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Abstract 
 

This paper furthers a research agenda for modeling populations along spatial networks and expands 
upon an empirical analysis to a full U.S. county (Gaboardi, 2019, Ch. 1,2). Specific foci are the 
necessity of, and methods for, validating and benchmarking spatial data when conducting social 
science research with aggregated and ambiguous population representations. In order to promote 
the validation of publicly-available data, access to highly-restricted census microdata was 
requested, and granted, in order to determine the levels of accuracy and error associated with a 
network-based population modeling framework. Primary findings reinforce the utility of a novel 
network allocation method—populated polygons to networks (pp2n) in terms of accuracy, 
computational complexity, and real runtime (Gaboardi, 2019, Ch. 2). Also, a pseudo-benchmark 
dataset’s performance against the true census microdata shows promise in modeling populations 
along networks. 
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1 Introduction

A large portion of social science research is conducted utilizing individual census response data that
are aggregated into a hierarchy of census geographies. But how well do these aggregated, publicly-
published data (and secondary datasets produced with that data), actually represent the reality of
population distributions and how can researchers confirm their robustness? Moreover, social scientists
are interested in anthropocentric phenomena, frequently at scales larger than a single neighborhood,
and human activity is generally constrained to spatial networks (roads, etc.). So determining whether
the results of research involving networks based on varying methods of network allocation can be
verified against the elusive “truth” has inherent value. Here the aim is to determine whether the
pp2n method for spatial network allocation performs similarly within a larger spatial extent when
comparing the segment-based population measures introduced in Gaboardi (2019, Ch. 2). This will
be accomplished through repeating the analyses at the county level that are performed within a
single tract and testing against a known-truth dataset, the Master Address File (MAF), in order to
determine the validity of representing population abstractions along networks.

The validity of the aggregated data is assumed to be performed internally by the U.S. Census
Bureau prior to release, along with implementing measures for protecting privacy, which will be
discussed later in this paper. Validating collected and compiled data can be partitioned into two
categories: attribute data and spatial data, where the former are variables such as Age and Income
and the latter are concerned specifically with locational attributes. Variables, such as the geographic
identifier (GEOID or FIPS — Federal Information Processing Series — codes), may be considered
either attribute data or spatial data due to being inherently tied to the bounds of a specific census
geography (state, county, tract, etc.).

Within the context of this paper the focus is specifically on understanding the uncertainty created
in spatial data as it is aggregated for reasons of privacy and highlighting methods for determining the
validity of data. Further, the aim is to provide confirmation of the soundness of publicly-published
data, and derived products, for network-based population modeling against the known truth. As
mentioned above, the underlying measure of validity for the results presented in the paper is based
on the MAF, a nationwide file of geocoded locations that can be considered the “truth.” The MAF is
a database for all known living quarters in the U.S. and Puerto Rico with a (nearly) complete record
of all residential addresses at a housing unit-level spatial resolution (Young et al., 2017). Therefore,
having access to this dataset provides a crucial building block for the determination of data and
results validity. Understandably, it is highly-restricted and inaccessible without a security clearance
with the U.S. Census Bureau, known as Special Sworn Status.

The MAF was first developed in the 1990s from primarily the United States Postal Service’s
Delivery Sequence File, and implemented for the 2000 Decennial Census (Uhl, 2011). It is
continuously updated as information becomes available, such as new addresses, updated information
regarding old addresses, updated attributes, and improved precision of associated longitude and
latitude. Following the initial implementation of the MAF for the 2000 Decennial Census it was
merged with the publicly-available Topologically Integrated Geographic Encoding and Referencing
(TIGER) database that is now known as the MAF/TIGER, which is the source of the recognizable
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MTFCC (MAF/TIGER Feature Class Code) attribute frequently seen in census data products. As
noted above, access to the MAF is highly restricted and governed by stringent policies concerning
disclosure and privacy.

Before the methods of processing the MAF data are discussed, the concept of uncertainty in
spatial data is discussed in more general terms prior to a narrow focus on uncertainty in census
data and methods for validating spatially-centric census data. Context is provided for the publicly-
available data and the daysmetricly-derived data of the complete study area of Leon County, FL
from which the data in the empirical example of Gaboardi (2019, Ch. 2) was subset followed by
a critique of the preprocessing dasymetric technique developed by Strode et al. (2018). After this
critique, the primary research activity is resumed: an investigation and comparison of network
segment population values derived from the methods introduced in Gaboardi (2019, Ch. 2). This
is done by evaluating descriptive statistics for all network allocation scenarios, derived from both
publicly-published census data and a derived product of internal census microdata. Finally, an
evaluation of network-based distance versus Euclidean distance is performed for both unweighted
distance and population-weighted distance. The sum goal of these scrutinizing reviews and analyses
is to push forward a rigorous, multifaceted campaign of validation through an understanding of
inherent spatial uncertainty, reasonable data review, critiquing quantitive methods, and developing
a qualitative awareness of the study area. The core research topics here are validating the network
allocation methods in this paper in general and specifically for measuring the accuracy of the pp2n
method against true population data. A secondary, though extremely valuable, research question is
determining how the pseudo-benchmark dataset compares to the MAF-derived data.

2 Data Validation

2.1 Uncertainty in Spatial Data

Uncertainty, inaccuracy, and error are intertwined and, to a certain extent, generally considered
unavoidable when working with spatial data, specifically spatial data within the social sciences.
Therefore, the need to (attempt to) understand this mélange of ambiguity cannot be overstated when
conducting research that has the potential to affect human lives. Uncertainty within a GIScience
context can have various definitions and be the result of many underlying factors. According to
Maffini et al. (1989) the issue of error with Geographic Information Systems (GIS) data can be
broken down into two categories: (1) the types of errors and their causes, and (2) methods for
handling said errors in derived data products. Category 1, error types and causes, can be further
enumerated as (a) the features of the natural world being inherently continuous with few truly finite
borders, (b) the limited capacity and precision of measurement and data collection with even the
most sophisticated equipment, and (c) modeling selection, data generalization, and the bias involved
with the communication of results. Category 2, solutions for dealing with error, encompasses (a)
understanding the purpose for which the data will be used, including the scale, scope, and impact of
associated error, and (b) using GIS and ancillary data to mediate the effects of error.
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As stated in (2b) of the issues raised by Maffini et al. (1989), validating data through spatial and
aspatial methods is crucial. Laurini and Thompson (1992) provide many examples of the need for
validation within the context of spatial information systems, an alternative term for GIS. Particular
issues pertaining directly to this line of research include data quality and precision (Laurini and
Thompson, 1992, Ch. 3), the need for external validity (verifying the relationship between reality
and data)(Laurini and Thompson, 1992, Ch. 5), geometric and spatial data transformations (Laurini
and Thompson, 1992, Ch. 7), and aggregation (Laurini and Thompson, 1992, Ch. 12), which forms
a central issue in this research along with its inverse: disaggregation. Because of the issues with
representing spatial data stated in the previous section due dilligence must me performed, though
is may be infeasible to verify the accuracy of every feature and attribute. Furthermore, uncertainty
may be exacerbated because there may be no clear consensus on what actually constitutes geographic
features (Mark et al., 2001).

Due to the varying nature of uncertainty in spatial data, there are many solutions to the many
problems. Gabrosek and Cressie (2002) recognize how errors in locational data can drive errors
in the associated attributes for data points. In order to solve this issue, a kriging method was
developed for interpolating points in space more accurately. Similar to a main theme that is
discussed in Gaboardi (2019, Ch. 4), Aerts et al. (2003) demonstrate how uncertainty and error
in spatial data utilized as optimization problem parameters can propagate through a model and have
a tangible impact on outcomes. Amatulli et al. (2007) allude to uncertainty in transforming points
to polygons—transformed representation problem (TRP) case 3 from Fig. 2.1 in Gaboardi (2019,
Ch. 2)—in interpolating the probability of wildfire ignition points in an area when only specific
longitude–latitude coordinates are known through historical records. Though many issues relating
to uncertainty in spatial data involve digital precision errors and sloppy record-keeping by experts,
this is becoming more frequently not the sole cause.

Recent years have seen the proliferation of spatial data into the daily lives of the layman, not
only those whose professions revolve around it like GIS technicians and surveyors. As more and
more of the general public are exposed to spatial data, the need for vigilance in validating sources
of this voluntarily contributed data becomes increasingly important (Flanagin and Metzger, 2008).
Goodchild (2007) coined the term volunteered geographic information (VGI), which has since become
a heavily-studied topic, while Haklay (2010) further evaluates the accuracy of a specific form of
VGI: OpenStreetMaps (OpenStreetMap Contributors, 2017). In terms of assuring the quality of
VGI, Goodchild and Li (2012) discuss the overarching issues and suggest approaches to ensure data
robustness. The main themes surrounding the use of VGI from a scholarly research standpoint are
spatial data quality (uncertainty) and the protection of contributor’s privacy, both of which are
extremely relevant to this line of research.

Although uncertainty quantification involving spatial data has a long history, it is still receiving
considerable attention, and most likely will for many decades to come. Bielecka and Burek (2019)
seem to suggest this while providing a longitudinal survey of spatial data quality and uncertainty
in scholary research across academic subjects. Perhaps unsurprisingly, they find that the field of
geography is one of the top ranking disciplines.
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2.2 Validation within the (Spatial) Social Sciences

Validation is paramount for rigorous scientific research. As previously stated, however, much social
science research relies on publicly-available data for testing. Specifically in regards to U.S. Census
Bureau data, this means the least spatially aggregated data are population tabulations at the block
level, the base unit of census geographies (U.S. Census Bureau, 2010b). This aggregation is essential
for protecting respondents’ privacy, but it also means that there is always a caveat when performing
analyses based on aggregated, publicly-available data, even at the highest level of spatial resolution.

A significant amount of research4 has been conducted in the past decade on the uncertainty
of census data, specifically the decennial census and American Community Survey (ACS), with a
particular focus on gaining a better understanding of the concept of a neighborhood. Some of these
studies use only publicly-available data or only restricted-access census microdata, while others
use a combination of the two. Spielman and Logan (2013) develop an approach for neighborhood
identification using address-level census microdata from the late 19th century. Due to its historical
nature (public microdata access is embargoed for 72 years), 100% of the processed microdata was
freely available and four cities in the U.S. were selected as a subset. Spielman and Logan (2013)
conclude that valuable and interesting insights are available through the utilization of microdata
that are otherwise lost in the process of aggregation. Through the modeling results produced using
synthetic data, Spielman et al. (2013) conclude that the spatial definition of a neighborhood plays a
role in determining the extent to which said neighborhood affects health and behavioral characteristics
of individuals who live in them. In the future, an extension of this study incorporating geocoded
MAF data for validation in comparison with synthetic data would likely produce interesting results.
In contrast to ecological fallacy, the inability to correctly infer individual characteristics from the
statistical measures of aggregated units (Robinson, 1950), Fowler et al. (2019) introduce the concept
of contextual fallacy, and a measure referred to as the standard deviation of individual context to
elucidate the issues surrounding the assumption that an individual’s context is equal to the context of
the census geography in which they reside. To accomplish this, all 308,745,538 individual responses
to the 2010 Decennial Census were used and matched to addresses of residence with an associated
longitude and latitude through the Master Address File (MAF). Through this approach, Fowler et al.
(2019) provide a deeper realization into measuring the uncertainty pertaining to spatial aggregation
and individual context that would not have been possible without access to microdata. Prior to
studying uncertainty in neighborhood context with individual household-level microdata, Spielman
and Singleton (2015) investigated neighborhoods and uncertainty through the ACS. In their paper,
Spielman and Singleton (2015) identify large margins of error for single variables in smaller areas
that are particularly troublesome. Their solution is to combine multiple variables, instead of a single
variable, to develop a measure for properly understanding the context of neighborhoods utilizing
ACS data.

As noted above, the ACS is a valuable resource for researchers. However, in terms of uncertainty
the ACS is far from perfect and currently much less reliable than the traditional form of the decennial

4Much of the research discussed in this section was the product of the NSF-Census Bureau Research Network
(NCRN) and had played an active role in not only improving the utility of census data products, but also helping to
ensure the continuance of federally-funded spatial and statistical research programs (Weinberg et al., 2018).
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census. Spielman et al. (2014) describe the large margins of error associated the ACS in certain areas
and the dangers of utilizing the ACS in research without clearly considering the implications of such
large margins of error. Spielman and Folch (2015) revisit the issue of large margins of error in the
ACS through regionalization, a spatial optimization method for building regions. Via regionalization,
Spielman and Folch (2015) show that margins of error can be reduced through the creation of newly-
synthesized census geographies. Bradley et al. (2017) also use regionalization to investigate spatial
aggregation errors in which they advance a novel criterion for spatial aggregation error (CAGE). The
ACS is utilized in an empirical example in Bradley et al. (2017) where it is shown to be effective at
finding optimal regionalization solutions. Folch et al. (2016) find that the levels of uncertainty in the
ACS are not uniform across the United States. Lower quality estimates (more uncertainty) appear
to be associated more often with census tracts across the southern portion of the U.S. and vice versa
across the northern U.S., concentrated in the Midwest.

In terms of the uncertainty in the decennial census, Logan et al. (2014) developed a database
for mitigating error over time. Since the boundaries for census geographies have the potential to be
redrawn prior to each decennial census it can never be assumed that a census geography has the
same boundary (or even exists) from census to census. While the purpose is to provide proportional
governmental representation, it creates issues for conducting longitudinal census research. The
Longitudinal Tract Database (LTDB) developed by Logan et al. (2014) makes it possible to
interpolate census tract estimates across decennial censuses from 1970 to 2010.

Randon-Furling et al. (2018) propose a unique approach for examining spatial dissimilarities
and provide empirical examples for statistical geographies in Paris, France. They are building
neighborhoods through a multi-focal perpective by focusing in at the micro-scale and determing
the context of the area while pulling out to the metropolitan level. It would be very intersting to
adapt the method to U.S. census geographic units with the potential to compare the results against
the restricted-access MAF. Also, there exists the possibility of further validation of results through
the integration of remote sensing techniques for neighborhood detection (Qi et al., 2019).

To succinctly synopsize the above research, the idea of defining a neighborhood for the purpose of
scholarly research is frequently undercut by uncertainty due to the lack of (access to) high-resolution
geographic data. But how can this core issue of uncertainty due to large aggregations of data and
margin of error be resolved? The answer surely is not making available all census microdata, though
there is potential in derived data products through the use of methods such as populated polygons to
networks (pp2n), as proposed in Gaboardi (2019, Ch. 2). Not all the research discussed above dealt
specifically with census microdata. However, all of the research was based on spatial techniques
for measuring and correcting problems found in publicly-available census data. Many of these
problems are caused by the various schema of data aggregation adopted by the U.S. Census Bureau
for implementing a high standard of privacy. It is the legal responsibility of the U.S. Census Bureau
to protect the privacy of respondents and confidentiality of respondent data against disclosures,
accidental or otherwise. These laws were formally enacted with the adoption of Title 13 of the
U.S. Code and will be discussed in the following section.
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2.3 Disclosure and Privacy

The cornerstone of a census process is maintaining strict standards of confidentiality to keep the
public’s faith that their privacy will be protected while also providing high-quality data products. If
the public should have any reason to doubt the full protection of their privacy, there will be a higher
likelihood of falsified, incomplete, and misleading responses. Without accurate responses from the
public, a census is virtually worthless. Therefore, the keystone of a census process is demonstrably
protecting confidential data and respondent privacy. To this end, Title 13 of the U.S. Code was
enacted in 1954, specifically Section 5, which protects the privacy of individual respondents, as well
as businesses (U.S. Congress, 1954). An overview of U.S.C. Title 13, Section 5 taken from U.S. Census
Bureau (2019c) can be found in Appendix B. For a chronological breakdown of the events that lead
to the creation of Title 13 see U.S. Census Bureau (2002), and for a complete history of the issues
of confidentiality and privacy relating the U.S. Census Bureau see “A Monograph on Confidentiality
and Privacy in the U.S. Census” (Gatewood, 2001).

A considerable amount of research is specifically conducted on how to best implement methods
to protect the confidentiality of respondents while also providing for the disclosure of useful results
from analyses run on internal (restricted-access) census data. The following provides a brief overview
on the gradual evolution of disclosure avoidance practices at the U.S. Census Bureau for the past 15
years with special emphasis on two applicable methods for this study: traditional privacy methods
and mathematically provable private methods. Traditional methods include, but are not limited to,
rounding, cell suppression, and top-coding. Mathematically provable private methods include, but
are not limited to, differential privacy. If differentially private noise injection is applied, traditional
privacy methods such as rounding are not needed (McKenna and Haubach, 2019). Zayatz (2005)
provides a description of the state of affairs for disclosure avoidance in 2005 in which both rounding
and the injection of noise are referenced as being practiced at the U.S. Census Bureau for both
the Decennial Census and the ACS. Zayatz et al. (2010) provide an updated outline for both the
2010 Decennial Census and 5-year ACS disclosure avoidance practices. Rounding is mentioned in
this publication, but noise injection is not. Ramanayake and Zayatz (2010) discuss cell suppression,
data swapping (U.S. Census Bureau, 2010a), and the utilization of synthetic data as methods for
limiting the risk of disclosure in Census Bureau data products, with no mention of either rounding
or noise injection. Both noise injection and rounding appear in Lauger et al. (2014) regarding both
microdata and magnitude data. Abowd and McKinney (2016) focus entirely on the injection of
noise to ensure the protection of confidentiality and privacy through the use of graph theory and
graph-based statistics, while Abowd and Schmutte (2017) again describe noise injection techniques
with specific mention of the Laplace distribution and Laplace mechanism for injecting noise into
data while maintaining a useful data product. Both the rounding and injection of noise into data
values seem to have lost favor and then become more popular again within the last five years, with
the adoption noise injection seemingly becoming far more widely researched and implemented than
simple rounding.

Currently, the rounding of all requested output is enforced in adherence to U.S.C. Title 13. The
following is an excerpt detailing the methods for disclosure rounding from Abowd (2018, p. 1) found
in “Summary Statistics/Model Based Output”:
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All estimates in released outputs must be rounded to four significant digits, base 10. Four
significant digits is defined as x.yyyE ± nnn, where 1 ≤ x <= 9, 0 ≤ yyy ≤ 999, and
nnn is the exponent. The numbers 1, 234, 000, 1234, 1.234 and 0.0001234 all have four
significant digits.

Table 1: “Special Rounding Rule for Entity Counts and Related Integers” from Abowd (2018), where N
are entity counts. The entity count rounding applied to the location-aggregated MAF data in this paper,
described in subsection 3.1, is highlighted in light gray.

N observations Report for output

< 15 N < 15
15 < N < 99 round to nearest 10

100 < N < 999 round to nearest 50
1000 < N < 9999 round to nearest 100

10 000 < N < 99 999 round to nearest 500
100 000 < N < 999 999 round to nearest 1000

1 000 000 < N round to four significant digits

Special rounding rules are applied specifically to entity counts, shown in Table 1. The row from
Table 1 highlighted in gray is the rule applied to the population data used in this paper. This is due
to the number of location-aggregated housing units being somewhere between 91,250 and 91,749,
which is rounded to 91,500 and will be detailed later in Table 6. The data itself and the process for
preparing and validating the data will be described in the following section.

A disclosure avoidance (DA) review process is required before any output (e.g. statistical
outputs, notes, programs, qualitative summaries, and data products) may be released outside of
the U.S. Census Bureau or a Federal Statistical Research Data Center (FSRDC). The Disclosure
Review Board (DRB) sets the standard disclosure avoidance rules and policies required for review.
The DRB operates under the guidance of the Data Stewardship Executive Policy Committee (DSEP).
For more information see U.S. Census Bureau (2019b). A Disclosure Avoidance Officer (DAO) can
use their delegated authority to directly approve the public release of some types of requested output
without a formal DRB review. For any reason, if a DAO is unable to approve the release of output
then they will bring it before the DRB for a decision. This is especially true for any requests that
do not meet standard rules or are otherwise complicated.

In 2018, DSEP ruled that sub-state estimates must include a DRB-approved noise injection
method unless they have a specific DSEP exemption or if they receive a DRB exception. Within this
context, sub-state refers to a geographic area that is less populous than the least populous state. An
analysis on Leon County, FL is sub-state because the population of this county was less than the
population of the least populous state in 2010. The least populous state in 2010 was Wyoming with
a publicly-published population of 563,626.

When requested output includes sub-state estimates, output often requires noise injection.
Output using noise injection requires approval by the DRB, the Chief Scientist, and sometimes an
external reviewer. Differential privacy is an accepted mathematical concept developed and used for
detecting and preventing risks to privacy, and signifying that data are provably private (Dwork and
Roth, 2014). It is a burgeoning research topic in computer science and is implemented for determining
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the extent to which certain data can be used to predict other data. Concerning the implementation
of differential privacy for the release of statistics and data by the U.S. Census Bureau, there are
currently two dominant schools of thought. Ruggles et al. (2019) assert that the implementation of
differential privacy is not necessary or useful. Moreover, Ruggles et al. (2019) predicts that it will
actually be harmful to future social and economic research initiatives with unforeseen repercussions,
and that through the implementation of differential privacy the U.S. Census Bureau is violating its
statutory obligations. Conversely, Abowd et al. (2017) describe the implementation of differential
privacy within the context of a statistical agency (e.g., the U.S. Census Bureau) as a “match made in
heaven” that will only get better due to differential privacy being an emerging field. These conflicting
opinions are seen by many as the unavoidable growing pains of introducing a novel process into a
matured system. Concerning this line of research, the results pertaining to the MAF data detailed
later in this paper were some of the first specifically geographically-related restricted-access census
microdata that were deemed in need of differential privacy through noise-injection techniques. For
a general primer on differential privacy see Wood et al. (2018). Hsu et al. (2014) detail a method
specifically for determining a proper level of epsilon (ε), which will be addressed in the next section,
and Gaboardi et al. (2013) discuss linear dependent types.

This section reviewed and described abstract concepts of confidentiality and privacy that are
enforced by the U.S. Census Bureau as part of its responsibility to uphold Title 13, Section 5 of the
U.S. Code. The next section details the concrete methods in which two types of census microdata,
the MAF and the Decennial Census, were prepared and validated within a secure Federal Statistical
Research Data Center (FSRDC) prior to being cleared for results disclosure by the DRB.

3 Methods

3.1 Processing Confidential Microdata

The output of analysis using confidential or restricted data must follow the appropriate disclosure
avoidance techniques before being released. Therefore, it is paramount to rigorously document the
processing of the data in order to clearly understand the meaning and limitations of the output. To
this end, a specific process was developed for this project that details the parameters and procedure
of preparing the data starting with the initial raw microdata, cleansing the data while accounting
for population and missing values, validating counts against disparate sources, and preparing the
results obtained from the cleaned data for disclosure review and release. The parameters and 9-step
procedure utilized for preparing and validating the census microdata used in this paper are described
in Process 15.

Three sets of census microdata are used as inputs for the approach described in the Parameters
section of Process 1: the 2017 Master Address File (MAF), 2010 Decennial Census Population file
(DECP), and 2010 Decennial Census Housing file (DECH). The 2017 MAF was used because it was
most current form of the MAF. As mentioned in section 1, MAF records are continually updated and

5This process of noise injection and results disclosure is specific to FSRDC Project Number at1866. Other projects
may follow similar steps, but the procedure described in Process 1 is specific to this research project.
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Parameters

· 2010 Decennial Census Population file (DECP)

· 2010 Decennial Census Housing file (DECH)

· 2017 Master Address File (MAF)

Procedure
Step 1: Prepare MAF Data (2017 data available by state)

· Subset Florida file to Leon County

· Subset to records contained in the 2010 Decennial Census

· Drop MAF records with no associated population
Step 2: Prepare DECP and DECH Data (2010 data available by state)

· Subset Florida file to Leon County
Step 3: Validate Decennial Census Data

· For each DECP and DECH, compare population total to MAF population total
Step 4: Combine MAF records by location

· Assign MAF records Census GEOIDs and a longitude-latitude ID

· Group MAF records by unique longitude-latitude ID and aggregate population

· Drop aggregated MAF records with no associated longitude-latitude
Step 5: Re-validate population counts

· Repeat Step 3
Step 6: Analyses

· See Table 6 and Table 7

· See Figure 14a and Figure 14b
Step 7: Inject aggregated MAF population with Laplace noise

· See (1), (2), and (3), and demonstrations in Fig. 1 and Fig. 15 of Appendix C
Step 8: Perform disclosure rounding

· See Table 1, specifically the row highlighted in gray
Step 9: Receiver Operating Characteristic calculations

· See demonstration in Fig. 2

Process 1: Cleansing and validating confidential census microdata followed by noise injection and rounding
for a disclosure request.
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never removed. Therefore, additional clarifying information, such as longitude and latitude, may be
available in the years following a census, potentially providing a more complete base of records. All
results obtained from Process 1 are based on the MAF, while the DECP and DECH are used for
validating population counts through the procedural steps.

Beginning with step 1 in the Procedure section of Process 1, the 2017 MAF for the entire state
of Florida was obtained. This file was subset down to only the records (individual housing units)
contained within Leon County and further subset to records that were included in the 2010 Decennial
Census. Next, all records without an associated population were dropped. The exact figures for MAF
record totals and records dropped were not disclosed and reporting is prohibited. Following the initial
scrubbing of the MAF, the DECP and DECH are prepared in step 2. The internal 2010 DECP and
DECH, like the 2017 MAF, are available by state. Therefore, they must be subset down to Leon
County, also like the 2017 MAF. After the completion of the initial cleansing, the population totals
of the MAF, DECP, and DECH are compared for validation in step 3. This is an essential act for
maintaining both the integrity of the cleansing process and the data itself.

Step 4 of Process 1 represents the transition in the workflow from a sanitization phase to a
generative phase. All MAF records have the potential to be associated with a longitude and a
latitude, but some MAF records may share an identical location, like all the housing units in an
apartment building. Therefore, a longitude-latitude identification marker is generated for each MAF
record. Following this generation, all unique MAF records were combined and their populations were
aggregated. At this point all MAF records without an associated longitude and latitude are dropped
before another data integrity validation is performed in step 5.

Step 6 represents the phase in which the actual core research presented later in this paper is
performed. The data products from step 6 include Table 6, Table 7, Figure 14a, and Figure 14b,
which are described in section 4. Following analysis, steps 7 and 8 of Process 1 acknowledge that any
requests to disclose results must be reviewed by the DRB. All results must follow specific rules that
may include special rounding procedures, seen in Table 1, as well as noise injection and implementing
differential privacy, explained in section 2.3. In step 8 noise from a Laplace distribution is injected
into aggregated households that have already been allocated to network segments. The process for
allocating the aggregated households to the network, hh2n, will be explained fully in section 4.

The true set of aggregated population counts is processed to produce the hh2n points. The ten
noise-infused versions of this dataset are created using a Laplace distribution, (1). The scale value
(the magnitude of change) of λ is defined by the ten values of ε, seen in (2) and (3), respectively.
The variable value for each record and population mean of variable values for all records are given
by x and µ, respectively, in (1).

f(x | µ, λ) =
1

2λ
exp

(
−|x− µ|

λ

)
(1)
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λ =
1

ε
(2)

ε = [1, 2, . . . , 9, 25] (3)

For a complete description of the Laplace distribution see Forbes et al. (2011, Ch. 26) and Stockute
and Johnson (2013). At the time of this writing, the requirement for noise injection at the substate
level (see section 2.3) was relatively new.

Following an evaluation from the Disclosure Review Board, and approval from the U.S. Census
Bureau’s Chief Scientist and an external reviewer, the dataset generated from one value of ε was
granted permission to be disclosed. However, the specific value of ε may not be disclosed. The
evaluation was based on a review of the Receiver Operating Characteristic (ROC) curves using the
Root Mean Square Error (RMSE), (4), of population-weighted network segments and the Total
Bias, (5), of segment to segment network shortest path distances.

√√√√ 1

n

n∑
i=1

(
di − pi

)2
= RMSE (4)

∑
i=1

di − pi = TotalBias (5)

In (4) and (5), each element of the set, represented as n, is indexed over i = 1 where d are
Laplace noise-infused values and p are the true data values. These two metrics were used to measure
accuracy. The generation and evaluation of the ROC curve is performed in step 9 of Process 1. An
example of an ROC curve generated from a toy dataset using the RMSE as the accuracy metric will
be provided next, along with plots demonstrating the shape of the Laplace noise that is infused into
the data.

Consider the “true” values of a toy dataset in column Data of Table 2 along with the Laplace–
infused noise values. The dataset values are consecutive integers that range from 0 to 9,999 with
Laplace noise injected into each value of Data ten times: ε = 1 through ε = 9 and ε = 25. The
process for generating Laplace noise is found in (1), (2), and (3). As seen in Fig. 1, the ε = 25 noise
displays the characteristic symmetry and leptokurtic shape of the Laplace distribution (Kotz et al.,
2001, Ch. 2). Fig. 15 in Appendix C further demonstrates this shape with ε = [1, 2, . . . , 9].
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Table 2: A toy dataset with a range of [0, . . . , 9999]. Random Laplace noise, seen in (1), is injected into each
value in Data with a λ of 1/ε, seen in (2), for ε = [1, 2, . . . , 9, 25], seen in (3). The distribution of ε = 25 is
visualized in Fig. 1 and Fig. 15 in Appendix C shows the distribution for each level of ε = [1, 2, . . . , 9]. The
Root Mean Square Error is taken from each column of ε values and used to create Fig. 2.

Data ε = 1 ε = 2 · · · ε = 9 ε = 25

0 −0.028 302 0.482 406 · · · 0.077 212 0.015 212
1 1.908 514 0.869 087 · · · 0.972 619 1.053 390
2 3.106 563 3.021 132 · · · 1.723 599 1.969 976
...

...
...

. . .
...

...
9997 9994.704 563 9996.583 768 · · · 9996.890 133 9997.090 043
9998 9998.013 793 9997.854 503 · · · 9997.988 147 9998.005 177
9999 9999.215 906 9998.999 773 · · · 9999.055 002 9999.183 830

The Root Mean Square Error (RMSE), seen in (4), is used as an example accuracy metric and
calculated for each column of ε. The resulting RMSE values are plotted against each other to produce
a Receiver Operating Characteristic curve, as shown in Fig. 2. The x–axis of Fig. 2 is each value
of ε 1 through 9 and the y–axis is RMSEε25 − RMSEεi for each i in 1 through 9. The area under
an ROC curve is considered “bad” in terms of a higher likelihood of data at that level of ε being
able to predict the true data values. Therefore, in this toy dataset, the Laplace noise injected with
ε = 1 has the absolute least likelihood of being used to compromise privacy. In other words, as
the level of ε that is utilized to calculate λ decreases, the risk of privacy loss decreases and vice
versa (Abowd, 2019a,c). Abowd (2019b) argues that the benefits of using this differential privacy
technique greatly outweighs the perceived drawbacks by providing privacy guarantees that are public
and explainable. For a complete, general primer on ROC curves and their interpretation see Gneiting
and Vogel (2018).

This section described the specific process used to prepare and validate internal census microdata.
The process for data preparation and validation is performed prior to manipulating the dataset to
ensure conformity with the U.S. Census Bureau’s strict rules that protect each respondent’s privacy
and guarantee respondent confidentiality with advanced differential privacy techniques in accordance
with Title 13 of the U.S. Code. Having knowledge of these techniques is not necessary, but helpful, for
understanding the dataset. Likewise, having some background familiarity of the study area’s context
(e.g., history and regional information) is helpful. This information is provided in the following
subsection.
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Figure 1: A demonstration of the characteristic leptokurtic symmetry of the Laplace distribution in the noise
injected into the toy data from Table 2 for ε = 25. The x–axis represents the magnitude of noise and the
y–axis represents probability.

Figure 2: An example Receiver Operating Characteristic (ROC) curve generated for the toy dataset shown
in Table 2. The purpose of an ROC curve is to determine the likelihood of a particular dataset being able to
predict the values of another dataset.

2020 14 CES Working Paper Series



Gaboardi Spatial Population Data and Disclosure Avoidance

3.2 Context of the Study Area

In this section the context of the full study area will be briefly described with a combination of satellite
imagery, traditional maps, and text. Understanding the regional and local context of a study area for
an empirical testing of methods provides a helpful supplement for validating this study. The ability
to contribute personal knowledge regarding the terrain, road network, and individual neighborhoods
within Leon County, and specifically Tallahassee, extends the usefulness of the resultant knowledge.
All information regarding population, boundaries, and areas was current in 2010.

Tallahassee is situated in the southeast United States in the Panhandle of North Florida. It was
chosen as the state capital of Florida in 1824, due to its central location between the two largest cites
in the state at the time: Pensacola and St. Augustine (Leon County Division of Tourism, 2019), as
seen in Fig. 3. While Pensacola and Jacksonville (St. Augustine is far less important than it was
200 years ago) are still major urban areas in Florida they are less prominent than the four nearest
large metropolitan statistical areas (MSAs) that are between 4 and 6 hours drive away: Orlando,
FL, Tampa, FL, New Orleans, LA, and Atlanta, GA.

Fig. 4 displays Leon County, FL in which Tallahassee is the county seat within the Florida
Panhandle. Leon County straddles the Georgia border and is near the coast of the Gulf of Mexico.
Specifically, Leon County lies within the largely-rural Big Bend (Coast) region and is generally
considered to be part of the Deep South, unlike much of Central and South Florida. Although
there is no formal delineation of the region, it normally refers to the curvature of the coast from the
Apalachicola Bay to Cedar Key, and the coastal and immediately inland counties.

Tallahassee is the primary city in the Big Bend Coast region and is also the core of the Tallahassee
Metropolitan Statistical Area, which includes Leon County, Wakulla County to the south, Gadsden
County to the west, and Jefferson County to the east.

As mentioned earlier, large areas within Leon County are rural, as seen in Fig. 5. The northeastern
portion of the Apalachicola National Forest occupies the southwest of Leon County, along with the
Lake Talquin State Forest in the west, and the Tall Timbers research institute in the north. Though
Tallahassee is the only city in Leon County, Woodville is a census-designated place and there are
numerous unincorporated communities such as Bradfordville, Capitola, Chaires, Centerville, Fort
Braden, Iamonia, Meridian, and Miccosukee.

Fig. 6 depicts the Tallahassee city limits. The Tallahassee International Airport and Leon County
Fairgrounds are clearly delineated in the extreme southwest and southeast city limits, respectively.
The central urban area of the city is bounded by Interstate-10 in the north, which then becomes
more suburban and rural. The northeastern most portion of incorporated Tallahassee is colloquially
known as Killearn, though it actually is comprised of many smaller subdivisions.

The downtown corridor is clearly visible in Fig. 7 with Florida State University to the immediate
west and Florida Agricultural and Mechanical University, an HBCU (historically black college or
university), to the south. The community of Frenchtown, a historically African American community,
lies to the northwest of downtown Tallahassee.

According to the publicly-published 2010 Decennial Census, Leon County had a total area of
1,817.5 km2 of which 1,727.08 km2 were land (95.02%) and 90.55 km2 were water (4.98%). When
comparing urban and rural land in Leon County, 81.17% (1,475.24 km2) of the total land area was
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Figure 3: Satellite imagery of the southeast United States, including the Gulf Coast and the southern portion
of the Eastern Seaboard. Tallahassee is shown with a red pin in the largely-rural northwestern portion of
Florida known as the Florida Panhandle. Image from Google (2019e).
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Figure 4: Satellite imagery demonstrating the position of Leon County, FL (outlined in red) within the Big
Bend (Coast) region of North Florida. Image from Google (2019a).

Figure 5: Satellite imagery of Leon County, FL (outlined in red) and outlying rural areas. Image from Google
(2019d).
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Figure 6: Satellite imagery of the city limits of Tallahassee, FL (outlined in red) and outlying rural areas.
Image from Google (2019c).

Figure 7: Satellite imagery of the central urban area of Tallahassee, FL. Image from Google (2019b).
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rural and 18.83% (342.26 km2) was urban (U.S. Census Bureau, 2012). As of 2010 there was a
recorded population of 275,487 accounting for a population density of 159.50 people per km2, where
only land area is considered, demonstrated by (6).

PopulationTotal
AreaLand

= PopulationDensity (6)

Also, there were 124,136 households accounting for 71.88 households per km2, which follows the same
form as (6), seen in (7).

HouseholdsTotal

AreaLand
= HouseholdsDensity (7)

In 2010 the city of Tallahassee had a total area of 267.94 km2, 259.63 km2 (96.9%) of which was
land and 8.31 km2 (3.1%) water. A population of 181,376 and 74,815 households were recorded in
2010 accounting for a population density of 698.57 people per km2 and a household density of 288.15
households per km2, using (6) and (7), respectively (U.S. Census Bureau, 2019a). As is expected,
much higher population and household densities are observed within the city of Tallahassee than in
Leon County as a whole.

Describing Leon County in terms of purely census geographies there are 68 tracts and 177 block
groups as seen in Fig. 8, where POLY represents the number of geographies (polygons). Tracts are
shown with thick, transparent green borders and block groups are shown with thin blue borders,
with the area occupied by the city of Tallahassee displayed with a golden transparency.

When comparing the imagery in Fig. 5 to the traditional map in Fig. 8, and taking the previous
descriptive statistics into consideration, it is clear to see that rural tracts and block groups are
larger than their urban counterparts, as is expected due to tracts and block groups being based on
population and containing blocks as part of the standard census hierarchy (U.S. Census Bureau,
2018a). Furthermore, the smaller census tracts and blocks groups are generally contained within the
city limits of Tallahassee and their larger counterparts without.

Moving down the census geography hierarchy from tracts and block groups, Fig. 9 shows census
blocks where POLY represents the number of blocks (polygons). There were 6,198 blocks in Leon
County in 2010, 3,634 of which were populated and 2,564 were not populated. Consistent with
higher-level aggregations in Fig. 8, blocks which are larger tend to be in outlying, rural areas and
tend to be associated with no population. A cluster of small, unpopulated blocks are observed in
the central, downtown area of Tallahassee where the capitol building is located along with numerous
businesses, as well as law and lobbying firms.

In contrast to census blocks, the population landscape appears somewhat less clustered when
the spatial unit is changed to property parcels, as seen in Fig. 10. As described in Gaboardi (2019,
Ch. 2), this dataset is the product of an advanced dasymetric preprocessing approach introduced by
Strode et al. (2018) with two input polygon datasets, the 2010 U.S. census blocks and 2011(2010-
certified) Florida Department of Revenue property parcels, which are overlaid to estimate individual
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Figure 8: 2010 Decennial Census tracts and block groups within Leon County, FL. POLY represents the total
number of polygons in each set of census geographies. The Tallahassee city limits are highlighted in gold.

property parcel populations. In 2010, there were 107,683 total parcels of which 87,877 (81.607%) were
estimated to be reliably populated and 17,950 (16.669%) were estimated to be reliably unpopulated,
shown in Fig. 10 with transparent and red polygons, respectively. Three property parcels, accounting
for 0.002% of the total and symbolized in solid black polygons, were excluded from the dataset due to
their centroids not being contained within any census geography associated with Leon County. The
three property parcels had a combined estimated population of 0.0, and therefore, their exclusion
was determined to have a neutral effect. The fourth category of features in Fig. 10 is displayed with a
green and white hatch and represents property parcels that have an ambiguous population estimate.
There are 1,853 of these parcels in the data, which account for 1.720% of the total. The concept of
an ambiguous population estimate will be described in the next section and an example will be given
in Fig. 12.

According to the description above and the legend of Fig. 10, several discrepancies become
clear, all of which seem related and involve unclear population estimates. The two most obvious
inconsistencies are the total population and total estimated population not being equivalent (275,487
vs. 275,465) and a negative estimated population sum in unpopulated parcels, −2.0899× 10−11. As
was noted previously, this dataset was produced through a dasymetric process and dasymetrically-
derived data have the potential to greatly enhance spatial resolution, but may also propagate
uncertainty through unchecked inaccuracies (Nagle et al., 2014).

As was shown and described in the immediately preceding paragraphs, there appears to be an
issue with the process that was utilized to generate the population-weighted property parcel dataset.
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Figure 9: 2010 Decennial Census blocks within Leon County, FL. Blocks with no associated population are
highlighted in red. POLY represents the total number of polygons in each set of census geographies.

The following subsection describes and critiques the process by which Strode et al. (2018) produce
the estimated population weights for property parcels, which are the base for the wp2n method.

3.3 A Critique of a Dasymetric Method

Strode et al. (2018) describe an innovative extension to the Cadastral-based Expert Daysmetric
System (CEDS) proposed by Maantay et al. (2007). CEDS is an established methodology by
which property records and census geographies are dasymetrically-combined for the purpose of
obtaining population distributions at a higher spatial resolution. The proposed extension is a
preprocessing method that is focused on the accurate assessment of population in group living
quarters. The U.S. Census Bureau defines group quarters as being either institutional or non-
institutional. Institutional group quarters are correctional facilities, nursing homes, and mental
hospitals. Non-Institutional group quarters are college dormitories, military barracks, group homes,
missions, and shelters (U.S. Census Bureau, 2018b). Strode et al. (2018) identify Leon County, FL
as having a group quarters population twice that of the national average, though this figure appears
to be from 2017, not 2010.

The preprocessing extension is performed in four steps beginning with the creation of a parity
table (step 1). This table aligns the cadastral data and census data by property-use codes and
types. Next, an intersect operation is performed whereby the attributes of census geographies are
assigned to property parcels (step 2) then the population of group living quarters is attributed to
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Figure 10: 2011(2010-certified) property parcels within Leon County, FL. Parcels with an absolute estimated
population of zero are highlighted in red, while parcels with an ambiguous estimated population of very near
zero are hatched with green bars (see Figure 12). Three parcels are excluded.

the appropriate property parcels based on the table created in step 1. Finally, the CEDS workflow
is executed based on the initial formulation found in Maantay et al. (2007). This series of steps is
summarized in Process 2.

Fig. 11 represents the base network in Leon County and the dataset that is allocated to the
network when performing the wp2n method. There were a total of 18,787 simplified segments and
15,065 vertices in the Leon County network resulting from Process 1.1 described in Gaboardi (2019,
Ch. 1). The wp2n dataset represents the results of the preprocessing technique while excluding
the centroids of reliably unpopulated property parcels (17,950). The remaining parcel centroids,
89,730, are categorized as either weighted or unweighted, symbolized with purple and red squares,
respectively. Parcel centroids are considered weighted when associated with a reliable population,
otherwise they are considered unweighted. This concept was visualized in Fig. 10 with green and
white hatched polygons. Comparing Fig. 10 and Fig. 11, clustering appears to be more visible
when representing parcels with their geometric centroids. Also, the clustering of “ambiguously”
(un)weighted parcels within the central area on Tallahassee becomes more visible in Fig. 11.
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Parameters

· Cadastral parcels

· Census geographies

Procedure
Step 1: Create parcel-to-geography equivalency table
Step 2: Intersect census geographies with property parcels
Step 3: Apportion population based on Step 1
Step 4: Perform CEDS
Process 2: A preprocessing extension to the Cadastral-based Expert Daysmetric System (CEDS) described
by Strode et al. (2018). A higher-quality population distribution assigned to group living quarters is central
to this extension.

Figure 11: 2011(2010-certified) population-weighted property parcel centroids (wp2n) within Leon County,
FL and the intersecting network structure, N = (S, V ). The totals for elements in each of the sets are given
by RP (wp2n representative points), S (network segments), and V (network vertices). Parcel centroids that
were determined to have an ambiguous population are shown with red squares (see Fig. 10).
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Before moving forward, two issues must be further discussed here: 1) the discrepancy between the
total recorded population in the 2010 Decennial Census and the estimated population as calculated
by this preprocessed CEDS approach, and 2) the concept of “ambiguously” (un)weighted parcels.
First, the issue of total population discrepancy, which was raised in the previous section, deals
with an exiguous underestimate. This underestimate is only a population of 22, representing less
than 8× 10−5% of the total. Therefore, the result is still considered reasonable, but the underlying
issue causing the underestimate must be investigated. The campus of Florida State University
was used in the empirical example given in Strode et al. (2018) where only one out of a known
population of 6,543 was not recorded when using the preprocessing technique. Also, the error at the
campus scale actually accounts for a greater percentage than that at the county scale, approximately
1.53× 10−4%. Furthermore, this error was due to mismatching population counts between the census
blocks population and the group quarter population. Therefore, there appears to be a lower likelihood
that similar errors may be manifested at the county level where there are fewer instances of group
living quarters as compared to central Tallahassee.

Next, the issue of “ambiguously” (un)weighted parcels must be addressed. This issue appears to
be caused by the CEDS procedure in which some property parcels are assigned a population that is
virtually zero, but still greater than zero. A specific example of this is Parcel #1118208020000 with
an estimated population of 0.00000000000 as represented and displayed in QGIS (QGIS Development
Team, 2016), but was selected as greater than zero programmatically. The method implemented for
slicing out parcel centroids with no population is demonstrated in Fig. 12, specifically lines 4–12.
Interestingly, this parcel is Roselawn Cemetery, located in the Waverly Hills/Piedmont-Live Oak
neighborhoods, where there should be absolutely no (living) population. As noted in the previous
section, there are 1,853 of these unreliably unweighted property parcels.

Therefore, future work for the enhancement of the dataset generation proposed by Strode et al.
(2018) may include improvements to both the CEDS procedure and a threshold for minimum
population. Regarding the actual CEDS procedure, there is potential for incorporating the penalized
maximum entropy dasymetric model (P-MEDM) proposed by Nagle et al. (2014). The P-MEDM,
not to be confused with the p-median problem that are featured prominently in Gaboardi (2019,
Ch. 4), is a daysmetric methodology that transfers error through the model and produces documented
uncertainty. In terms of preventing the recording of incredibly minute population values, a small,
positively-signed minimum threshold may be enforced to prevent ambiguous values from being
recorded. There are two potential solutions to this issue. The more basic solution simply discards
population values that are less than a very small user-defined threshold. This threshold is defined
in lines 15–20 of Fig. 12 as the smallest representable float. A more thoughtful solution is the
utilization of the multiplicative inverse of the total population as the threshold. For example, 1/∑ pop

where
∑

pop is the total recorded population in the study area. In the case of the Leon County,
FL in 2010 this equates to 1/275487 = 3.629 93× 10−6, which is significantly more identifiable as
not being zero than the values observed currently. With the addition of a minimum threshold, a
very small number larger than zero may be used in place of zero to remove unweighted property
parcels, as demonstrated in lines 22–28 of Fig. 12. As a further note, the concept of zero-weighted
population representations are important for the analysis in Gaboardi (2019, Ch. 4) (optimal facility
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1 import geopandas
2 import numpy
3

4 # read in parcel data as geodataframe
5 dataframe = geopandas.GeoDataFrame('path/to/data.shp')
6

7 # estimated population column
8 est_pop = 'SUM_EST_PO '
9 population = dataframe[est_pop]

10

11 # ----------------------------- current implementation
12 # slice out parcels with population greater than 0.0
13 dataframe = dataframe[population > 0.0]
14

15 # ---------------- potential future implementation (1)
16 # slice out parcels with population greater than
17 # the smallest positive floating point representable
18 # on a specific machine
19 SMALL = numpy.finfo(float).eps
20 dataframe = dataframe[population > SMALL]
21

22 # ---------------- potential future implementation (2)
23 # slice out parcels with population greater than
24 # the multiplicative inverse of the study area's
25 # summed population
26 sum_pop = population.sum()
27 SMALL = 1. / float(sum_pop)
28 dataframe = dataframe[population > SMALL]

Figure 12: An example of the current implementation in Python for slicing out property parcels with no
population from a dataframe. Although syntactically unambiguous, incredibly small values (< 0.00000000000)
may still be considered > 0.0, seemingly due to limitations in precision. One future implementation may utilize
a very small epsilon, represented here as the variable SMALL defined as the smallest possible representable
float, rather than true zero. Another implementation may utilize the population’s multiplicative inverse as
the baseline.
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location modeling) for two reasons: (1) models are computationally more complex as the dataset size
increases; and (2) the inclusion of clients with no associated population has the potential to skew the
results of location-allocation models (Batta, 1989), even those in which population is not considered
as a model parameter, the location set covering problem and p-center problem, for example. These
reasons are further discussed in section 2.5 and 3.1 of Gaboardi (2019, Ch. 4).

This section described and critiqued the procedures by which the datasets utilized in this study
were generated and the datasets themselves. Although the procedures and data were examined
critically, they were deemed to be of a high quality. Scrutinizing workflows and products are vital to
producing robust datasets and results, though it is important to understand that there will always
be limitations. The results obtained from network allocation using the datasets examined in this
section will now be given equal scrutiny in the following section.

4 Validation of Network Allocation Methods

Validation of the network allocation methods introduced in section 2.3 of Gaboardi (2019, Ch. 2)
are performed in a similar manner as in 2.4 section of Gaboardi (2019, Ch. 2), but at the full county
level. Descriptive statistics of the population associated with network segments for all methods of
network allocation will be provided and discussed. This will be done first with publicly-available
data using the wp2n generated dataset as a benchmark. Next, a review of the analysis from data
within the secure RDC environment will be provided. This data is actual household-level data from
the 2017 Master Address File (MAF) that were present in the 2010 Decennial Census. Results from
the public data run from within the RDC are also included with the restricted microdata scenarios
for a comparison in respect to the data adjustments associated with the disclosure preparation
process. This comparison is taken one step further by directly comparing the results obtained
from the public pseudo-benchmark data (wp2n) to the true benchmark data created from the MAF
using the households to network method, which will hereinafter be referred to as hh2n to facilitate
naming uniformity. Finally, Euclidean distance as a ratio of network distance will be investigated
at the county level, as in section 2.4.1 of Gaboardi (2019, Ch. 2). However, where OD pairs in
Fig. 2.14 and Fig. 2.15 from Gaboardi (2019, Ch. 2) are from population representations to population
representations, the origins in this paper are fire stations.

Regarding the selection of the pp2n parallel offset (po) input, two po parameters were used to
generate the pp2n points at the county level: 5 meters and 36 meters, as is used in Gaboardi (2019,
Ch. 2). Although the average snapped distance to parcels at the county level is 38.98 meters, a po
of 36 meters is used again at the county scale for uniformity with Gaboardi (2019, Ch. 2). This po
is also used in Gaboardi (2019, Ch. 4).

4.1 Publicly-Published Data

Network segment population statistics based on the Leon County, FL road network using
only publicly-available data run from outside the RDC’s secure computing environment are reviewed
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here. This is in contrast to the following subsection that uses both publicly-available data and
restricted-access data, and is run from inside the RDC. Table 3 and Table 4 are reproductions of
Table 2.3 and Table 2.4 in Gaboardi (2019, Ch. 2). Basic descriptive statistics are utilized to relate
the population distribution along the network and how it varies according to both the spatial extent
of the census geographies used and the method of network allocation. Table 3 provides an overview
of measures that are not affected by unweighted network segments, whereas Table 4 shows measures
that are affected by unweighted network segments.

Beginning with Table 3, in terms of validity, all methods for representing populations along
the road network produce equivalent sums at 275,487, which was the official publicly-published
population total for Leon County in the 2010 Decennial Census, with the lone exception being the
wp2n method. The wp2n method produced a population estimate of 275,465, which was explained
in subsection 3.2 and subsection 3.3. The number of representative points (RP ), the percentage
of network segments with no associated population (%0 pop), the total network population (sum),
and the maximum associated population of any individual segment can be seen. Unsurprisingly,
there are significantly fewer RP associated with the pc2n method. This is, of course, a function
of the spatial aggregations where tracts contain block groups and block groups contain blocks. As
mentioned previously in subsection 3.2, in the 2010 Decennial Census there were 68 tracts, 177 block
groups, and 6,198 blocks (3,634 populated) in Leon County. Therefore, there are equal numbers
of RP for each level of aggregation. However, the number of RP for the more high-resolution
population representations increases dramatically. The va2n and pp2n methods (5m and 36m) all
produce respectively equivalent RP at the tract and block group levels, with a slight decrease at
the (populated) block level. These numbers can be explained by the procedures for generating the
datasets producing at most one point per network segment for the va2n method and two points
per segment for the pp2n method. As the wp2n is the most fine-grained resolution, it is expected
that a larger number of RP will be observed (89,730). There are approximately 1/3 the number of
pp2n points as there are of wp2n points, and there are approximately 1/2 the number of va2n points
as there are of pp2n points. The relationship between RP and “unpopulated” segments appears to
display a quasi-inverse nature. For example, the vast majority on network segments (more than
99%) are unpopulated when using the pc2n method for census tracts. This shows that the wp2n
benchmark is picking up the clusters of population where property parcels are more dense, whereas
the va2n and pp2n are more evenly distributing the population across the entirety of the network.
In terms of the maximum observed segment population, the va2n and pp2n methods all produce
roughly equivalent values, within approximately 200 at each spatial extent. The pc2n produces a
large maximum of 9,064 (3.3% of the total county) at the tract level then declines rapidly to 1,496,
while the maximum for the wp2n method is 2,388.

Table 4 shows descriptive statistics that may be affected by the presence of zero values: the
minimum, mean, and standard deviation of population values for network segments. As such, Table 4
is divided into two sections respresenting the inclusion of zero values and the exclusion of zero values.
In agreement with Table 2.4 in Gaboardi (2019, Ch. 2), when including unpopulated segments the
minimum population value observed for all methods of network allocation is zero. This is because
in each method of network allocation there is at least one segment with no associated population.
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Table 3: Summary statistics for segment-based population weights including the generated representative
point count (RP ), percentage of segments with no associated population (%0 pop), cumulative population of
segments (sum), and maximum segment weight (max). All statistics are calculated from publicly-published
and available data.

Method RP %0 pop sum max

Tract-derived
pc2n 68 99.636 275 487.000 9064.000
va2n 18 657 0.107 275 487.000 700.625
pp2n (5.0) 37 311 0.466 275 487.000 558.672
pp2n (36.0) 37 296 9.776 275 487.000 459.904

Block Group-derived
pc2n 177 99.051 275 487.000 4552.000
va2n 18 657 0.107 275 487.000 568.168
pp2n (5.0) 37 311 0.466 275 487.000 459.216
pp2n (36.0) 37 296 9.776 275 487.000 376.836

Block-derived
pc2n 3634 82.553 275 487.000 1496.000
va2n 17 425 6.700 275 487.000 1049.435
pp2n (5.0) 32 491 7.708 275 487.000 1260.957
pp2n (36.0) 33 150 16.353 275 487.000 1073.891

Benchmark
wp2n 89 730 31.254 275 465.000 2388.000

Similarly, all methods have a mean segment population of 14.766, with the exception of the slight
deviation seen in the wp2n at 14.765. In terms of standard deviation the values observed appear to
follow a similar pattern to that seen in the maximum values of Table 3. That is, the pc2n observed at
the block group-level is approximately half that of the tract-level and 2.5 times that of the block-level,
the va2n and pp2n values are all roughly equal and the wp2n is slightly larger.

When excluding segments with no associated population the most noticeably affected method of
network allocation is the pc2n. For example, when zeros are masked from the dataset, the minimum
population value increases from zero to 1,292, which changes the mean population value of the
dataset from 14.766 to 4,051.279 and the standard deviation from 268.742 to 1,874.322. Similar
patterns are seen with pc2n points generated from block groups and blocks. However, the remainder
of the population representation methods are affected significantly less by the masking of zero values
with all values differing by less than eight from their respective unmasked values. An interesting
observation can be seen when comparing the minimum values of the pc2n method to all other
methods. Minimums of 1,292 and 478 are observed the tract-level and block group-level, respectively,
which are vastly larger than any other minimums, including pc2n blocks. Though these two minimum
segment population values are so much larger than the any others, this is an expected outcome
because the base of a pc2n point is simply the population-weighted geometric centroid of a single
census geography and the smallest tract and block group in Leon County, FL in 2010 had populations
of 1,292 and 478, respectively. A minimum of one is observed in the pc2n scenario derived from blocks.
Compared to all other methods the next largest minimum, observed at the tract level of pp2n (5),
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is only 4.5% of the one observed at the block level of pc2n. A global minimum of 1.0× 10−15 is
observed, which is known to cause issues in the recognition of population as demonstrated in Fig. 12
of subsection 3.3.

Table 4: Summary statistics (minimum, mean, and standard deviation) of segment population weight. The
differences between including all network segments and masking segments with no associated population
weight becomes clear. All statistics are calculated from publicly-published and available data.

Method All segments Populated segments

min mean std min mean std

Tract-derived
pc2n 0.000 14.766 268.742 1292.000 4051.279 1874.322

va2n 0.000 14.766 28.908 5.456× 10−5 14.782 28.919
pp2n (5.0) 0.000 14.766 17.508 0.045 14.835 17.519
pp2n (36.0) 0.000 14.766 18.352 0.038 16.366 18.631

Block Group-derived
pc2n 0.000 14.766 167.706 478.000 1556.424 753.777

va2n 0.000 14.766 26.779 1.241× 10−4 14.782 26.789
pp2n (5.0) 0.000 14.766 17.818 0.020 14.835 17.831
pp2n (36.0) 0.000 14.766 18.887 0.020 16.366 19.214

Block-derived
pc2n 0.000 14.766 68.406 1.000 84.635 144.614

va2n 0.000 14.766 26.263 7.868× 10−7 15.826 26.879
pp2n (5.0) 0.000 14.766 23.958 0.002 15.999 24.540

pp2n (36.0) 0.000 14.766 25.963 9.843× 10−4 17.653 27.476
Benchmark

wp2n 0.000 14.765 45.134 1× 10−15 21.477 53.095

Table 5 shows the runtime comparisons for the va2n and pp2n methods, as are demonstrated in
Table 2.2 and Table 2.5 from Gaboardi (2019, Ch. 2). With a 5-meter po, the pp2n method runs
in 1.402%, 1.518%, and 22.171% of the time of the va2n method for census tracts, block groups,
and blocks, respectively. The runtimes remain stable with a 36-meter po at 1.459%, 1.592%, and
22.575% under the same conditions stated in the previous sentence. Also, the percentage of time for
calculating the line Voronoi diagram (LVD) within the va2n method is slightly less in general than
observed in the empirical example shown in Table 2.5.

Two major observations can be made regarding runtimes in Table 5. First, when compared
to the empirical example runtimes in Table 2.5, runtimes at the county level perform similarly.
Proportionally similar runtimes at one census tract and a full county suggest promise in the scalability
of the pp2n algorithm. Second, pp2n representations from blocks take approximately 13 times longer
to generate than from other geographies (tracts and block groups). This is due to the population
search in the pp2n algorithm, step 2d of Process 2.1 in section 2.3.1 from Gaboardi (2019, Ch. 2).
However, the iterations of step 2 in Process 2.1 are not dependent on the results of other iterations,
meaning that this phase of the algorithm can be considered embarrassingly parallel and is thus a
strong candidate for the introduction of multiprocessing functionality. Multiprocessing would allow

2020 29 CES Working Paper Series



Gaboardi Spatial Population Data and Disclosure Avoidance

step 2 of the pp2n algorithm to be split across all CPU processors, thus improving real runtimes on
personal computers, and especially on HPC clusters.

Table 5: Comparative runtimes for the va2n and pp2n methods within Leon County, FL. Each method of
population representation is generated from publicly-available 2010 Decennial Census tracts, blocks groups,
and blocks, shown in Fig. 8. and Fig. 9. The percentage of total time for the line Voronoi diagram generation
needed for the va2n method is given in the second row. Time is measured in minutes.

Aggregation Level Tracts Block Groups Blocks

va2n total 475.411 437.072 415.520
va2n LVD % 84.323 90.022 94.369

pp2n (5.0) 6.666 6.633 92.125
pp2n (36.0) 6.937 6.960 93.803

The scenarios performed on public data as shown in Table 5 were run in the Florida State
University Research Computing Center (FSU RCC, 2019). On the High Performance Computing
(HPC) cluster, node hpc-i32-8 was used, which has a 2.2 GHz AMD Opteron(tm) Processor 6174,
131.8 GB of total available system memory, and 48 cores. If multiprocessing had been implemented
on this cluster node a speedup for step 2 of the pp2n algorithm of roughly 48 times could be expected.
However, in truth the speedup would be slightly less due to the computational burden of initializing
and allocating the processes across all CPU cores.

4.2 Restricted-Access Microdata

The scenarios performed on restricted data (and public data) were run in the Atlanta Research Data
Center (ARDC, 2019), one of the Federal Statistical Research Data Centers (FSRDC, 2019), on a
virtual Red Hat Enterprise Linux (RHEL) 6.10-Santiago operating system (Red Hat, Inc., 2019)
within the U.S. Census Bureau’s Integrated Research Environment (IRE) (Fattaleh, 2017). Within
the IRE, jobs were scheduled from a home (login) node and launched onto the HPC cluster using PBS
Pro, a job scheduler and workload manager (Altair Engineering, Inc., 2019). Specific information for
each processor and system memory was not recorded for restricted-access data scenarios, nor were
the runtimes.

The results from the microdata discussed above in section 3.1 created through Process 1 will
be discussed here and compared to the results from the previous section. The data found in
this subsection was reviewed by the U.S. Census Bureau and poses no breach of confidentiality6.
To reiterate, the analyses performed in this subsection are conducted using publicly-available data
and restricted-access data run from within the RDC’s secure computing environment. Table 6 is
analogous to Table 3 and Table 7 is analogous to Table 4. The rounding rules shown in Table 1
and the Laplace noise-injection shown in Fig. 1 and Fig. 15 apply to Table 6 and Table 7. As
is abundantly clear, all values calculated from the publicly-available data in Table 6 and Table 7
are very similar. However, when comparing the values of census geography-derived values to the

6The DRB approval number for the request pertaining to the data was CBDRB–FY19–387.
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Table 6: Summary statistics for segment-based population weights including the generated representative
point count (RP ), percentage of segments with no associated population (%0 pop), cumulative population of
segments (sum), and maximum segment weight (max). Statistics for the hh2n method are calculated from
internal census microdata. All others are calculated from publicly-published and available data, but within a
secure environment.

Method RP %0 pop sum max

Tract-derived
pc2n 68 99.640 275 500.000 9064.000
va2n 18 650 0.107 275 500.000 700.600
pp2n (5.0) 37 300 0.466 275 500.000 558.700
pp2n (36.0) 37 290 9.773 275 500.000 459.900

Block Group-derived
pc2n 177 99.050 275 500.000 4552.000
va2n 18 650 0.107 275 500.000 568.200
pp2n (5.0) 37 300 0.466 275 500.000 459.200
pp2n (36.0) 37 290 9.773 275 500.000 376.800

Block-derived
pc2n 3634 82.560 275 500.000 1496.000
va2n 17 420 6.696 275 500.000 1049.000
pp2n (5.0) 32 490 7.677 275 500.000 1261.000
pp2n (36.0) 33 140 16.350 275 500.000 1074.000

Benchmark
hh2n 91 500 16.420 269 900.000 1333.000

hh2h benchmark, the method that most accurately replicates the “truth” is pp2n(36.0) derived from
blocks. Considering the percentage of network segments with no population, and the minimally-
populated and maximally-populated segment (excluding zero values), the statistics are virtually
identical. Further, these results are replicated with 1/3 fewer representation points. Also, as appears
to be the trend, the pc2n method at the tract-level displays characteristics least similar to the hh2n

in terms of population distributions along the network.
Though the pp2n(36.0) derived from blocks most closely mimics the hh2h benchmark dataset

derived from the MAF data, all methods for representing populations from publicly-available census
geographies perform at least reasonably well. To illustrate this point somewhat more visually,
consider (8) for calculating the percentage difference where ξPublic and ξRestricted are correspondent
values for the same variable in the publicly-available data and restricted microdata, respectively, and
∆% is the percentage of difference between the values.

|ξPublic − ξRestricted|[
ξPublic + ξRestricted

2

] = ∆% (8)

Table 8 and Table 9 demonstrate the percentage difference between each corresponding cell in Table 3
and Table 6, and again in Table 4 and Table 7. In Table 8 and Table 9 cells highlighted in green
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Table 7: Summary statistics (minimum, mean, and standard deviation) of segment population weight. The
differences between including all network segments and masking segments with no associated population
weight becomes clear. Statistics for the hh2n method are calculated from internal census microdata. All
others are calculated from publicly-published and available data, but within a secure environment.

Method All segments Populated segments

min mean std min mean std

Tract-derived
pc2n 0 14.770 268.800 1292.000 4051.000 1874.000

va2n 0 14.770 28.910 5.456× 10−5 14.780 28.920
pp2n (5.0) 0 14.770 17.500 0.045 14.840 17.510
pp2n (36.0) 0 14.770 18.350 0.038 16.370 18.630

Block Group-derived
pc2n 0 14.770 167.700 478.000 1556.000 753.800

va2n 0 14.770 26.780 1.241× 10−4 14.780 26.790
pp2n (5.0) 0 14.770 17.800 0.020 14.840 17.810
pp2n (36.0) 0 14.770 18.890 0.020 16.370 19.220

Block-derived
pc2n 0 14.770 68.410 1.000 84.660 144.600

va2n 0 14.770 26.270 7.868× 10−7 15.830 26.880
pp2n (5.0) 0 14.770 23.960 0.002 16.000 24.530

pp2n (36.0) 0 14.770 25.970 9.843× 10−4 17.650 27.480
Benchmark

hh2n 0 14.470 37.310 1.493× 10−4 17.310 40.210

indicate no difference in generated data, black cells with white text indicate data generated outside
the secure RDC environment expressed a larger observed value, while white cells with black text
indicate that the data generated inside the secure RDC environment expressed a larger observed
value.

As stated earlier and visualized in Table 8 and Table 9 the values calculated from the publicly-
available data, both inside the RDC and outside, are virtually identical after considering the
mandatory rounding to 4 significant digits of results, rounding of entity counts, and Laplace noise
injection. In fact, the largest different in census geography-derived data observed in either Table 8
and Table 9 is the pp2n(5.0) produced from publicly-available data being 0.397% larger than the
counterpart produced inside the RDC. Due to the equivalency shown in Table 8 and Table 9 it can
be concluded that all of the methods themselves used here to produce population representations are
sound and valid. Once the population representations based solely on census geographies are taken
into account, the only substantive differences can be seen in the percentage differences between the
two benchmark datasets: the wp2n and hh2n.

4.3 Weighted Parcels vs. Aggregated Households

The wp2n (weighted parcels to network) method was utilized as a measure to benchmark against the
publicly-available census dataset, but how well does this pseudo-benchmark align with the true,
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Table 8: Percentage difference (∆%) between the summary statistics for segment-based population weights
for Table 3 (public data) and Table 6 (restricted data and public data executed within a secure environment).
Cells highlighted in green indicate equivalent values for the public and restricted data. Black cells with white
font indicate the public value being greater than the restricted value. White cells with black font indicate the
opposite.

∆%

Method RP %0 pop sum max

Tract-derived
pc2n 0.000 0.004 0.005 0.000
va2n 0.038 0.002 0.005 0.004
pp2n (5.0) 0.029 0.019 0.005 0.005
pp2n (36.0) 0.016 0.036 0.005 0.001

Block Group-derived
pc2n 0.000 0.001 0.005 0.000
va2n 0.038 0.002 0.005 0.006
pp2n (5.0) 0.029 0.019 0.005 0.004
pp2n (36.0) 0.016 0.036 0.005 0.010

Block-derived
pc2n 0.000 0.008 0.005 0.000
va2n 0.029 0.058 0.005 0.041
pp2n (5.0) 0.003 0.397 0.005 0.003
pp2n (36.0) 0.030 0.019 0.005 0.010

Benchmark
wp2n↔ hh2n 1.953 62.230 2.041 56.705

household-level MAF-derived data? According to the measures found in Table 8 and Table 9,
the wp2n appears to nearly universally produce inflated estimates in population, with the sole
underestimate being the minimally-populated segment in the network. However, upon closer
inspection the true magnitude of these differences is relatively insignificant. For example, a 200.0%
difference is observed for the minimally-populated segment with the hh2n displaying the larger value,
but the values are microscopic fractions of population, 1.493× 10−4 and 1× 10−15. The largest
actual difference appears to be in the number of unpopulated segments, which would very likely
have substantive implications when performing analyses based on the datasets. There are 31.254%
unpopulated network segments in the wp2n dataset whereas the hh2n dataset has only 16.420%.
This seems to suggest that the wp2n may be producing population along the network in clustered
patterns that are not necessarily representative of reality. However, this has not been tested (and
is purely speculation) and it is unlikely the results of such an analysis would ever be approved for
disclosure due to privacy concerns regarding Title 13, Section 5 of the U.S. Code.

Considering all the results discussed thus far in this section, it can be concluded that the results
obtained with the publicly-available, aggregated data, and population abstractions including the
resultant datasets (wp2n) produced from the preprocessing CEDS method, are valid to a high degree
of accuracy.
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Table 9: Percentage difference (∆%) between the summary statistics for segment-based population weights
for Table 4 (public data) and Table 7 (restricted data and public data executed within a secure environment).
Cells highlighted in green indicate equivalent values for the public and restricted data. Black cells with white
font indicate the public value being greater than the restricted value. White cells with black font indicate the
opposite.

∆%

Method All segments Populated segments

min mean std min mean std

Tract-derived
pc2n 0.000 0.028 0.021 0.000 0.007 0.017
va2n 0.000 0.028 0.008 0.004 0.012 0.003
pp2n (5.0) 0.000 0.028 0.044 0.010 0.033 0.053
pp2n (36.0) 0.000 0.028 0.012 0.010 0.025 0.006

Block Group-derived
pc2n 0.000 0.028 0.004 0.000 0.027 0.003
va2n 0.000 0.028 0.005 0.036 0.012 0.005
pp2n (5.0) 0.000 0.028 0.102 0.020 0.033 0.118
pp2n (36.0) 0.000 0.028 0.017 0.020 0.025 0.031

Block-derived
pc2n 0.000 0.028 0.005 0.000 0.030 0.010
va2n 0.000 0.028 0.027 0.003 0.024 0.003
pp2n (5.0) 0.000 0.028 0.006 0.011 0.006 0.041
pp2n (36.0) 0.000 0.028 0.026 0.003 0.015 0.015

Benchmark
wp2n↔ hh2n 0.000 2.016 18.980 200.000 21.487 27.619

4.4 A Note on the Public vs. Restricted Discrepancy

There appear to have been a difference of ±5 pp2n(5.0) points generated on the same dataset with
an identical code base within the secure RDC environment. Although the exact cause could not be
determined, it is likely due to precision errors in measurement. This may be caused by a multitude
of factors with the two main being different operating systems and slightly different versions of
Python packages, and even more likely, a combination of the two. It is important to emphasize that
although the exact number of representative points generated inside and outside the secure research
environment may differ, the sum of population does not. This holds true for all abstract population
representations generated from publicly-available data.
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4.5 Euclidean Distance vs. Network Distance Revisited

The difference between network distance and Euclidean distance is shown to be non-trivial within
the context of one census tract in Gaboardi (2019, Ch. 2), which is consistent with the results seen
in Okabe and Sugihara (2012, Ch. 1). Unweighted and population-weighted distance are both used
to describe these effects, seen in Fig. 2.14 and Fig. 2.15 from section 2.4.1 of Gaboardi (2019, Ch. 2),
respectively. Here the analysis area is increased to the full county to determine whether the resulting
distance ratios remain stable or tend to be more (or less) pronounced.

As stated previously, within the 25×25 hexbin plots found in the Gaboardi (2019, Ch. 2) all
shortest path network cost matrices are calculated from population representations (origins) to
population representations (destinations). In this paper the cost matrices used to determine the
Euclidean distance as a ratio of network distance are calculated from fire stations (origins) to
population representations (destinations). Also, like Gaboardi (2019, Ch. 2), all methods of allocating
populations to the network are presented, but only at the census block level, and only the OD pairs
within ±3 standard deviations (σ) from the population mean (µ) are shown (OD′ ⊂ OD). The
context of fire stations within Leon County are be detailed in section 4.3.1 of Gaboardi (2019, Ch. 4)
where fire stations represent service facilities for optimal facility location modeling. A total of 15
fire stations represent the origins of all OD′ pairs within this subsection and also in Gaboardi (2019,
Ch. 4). As in the comparison of Fig. 2.14 and Fig. 2.15 from Gaboardi (2019, Ch. 2) to the shape of
Massachusetts, the shape of Georgia will be adduced and used as a mechanism to relate the 25×25
hexbin plots found in Fig. 13a, Fig. 13b, Fig. 14a, and Fig. 14b. To reiterate, these results do not
actually concern Georgia. The data simply have a similar shape.

Beginning with Fig. 13a, there is a clear focal point of density occurring at between 10,000–20,000
meters of network distance accounting for a ratio of between 1.1 to 1.3 times that of the correspondant
Euclidean distance. This focal point is approximately in the location of Albany in southwest Georgia
and a large surrounding area with a diameter from Bainbridge to Cordele or thereabouts. This
suggests that the shortest paths for the majority of all OD′ pairs are only marginally longer over the
road network than through Euclidean space. While the results here do show the network distance is
generally longer than Euclidean distance, it appears to be much less pronounced when considering a
full county than when only considering one census tract, as in Fig. 2.14 from Gaboardi (2019, Ch. 2).
The likely cause of the difference in shape between Fig. 2.14 from Gaboardi (2019, Ch. 2) and Fig. 13a
is that the OD pairs in Fig. 2.14 in Gaboardi (2019, Ch. 2) are from population representations to
population representations, whereas the OD pairs in Fig. 13a are from fire stations to population
representations. The functional purpose of fire stations is to be located within a close proximity to
as many residences as possible, therefore, this result is unsurprising.

Next, population-weighted distance, shown in Fig. 13b, will be discussed. In Gaboardi (2019,
Ch. 2), the image of a heavily-eroded coastline is invoked when describing the change in shape from
Fig. 2.14 to Fig. 2.15. For Fig. 13a and Fig. 13b a politcal transformation will be used to describe the
data shape. While all subplots in Fig. 13a are reminiscent of the state of Georgia in the southeastern
U.S., Fig. 13b can be imagined as South Carolina, which is northeast of Georgia, encroaching on
Georgia’s border, pushing its own border to the southeast.
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(a) Network distance and the analogous ratio to Euclidean distance in
meters between unique origin-destination (OD′) pairs of fire stations
and population representations derived from census blocks. OD′ are
not the complete sets, but are subsets of OD (all pairs) within ±3
standard deviations of each respective population mean (µ) for each
scenario’s representation of population. The scales for all axes are not
uniform. 25×25 hexbins are used to demonstrate density, trends, and
data shape.

(b) Census block derived population-weighted network distance and
the analogous ratio to population-weighted Euclidean distance in
kilometers between fire stations and the midpoints of network segments.
All zero-weighted (unpopulated) segment midpoints are excluded prior
to extracting ±3 standard deviations from the mean of each respective
scenario’s representation of population, shown by OD′. The scales
for all axes are not uniform. 25×25 hexbins are used to demonstrate
density, trends, and data shape.

Figure 13: Results from externally-processed data.

2020
36

C
E
S
W
orking

P
aper

Series



G
aboardi

SpatialP
opulation

D
ata

and
D
isclosure

A
voidance

(a) Network distance and the analogous ratio to Euclidean distance in
meters between unique origin-destination (OD′) pairs of fire stations
and population representations derived from census blocks. OD pairs
for the hh2n method are calculated from internal census microdata.
All others are calculated from publicly-published and available data,
but within a secure environment. OD′ are not the complete sets, but
are subsets of OD (all pairs) within ±3 standard deviations of each
respective population mean (µ) for each scenario’s representation of
population. The scales for all axes are not uniform. 25×25 hexbins are
used to demonstrate density, trends, and data shape.

(b) Census block derived population-weighted network distance and
the analogous ratio to population-weighted Euclidean distance in
kilometers between fire stations and the midpoints of network segments.
OD pairs for the hh2n method are calculated from internal census
microdata. All others are calculated from publicly-published and
available data, but within a secure environment. All zero-weighted
(unpopulated) segment midpoint are excluded prior to extracting
±3 standard deviations from the mean of each respective scenario’s
representation of population, shown by OD′. The scales for all axes are
not uniform. 25×25 hexbins are used to demonstrate density, trends,
and data shape.

Figure 14: Results from internally-processed data.
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Although the shape of the datasets and examples used to describe them differ, it appears that
a similar underlying process results in the patterns seen in Fig. 2.15 from Gaboardi (2019, Ch. 2)
and Fig. 13b, where the focal points are clustered in the east-southeast region of each “state.” This
seems to indicate that at both the scale of one census tract and a full county, the largest differences in
network versus Euclidean population-weighted distance are observed between origin-destination pairs
that are closer together (e.g. in urban areas). Also, when comparing the results of data produced
outside the RDC and inside the RDC, the plots are virtually identical. This is shown in Fig. 14a
and Fig. 14b.

5 Implications

There are two main implications that can be drawn from the review of the analyses in section 4. Also,
an expected confirmation can be made regarding the publicly-available data from the 2010 Decennial
Census: it appears to replicate the restricted-access microdata adequately. As for the implications,
first, the dasymetric data (wp2n) is an acceptable proxy for actual census microdata. Second, since
the aggregated, publicly-publish data and the dasymetrically-derived datasets appear to be sufficient
substitutes for census microdata, a strong case can be made for them to be considered inherently
valid (in terms of accurately representing true population distributions along networks).

The confirmation of expected results regarding the accuracy of publicly-available data suggests
that previous work utilizing publicly-available population counts of census geographies does, in fact,
bare a high degree of accuracy in representing the true nature of reality. However, this should
not be misinterpreted as a blanket validation of all such research. It must be restated the that
conclusions drawn from this research only come from tests within one county. Though a disclaimer
must be made, these findings promote the concept of the validity of publicly-available census data
for scientific research.

Next, the findings in this paper show that for Leon County, FL a high-quality proxy for the true,
gold-standard MAF data can be generated through the use of the preprocessing technique and CEDS
method proposed by Strode et al. (2018). Further, using this method for all counties in Florida is
promising due to the uniform nature of the Florida Property Appraiser’s data. However, each state
in the U.S. implements different standards for maintaining property records. Therefore, generating
a dataset similar to the wp2n may prove to be problematic for another state. However, companies
like Zillow that collect and aggregate property data may promote the feasibility of implementing the
wp2n method in other study areas (Zillow, 2019).

Finally, both points suggest that there may be a reduced demand for researchers to need access
to restricted microdata, like the Master Address File, if comparable analyses can be made from
publicly-available data. Obtaining the Special Sworn Status security clearance needed for access
to the microdata is a time consuming, tedious process for both researchers and the U.S. Census
Bureau. Also, having more researchers places a larger burden on the IRE’s resources, and the
FSRDC and Disclosure Avoidance staff. This may even imply the MAF is not as “restricted” as
generally considered because it can be replicated with relative ease, and as noted in section 1, it
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was originally based on mainly the USPS Delivery Sequence File. Considering these implications,
ongoing research on this topic appears to be promising. However, to reiterate, though these are
incredibly encouraging findings, they can only be said to apply to Leon County, FL for the data
collected during the 2010 Decennial Census with any degree of certainty.

6 Conclusion

While researchers “have to learn to live with error, we should never ignore it” (Openshaw, 1989).
Researchers must actively document error and uncertainty with the goal of validating spatial
data while aggressively pursuing avenues in research that seek to diminish the effect of error and
uncertainty. Although the utility of freely-available, publicly-published census data cannot be
overstated, understanding the inherent uncertainty and ambiguity caused by the spatial aggregation
of individuals into census geographies is equally important. Dealing with the limitations of
uncertainty by investing considerable time and effort through a rigorous validation process is of
the utmost consequence.

Through the research conducted here all generated population representations in this paper can
be described as valid (to varying degrees) while each portrays the distribution of population slightly
incongruously. So, considering their validity, how do the methods of network allocation described thus
far, excluding the aggregated MAF-based hh2nmethod, perform when being used as parameters in an
applied setting? With ongoing research in Gaboardi (2019, Ch. 4), spatial optimization modeling are
used to gain a better understanding of that question. Four fundamental facility location models are
used to determine the varying outcomes of site selection when uncertain parameters, such population
and location, are utilized for modeling purposes.

2020 39 CES Working Paper Series



Gaboardi Spatial Population Data and Disclosure Avoidance

Appendix A List of Acronyms

The following is a list of acronyms frequently used throughout this paper.

ACS American Community Survey
ARDC Atlanta Research Data Center
CEDS Cadastral-based Expert Daysmetric System
DECH Decennial Census Housing file
DECP Decennial Census Population file
FIPS Federal Information Processing Series
FSRDC Federal Statistical Research Data Center
GEOID geographic identifier
GIS Geographic Information Systems (also Science)
hh2n households to network
HPC high performance computing
LVD line Voronoi diagram
MAF Master Address File
MTFCC MAF/TIGER Feature Class Code
OD origin-destination, origin-to-destination
pc2n polygon centroids to network
pp2n populated polygons to networks
RDC research data center
TIGER Topologically Integrated Geographic Encoding and Referencing
TRP transformed representation problem
va2n vector area-to-network data conversion
wp2n weighted parcels to network
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Appendix B U.S.C. Title 13, Section 5: An Overview

The following excerpt summarizing the protections enacted by Title 13, Section 5 of the U.S. Code
is taken directly from U.S. Census Bureau (2019c):

Title 13 provides the following protections to individuals and businesses:

1. Private information is never published. It is against the law to disclose or publish any
private information that identifies an individual or business such, including names,
addresses (including GPS coordinates), Social Security Numbers, and telephone
numbers.

2. The Census Bureau collects information to produce statistics. Personal information
cannot be used against respondents by any government agency or court.

3. Census Bureau employees are sworn to protect confidentiality. People sworn to
uphold Title 13 are legally required to maintain the confidentiality of your data.
Every person with access to your data is sworn for life to protect your information
and understands that the penalties for violating this law are applicable for a lifetime.

4. Violating the law is a serious federal crime. Anyone who violates this law will face
severe penalties, including a federal prison sentence of up to five years, a fine of up
to $250,000, or both.
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Appendix C The Laplace Distribution

Figure 15: A demonstration of the characteristic leptokurtic symmetry of the Laplace distribution in the noise
injected into the toy data from Table 2. Each subplot represents one level of ε = [1, 2, . . . , 9]. The x–axes
represent the magnitude of noise and the y–axes represent probability. The axes are not uniform.
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