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Abstract 
 

The U.S. Census Bureau recently released data on earnings percentiles of graduates from post 
secondary institutions. This paper describes and evaluates the disclosure avoidance system 
developed for these statistics. We propose a differentially private algorithm for releasing these data 
based on standard differentially private building blocks, by constructing a histogram of earnings 
and the application of the Laplace mechanism to recover a differentially-private CDF of earnings. 
We demonstrate that our algorithm can release earnings distributions with low error, and our 
algorithm out-performs prior work based on the concept of smooth sensitivity from Nissim, 
Raskhodnikova and Smith (2007). 
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1 Introduction

The Post-Secondary Employment Outcomes data is produced by the U.S. Census Bureau, and is a data

product that publishes earnings and employment outcomes of graduates from post-secondary institutions.

Originally released in March 2018, the first release of PSEO published earnings percentiles by institution,

degree level, degree field, graduation cohort, and year post-graduation by linking transcript data from colleges

and universities to the Longitudinal Employer-Household Dynamics data. This data product is the first to

publish earnings using national earnings data, and is used to inform administrators, policy-makers, parents

and students about differences in earnings outcomes by institution and field of study.

While this data significantly advances our knowledge of post-secondary outcomes, the risk with such data

is that an individual’s outcomes could be identified. The U.S. Census Bureau is bound by Title 13, which

does not allow disclosure of individual characteristics or jobs. Violation of this requirement carries significant

penalties for employees and contractors, and can result in fines up to $250,000 and imprisonment up to five

years.

One aspect of the data that increases the risk of disclosure is that states also release data on earnings

using the same microdata for the Unemployment Insurance (UI) and transcript linkage, but are constrained

to UI earnings in the same state.1 This feature of outside parties having the data frame (graduates from an

institution) and a partial record of earnings (all in-state earnings) increases the likelihood of disclosing an

individual’s earnings.2 For these reasons, differential privacy is an ideal choice for a privacy definition, as it

gives us the strongest protection of an individual’s earnings.

Our paper makes contributions to the application of differential privacy algorithms. First, we describe

our DP algorithm, which allows the release of an arbitrary number of percentiles of the distribution. Our

algorithm first estimates differentially private CDFs for subsets of the student population, by (i) estimating

the histogram over earnings using the Laplace mechanism, (ii) inferring a CDF function from these noisy

counts, and (iii) reading off percentiles from the above constructed CDF. The algorithm uses laplace noise on

a histogram, and takes advantage of composition properties of differential privacy. Nissim, Raskhodnikova

and Smith (2007)’s smooth sensitivity algorithm is another algorithm for protecting percentiles, and we

show that our algorithm is more accurate for most privacy loss values.3 Additionally, while our algorithm

outputs percentiles that satisfy common sense constraints (e.g. 50th percentile less than 75th percentile),

repeated invocation of the smooth sensitivity based approach may not satisfy these constraints. Our histogram

1For example, Colorado and Texas both publish earnings outcomes using in-state earnings data.
2Suppose all individuals except one stay in a state for employment. If we release the national earnings and the state releases

similar in-state numbers, the earnings of the missing individual would be disclosed.
3Another differentially-private algorithm for protecting percentiles is the exponential mechanism, which is Algorithm 2 in

Smith (2011).
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Protecting Earnings Data 3

approach also solves this problem, and allows for the release of additional, higher-level cells.

The remainder of the paper proceeds as follows. Section 2 provides definitions of differential privacy that

we refer to for rest of the paper, while Section 3 describes the datasets we use and the need for differential

privacy. Section 4 describes the algorithm we use to protect the PSEO data, and provides a proof that our

algorithm satisfies ε-differential privacy. Section 5 then evaluates the algorithm compared to other algorithms,

and Section 6 concludes.

2 Preliminaries

This section provides definitions of differential privacy and dataset definitions for the remainder of the paper.

For more complete treatments of differential privacy, consult Dwork (2006), Dwork et al. (2006) and Dwork

and Roth (2014).

Database Definition Let D be a database of records with k variables (A1, ..., Ak). The domain of each

variable Ai is denoted dom(Ai). D has n observations.

Our focus for the remainder is count queries over tables, where a count query is defined below:

Definition 2.1 (Marginal Query) The count query qφ(D) is the number of observations from D that

satisfy φ, which is an arbitrary boolean predicate on the attributes (A1, ..., Ak). In plain terms, it is the count

of observations that have certain values of the variables. For example, the number of students graduating with

an English degree in 2008, or the number of students earning less than $25,000.

Differential Privacy An algorithm is differentially private if its output is not significantly affected by

the presence or absence of a single record from D. Consider two databases, D and D′, which differ by the

presence of a single record. These databases are called neighbors.

Definition 2.2 (Differential Privacy) Let M be an algorithm to output data, and tables D and D′ be

neighboring databases (i.e. |(D \D′)∪ (D′ \D)| = 1). Then M satisfies ε-differential privacy if for all D and

D′ and for all S ⊂ range(M),

Pr[M(D) ∈ S]

Pr[M(D′) ∈ S]
≤ eε

To satisfy differential privacy, for a given query qv(D), we have to add noise to that result which is related

to the sensitivity of the query.

Definition 2.3 (Sensitivity) Let L denote the set of all possible tables, and q be a query function on tables.
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The sensitivity of the query is denoted ∆q and is defined as:

∆q = maxD,D′neighbors∈L||q(D)− q(D′)||1

For count queries, the sensitivity of the query is 1.4

Theorem 2.1 (Sequential Composition) Let M and B be ε1- and ε2-differentially private algorithms.

Releasing the outputs of M(D) and B(D) on the same database D results in (ε1 + ε2)-differential privacy.

Theorem 2.2 (Parallel Composition) Let a database D be partitioned into k disjoint subsets, Di, and k

queries Bi(Di), each of which are ε-differentially private. Then the results of these queries, B(D), is also

ε-differentially private.

2.1 Algorithms

Definition 2.4 (Geometric Mechanism) Let q(D) be a query on a database D. Let η ∼ Geo(X, p) −

Geo(Y, p) denote a random variable draw from the distribution generated from the difference of two random

variables (X,Y) which are distributed according to the geometric distribution, where p = 1−e−ε. The algorithm

which returns q̃(D) = q(D) + η satisfies ε-differential privacy, where ηd is a vector of d independently draw

Geometric random variables.

3 Datasets and Issues

The input database for the PSEO, D, has attributes A which we separate in the following way. First,

stratifying attributes Ac, which define the cells over which we calculate earnings characteristics; and earnings,

Ae.

We denote ×i∈cdom(Ai) the cross product of all domains, which represents the space of all possible

records in D. Each combination i ∈ ×i∈cdom(Ai) will be referred to as a cell. We perform queries on each

cell separately, taking advantage of the parallel composition theorem from Section 2.

To produce the PSEO, we use two classes of datasets. First, the earnings information comes from the

LEHD, which has quarterly earnings records from 50 states and the District of Columbia. We supplement

these earnings data with earnings records from the Office of Personnel Management; these data cover a large

4For completeness, a proof is in the appendix.
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share of the federal workforce, but excludes certain occupations and departments (such as Department of

Defense).

Graduate records are from education partners, and in the most recent version of the PSEO we include

data from the University of Texas System and the Colorado Department of Higher Education. These data

include institution, field of study, degree date, degree level, and background characteristics. We match these

data to produce cell-level estimates of earnings, where the cell is defined by a combination of degree level,

degree field, institution, graduation cohort, and year after graduation.5

We total earnings from all jobs for an individual, and restrict our sample to individuals earning more

than the equivalent of full-time work at the prevailing federal minimum wage.

3.1 Utility

Researchers and analysts working with these data are interested in the earnings outcomes of graduates by

the stratifying attributes described above. A number of states have produced similar data, but have been

unable to measure earnings outcomes for graduates that move out of state. Additionally, College Scorecard

produced similar earnings outcomes by institution for enrolees, not graduates.

There are four different outcomes that we release for every cell. First, we measure the 25th, 50th and

75th percentiles of earnings. Second, we release the cell count. For the purpose of this paper, we are focusing

on protecting the earnings percentiles.

There are a number of parties that are interested in using the PSEO data. In this subsection, we outline

two use cases for these data.

Students and Parents Students and parents want to be informed about potential outcomes of graduating

with a degree in a certain field, or from a specific institution. In this case, the users of the data care about

how closely the released reported earnings values correspond with the true earnings values. Additionally, they

may care about errors less when true value is larger, since there is diminishing marginal utility in earnings,

implying a similar sized error has less utility cost when the true earnings are 100, 000 than if the true earnings

are 40, 000.

State Boards of Education As of 2018, ten states included some measure of labor market outcomes

for students into their performance-based funding formulas for public post-secondary institutions (Li, 2018).6

Many of these formulas focus on job placement and entry-level earnings, but in a non-linear way. For example,

the Florida College System uses entry-level wages and compares them with entry-level wages in the colleges

area. Colleges receive credit for up to 100% of earnings up to entry-level wages, and then no credit after that

5Graduation cohorts are three or five year groups of graduates, depending on the degree level.
6https://www.thirdway.org/report/lessons-learned-a-case-study-of-performance-funding-in-higher-education

https://www.thirdway.org/report/lessons-learned-a-case-study-of-performance-funding-in-higher-education
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cutoff.7 This formula implies that errors are more costly for lower true earnings values, compared with higher

earnings values (where there may be no additional benefit to the institution).

Error Measure In both of the above use cases, errors are more costly at lower earnings levels than

higher earnings levels. For that reason, to compare our differentially-private algorithms, we use a relative

accuracy measure (rather than an additive measure of error), which we describe in Section 5.

3.2 Privacy Requirements

There are a number of privacy requirements for the PSEO data, which are covered by Title 13 of the U.S.

Code. Under Title 13, the Census Bureau can not “make any publication whereby the data furnished by any

particular establishment or individual under this title can be identified.” This statute has two implications

for our work. First, we cannot disclose the earnings of an individual. Additionally, we cannot disclose the

existence of a job (a linkage between an employee and an employer) held by an individual.

Similar privacy requirements are also affirmed in the recent re-introduction of the College Transparency

Act, which explicity states in the legislation, “In carrying out the public reporting and disclosure requirements

of this Act, the Commissioner shall use appropriate statistical disclosure limitation techniques necessary to

ensure that the data released to the public cannot include personally identifiable information or be used to

identify specific individuals.” These privacy requirements present the constraints under which we can release

data from PSEO.

The new information the PSEO includes over previous datasets is national earnings data, which may

change the dataset D in one of two ways. First, it may change the value of Ae for an individual. Second, it

may include an individual row in the dataset that was not previously there (if an individual had no in-state

earnings). Given the privacy requirements and the new information provided by PSEO, the object that

we need to keep private is the addition or removal of a single row from the dataset D, creating D′, which

includes employment and earnings information about an individual, and makes differential privacy a very

appropriate privacy protection method in this setting.

4 Methodology

In this section, we discuss the differentially private algorithms we evaluate in the next section. In Section 4.1

we describe the histogram approach, while in Section 4.2 we describe the smooth sensitivity approach from

Nissim, Raskhodnikova and Smith (2007). For each of these algorithms, we describe the input and output

7For more details on the actual formula, see https://www.floridacollegesystem.com/sites/www/Uploads/Publications/

Funding%20Formula/Wages_1718Model.pdf

https://www.floridacollegesystem.com/sites/www/Uploads/Publications/Funding%20Formula/Wages_1718Model.pdf
https://www.floridacollegesystem.com/sites/www/Uploads/Publications/Funding%20Formula/Wages_1718Model.pdf
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data, and then describe the algorithm in detail. The next section compares the relative accuracy for each

algorithm.8

4.1 Histogram Algorithm

This subsection describes the algorithm we use to protect the data. First, the inputs and outputs. Second,

the algorithm itself.

Inputs

For each cell, the input of the algorithm is a list of earnings values, e1, e2, ..., eN , which are earnings for all

individuals in a given cell.

Outputs

There are two outputs of the algorithm. The first is a list of protected counts for each histogram bin within a

cell, (q̃c1, q̃
c
2, ..., q̃

c
M ). Using these counts, the second output obtained is a list of percentiles, which are read

from the empirical CDF.

Constructing the Histogram

To construct the histogram, consider a set of bin definitions, such that earnings value ei is in bin j if

bj ≤ ei < bj+1, where the values bj are public information and the same across all cells in the dataset.

Using these bin definitions, consider a function qCj , which returns the count of earnings values that fall in

bin j. The list of values q1, q2, ..., qM summarize the histogram.

Protecting Bin Counts

From the definition of the histogram above, we protect the queries qcj , which returns the count of the

observations in a given bin j. Additionally, these queries imply the corresponding empirical CDF:

F (j) =

∑j
i=1 q

c
i∑M

i=1 q
c
i

(1)

The sensitivity of each of these queries is 1, and therefore we can protect each of these queries with privacy

loss ε by adding Laplace noise as described above in Section 2. Therefore, our protected counts are:

q̃cj = qcj + ζ

8The code which describes these algorithms is available at Foote, Machanavajjhala and McKinney (2019).
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Where ζ ∼ Laplace(1/ε).9

Calculating Protected Percentiles

We use these fuzzed values to create a fuzzed CDF,

F̃ (j) =

∑j
i=1 q̃

c
i∑M

i=1 q̃
c
i

If we assume that earnings are distributed uniformly within a bin, we can use F̃ (j) to extract protected

percentiles. Note that F̃ (j) will not necessarily be non-decreasing, because there may be cases when q̃j < 0.10

To calculate a percentile Y, we find the first bin J such that

∑J−1
i=1 q̃

c
i∑M

i=1 q̃
c
i

< Y/100 ≤
∑J
i=1 q̃

c
i∑M

i=1 q̃
c
i

(2)

Then, the Yth percentile is bJ + (bJ+1 − bJ)× (Y/100×
∑J q̃ci )−

∑J−1 q̃ci
q̃cJ

.11

We use this technique to calculate the 25th, 50th, and 75th percentile values.

4.1.1 Choosing Bin Definitions

The key question with the above technique is how to define the bins. (that is, the bis from above) There are

two interrelated decisions; first, how many bins to have (that is, what is M); second, what the width of the

bins are.

In the next section, we evaluate the accuracy rates of different choices. We compare two main ways

to decide what the bin widths are. First, the log normal approach, which uses percentiles of a log normal

distribution as the bin widths. This approach has the advantage of making it equally likely that an observation

is in any of the bins, since earnings are typically distributed log-normally.12

9As noted above, because these counts are integers, we use the geometric noise function, which is the integer analog of the
Laplace noise distribution.

10While conceptually we are able to post-process the data to improve accuracy and guarantee q̃j ≥ 0, we find that gains in
accuracy of the outputs are minimal.

11In words, if a bin J includes the Yth percentile, and the Yth percentile is W of the way through the interval defined by bin
J, then the Yth percentile is the lower-bound value of bin J, bJ , plus W × width.

12In our application for the PSEO, we define the bins as follows. The bottom cutoff is $10,000, which is very close to the
minimum value in the data by construction. For the next 19 bis, we choose every 5th percentile of the log normal distribution
with mean 11.003 and standard deviation 0.753. The mean and standard deviation were calculated using the 5-year ACS
Public-Use Microsample. We calculated the mean and standard deviation of wage and salary income for employed individuals
with a BA or above. Additionally, for bM , we use the 97.5th percentile value of the distribution, which is about $260,000. Finally,
for any earnings greater than that value, we count it in the final bin, M . In the case where a percentile is in the largest bin, we
define bM+1 to be the 99.9th percentile of earnings from the log normal distribution, which is 614597. Together, we have 21 bins.
For reference, these histogram values are in the appendix. Additionally, in this particular application, a log-normal histogram
made the most sense; however, the method is more general. The goal of the histogram should be such that a randomly chosen
observation has an equally likely probability of landing in any bin, thereby decreasing the number of bins with no observations
in them. The specific distribution chosen depends on the expected distribution of the underlying data.
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The second approach, which we call the “even bins” approach, evenly spaces the bins between the

minimum and maximum values. This approach has the advantage of being very transparent and easy to use,

particularly if there is not an obvious parametric approximation for the distribution of the outcome being

protected.

For both approaches, the bottom cutoff is $10,000, which is very close to the minimum value in the data

by construction.

Proposition 4.1 (The histogram algorithm satisfies ε-differential privacy)

Proof:

The algorithm can be broken down into three steps.

1. Choosing bin definitions: This is done without looking at the private data, and hence it does not incur

any privacy loss.

2. Measuring bin counts noisily: Each bin count, q̃ci , is released under ε-differential privacy, using the

geometric mechanism. Since the bins are disjoint sets, releasing all the bin counts satisfies ε-differential

privacy.

3. Computing percentile values: From the composition property of differential privacy, the following

function is also ε-differentially private:

J∑
i=1

q̃ci

Since Yth percentile = bJ + (bJ+1 − bJ)× (Y/100×
∑J q̃ci )−

∑J−1 q̃ci
q̃cJ

is a function of ε-differentially private

values, the Yth percentile is also ε-differentially private, as is the histogram algorithm.

In addition to the above proposition, the clear corollary is that the histogram list of counts (q̃1, q̃2, ..., q̃M )

is ε-differentially private (Proposition 1 in Hay et al. (2010)); this result allows the list of values (q̃1, q̃2, ..., q̃M )

to also be considered releasable.

4.2 Competing Algorithms

This subsection describes the smooth sensitivity algorithm for protecting percentiles, originally from Nissim,

Raskhodnikova and Smith (2007).

Inputs

For each cell (defined as in Section 2), the input of the algorithm is a list of sorted earnings values,

Aie = (e1, e2, ..., eN ), which are earnings for all individuals in a given cell i.
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Outputs

The outputs of the algorithm are the 25th, 50th and 75th percentile values, which we refer to as P̃25, P̃50 and p̃75.

Calculating Percentiles

Let px(D) denote the query that returns the Xth percentile of an input dataset D.

Set εx such that
∑
x∈X εx = ε.13

For each X in 25,50,75, compute the true percentile y = px(D). Then return the protected percentile,

ỹ = y + Spx(D) ·Gamma(1/εx), where the Gamma(.) distribution is defined as 1/|1 + x|4.

We next describe how to compute the smooth sensitivity, Spx(D) for the percentile query.

Definition 4.1 (Smooth Sensitivity for Percentiles) Define the smooth upper bound, SqX (d) to LSqmed
(d),

such that adding noise proportional to SqX satisfies differential privacy requirement.14

These smooth upper bounds must satisfy following requirements:

∀d, Sq(d) ≥ LSq(d)

∀d, d′differing by one entrySq(d) ≤ exp(β)Sq(d
′) (3)

From these above, the β-smooth sensitivity is:

S?q,β(d) = maxd′(LSq(d
′)exp(−mβ))

Where d, d′ differ by m entries.

For completeness, we show how to derive the smooth sensitivity of the median function q50. The same

algorithm can be used for any percentile. Applying this framework to the query of the median:

LSqmed
(d) = max(eM − eM−1, eM+1 − eM ) for M =

N + 1

2
(4)

This implies that

S∗qmed,β
(d) = maxk=0,...,n (exp(−kβ)maxt=0,...,k+1(eM+t − eM+t−k−1)) (5)

13When using the smooth sensitivity algorithm with a privacy budget of ε, the researcher can allocate privacy loss differently
depending on the goal of the output. If the researcher desires accuracy to be similar across the three queries, then he could
allocate more privacy loss to more sensitive queries. If he instead desires to allocate privacy loss equally, then εx = ε/3.

14Formally, if for some query q(.), and neighboring datasets d and d′, log(
Pr(q(d)=X)
Pr(q(d′)=X)

< ε, then q(.) is ε-differentially private.
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More generally, for any percentile X, LSqX (d) = max(eM − eM−1, eM+1 − eM )forM = (N+1)X
100 , which

implies the β-smooth sensitivity for percentile X is:

S∗qX ,β(d) = maxk=0,...,n (exp(−kβ)maxt=0,...,k+1(eM+t − eM+t−k−1)) (6)

The smooth sensitivity value for a percentile X from earnings list E is defined as S∗x,β(E).

If the true percentile of the earnings list is Px(E), then it is protected in the following way:

P̃x(E) = Px(E) + ηS∗x,β(E)

Where η is drawn from the distribution h(y) = 1
1+|y|4 and β = εx/4. According to Lemma 2.5 of Nissim,

Raskhodnikova and Smith (2007), the output P̃x(E) is εx-differentially private.

5 Evaluation

This section describes the experiments we ran on the simulated earnings data, and proceeds as follows. First,

we describe the accuracy measures we use. Second, we describe the algorithms we compared and the range of

parameter settings we tested. We then present the results of our experiments.

5.1 Data For Simulations

The data we use for the experiments in this paper are constructed using the protected histograms from the

published version of the PSEO as inputs. That is, we take the differentially private histograms, and generate

individual observations based on the counts in each bin. For example, if a bin has a count of 5, we generate 5

observations by randomly drawing earnings from a uniform distribution between the two bin edges. This

approach allows us to run simulations on a dataset that has similar statistical properties to the underlying

data.

5.2 Error Measures

We use relative accuracy to assess the quality of the protected data, where relative accuracy is defined as

below:

RelAccuracy = 1− |Protected− True|
True

(7)

Where True is the true value (a percentile of the distribution), and Protected is the value after applying
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the differentially-private algorithm. The numerator of the second term is the absolute value of the L1 error,

which we scale by the true value, so that the accuracy values are expressed as a percent deviation from the

true value. For interpretation, an algorithm that always has an output of 0 will have a relative error of 1 and

a relative accuracy of 0.

This notion of relative accuracy fits well with the utility of the data. As students and policy-makers

evaluate the data, they care about how close the reported values are to the truth. Our measure of accuracy

also scales the absolute difference, since errors of $10,000 have different implications for outcomes for lower

earnings majors than higher earnings majors (that is, similar magnitude errors are more costly from a utility

perspective if the true earnings are smaller)

Finally, note that in our setting, the range of earnings values is strictly above $10,000, which means that

minimum value of True for any percentile is never 0, so RelAccuracy is always defined.

5.3 Algorithms Compared

We compare two different histogram algorithms, which provide the same guarantee of privacy. First, the

PSEO approach, which is a histogram where the bins are percentiles of a log-normal distribution (referred to

as “Log-Normal” hereafter). Second, a histogram where the bins are uniformly distributed across the range

of earnings values (referred to as ”Even” hereafter). To compare these approaches to an existing method of

releasing percentiles, we also evaluate the accuracy of the smooth sensitivity algorithm in our setting.

5.4 Parameter Values

We run our experiments on a number of different combinations of parameter values.

• Bins: 10 - 30

• Epsilon: 0.1 - 3, in steps of 0.1

• Percentiles: 25th, 50th and 75th

For each of the combinations above, we draw noise 20 times and calculate the average relative accuracy.

5.5 Results of Experiments

We summarize the results of these simulations in Figures 1-3. In the following figures, we only show the

accuracy results for the 50th percentile of earnings, although the other percentiles are available upon request.

Figure 1 shows the relative accuracy for a number of bin counts (10,15,20,25), comparing the three candidate
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algorithms.15 What we find is that the log-normal histogram scheme is strictly better than the evenly-spaced

scheme, with significant reductions in the error. Strikingly, for most values of ε, the log-normal approach is

also more accurate than the smooth sensitivity approach.16

Figure 1: Relative Accuracy by Histogram Method, 50th Percentile

Notes: Log-Normal is Solid Blue; Even is Dashed Red; Smooth-sensitivity is Dash-dot Green

Figure 2 sets the bin count constant at 20, breaks out the accuracy by cell bin size. The results show that

for every cell bin, the log-normal approach is more accurate. Our results show that in each cell-size bin, for

the smooth sensitivity algorithm to have similar accuracy, the privacy loss parameter has to be much higher.

This is true even for large cells, which are much less sensitive.

Given that the log-normal approach is clearly more accurate, the next decision to make in protecting the

data is how many bins the histogram should have; that is, how is the relative accuracy related to the number

of bins used. Theoretically, the effect is ambiguous. Having more bins means that the bins are less wide,

which should increase the accuracy within a bin. However, having more bins also increases the total noise

infused into the data, since Laplace noise is drawn for each bin.

To test the relationship empirically, Figure 3 graphs the relationship between bins and accuracy. It

appears that accuracy is decreasing in bin size, and that the noise effect dominates the width effect. However,

15Since the smooth sensitivity approach does not depend on the bin count, these are invariant.
16Figures showing the accuracy for the 25th and 75th percentiles are in the appendix.
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Figure 2: Relative Accuracy by Cell Size

(a) 30-49 (b) 50-79

(c) 80-99 (d) 100-199

(e) 200-299 (f) 300+

Notes: Log-Normal is Solid Blue; Even is Dashed Red; Smooth-sensitivity is Dash-dot Green
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Figure 3: Relative Accuracy by Bin Count

Notes: Log-Normal is Solid Blue; Even is Dashed Red; Smooth-sensitivity is Dash-dot Green
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the effects are relatively small, such that the accuracy only decreases by about 2 percentage points from 10

to 30 bins.17

One thing to note here is that in our comparisons above, for the smooth sensitivity each percentile is

calculated as a separate query, which implies that the required privacy loss is much higher for the smooth

sensitivity approach.

Formally, note that RelAccuracy is a function of ε. Now consider two different sets of privacy loss

parameters, (εH(y)) and (εSS(y)), such that for a given yth percentile, RelAccuracy(εw(y)) > a, where a is

an accuracy level (e.g., a = 0.9 is 90% accuracy). To guarantee that all percentiles have at least an accuracy

above a in the histogram approach, a practicioner must use a total privacy loss budget ε∗H = maxy∈Y [εH(y)]

if using the histogram approach, or ε∗SS =
∑
y∈Y εSS(y) if using the smooth sensitivity approach (because

each percentile is a distinct query). Our results show that for most values of ε, the histogram approach is

more accurate, and there is no additional privacy loss from calculating additional percentiles.

6 Conclusion

In the world of readily available microdata for analysis, statistical agencies need to take confidentiality

seriously. Increasingly, outside parties have access to a large share of the microdata used in the production of

statistics, which makes protecting the data with conventional methods much more difficult.

In 2018, the U.S. Census Bureau released the Post-Secondary Employment Outcomes, which uses differential

privacy to protect the underlying microdata while releasing detailed information on the distribution of earnings

for graduates.

In this paper, we describe the method we use to protect the data, and compare our method to other

potential methods of protecting the data in a differentially private way. We find that it yields significant

improvements over previous methods for protecting percentiles

Our method for releasing detailed distributional characteristics of earnings is easily generalized to other

settings, and we believe that it can be used for other settings where distributions characteristics are of interest.

For example, there is a lot of interest in releasing statistics on earnings and wealth inequality at the national

and local levels; our paper proposes one approach to releasing these statistics using differential privacy.
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A Proof of Sensitivity of Count

Consider a dataset D, and a neighboring dataset D′ which differs by one observation. Furthermore, consider
a count query qc(.) on a dataset, which returns the number of observations with certain attributes, which we
will refer to as X. Now consider the cases below:

|qc(D)− qc(D′)| =

{
1, if the differing observation has the attributes X

0, otherwise.
(8)

In the case of the count query, S(qc) = 1. Therefore, for any count query qc(d), if we draw ζ ∼ Lap(1/ε),
then q̃c(d) = qc(d) + ζ is ε-differentially private.

B Tables and Figures Appendix

Table 1: Histogram bin values

Bin Lower Bound Upper Bound
1 10000 17403
2 17403 22876
3 22876 27512
4 27512 31857
5 31857 36128
6 36128 40449
7 40449 44914
8 44914 49605
9 49605 54609
10 54609 60027
11 60027 65982
12 65982 72639
13 72639 80226
14 80226 89080
15 89080 99735
16 99735 113106
17 113106 130970
18 130970 157509
19 157509 207050
20 207050 262475
21 262475 614597
Notes: Except for the lowest value, these are all percentiles
from a log normal distribution with mean 11.003 and stan-
dard deviation 0.753. Any observation will be classified into
the final bin (21) if it has a value above 262475. For pur-
poses of calculating the percentiles, we use the upper bound
value for bin 21 of 614597, which is the 99.9th percentile of
the log normal distribution.
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Figure 4: Relative Accuracy by Histogram Method, 25th Percentile

Notes: Log-Norm is Solid Blue; Even is Dashed Red; Smooth-sensitivity is Dash-dot Green

Figure 5: Relative Accuracy by Histogram Method, 75th Percentile

Notes: Log-Norm is Solid Blue; Even is Dashed Red; Smooth-sensitivity is Dash-dot Green
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