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Abstract 
The Governments Division of the U.S. Census Bureau publishes estimates of many 
aggregates.  To achieve more accurate results with lower cost one goal of sampling is to 
minimize the number of smaller and non-contributory units in the overall design.  
Unfortunately, little research has been conducted to determine how to reduce smaller 
units.  In this paper, we propose a numerical procedure based on minimizing the sum of 
mean squared errors to identify the breakpoint for determining the size-based strata.   We 
then vary the amount of small stratum reduction to find an optimal balance between 
cutpoint and reduction.  Data from the 2007 Census of Governments: Employment are 
used for this study. 
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1. Introduction 
 
The annual survey of Public Employment and Payroll collects data on the number of 
federal, state, and local government civilian employees and their gross payrolls.  The 
2007 Census of Governments yielded a total of 89,527 governments (including the 
federal government).  Their breakdown is as follows: 
 
Table 1: Breakdown of 2007 Census of Government Employment 
Government Type N Total Employees Total Payroll 
States 50 5,200,347 $17,788,744,790 
Counties 3,033 2,928,244 $10,093,125,772 
Cities 19,492 3,001,417 $11,319,797,633 
Townships 16,519 509,578 $1,398,148,831 
Special Districts 37,381 821,369 $2,651,730,327 
School Districts 13,051 6,925,014 $20,904,942,336 
Total 89,526 19,385,969 $64,156,489,693 
Source: U.S. Census Bureau, 2007 Census of Governments: Employment.  
 
We learn from table 1 that special districts and townships are larger in number and do not 
contribute much to payroll and employees totals compared to their counterparts.  In 
addition, our census and surveys have demonstrated that smaller governments are less 
likely to be respondents and have less variability than larger governments.  To illustrate 
these points, the scatter plot in Figure 1 shows the concentration of smaller governments 
and the linear relationship between census years in Illinois as well as the decrease in 
variability of smaller governments.  
                                                           
1 This report is released to inform interested parties of research and to encourage discussion of 
work in progress.  Any views expressed on statistical, methodological, or operational issues are 
those of the authors and not necessarily those of the U.S. Census Bureau. 
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Figure 1: Results from Cumulative Square Root of the Frequency Method (using 
total pay as size variable) on Illinois City and Townships 

 
Source: U.S. Census Bureau, 2002 and 2007 Census of Governments: Employment 
 
Because the smaller government units do not contribute much to the overall total and are 
more likely to be nonrespondents, one goal of sampling is to minimize the number of 
smaller and non-contributory units in the overall design.  In 2009 a new sample design 
was implemented to address this issue.  It was decided that cities and townships were 
similar enough that they could be combined into a single stratum, called cities/townships.  
We developed a new two-stage cut-off sample in order to reduce the overall sample size, 
thereby reducing respondent burden and improving data quality.  After certainties are 
removed, the first stage of the sample design is a probability proportional-to-size (PPS) 
sample stratified by state and government type.  Total payroll from the 2007 Census of 
Governments: Employment was used as the size variable.  The first-stage sample yielded 
excessive amounts of smaller cities/townships and special districts.  After the first-stage 
sample, a cut-off point was found for each state-by-government type stratum for 
cities/townships and special districts.  These cut-off points were chosen based on the 
cumulative square root of the frequency method and represent the decision point for 
distinguishing small and large governmental units in the stratum.  Instead of conducting a 
standard cut-off sample where we would ignore the units below the cut-offs, we chose to 
subsample the smaller cities/townships and special districts using simple random 
sampling.  Although the smaller units do not contribute much to the overall total this 
method still allows us to estimate their share. 
 
In this paper, we are attempting to find a way to divide a population into small and large 
strata and then subsample the strata, drawing even fewer units from the small strata into 
the sample.  In addition, we wish to conduct more research with this method and propose 
new methods that might be better at defining these cut-off points. 
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2. Objective 
 

Before discussing the objective of this paper, we first define some notation which will be 
used throughout the paper.  Let S be the overall sample of size n and 21 SSS ∪=  where 
S1 is the small size unit sub-stratum with size n1 and S2 is the large size units sub-stratum 
with size n2.  Cut-off point, c, is defined as the breakpoint between size-based strata.  
This cut-off point distinguishes small and large sub-samples.  Also, we define p as the 
sample rate where we sub-sample S1* from S1.  The sub-sample size n1* is equal to pn1.   
 
We aim to find an acceptable range of small strata reduction which will result in a smaller 
overall sample size without significant gains in total mean squared error.   We define total 
mean squared error as follows: 
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The MSE formulas can be found in many standard sampling text book. jŷ is the linear 

predictor from the sample data corresponding jy . We are minimizing the sum of MSE 
over small and large sample sets to obtain the optimum of the cut-off point and sub-
sample rate. 
 
2.1 Simulated Data 
Before applying this theory to historical Census Bureau data, we first wished to examine 
the effects of cut-off point selection and small strata reduction on simulated data.  The 
simulated data are piecewise and based on the following distributions and equations: 
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Where: 
 x ~ uniform(0, 100) and e ~ normal(0, 1.5) 

 
The corresponding data are plotted in Figure 2.  Ignoring the smaller strata reduction by 
setting p equal to 1, we first wished to examine the effect of cut-off point selection on 
total mean squared error.  All possible cut-off points were examined, meaning the first 
cut-off point would result in the smallest observation in the small stratum and the 
remaining ninety-nine observations in the larger sized strata.  The second cut-off point 
would result in the smallest two observations in the smaller stratum and the remaining 
ninety eight observations in the larger stratum and so on.  This process resulted in ninety-
eight possible cut-off points with ninety-eight total mean squared errors.  The cut-off 
points and total mean squared errors were plotted in Figure 3 to find the optimal cut-off 
point.   
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Figure 2: Simulated Data with Noise and Linear Fits 

 
Source: Simulated data for illustrative purposes only 
 
The vertical lines show an arbitrarily chosen acceptable range of total MSEs we can 
tolerate.  Naturally we would want to choose the minimum point in this curve, around 40, 
however the cutpoint can be moved about 10 units to either side without a great loss in 
total MSE. 
 
Figure 4, shown below, plots the possible cut-off point choices versus the total mean 
squared error, but 60 percent of the smaller stratum is reduced systematically each time.  
For example, if we chose the cut-off point, 40, we would have 40 points in the smaller 
stratum and 60 points in the larger stratum.  We would then reduce the smaller stratum by 
60 percent, leaving 16 points, and calculate a total MSE. The resulting plot displays a 
more variable total mean squared error.  This result is expected as mean squared error is 
dependent on the total sample size.  The minimum mean squared error is still in relatively 
the same place, around 40, but the acceptable MSE range is narrower. 
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Figure 3: Graph of Simulated X-Value Cut-Off Points Versus Total Mean Squared 
Error 

 
Source: Simulated data for illustrative purposes only 
 
Figure 4: Graph of Simulated X-Value Cut-Off Points Versus Total Mean Squared 
Error – Reducing the Smaller Stratum by 60 Percent 
 

 
Source: Simulated data for illustrative purposes only 
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For a given cut-off point, we wish to randomly sample the smaller size stratum.  When 
keeping the cut-off point constant we can try varying levels of r, the sampling rate.  In 
Figure 5, we have fixed the cut-off point at 40 and randomly selected smaller stratum 
samples, varying the level or r by 5 percent increments.  The results show the total mean 
squared error stays roughly constant with small stratum reduction to a certain extent.  
However, when you remove over 70 percent of the data in the smaller stratum, leaving 
only 12 points to run regression, the total mean squared error appears to suffer and grow 
more variable.  Again, the acceptable range of Total MSE is arbitrarily chosen in this 
case.  This suggests the mean squared error is controlled much more by the cut-off point 
we select versus the sampling rate of reduction.  This theory becomes even more apparent 
in Figure 6 where we held the cut-off point at 60, instead of 40, and systematically 
selected smaller stratum samples.  The variability increased much faster as the percentage 
of small stratum reduction increased. 

 
Figure 5: Holding the Cut-Off Point at 40 and Fluctuating the Percentage of Small 
Strata Reduction 

 

 
Source: Simulated data for illustrative purposes only 
 
Lastly, we wish to combine all three variables (cut-off point, percent reduction, total 
mean squared error) together to make a three-dimensional plot.  Again we notice that the 
cutpoint is the more influential variable in the total mean squared error calculation.  As 
the reduction rate fluctuates for a given cut-off point the total mean square error stays 
relatively consistent. 
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Figure 6: Holding the Cut-Off Point at 60 and Fluctuating the Percentage of Small 
Strata Reduction 

 
Source: Simulated data for illustrative purposes only 
 
Figure 7: All Possible Combinations of Cut-Off Point, Small Strata Reduction and 
Resulting Total Mean Squared Error – Simulated Data 

 
Source: Simulated data for illustrative purposes only 
 
2.2 Census of Governments: Employment Data 
For this paper, we chose two state-by-government types to try this process on, namely 
California special districts and Pennsylvania cities/townships.  California was chosen 
because it is a large state with many special district governments and Pennsylvania was 



8 
 

chosen because it has many smaller, fully functioning township governments.  The data 
are plotted in Figure 8 and show, after certainties are removed, the data remains skewed 
right.  This means most of the non-certainty governments are considered to be small, 
however, there are a few non-certainty governments that are still large.  Table 2 below 
summarizes the overall frame-by-government type for these two states. 
 
Table 2: Government Organization for Studied States in 2002 
State Counties Cities and 

Townships 
Special 
Districts 

School 
Districts 

Total 

California 57 478 2,765 1,044 4,344 
Pennsylvania 66 2,562 1,728 515 4,871 
Source: U.S. Census Bureau, 2002 Census of Government Organization 
 
4.1 California Special Districts 
The California special districts are skewed right as a result of about 7 “outlier” data 
points.  These points are large but were not considered to be certainties.  It is still possible 
to find an optimal total mean squared error in Figure 9, but the acceptable range of total 
mean squared errors is much wider than the simulated data.  This is attributed to the fact 
that the simulated data had a clear cut-off point and our data appear to have the same 
slope throughout.  
 
Figure 8: California Special Districts Full-Time Employment Values from 2007 
Regressed on 2002 

 
Source: U.S. Census Bureau, 2002 and 2007 Census of Governments: Employment 
 
The three-dimensional graph below suggests if the data do not have an obvious cutoff 
point, it becomes much more difficult to find an optimal total mean squared error.  There 
is no one clear cut-off point to select but it is clear what points you would not want to 
select.  Once a cut-off point is selected it does not matter what the percentage of small 
strata reduction is, it does not have an effect on the total mean squared error.   
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Figure 9: California Special Districts Graph of 2002 Full-Time Employment Values 
as Cut-Off Points Versus Total Mean Squared Error 

 
Source: U.S. Census Bureau, 2002 and 2007 Census of Governments: Employment 
 
Figure 10: All Possible Combinations of Cut-Off Point, Small Stratum Reduction 
and Resulting Total Mean Squared Error.  California Special Districts – Smoothed. 

 
Source: U.S. Census Bureau, 2002 and 2007 Census of Governments: Employment 
 
The results for Pennsylvania cities and townships were similar to that of California 
special districts.  To save space, only the three-dimensional graph is shown as Figure 11.  
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The graph suggests if no clear cut-point is present the optimal solution is not obvious.  
Although, it is still clear what points you would not want to choose for cut-off points. 
 
Figure 11: All Possible Combinations of Cut-Off Point, Small Stratum Reduction 
and Resulting Total Mean Squared Error.  Pennsylvania Cities and Townships  – 
Smoothed. 
 

 
Source: U.S. Census Bureau, 2002 and 2007 Census of Governments: Employment 
 

3. Future Work 
 
In the future we would like to add a penalization variable to the total MSE equation.  This 
will allow us to take into consideration a cost or burden factor a government would 
experience on account of our survey.  Non-response follow-up takes resources from both 
the Census Bureau and the government unit.  If the government unit never responds, we 
use imputation techniques.   If we could minimize nonresponse, we would save resources.  
The penalization function will be as follows: 
 

( ) ( ) kk
penalized pdncMSEpcMSEMSE 121 , ++=  Where: d=cost 

         k=½, 1, 2 
 
After including the penalization variable it will be possible to minimize the total mean 
squared error equation with respect to the cut off point and proportion of small stratum 
reduction if given a specified cost.  If we try to minimize the mean squared error with 
respect to just the cut-off point and rate of reduction, the algorithm will almost always 
choose to keep 100 percent of the sample.  We are hoping we will gain more insight into 
how the mean squared error relates to all three variables simultaneously. 
 
Lastly, we would like to examine using other measures of variability in our analyses.  
The California sample we used is just one sample from the California frame and the 
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corresponding total MSE is subject to error.  It is clear from the figures that using total 
MSE makes it difficult to identify one optimal cut-off point.  By using the variance 
instead of the total MSE and using re-sampling methods, such as bootstrap, we might be 
able to find a more optimal range of cut-off points. 
 

4. Conclusions 
 
The simulated data showed that as long as there was a defined cut-off point, an optimal 
total mean squared error could be found.   The mean squared error was controlled much 
more by the selection of the cut-off point versus the amount of small strata reduction, 
thus suggesting that we should be focusing on identifying the cut-off point.  Total mean 
squared error was not changed when the smaller stratum was reduced but at this point the 
weights have not been considered.   Adding the weights to the mean squared error should 
have an effect on small stratum reduction.  Future research will look into adding a 
penalization variable to the total mean squared error function that will account for a cost 
or burden a government will be faced with when they are selected into the sample. 
 
We would also like to see how changing the rate of small stratum reduction affects the 
overall estimates of total.  Our research has shown that the total mean squared error will 
stay roughly constant with small stratum reduction but we do not know how the totals 
will be affected.  Future research will address these issues. 
 
Lastly, it would be interesting to research how the size of the government affects the 
likelihood of response.  We assume larger governments are more likely to respond than 
smaller governments but no official research has been conducted in this area.   
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