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Abstract 
 

Pricing carbon emissions from an individual jurisdiction may harm the competitiveness of local 
firms, causing the leakage of emissions and economic activity to other regions. Past research 
concentrates on national carbon prices, but the impacts of subnational carbon prices could be more 
severe due to the openness of regional economies. We specify a flexible model to capture 
competition between a plant in a state with electric sector carbon pricing and plants in other states 
or countries without such pricing. Treating energy prices as a proxy for carbon prices, we estimate 
model parameters using confidential plant-level Census data, 1982–2011. We simulate the effects 
on manufacturing output and employment of carbon prices covering the Regional Greenhouse Gas 
Initiative (RGGI) in the Northeast and Mid-Atlantic regions. A carbon price of $10 per metric ton 
on electricity output reduces employment in the regulated region by 2.7 percent, and raises 
employment in nearby states by 0.8 percent, although these estimates do not account for revenue 
recycling in the RGGI region that could mitigate these employment changes. The effects on output 
are broadly similar. National employment falls just 0.1 percent, suggesting that domestic plants in 
other states as opposed to foreign facilities are the principal winners from state or regional carbon 
pricing. 
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1.  Introduction 

The adoption of carbon pricing in an individual jurisdiction raises the possibility that some 

economic activity, especially in energy intensive and trade exposed (EITE) industries, may shift 

production to areas with lower costs. This relocation of economic activity in response to a carbon 

price, known as a “competitiveness” effect, is often proxied by reductions in output, employment 

or profit in the carbon pricing jurisdiction. Emission leakage results when the emissions 

reduction in the carbon pricing region are offset by emissions increases elsewhere. Past research 

has concentrated on national carbon prices, but the competitiveness and leakage effects of sub-

national carbon pricing could be more severe due to the free flow of goods across states. 

Increasingly, carbon prices vary across jurisdictions that trade goods with one another. In the 

United States, California has capped most state-wide carbon emissions since 2012. Multiple 

Northeast and mid-Atlantic states have capped carbon emissions from the electricity sector via 

the Regional Greenhouse Gas Initiative (RGGI) since 2009. As of May 2020 California’s 

allowance prices are trading below $18 per metric ton, while RGGI allowance prices are trading 

below $6 per metric ton. Other states are considering adopting a carbon price (either an 

emissions tax or cap) or increasing the scope or stringency of existing carbon pricing regimes for 

electricity generation, transportation, and other sectors.2 

A central insight of the growing literature on competitiveness and leakage effects – largely at 

the national and international levels -- is that the extent of adverse effects  depends on the degree 

of competition between firms in areas that impose a carbon price versus those that do not.3 The 

impacts of subnational carbon prices, particularly for EITE industries, could be more severe due 

to the openness of regional economies.4  Despite the prominence of such policies, however, the 

literature has not previously examined this possibility.  

                                                           
2 For example, as of late 2018, Oregon was considering pricing carbon and linking its program with California’s, 
and many states in the Mid-Atlantic and Northeast were also considering the expansion of RGGI. 
3 For example, see Fowlie, Reguant, and Ryan (2016); Fischer and Morgenstern (2009); Fischer and Fox (2012); 

and Boehringer, Fischer, and Rosendahl (2010). 

4 In the U.S., electricity accounts for less than 2 percent of total manufacturing costs. However, for aluminum, 

chemicals, cement, and certain other energy intensive industries the cost share is considerably higher - suggesting 
proportionately larger negative effects of higher electricity prices. While some plants combust fuels directly, 
virtually all facilities consume electricity. 
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The fact that states sell a large share of their manufacturing output beyond the local market 

makes them sensitive to competition from other states and countries. In 2012, about two-thirds of 

U.S. manufacturing output (by value) was shipped more than 100 miles and a similar proportion 

was shipped to another state or country. The domestic competitive pressures faced by 

manufacturing plants in a particular state suggest that even a modest carbon price applied to only 

that state could be costly and lead to a reduction in output and employment, as well as emissions 

leakage.  

We develop a model that links plant-level outcomes, including employment and output, to 

energy prices. We decompose the effect of a regional carbon price on a plant’s outcome into two 

channels: a) the change of the national average outcome for the corresponding industry; and b) 

the deviation in the plant’s outcome from that national average outcome.  The first channel is 

estimated using an approach similar to Aldy and Pizer (2015).5  

Estimating the second channel is the primary literature contribution of our empirical analysis. 

This empirical component contains several features that make it particularly suitable for the 

analysis of state-level carbon pricing. First, and most importantly, we control separately for the 

energy prices a plant faces and the energy prices faced by competing plants in other states and 

countries. This allows us to show transparently how carbon pricing in one state affects outcomes 

in that state and others. Second, we allow the effects of energy prices on output and employment 

to vary across industries and in a flexible manner. We partially relax assumptions that other 

studies have imposed on the relationships between a plant’s energy cost share and the elasticity 

of its output and employment to energy prices.6 Third, because some states (e.g., California) 

price carbon emissions from electricity and fuels whereas other states (e.g., New York) price 

carbon only for electricity, the model includes separate measures of electricity and fuels prices. 

                                                           
5  Aldy and Pizer (2015) use national-level data to estimate the effects of energy prices on manufacturing 

employment. They use their results to infer the effects of a hypothetical national carbon price, finding that a carbon 
tax of $15 per ton would increase net imports by up to 0.8 percent for the most energy intensive industries. Because 
they use national-level data, their results reflect only competition among US and international manufacturing plants.  
Although Kahn and Mansur (2013) estimate the effect of electricity prices on employment by comparing adjacent 
counties, their analysis does not directly translate to a statewide carbon price, which would affect energy prices at 
the state and not the county level. The general equilibrium literature (e.g., Boehringer, Fischer, and Rosendahl 2010; 
Fischer and Fox 2012; and Adkins et al. 2012) lacks the geographic resolution necessary to address state-level 
competitiveness issues. 

6 For example, Linn 2008, 2009; and Aldy and Pizer 2015. 
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In contrast, some empirical studies aggregate electricity and fuels.7 Further, the model accounts 

for the energy embedded in materials inputs and also for demand and labor cost shocks. This 

model extends the work of Gray, Linn, and Morgenstern (2016) in several ways: including all 

sectors rather than selected energy-intensive, trade-exposed industries in the analysis; including 

all fuels rather than just natural gas; and controlling for indirect energy use. These advances 

make it possible to evaluate a wide range of actual or hypothetical state carbon pricing policies. 

We use plant-level Census data from 1982–2011 to estimate a short-run (annual) reduced-

form model of energy prices and the economic outcomes of interest (employment and output). 

The parameter estimates largely conform to intuition. The effects of a plant’s own energy prices 

on its output and employment are generally negative -- reflecting the decrease in competitiveness 

for a plant that faces higher energy prices, all else equal. The effects of competing plants’ energy 

prices are typically positive for the same reason. Energy-intensive industries are typically more 

adversely affected by energy prices than other industries.  

We simulate the output and employment effects of a $10 allowance price in RGGI as well as 

an expanded program to include New Jersey and Pennsylvania.  These states were chosen 

because they border the RGGI region and have previously belonged to RGGI or have considered 

joining; both states have substantial levels of manufacturing employment.  

Our main finding is that RGGI loses 2.7 percent of manufacturing employment, and other 

non-RGGI states gain 0.8 percent. National employment falls just 0.1 percent, suggesting that 

domestic plants in other states as opposed to foreign facilities are the principal winners from 

state or regional carbon pricing. Thus, the geographical shifts in economic activity associated 

with jurisdiction-level carbon pricing are estimated to be greater in magnitude than those from a 

national carbon price, especially for the EITE industries. It is important to note that state 

policymakers can and do take steps to reduce the adverse effects of carbon pricing on the 

competitiveness for their manufacturing sector; for example, RGGI members use some 

allowance auction revenue to subsidize energy efficiency investments at industrial facilities.8. 

                                                           
7 For example, Aldy and Pizer (2015). 

8 In particular, states can use tax revenue (or in the case of a cap-and-trade program, allocate emissions credits rather 
than auction them) to compensate firms and reduce the likelihood of employment and output losses and the risk of 
emissions leakage. For example, California allocates emissions credits to certain industries based on their energy 
intensity and exposure to international competition. In addition, states can use tax revenue or revenues from 
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Because our employment and output estimates do not include the effects of these subsidies, they 

may overstate the adverse competitiveness effects of a carbon price.  

Section 2 develops an analytical framework that links energy prices to output and 

employment, which are the key measures of competitiveness. Section 3 describes the data.  

Section 4 presents the empirical results of the statistical analysis, including the relevant 

elasticities of output and employment with respect to energy prices. Section 5 uses the statistical 

model to simulate the effects of alternative carbon prices on manufacturing industries in RGGI 

and surrounding states. Section 6 concludes. 

2. Analytical Framework 

This section presents the analytical framework used, including the decomposition of the effects 

of a regional carbon price and the estimation of both the deviations from the national average 

effects and the national average effects. 

2.1 Decomposing the Effects of a Regional Carbon Price  

As noted in the introduction, Aldy and Pizer (2015) estimate the effects of national average 

energy prices on national employment, and they use the results to make inferences on the effects 

of a hypothetical national carbon price on national employment. One expects that a national 

carbon price would affect employment in a given industry in the same direction across all 

regions of the country, although the magnitude of the effect could vary across states due to 

regional differences in energy intensity or other factors. In our context, by contrast, a regional 

carbon price would not have such uniform effects. A carbon price in the Northeast, for example, 

could reduce employment in the Northeast but increase employment in other regions. The effects 

of regional carbon prices are more likely to vary in direction across regions with a greater degree 

of competition among plants. 

 This possibility suggests decomposing into two terms the effects of a regional carbon price 

on the outcomes of plant i  in industry j . The first term is the effect of the regional carbon price 

on the national average of that outcome for the industry, jy∆ . This term captures competition 

                                                           
allowance auctions to subsidize energy efficiency investments at energy consuming businesses, potentially reducing 
competitiveness effects. In 2017, almost two-thirds of the RGGI auction revenue supported energy efficiency and 
clean and renewable investments, mostly focused on the business and residential sectors. 
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among domestic and foreign plants in the industry. If plants in the industry compete closely with 

foreign plants, the national average effect should be negative—but if competition is purely 

domestic, the national average effect could be zero.  

The second term in the decomposition is the plant’s deviation from the corresponding 

national average, ijy∆ . This term captures domestic competition. If the region imposes a carbon 

price, the deviation should be negative, as the carbon price causes plants in the region to be less 

competitive compared to other domestic plants. If the region does not impose a carbon price, the 

deviation should be positive because the plants in the region are more competitive compared to 

plants in the regulated region. 

Aldy and Pizer (2015) estimate the first term in this decomposition. Identifying the second 

term is the main focus of our empirical analysis, as discussed below.  

2.2 Estimating Deviations from National Average Effects  

This subsection describes the short-run econometric model that links a manufacturing plant’s 

economic activity to the energy prices it faces and the energy prices of its competitors. The 

effects of energy prices on an individual manufacturing plant depend on where the plant is 

located. For example, suppose Massachusetts adopts a carbon price that raises energy prices, and 

that no other states adopt a carbon price. In that case, the energy costs of plants located in 

Massachusetts increase relative to competing plants elsewhere. In contrast, for a plant located 

outside the Bay State, the energy prices it faces do not change, while the prices paid by its 

competitors increase. The increase in energy prices in Massachusetts, therefore, can create a 

competitive advantage for plants located outside the state. 

For either a plant in Massachusetts or a plant outside the state, we can express output or 

employment ( ) as a function of the energy prices faced by the plant and the energy prices of its 

competitors: 

ln��� = ��s ∗ ln��� + �
� ∗ ln ����  (1) 

where is the cost share of energy, is the energy price the plant faces, and �� is the energy 

price faced by plants in other states. The energy cost share is multiplied by the energy price 

y

s p
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because a given energy price increase should have a greater effect on the outcomes for energy-

intensive industries than for other industries. We expect  to be negative because a plant facing 

higher costs should produce less output and have lower profits, and these negative effects should 

increase in magnitude with the cost share. In principle, if energy and labor are strong enough 

substitutes, the coefficient could be positive for employment. 

In the case where output is on the left-hand side of Equation (1), this particular functional 

form (in which we interact the cost shares with the energy prices) represents a generalization of a 

Cobb-Douglas production function. If the plant has a Cobb-Douglas production function, the 

output would be directly proportional to the interaction of the cost share with the price, and �� 

would equal –1.  

The parameter  should be positive because an increase in the energy prices of competing 

plants makes the plant more competitive relative to those plants. For example, a Massachusetts 

energy price increase would increase the competitiveness of plants outside the state that compete 

with Massachusetts plants, causing their output ( ) to increase. Note that we could express the 

outcome variable as a function of the price of energy faced by the Massachusetts plant relative to 

the price of energy in other states (i.e., p / ��), which would be equivalent to setting in 

Equation (1). 

To arrive at the estimating equation, we relax several assumptions embedded in Equation (1). 

First, Equation (1) includes aggregate energy prices but the specific policies we consider affect 

electricity and natural gas prices in different ways. Consequently, we distinguish between the 

consumption of electricity and the consumption of fuels, which primarily include natural gas and 

petroleum products for the manufacturing industries studied here. 

Second, Equation (1) includes the assumption that energy prices affect economic activity in 

proportion to the cost share of energy. Aldy and Pizer (2015) and others in the literature make a 

similar assumption. However, given the available data we can partly relax this assumption. We 

define eight industry groups based on their energy cost shares and we allow the coefficient on 

their cost shares to vary across groups. For industries belonging to the same group, energy prices 

affect economic activity in proportion to the energy cost shares, but we do not assume any 

1β

2β

y

1 2β β= −
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proportionality across groups. This approach allows the data to determine whether energy prices 

have larger effects for high-consuming groups than for other groups. It also allows for non-

loglinear relationships among energy prices and outcomes. 

Third, we account for indirect energy use. In the short run, with the capital stock fixed, plants 

select inputs of energy, labor, and materials. Linn (2009) shows that energy prices can affect 

economic activity directly, by raising the energy costs faced by a plant, as well as indirectly, by 

affecting the prices of materials inputs. Ganapati, Shapiro, and Walker (2017) show that energy 

prices affect marginal costs and output prices for certain industries, providing further evidence 

that energy prices can affect a plant indirectly via intermediate materials prices.9 Consistent with 

these studies, we assume that the indirect effect depends on the energy intensity of the inputs a 

plant uses. For example, an increase in crude oil prices causes prices of petroleum products to 

increase, which affects production costs more for plants that use petroleum products than for 

those that do not. As described below, we use input-output relationships between industries to 

compute the average electricity and fuels cost shares of the materials each plant consumes. We 

interact the electricity and fuels cost share variables with their corresponding prices.  

Fourth, we control for the plant’s labor costs. We allow the coefficient on labor costs to differ 

across the energy cost share groups. Further, we recognize that energy prices may be correlated 

with product demand. Energy price increases often accompany or precede macroeconomic 

downturns, which would bias estimates of the effects of energy prices on economic activity. We 

control flexibly for national industry-level demand shocks by including interactions of industry- 

and year-fixed effects. We adopt two methods to control for subnational demand shocks. Using 

an approach that builds on Ellison and Glaeser (1999), we control for product demand of an 

individual plant based on input-output relationships between industries as well as a plant’s 

proximity to demanding industries. In addition, we include interactions of fixed effects for 

Census region and year to allow for regional demand shocks. These interactions control for 

regional changes in input costs, regional product demand shocks, as well as international supply 

                                                           
9 Ganapati, Shapiro, and Walker (2017) estimate the pass-through of energy prices to marginal costs and output 

prices. Our assumption on pass-through regards the pass-through of the carbon price to energy prices, and not output 
prices for the manufacturing plants. Fabra and Reguant (2014), among others, provide evidence on full pass-through 
of a carbon price to energy prices. 
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and demand shocks that affect each industry proportionately. The next section describes the 

construction of these variables in detail.10 

After making these modifications to Equation (1), we arrive at the estimating equation: 

ln������ = �� + ��
���

� ln�����
� � + �


���
� ln���,���

� � + ��
���

� ln�����
� � + �


���
� ln���,���

� �

+ ��
���

� ln�����
� � + �


���
� ln���,���

� � + ��
���

� ln�����
� � + �


���
� ln���,���

� �

+  ��
� ln�����

� � + �

� ln���,���

� � + ��
� ln�����

� � + �

� ln���,���

� � + ���� !"���

+ �
#$%&'#��� + �(� + ���  + )��� 

 (2) 

where the dependent variable is employment or output by plant i in industry j and year t. 

Equation (2) includes interactions of the log of the plant’s electricity price (����
� ) with the 

industry’s electricity cost share (��
�), as well as the interaction of the log of the electricity price 

of competing plants ���,���
� � with the cost share. We use the industry’s rather than the plant’s cost 

share to address potential concerns about the endogeneity of the plant’s cost share to unobserved 

plant-specific productivity. The equation includes corresponding terms for fuel prices, where the 

superscript F indicates a fuels price index rather than electricity (E). The second line in the 

equation includes the interactions of the energy price variables with the indirect energy use 

shares (��
� and ��

�). The variables are average electricity or fuels cost shares of the industry’s 

materials. The equation includes the principal effects of electricity and fuels prices, with these 

effects being absorbed by the corresponding industry-year interactions (���). The variables 

�� !"��� and #*+ ,"-��� indicate labor costs and a demand index; �(� are region–year 

interactions; and )��� is an error term. The next section describes the definitions of the competing 

energy prices, as well as the construction of the measures for indirect energy use, labor costs, and 

demand.  

We estimate Equation (2) separately for each energy cost share group, omitting group 

subscripts in the equation to simplify the notation. Because we perform a separate estimation for 

                                                           
10 In principle, we could add plant fixed effects to control for time-invariant unobservables at the plant level. 

Unfortunately, after including plant fixed effects there is insufficient remaining energy price variation to identify the 
coefficients. 



10 

 

each group, we allow for cross-group heterogeneity in the effects on economic activity of 

electricity prices, fuels prices, indirect energy use, labor costs, and demand. For symmetry, we 

allow for the possibility that the effect of a competitor’s energy prices varies across groups—for 

example, if the industry’s energy cost share is correlated with the degree of competition with 

nearby plants. 

The industry-year interactions play an important role in the identification and interpretation 

of the coefficients on the variables that include energy prices. These interactions control for the 

effects of energy prices on the average of the outcome for each industry and year. Consequently, 

the coefficients are identified by deviations from industry-year means of energy prices interacted 

with cost shares. For this reason, the coefficients capture precisely the second term in the 

decomposition introduced in the previous subsection—that is, the deviations from the national 

averages of the effects of energy prices on a plant’s outcomes. The region-year interactions 

control for regional output or employment trends, and the energy price coefficients are identified 

by energy price variation across states within a region. 

Based on the intuition from Equation (1), within a cost share group, we expect that a plant’s 

electricity and fuels prices negatively affect the outcomes, and that the negative effects are larger 

in magnitude for plants with higher cost shares—that is, the interaction terms for the plant’s 

energy prices are negative. Likewise, we expect positive coefficients for the interaction terms 

involving energy prices of competing plants. We expect the signs on the indirect energy use 

interactions to be the same as the signs of the corresponding direct energy use interactions.  

2.3 Estimating National Average Effects  

Equation (2) identifies a plant’s deviations from national industry average effects of energy 

prices. To estimate the total effect of a carbon price, we therefore need to estimate the effects of 

energy prices on national averages of the four outcomes. To accomplish this, we take an 

approach similar to that of Aldy and Pizer (2015) and estimate an industry-level regression 

  

ln����� = .� + .�
�/�

� ln���
�� + .�

�/�
� ln���

�� + 0��� !"�� + 0
#$%&'#�� + 1� + 1�  + )��    (3) 
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where the dependent variable is employment or output by industry j and year t. The equation 

includes the interaction of the industry’s electricity or fuels cost share with the log of the average 

price of electricity or fuels in year t. Because there is less price variation in the aggregate than in 

the plant-level data, we add the direct and indirect cost shares in Equation (2) to create a 

combined cost share, c, in Equation (3). The variables for labor costs and demand are defined 

similarly to Equation (2), except that they are aggregated across plants. The equation includes 

year and industry fixed effects, and an error term. 

The coefficients on the cost share–energy price interactions are the key estimates of interest. 

They are identified by time series variation in energy prices interacting with cross-industry 

variation in cost shares. For example, if the price of electricity increases between one year and 

the next, the interaction coefficient is identified by cross-industry variation in the response of the 

dependent variable to the price increase. One expects an electricity price increase to have a larger 

negative effect for industries that consume more electricity than others (either directly or 

indirectly via intermediate materials), in which case the interaction coefficient is negative. Note 

that the equation omits the main effects of the cost shares and energy prices because they are 

absorbed by the industry and year fixed effects. The year fixed effects control for average energy 

prices in other countries and any other global demand or supply shocks that affect all industries 

proportionately. Therefore, the energy price coefficient captures the effects of domestic energy 

prices, holding international prices fixed. This is an important aspect of the estimation because 

the simulations implicitly hold international prices fixed. The labor cost and demand variables 

account for supply and demand shocks that vary across industries. 

Although Equation (3) is broadly similar to Aldy and Pizer (2015), there are a few important 

differences. First, and most importantly, we estimate separate effects for electricity and fuels 

prices. This is consistent with Equation (2) and enables us to simulate carbon prices that affect 

electricity prices only, as well as carbon prices that affect both electricity and fuels prices. 

Second, we include only industry and year fixed effects rather than interactions of year fixed 

effects with aggregated industry fixed effects. Including only the year fixed effects rather than 

additional controls is for consistency with the simulations discussed below. Third, we use 

aggregate energy prices rather than industry-specific energy prices to reduce concerns about 

endogeneity. Fourth, we account for both direct and indirect energy use, which is consistent with 
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the empirical analysis cited above as well as the plant-level estimation in Equation (2), and 

allows for the possibility of indirect effects of energy prices acting through intermediate 

materials prices. Finally, we omit controls for oil prices, physical capital, and human capital. 

These choices are motivated primarily by parsimony to focus on the key coefficients of interest. 

In practice, these differences do not appear to substantially affect the results; we obtain similar 

estimates to those reported in Section 5 if we use a specification more similar to Aldy and Pizer 

(2015). 

   3.  Data and Summary Statistics 

Our analysis is based on confidential plant-level data collected by the Census Bureau in the 

Census of Manufactures (CMF) and the Annual Survey of Manufactures (ASM), which provide 

data on output, revenue, employment, and expenditures. The CMF is conducted every five years 

and includes data from all manufacturing plants; we use all years of the CMF from 1982–2007. 

The ASM samples small plants and includes all large plants; we use the ASM data from 1983–

2011. The ASM and CMF records are linked together over time in the Longitudinal Business 

Database, as described in Jarmin and Miranda (2002). Our final dataset includes about 2.5 

million plant-year observations, covering all manufacturing industries except those that shifted in 

or out of the manufacturing sector during the 1997 switch from the Standard Industry 

Classification (SIC) to the North American Industry Classification System (NAICS) industry 

definitions. 

To measure economic activity, the ASM/CMF data provide the dependent variables for our 

analysis: employment and output. Employment is measured as the plant’s total employment 

including both production and nonproduction workers. Output is measured as the plant’s total 

value of shipments, deflated by the industry’s price deflator for shipments from the NBER-CES 

Manufacturing Industry Database.11    

Our key explanatory variables are related to energy costs. The ASM/CMF data provide 

annual plant-level expenditures separately for electricity and fuels and also report the quantity of 

electricity purchased. We calculate average (rather than marginal) plant-level electricity prices as 

                                                           
11 https://www.nber.org/data/nberces.html. At the time of our analysis, these data were only available through 2011. 
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the ratio of electricity expenditure to the quantity of purchased electricity.12 Using the 1992 

CMF, we calculate the average share of electricity or fuels in the value of shipments by industry. 

Under the standard assumption that plants earn zero economic profits in the long run, these 

shares equal the corresponding cost shares. 

Because the ASM/CMF data do not include quantities of purchased fuels throughout the 

sample, we use state-level industrial prices for five fuels (coal, natural gas, distillate fuel oil, 

residual fuel oil, and liquefied natural gas) from the US Energy Information Administration. The 

computed fuels price varies by industry, state, and year, equaling the average of the five fuel 

prices for each state-year, weighted by each industry’s expenditure shares of those fuels, taken 

from the 1981 ASM.  

We use geocoded Census data from the Longitudinal Business Database to approximate 

cross-state competition among plants. First, we randomly select 10,000 ASM/CMF plant 

observations from each state. If at least 1,000 of the businesses in one state are located within 

500 miles of 1,000 businesses in another state, those two states are deemed to be neighbors. The 

choice of the 500-mile radius is motivated by the fact that according to the Commodity Flow 

Survey (CFS), manufacturing goods are typically shipped less than 500 miles. Thus, using this 

radius allows us to characterize the set of plants in other states that are likely to compete with 

plants in a particular state. We calculate neighbor electricity and fuels prices for each plant in our 

sample as the average of the electricity and fuels prices across all plants in the same industry in 

neighboring states. These neighbor prices vary by industry, state, and year, and they account for 

geographic concentration of plants within a state. 

The labor cost index is computed from the labor cost for plants in the same industry and 

state, as well as plants in the same industry in neighboring states. The index is the total payroll 

for all such plants divided by their total employment, using the 500-mile definition to define the 

set of neighboring plants and excluding the plant’s own payroll and employment. 

The demand index varies by plant and year and is based on downstream economic 

activity and shipping patterns. First, input-output (IO) tables from the US Bureau of Economic 

                                                           
12 The ratio could be measured with error, which would bias estimated coefficients. We have performed data quality 

checks on both the expenditure and quantity variables used to calculate prices. 
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Analysis (BEA) identify for every “making” industry how much of its output is purchased by 

each “using” industry. We use both the 199213 (SIC-based) and 200714 (NAICS-based) IO tables, 

and use concordances between the BEA industry codes and the SIC/NAICS industry codes to 

link the IO tables to each of our plants in each year, identifying which other industries (both 

manufacturing and nonmanufacturing industries, including final demand) purchase that plant’s 

products. Second, the 2002 CFS identifies the distances traveled by shipments from plants in 

each industry, reported by three-digit NAICS industry of the shipped products.15 For each three-

digit NAICS industry, we compute the share of shipments traveling less than 250 miles, the share 

of shipments traveling between 250 and 1,000 miles, and the share of shipments traveling more 

than 1,000 miles. Third, annual state-level industry output data from BEA identifies the activity 

level of different “using” industries around the country, with final demand proxied by personal 

income in the state.16  

For each plant in our dataset and for each industry that uses the products of that plant, we 

calculate the amount of that industry’s production that is located in states within 250 miles of the 

plant (including the plant’s own state), between 250 and 1,000 miles from the plant, or more than 

1,000 miles from the plant. We then use the IO data to predict the demand for the plant’s 

products, aggregated over all these “using” industries, at each of the three distances. We 

calculate the annual growth rate in product demand at each distance and weight those three 

growth rates using the CFS weights for the share of the plant’s shipments expected to travel 

those distances, yielding a weighted projected demand growth. Finally, we transform these 

growth rates into an index of the demand level by assigning them all a value of 150 in 1987.17 

We allow for differences among groups of industries in our estimation models, based on 

the energy intensity of each industry as published in the 1992 CMF (total expenditure on 

electricity and fuels divided by total value of shipments). We split the industries into 8 separate 

groups, with finer detail in the grouping for industries with higher energy intensity. Group 1 

includes the bottom half of all 6-digit NAICS industries based on their energy intensity, with 

                                                           
13 http://www.bea.gov/industry/io_benchmark.htm.  
14 http://www.bea.gov/industry/io_annual.htm.  
15 http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/commodity_flow_survey/index.html.  
16 http://www.bea.gov/regional/index.htm.  
17 The starting value of 150 in 1987 was chosen so that the demand index numbers would remain positive 
throughout the sample for all industries. 
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each of Groups 2–4 including the next 10 percent of industries and each of Groups 5–8 including 

5 percent of industries. Table 1 shows some key information for each group, such as its share of 

the plants in our data sample18 and its average energy cost shares. Plants in more energy 

intensive (higher-numbered) groups tend to have higher expenditures on both electricity and 

fuels but otherwise don’t differ significantly in their average employment or shipments. 

We define high-energy industries as those belonging to Groups 5–8, which collectively 

include the top quintile of energy-intensive industries. Figure 1 shows the variation over our time 

period in average energy prices and cost shares as well as output and employment for the entire 

manufacturing sector and for high-energy manufacturing industries. The cost share of high-

energy industries declined by half over the period (from about 6 to 3 percent), and energy cost 

shares declined by about one-third in the manufacturing sector as a whole (from about 3 to 2 

percent). In contrast, energy prices followed similar trends for high-energy industries and all 

industries. Output growth was noticeably slower for high-energy industries as compared to 

others, while the decline in employment over the period was similar in both groups. Figure 2 

shows geographic and temporal variation of electricity prices. Among RGGI or potential RGGI 

states, New Hampshire, Connecticut, and Massachusetts have the highest electricity prices; while 

there are common movements in electricity prices across Census divisions, despite the fact that 

regional energy markets have become increasingly integrated, there is also noticeable variation 

over time, particularly for New England. The cross-sectional variation across divisions helps 

identify the coefficients on the own and competing energy prices, since by construction a plant’s 

competitors are often located in other divisions.  

 

4. Estimation Results 

This section presents the results of the estimations, both the national average effects and the 

deviations from the national average effects. 

4.1 Deviations from National Average Effects  

                                                           
18 These plant-based sample shares differ from the industry shares mentioned in the previous sentence, since 
industries have differing numbers of plants. 



16 

 

Recall that equation (2) includes multiple coefficients on energy prices and energy price 

interaction terms. There are separate terms for electricity and fuels prices; interactions of those 

prices with corresponding cost shares; prices for competing plants and interaction terms; as well 

as for direct and indirect energy use; with a separate set of coefficients estimated for each of the 

8 groups, for a total of 96 energy-related coefficients. The results are presented in Appendix 

Tables A2 and A3, but not discussed here because of the large number of coefficients. Instead we 

focus on the overall elasticities for each group with respect to energy prices, which include both 

the direct effect of energy purchased by the plant and the indirect effect via the energy-intensity 

of its purchased materials. 

Figure 3 plots the elasticities for employment and output by group for electricity prices, and 

Figure 4 provides the analogous information for fuels prices. The figures illustrate separately the 

elasticities with respect to the plant’s own energy prices as well as the energy prices of 

competing plants in neighboring states. The figures show the elasticities and confidence intervals 

for each group. (The underlying regressions were estimated with clustering by industry-year to 

allow for correlation of the error term across plants and states.)  As expected, the confidence 

intervals get wider as the groups get smaller, going from 1 to 8, although even our smallest 

groups include nearly 100,000 observations (for reference, see Table 1 for the cost shares for 

each group). 

The own electricity price elasticities in Figure 3 (panels A and B) are typically negative and 

increase in magnitude, moving from the low cost-share groups to the high cost-share groups. The 

increase is not perfectly monotonic, and there are deviations for Group 6 (employment) and 

Group 7 (output). The mean employment elasticities range from -0.07 to -0.90 across the 8 

groups, while the output elasticities range from -0.07 to -1.19, with all of them statistically 

significant at the 5-percent level. The fact that there are a few positive elasticities is perhaps not 

surprising, given the flexible functional form of Equation (2) and the large number of estimated 

coefficients (that is, one could expect that by chance there might be a few positive coefficients). 

The own fuels price elasticities in Figure 4 (panels A and B) are also typically negative (3 of 

16 are positive but only one of those is significant, while 12 of the 13 negative elasticities are 

significant), but they are smaller and less precisely estimated than the electricity elasticities. The 

relationships between the cost shares and the elasticities of the groups are weaker than for 
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electricity. The significant negative elasticities range from -0.08 to -0.29 for employment and 

from -0.10 to -0.32 for output across the 8 groups. 

Overall, for most industry groups the own-electricity elasticities are negative and the 

magnitudes increase with the cost share. The neighbor elasticities tend to be positive but there is 

not a correlation between the magnitude of the elasticities and the cost share. Own-fuel 

elasticities tend to be negative and neighbor-fuel elasticities tend to be positive, although there 

are a few exceptions to these patterns.  

These elasticities are similar to those found in Gray, Linn, and Morgenstern (2016), in which 

we applied a similar model to plant-level data for 49 energy-intensive, trade-exposed industries 

and found average elasticities with respect to electricity prices of -0.6 for employment and -0.8 

for output. Two other papers in the literature estimate own-price elasticities but not neighbor 

elasticities. Aldy and Pizer (2015) find a somewhat lower elasticity of output with respect to 

energy prices of -0.4, using national-level industry data from 1986–1994. Kahn and Mansur 

(2013) use County Business Patterns data and report estimates similar to ours, finding an 

elasticity of output with respect to electricity prices ranging from -0.2 for their average industry 

to -2.2 for their most electricity-intensive industry (primary metals). Note that more than 100 6-

digit industries are included in the high-energy category and that many industries in group 5 have 

energy cost shares below 5 percent. If we had focused exclusively on group 8 we certainly would 

have found larger effects, but then we could not report state-level results due to Census 

confidentiality rules. 

The elasticities for competitors’ energy prices, seen in panels C and D of Figures 3 and 4, are 

typically positive for both electricity and fuels. As with the own-energy price elasticities, the 

elasticities with respect to neighbors’ electricity prices are larger in magnitude and more 

precisely estimated than those for fuels. This difference between electricity and fuels elasticities 

is similar to that reported in Gray, Linn, and Morgenstern (2016) for electricity and natural gas, 

and it could reflect the lesser variation across states in prices for fuels or the greater measurement 

error of fuels prices. Across the 8 groups, the majority of the elasticities with respect to 

neighbors’ energy prices have the expected positive sign and are statistically different from zero. 
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4.2 National Average Effects 

Table 2 reports the estimates of Equation (3), for which we regress the variable indicated in 

the column heading on electricity and fuels prices interacted with cost shares. Recall that the 

energy price variables include both the direct and indirect effects. For each dependent variable, 

the coefficient estimates are negative, which is as expected and consistent with the literature. 

Unfortunately, we do not have sufficient variation to precisely estimate the electricity 

coefficients. The fuel coefficients are estimated at the 5-percent confidence level or better. 

5. Simulation Results 

5.1 Main Scenarios 

The objective of the simulations is to illustrate the effects of state carbon pricing on 

competitiveness. In this subsection we define the two main scenarios that we analyze in 

comparison to a no-policy baseline scenario. 

The baseline scenario uses the observed energy prices and other independent variables across 

the entire estimation sample. We use Equation (3) to predict national average outcomes for each 

industry and Equation (2) to predict deviations from the national averages. To ensure that the 

scenarios are consistent with the energy price variation used to identify the key coefficients, we 

use the entire estimation sample. By construction, the predicted values in the baseline are equal 

to the observed sample means. 

To compare with the baseline, in the first policy scenario we add a carbon price of $10 per 

ton of CO2 that raises electricity prices in the RGGI region, which includes Connecticut, 

Delaware, Maine, Maryland, Massachusetts, New Hampshire, New York, Rhode Island, and 

Vermont. For simplicity, we assume that the carbon price raises electricity prices in proportion to 

the emissions rate of a natural gas–fired unit. Consequently, electricity prices increase by 0.6 

cents per kilowatt hour in the RGGI states.19 We also assume that the carbon price does not 

affect electricity prices in other states or fuels prices in any states. Consequently, for plants in 

                                                           
19 The effect of the carbon price on electricity prices is broadly consistent with estimates reported in Linn and 
Muehlenbachs (2018), who estimate the effect of fuels prices on wholesale electricity prices using data from the 
2000s. For traditionally regulated states, we are assuming that regulators allow the firm to pass the carbon price 
through to regulated retail electricity prices. 
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RGGI, their own electricity prices rise and the electricity prices of competing plants are 

unchanged. For plants close to RGGI, their own electricity prices are unchanged and the 

electricity prices of competing plants rise.20  

Equation (2) and these counterfactual plant-level electricity prices are used to predict 

deviations from national averages of employment and output. For consistency with equation (2), 

these deviations are normalized so that the national means are zero. We use Equation (3) to 

predict national average changes for each industry. The price increases for RGGI and the share 

of RGGI plants in national employment are used to compute the change in national average 

electricity prices. Because RGGI plants account for about 10 percent of national employment on 

average across all industries, national average electricity prices increase by about 2 percent for 

the average industry. We combine the results of Equations (2) and (3) for each plant in the 

dataset, and then compute percent changes in the outcomes for each plant, relative to the no-

policy baseline. 

Based on the estimation results reported in the previous section, we expect the RGGI carbon 

price to reduce employment and output in RGGI states and increase those outcomes in 

surrounding states. The total effect across the entire country should be negative, because national 

average electricity prices increase. Because the plant-level elasticities (in Equation 2) tend to be 

larger in magnitude than the industry-level elasticities (in Equation 3), we expect the carbon 

price to induce shifts of employment and output to unregulated states. 

The second carbon price scenario expands the RGGI carbon price to New Jersey and 

Pennsylvania. The plant-level outcomes are computed similarly to the first scenario. Relative to 

the no-policy scenario, we expect lower employment and output in the expanded RGGI region. 

Relative to the original RGGI scenario, we expect less of a reduction in employment and output 

since the average electricity prices of competing plants increase by less in the expanded RGGI 

scenario than in the original RGGI scenario. 

                                                           
20 In principle, a carbon price in RGGI could affect electricity prices outside the region, particularly if transmission 
lines connect the regions. The carbon price raises the cost of producing electricity in RGGI, which could increase 
generation from outside the region, causing marginal costs and electricity prices to increase. Shawhan et al. (2014) 
suggest that for a carbon price of $10 per ton of CO2, this effect would be small compared to the increase in 
electricity prices in the RGGI region. However, Fell and Maniloff (2018) find empirical evidence of leakage despite 
the low carbon price that has persisted in the market. For simplicity, the simulations do not include this effect.  
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5.2 Main Results 

The main results are presented in a series of maps that illustrate the changes relative to the 

baseline scenario, showing state-specific effects on employment and output for the eastern half 

of the country, which includes all states that are neighbors of RGGI. In addition to the maps, 

Table 3 shows the average effects of each scenario for employment and output in various groups 

of states. We focus on percentage changes for each state rather than levels because the 

percentage indicates the importance relative to the state’s total manufacturing employment and 

output. Because employment and output levels vary across states, we also report national average 

percent changes, which are the employment or output weighted percent changes across states. 

The results of the simulations generally follow the expected pattern, with reductions in 

employment and output in the RGGI states and increases in neighboring states. The effects tend 

to be larger for RGGI states such as New York, Maryland, and Delaware that are located closer 

to non-RGGI states. The output effects tend to be larger than the employment effects, which is 

consistent with the elasticities seen in Figures 3 and 4. In Table 2 for the first scenario, the RGGI 

carbon price reduces average manufacturing employment in those states by 2.7 percent, and 

raises average employment in New Jersey and Pennsylvania by 0.8 percent (the increases are 

smaller in other eastern states). However, the maps show some variation in effects that are 

uncorrelated with the distance from RGGI states. For example, Figure 5 shows larger output 

changes for Kentucky and Tennessee than for some other states that are closer to RGGI. These 

variations could arise because of the specific mix of industries operating in RGGI and non-RGGI 

states, since relative energy prices only matter if there are competing plants in neighboring states 

to take advantage of the energy price differential. Thus, in Figure 5C we see larger output effects 

for Kentucky and Tennessee than for some other states that are closer to more RGGI states. 

The effects of the carbon price on the high-energy industries are generally larger than for the 

average industry, as expected. The average employment in those industries falls by 7.1 percent in 

the RGGI states and output falls by 10.5 percent. The increases in employment and output in 

neighboring non-RGGI states are also larger than for the average industry, although still only 

about 0.5 percent. These larger effects make it easier to identify differences across particular 

states, including the variation across states within the regions shown in Table 3, which again 
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shows Kentucky and Tennessee with larger output effects than those found for some other states 

closer to RGGI.  

The results for the second scenario, where Pennsylvania and New Jersey join RGGI and 

adopt carbon prices, are as expected. The results are shown in Table 3 and Figure 6. Because of 

their location, those states now form a buffer between some of the original RGGI states and the 

neighboring non-RGGI states, and the effects on their employment and output are somewhat 

smaller on average than they were in the first scenario. The average across industries is a decline 

of 2.2 percent in employment and 3.4 percent in output, with similar reductions for the high-

energy industries. The average declines in employment and output for Pennsylvania and New 

Jersey are larger than those for the original states, with a 3.3 percent decline in average 

employment and a 4.9 percent decline in average output across all industries. The estimated 

effects on high-energy industries are also larger than those in the original RGGI states. The 

increases in the non-RGGI states are also larger than they were in the first scenario, reflecting the 

greater number of neighboring states with carbon prices.  

6. Conclusions 

A substantial literature has analyzed empirically and theoretically the potential for 

international emissions leakage, in which a country or set of countries imposes a carbon price 

that raises emissions in other countries. Accompanying the emissions leakage would be 

corresponding shifts of employment and output to firms located in unregulated countries, 

representing the adverse competitiveness effects of the carbon price. 

In the United States, certain states have adopted or are considering adopting a carbon price. 

The high degree of trade of manufactured goods across state lines raises the possibility of 

substantial leakage of economic activity (and emissions) across states. In the state-level policy 

context, leakage would be concerning not only because it would undermine the climate 

objectives of a carbon pricing policy but also because it would imply losses of local jobs and 

production. As policies evolve in this area, it is important to understand the magnitudes of 

potential leakage under state-level carbon pricing policies.  

Clearly, it is not simply a matter of energy or carbon price differences across jurisdictions—

the industry mix in different areas is also a major factor. Carbon pricing by a jurisdiction that has 



22 

 

a monopoly or near monopoly on particular production capabilities would likely result in 

minimal competitiveness effects in that jurisdiction. Thus, to estimate the employment or output 

sensitivity to the direct energy price effects of a particular jurisdiction requires consideration of 

multiple state- and region-specific factors of the type included in our modeling. Similarly, 

estimating the full consequences of either national or subnational carbon pricing requires going 

beyond the direct energy price effects and also considering the extent of the potentially offsetting 

effects of recycling the carbon pricing revenues.  

  Our modeling decomposes the effects of a carbon price on employment and output into two 

effects: the change in the national average level of those variables for all plants in the 

corresponding industry, and the individual plant’s deviation from the national industry average. 

The first part is estimated via similar methods as Aldy and Pizer (2015). We use a novel model 

and unique data to estimate the second part. Specifically, we link a plant’s outcome deviations to 

the energy prices it faces as well as the energy prices of competing plants. This model thereby 

captures differing effects of the carbon price across plants in the same industry. For plants in the 

regulated region, the carbon price raises energy prices, making them less competitive, while 

plants outside the regulated region become more competitive. The model is further distinguished 

by separating the effects of electricity and fuels, and by allowing for indirect effects of energy 

prices to affect a plant via the prices of the energy-intensive materials that it uses in its 

production process. 

The model parameters are estimated with confidential plant-level data from the Census 

Bureau from 1982–2011. As expected, higher energy prices at a plant typically reduce its 

employment and output, with the magnitude of the effects generally increasing with energy 

intensity. Higher energy prices at competing plants tend to increase a plant’s employment and 

output. 

Focusing on the RGGI program, which prices carbon emissions from the electricity sector in 

the Northeast, we use the estimated parameters from the model to simulate the effects of regional 

carbon prices. A carbon price of $10 per ton reduces employment by 2.7 percent in the RGGI 

region, with comparable changes in output. The same carbon price raises those outcomes in the 

surrounding states, with a 0.8 percent increase in employment. The national-level outcomes are 

relatively small, with employment declining by 0.1 percent, confirming that a substantial amount 
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of the shift of output and employment flowing out of RGGI leaks into surrounding states rather 

than to other countries. We also show that expanding RGGI to include New Jersey and 

Pennsylvania would reduce the adverse competitiveness effects within the original RGGI region.  

These results imply that state policymakers can reduce the degree of leakage—and the 

associated environmental and economic costs—by expanding their programs to include other 

states. The benefits of linking programs across states can be substantial, due to the fact that 

states’ economies are so intertwined with such a high degree of cross-state trade of manufactured 

goods. 

Finally, we note a few caveats regarding our analysis. First, as with most other studies in the 

literature, we use industry responses to past changes in energy prices to derive estimates of the 

effects of future carbon policy. That is, we assume that manufacturing plants would respond 

similarly to energy price increases induced by a carbon price as they have responded to historical 

price changes. The high degree of persistence of historical energy prices and carbon prices 

supports this assumption. Second, our analysis covers the short run, in which capital stocks are 

fixed and there is no entry and exit of plants. Modeling long-run effects that include capital 

investment, entry, and exit would be a useful direction for future research. Third, the recycling of 

revenues, which are not included in our modeling, can affect the overall employment and output 

changes caused by a carbon price. Going forward, additional research in these areas could be 

helpful as states and regions debate designs of carbon pricing schemes. 
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Table 1. Mean Values by Group 

 

 

Group 

# of obs. 

(rounded) 

Share of 

sample 

Energy 

cost share 

Electricity 

cost share 

Fuel 

cost share 

Log of 

employment 

Log of 

shipments 

1 1,289,000 0.51 0.011 0.007 0.004 3.716 8.494 

2 208,000 0.08 0.016 0.010 0.007 4.182 9.030 

3 306,000 0.12 0.019 0.012 0.008 3.524 8.453 

4 262,000 0.10 0.025 0.013 0.011 3.987 8.912 

5 191,000 0.08 0.036 0.019 0.017 3.980 9.164 

6 87,000 0.03 0.055 0.022 0.032 4.076 8.636 

7 87,000 0.03 0.083 0.029 0.054 3.600 8.802 

8 96,000 0.04 0.177 0.078 0.099 3.959 8.585 

Full sample  

 

2,527,000 
 

1.00 

 

0.030 0.015 0.015 3.797 8.646 

(std. dev.) 
  

(0.041) (0.022) (0.026) (1.443) (1.866) 

Note: Groups based on industry energy cost share (electricity plus fuel costs, divided by shipments).  

 

Table 2. Effects of Energy Prices on National Outcomes 

Dependent variable 

 Log of real value of 

shipments 

Log of employment 

Log of electricity price  -0.01 -0.04 

* cost share (0.11) (0.06) 

   

Log of fuels price -0.15 -0.04 

* cost share (0.07) (0.02) 

   

Number of observations 13,749 13,749 

R-squared 0.92 0.92 

 

Notes: The table reports coefficient estimates from Equation (3), with standard errors in 
parentheses clustered by three-digit NAICS industry and year. See text for details. 
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Table 3. Simulation Results for $10 Carbon Price Applied to RGGI States 

Including Variation with PA and NJ added to RGGI 

 

 

Coverage Carbon price Industries Outcome 

RGGI  

states PA+NJ 

Near 

RGGI 

Far 

RGGI 

RGGI electricity all employ -2.71% 0.83% 0.29% 0.12% 

RGGI electricity all output -3.81% 0.67% 0.20% 0.06% 

RGGI electricity high-energy employ -7.08% 1.76% 0.61% 0.37% 

RGGI electricity high-energy output -10.51% 1.01% 0.56% 0.42% 

RGGI_PA_NJ electricity all employ -2.22% -3.32% 0.67% 0.28% 

RGGI_PA_NJ electricity all output -3.37% -4.91% 0.52% 0.18% 

RGGI_PA_NJ electricity high-energy employ -5.73% -7.82% 1.59% 0.85% 

RGGI_PA_NJ electricity high-energy output -9.64% -11.01% 1.42% 0.94% 

 

Notes: Simulation results based on coefficients estimated in Equations (2) and (3). The table 
shows change in average outcome variable for plants located in specified regions, comparing no-
policy scenario ($0 carbon price) with a $10 carbon price applied to electricity prices (or both 
electricity and fuels prices) faced by all plants located in the RGGI region (expanded in some 
simulations to include Pennsylvania and New Jersey). Results are shown separately for all 
manufacturing industries and those designated as high-energy-cost industries (groups 5-8 in 
Table 1).  
 
RGGI states: CT, DE, MA, MD, ME, NH, NY, RI, VT. 
Near-RGGI states: IN, KY, MI, NC, OH, VA, WV. 
Far-RGGI states:  AL, FL, GA, IL, MS, SC, TN, WI. 
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Figure 1. Comparison of All-Manufacturing and High-Energy-Cost-Industry Trends 

Figure 1A. Energy Price and Energy Cost Share 

 

 

Figure 1B. Employment and Output 

 

 

Notes: These figures compare the average values for all manufacturing industries with the 
average values for the high-energy-cost industries in Groups 5–8. Energy cost shares are scaled, 
setting 100 = one percent cost share; all other variables are normalized to 100 in 1982. All 
numbers based on industry-level data from NBER-CES Manufacturing Industry Database. 
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Figure 2. Energy Price Variation Across States in 2011 
Figure 2A. 2011 Electricity Prices 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2B. Electricity Prices by Census Division 1982-2011 

 

 

Notes: Electricity prices come from the State Energy Data System (SEDS) provided by the US 
Energy Information Administration (https://www.eia.gov/state/seds/) expressed in dollars per 
million BTU. Electricity price paid by industrial consumers, aggregated by Census division.  
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Figure 3. Employment and Output Elasticities with Respect to Electricity Prices 

 

  

Notes: Estimated elasticity of outcome variables with respect to electricity prices (both own price 
and neighbor price), based on coefficients from Equation 2, which is estimated separately for 8 
industry groups shown in Table 1 (Group 1 is lowest energy cost share; Group 8 is highest).  
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Figure 4. Employment and Output Elasticities with Respect to Fuels Prices 

 

 

Notes: Estimated elasticity of outcome variables with respect to fuels prices (both own price and 
neighbor price), based on coefficients from Equation 2, which is estimated separately for 8 
industry groups shown in Table 1 (Group 1 is lowest energy cost share; Group 8 is highest).  

Figure 5. Employment and Output Changes with $10 Carbon Price on Electricity 
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5A. Employment, All Industries   5B. Employment, High-Energy Industries 

 

 

 

5C. Output, All Industries       5D. Output, High-Energy Industries 

 

 

Notes: Simulation results based on coefficients estimated in Equations (2) and (3). The figures 
show the change in average employment and output for plants located in each state, comparing 
no-policy ($0 carbon price) with a $10 carbon price applied to electricity prices faced by all 
plants located in the RGGI region. Results shown separately for all manufacturing industries and 
those designated as high-energy industries (Groups 5-8 in Table 1).  
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Figure 6. Employment and Output Effects: Adding PA and NJ to RGGI  

with $10 Carbon Price on Electricity 

6A. Employment, All Industries   6B. Employment, High-Energy Industries 

  

 

 

 

 

 

 

 

 

 

6C. Output, All Industries       6D. Output, High-Energy Industries 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: Simulation results based on coefficients estimated in Equations (2) and (3). The figure 
shows the change in average employment and output for plants located in each state, comparing 
no-policy ($0 carbon price) with a $10 carbon price applied to electricity prices faced by all 
plants located in the RGGI region as well as Pennsylvania and New Jersey. Results shown 
separately for all manufacturing industries and those designated as high-energy industries 
(Groups 5-8 in Table 1).  
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Appendix Table A1 – Summary Statistics 

 

    variable mean std. dev. 

value of shipments ($ 1997) 39,400 579,000 

log(value of shipments) 8.646 1.866 

employment 134.3 434.8 

log(employment) 3.797 1.443 

electricity price (cents/kWh) 0.0717 0.0277 

log(electricity price) -2.703 0.3668 

fuel price ($/mmBTU) 5.679 3.092 

log(fuel price) 1.622 0.457 

neighbors electricity price 0.0656 0.0144 

log(neighbors electricity price) -2.749 0.2209 

neighbors fuel price 5.725 2.914 

log(neighbors fuel price) 1.643 0.4303 

industry electricity cost share 1.525 1.49 

industry fuel cost share 0.7465 0.97 

industry indirect electricity intensity 0.8345 0.69 

industry indirect fuel intensity 0.4131 0.46 

labor cost index 32.98 12.91 

log(labor cost index) 3.42 0.3972 

demand index 100.7 5.846 

log(demand index) 4.596 0.343 

observations (rounded) 2,527,000   
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Appendix Table A-2 - Employment Regressions 

 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6  Group 7  Group 8 

         

log(own electricity price) -0.07548*** 1.271*** 1.018*** 0.1208** 0.06205 0.07835 0.1182 -0.8715*** 

 (0.01832) (0.06110) (0.05521) (0.03840) (0.04655) (0.06126) (0.07312) (0.02273) 

         

log(own electricity price)* 0.115 -123.9*** -85.60*** -28.07*** -28.71*** -7.602*** -20.41*** 4.509*** 

electricity cost share (1.834) (4.571) (3.854) (1.987) (2.267) (1.817) (1.671) (0.2457) 

         

log(own electricity price)* 0.8954 -7.481*** -9.926*** -10.41*** -9.641*** -32.78*** -3.376 -42.50*** 

indirect electricity cost share (0.6293) (1.678) (1.082) (0.8231) (0.7023) (1.747) (4.398) (2.654) 

         

log(own fuel price) 0.05384* -0.2257*** -0.03436 0.05605 0.05177 -0.7689*** -0.5279*** -0.2117*** 

 (0.02173) (0.05232) (0.04512) (0.04082) (0.04314) (0.07036) (0.08066) (0.05601) 

         

log(own fuel price)* -15.33* -49.53*** -36.02*** -55.84*** -22.43*** 17.68*** 9.324** -1.317 

fuel cost share (6.097) (10.56) (6.913) (5.529) (3.214) (3.569) (2.883) (1.136) 

         

log(own fuel price)* -0.2957 44.91*** 47.45*** 27.40*** 13.55*** 222.9*** 60.60*** 50.19** 

indirect fuel cost share (1.749) (5.717) (4.460) (3.052) (3.259) (14.92) (16.14) (16.28) 

         

log(neighbors electricity price) -0.01565 -1.029*** 0.1232 -0.1767* 0.3079** 1.437*** -0.6831*** 0.2349*** 

 (0.03792) (0.1522) (0.1255) (0.08794) (0.1166) (0.1584) (0.1575) (0.05513) 

         

log(neighbors electricity price)* 15.12*** 95.69*** 19.34* 10.73* -7.047 -36.50*** 18.65*** 4.262*** 

electricity cost share (3.837) (11.34) (8.560) (4.784) (5.461) (4.749) (3.530) (0.7905) 

         

log(neighbors electricity price)* -6.435*** 6.384 -27.60*** 15.35*** -1.085 -30.52*** -7.848 -35.81*** 

indirect electricity cost share (1.456) (3.924) (2.673) (2.160) (1.580) (3.917) (10.34) (5.765) 
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 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6  Group 7  Group 8 

         

log(neighbors fuel price) -0.02089 0.3331*** 0.03773 0.02982 0.3025*** -0.01956 0.7988*** 0.4431*** 

 (0.03111) (0.08445) (0.07363) (0.06597) (0.07114) (0.1156) (0.1148) (0.08505) 

         

log(neighbors fuel price)* -0.997 -75.03*** -13.99 -15.47 -16.76** -27.62*** -26.92*** -4.231* 

fuel cost share (8.930) (17.13) (11.12) (8.952) (5.170) (6.180) (4.516) (1.722) 

         

log(neighbors fuel price)* 17.75*** -27.07** -27.62*** -16.18** -26.75*** 193.3*** 70.03** 4.764 

indirect fuel cost share (2.994) (9.640) (7.130) (5.199) (5.288) (25.75) (25.25) (25.48) 

         

log(labor cost index) 0.2711*** 0.5472*** 0.4701*** 1.093*** 0.3831*** 0.3701*** 0.4076*** 0.5083*** 

 (0.01261) (0.02967) (0.02707) (0.03097) (0.02967) (0.04681) (0.04364) (0.05518) 

         

log(demand index) 1.849*** 1.819 0.06681 -0.4490** 0.02742 0.001581 -0.5044 -1.315 

 (0.4881) (2.976) (0.1981) (0.1526) (0.01601) (0.01999) (6.885) (4.131) 

         

R-square 0.334 0.3487 0.3622 0.3074 0.28 0.4427 0.4253 0.4899 

Observations (rounded) 1,289,000 208,000 306,000 262,000 191,000 87,000 87,000 96,000 

 

Note: Regressions also include industry-year and region-year dummies, following Equation (2). Standard errors in parentheses are clustered by 
industry-year.  
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Appendix Table A-3 – Output Regressions 

 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6  Group 7  Group 8 

         

log(own electricity price) -0.2065*** 1.610*** 1.253*** 0.2533*** -0.02186 0.2052** 0.1838* -0.9412*** 

 (0.02202) (0.07327) (0.06728) (0.04640) (0.05841) (0.07295) (0.09201) (0.02743) 

         

log(own electricity price)* 17.36*** -153.8*** -107.9*** -39.69*** -29.00*** -11.25*** -19.20*** 2.476*** 

electricity cost share (2.206) (5.481) (4.696) (2.401) (2.845) (2.164) (2.103) (0.2965) 

         

log(own electricity price)* -1.093 -11.65*** -3.186* -11.11*** -16.19*** -43.03*** -5.37 -49.74*** 

indirect electricity cost share (0.7566) (2.012) (1.318) (0.9948) (0.8812) (2.080) (5.535) (3.202) 

         

log(own fuel price) 0.03795 -0.3159*** -0.1159* 0.03465 0.1216* -0.5620*** -0.5249*** -0.1217 

 (0.02613) (0.06274) (0.05498) (0.04933) (0.05413) (0.08379) (0.1015) (0.0676) 

         

log(own fuel price)* -13.83 -21.93 -37.71*** -67.21*** -31.93*** 18.23*** 3.784 -0.5776 

fuel cost share (7.331) (12.66) (8.424) (6.682) (4.033) (4.250) (3.628) (1.371) 

         

log(own fuel price)* -2.69 32.82*** 52.61*** 32.76*** 9.231* 168.6*** 104.1*** 16.87 

indirect fuel cost share (2.103) (6.855) (5.434) (3.689) (4.089) (17.76) (20.32) (19.65) 

         

log(neighbors electricity price) 0.1988*** -1.293*** -0.02349 -0.2739** -0.03429 1.665*** -0.4692* 0.02434 

 (0.04560) (0.1825) (0.1530) (0.1063) (0.1463) (0.1886) (0.1982) (0.06654) 

         

log(neighbors electricity price)* -1.416 115.3*** 44.26*** 11.86* 9.3 -46.63*** 16.21*** 7.659*** 

electricity cost share (4.614) (13.60) (10.43) (5.782) (6.852) (5.655) (4.442) (0.9540) 

         

log(neighbors electricity price)* -15.72*** 6.512 -41.06*** 16.28*** -4.010* -26.77*** -56.14*** -48.28*** 

indirect electricity cost share (1.751) (4.706) (3.257) (2.611) (1.982) (4.664) (13.01) (6.958) 
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 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6  Group 7  Group 8 

         

log(neighbors fuel price) 0.07712* 0.4395*** -0.1102 -0.09122 0.3790*** 0.2511 1.017*** 0.3844*** 

 (0.03741) (0.1013) (0.08972) (0.07973) (0.08926) (0.1376) (0.1445) (0.1026) 

         

log(neighbors fuel price)* -20.03 -69.55*** 3.418 0.2504 -29.09*** -31.84*** -34.66*** -3.347 

fuel cost share (10.74) (20.54) (13.55) (10.82) (6.487) (7.359) (5.683) (2.078) 

         

log(neighbors fuel price)* 22.65*** -40.55*** -24.77** -26.50*** -23.02*** 158.3*** 76.81* -13.57 

indirect fuel cost share (3.600) (11.56) (8.689) (6.283) (6.635) (30.66) (31.78) (30.75) 

         

log(labor cost index) 0.4447*** 0.7521*** 0.6312*** 1.659*** 1.049*** 0.8365*** 0.9163*** 0.9143*** 

 (0.01516) (0.03558) (0.03298) (0.03743) (0.03723) (0.05575) (0.05491) (0.06659) 

         

log(demand index) 2.096*** 2.762 0.205 -0.5131** 0.04628* 0.03793 16.88 -3.377 

 (0.5869) (3.568) (0.2413) (0.1844) (0.02009) (0.02381) (8.664) (4.986) 

         

R-square 0.4156 0.4008 0.3859 0.3801 0.4331 0.5279 0.3841 0.6747 

Observations (rounded) 1,289,000 208,000 306,000 262,000 191,000 87,000 87,000 96,000 

 

Note: Regressions also include industry-year and region-year dummies, following Equation (2). Standard errors in parentheses are clustered by 
industry-year. 




