistical inferences

on the impact of this policy to account of the uncertainty in the linking itself.
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Figure 8: NAICS 4 Blocking, 2007: Kernel Density Plots. Solid line: Average Density of

energy scores for CMF plants that did not receive assessments. 95% intervals are displayed

but are very tight to the curve. Dashed lines: Average Density of energy scores for CMF

plants that did receive assessments. 95% intervals are displayed. The fuzziness in the plot

results from disclosure review requirements of the Census Bureau.

Figure 9: NAICS 4 Blocking, 2012: Kernel Density Plots. Solid line: Average Density of

energy scores for CMF plants that did not receive assessments. 95% intervals are displayed

but are very tight to the curve. Dashed lines: Average Density of energy scores for CMF

plants that did receive assessments. 95% intervals are displayed. The fuzziness in the plot

results from disclosure review requirements of the Census Bureau.
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Figure 10: NAICS 5 Blocking, 2007 Kernel Density Plots. Solid line: Average Density of

energy scores for CMF plants that did not receive assessments. 95% intervals are displayed

but are very tight to the curve. Dashed lines: Average Density of energy scores for CMF

plants that did receive assessments. 95% intervals are displayed. The fuzziness in the plot

results from disclosure review requirements of the Census Bureau.

Figure 11: NAICS 5 Blocking, 2012: Kernel Density Plots. Solid line: Average Density of

energy scores for CMF plants that did not receive assessments. 95% intervals are displayed

but are very tight to the curve. Dashed lines: Average Density of energy scores for CMF

plants that did receive assessments. 95% intervals are displayed. The fuzziness in the plot

results from disclosure review requirements of the Census Bureau.
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Figure 12: NAICS 6 Blocking, 2007: Kernel Density Plots. Solid line: Average Density of

energy scores for CMF plants that did not receive assessments. 95% intervals are displayed

but are very tight to the curve. Dashed lines: Average Density of energy scores for CMF

plants that did receive assessments. 95% intervals are displayed. The fuzziness in the plot

results from disclosure review requirements of the Census Bureau.

Figure 13: NAICS 6 Blocking, 2012: Kernel Density Plots. Solid line: Average Density of

energy scores for CMF plants that did not receive assessments. 95% intervals are displayed

but are very tight to the curve. Dashed lines: Average Density of energy scores for CMF

plants that did receive assessments. 95% intervals are displayed. The fuzziness in the plot

results from disclosure review requirements of the Census Bureau.
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