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1. FEASIBLE CONTINGENCY TABLES 

1.1. Introduction. Given a contingency table of non
negative reals ,n which the internal entries do not sum 
to the corresponding m argi nals, there is often the need 
to adjust internal entries to achieve additivity. In 
many applications, the objective is to have zero 
entries in the original table remain zero in the table 
and positive entries re main positive. Not all two-way 
contingency tables can be adjusted to achieve 
additivity subject to these constraints, and in (Fagan 
and Greenberg, 1987) the authors presented a 
procedure to determine whether a table can be 
adjusted, and such adjustable tables were called 
feasible. 

In general, given a feasible table one seeks a 
derived table that is close. For every criterion of 
closeness a different objective function must be 
optimized. Three of the most cited criteria of 
closeness are: (a) Raking, (b) Maximum Likelihood, 
and (c) Minimum Chi-Square. In this paper we provide 
algorithms which converge to a revised table 
optimizing each objective function. We provide a 
unified method showing that each of the algorithms 
converges to a unique table of specified closeness. 

Each measure of closeness is framed as a 
function to be minimized subject to marginal 
constraints. Starting with the primal (original) 
objective function we form the dual which we 
maximize. Maximizing the dual function is an 
unconstrained optimization problem amenable to 
iterative coordinate descent methods. These 
techniques yield iterative algorithms converging to a 
solution of the dual problems and subsequently to the 
original. 

Table adjustment is used to reconcile tabular data 
when marginals and internal entries arise from 
different sources. Internal entries are adjusted when 
marginals are considered more reliable -- for example, 
marginals may be derived from 100% census data 
whereas internal entries may arise from a sample. 
One application of raking at the Census Bureau is to 
weight responses to the census long-form which was 
mailed on a sample basis. Marginals were obtained 
from the full census count and internal cells are 
weighted to be com parable to marginal distributions. 
An excellent discussion of these procedures is 
contained in a series of four papers: (Fan, Woltman, 
Miskura, and Thompson, 1981); (Kim, Thompson, 
Woltman, and Vajs, 1981); (Thompson, 1981); and 
(Woltman, Miskura, Thompson, and Bounpane, 1981). 
Four recent papers relating to table adjustment for 
estimation and weighting are: (Copeland, Peitzmeier, 
and Hoy, 1987); (Alexander, 1987); (Lemaitre and 
Dufour, 1987); and (Oh and Scheuren, 1987). 

In the next section are definitions, preliminary 
results, and simplifying reductions. In Section 2 
objective functions are obtained, and in Section 3 we 
introduce duality for non-linear optimization, derive 
dual functions, and relate their optimal values to the 
original problems. In Section 4 we introduce cyclic 
coordinate descent to derive algorithms. In Section 5 

we provide an example and concluding remarks. 
Extensive details and proofs omitted from this paper 
due to space limitations are contained in the report 
(Fagan and Greenberg, 1985), from which this paper is 
an extract. Although this paper is presented in terms 
of two-way tables, the results extend for higher 
dimensions. 

1.2. Feasible Tables. By a contingency table we mean 

a triple A ={(aij ),r,c} of arrays of non-negative 

reals where(ai}isan RxC matrix, r = (r1 , ... ,rR), 

c = ( c 1, ... , cC) , and 

C 
I C. 

j=l J 

We say that A is additive if 

C
I a .. l, ... ,R 

j =1 i J 

K 
I a .. j = 1, ... ,C • 

i =l i J 

The table A is said to be feasible if there exists an 

RxC matrix (bi) such that bij = 0 if and only if aij = 0 

and B = {(bij ),r,c} is additive, and we say that Bis 

derived from A. That is, A is feasible if and only if 

there exists an RxC matrix (X;j) such that (bi} = 

(xiii}• satisfying: 

x.. a .. r. i=l, ... ,RI iJ i( 1) 
j e:V R(i) iJ 

(2) I 
ie:VC(j) 

xij a ..
iJ 

c.
J 

j=l, ... ,C 

(3) xij >0 ( i ,j) e:V, 

where V { ( i ,j) \(i ,j )e:RxC and ai j t- 0}, 

VR (i) {j l(i,j)e:V} i=l, ... ,R 

Vc(j) {i ·1 (i ,j )e:V} j=l, ... ,C. 

1.3. Connected Tables. We say that matrix A is 
connected if A cannot be written as a direct sum of 
submatrices. What we are calling a connected matrix 
has been called inseparable by Savage (1973). We say 
A is a connected table if A is a connected matrix. 
Since every table can be written as the direct sum of 
connected tables, without loss of generality we can 
confine our attention to connected tables, and will do 
so for the remainder of this paper. 
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2, DERIVED TABLES OPTIMIZING CLOSENESS 
CRITERIA 

2,1. Criteria For Optimal Derived Tables. Given a 
feasible table A one seeks a derived additive table B 
"close" to A. Four measures of closeness are: 

(d
1

): I b.. in(b .. /a .. )
(i ,j )EV iJ iJ iJ 

(d ): I -a .. tn(b .. /a .. )
2 (i ,j )EV iJ iJ iJ 

2
(d 

3
): I (a .. -b .. )/b .. 

(i ,j )EV iJ iJ iJ 

(d ): I (a .. - b .. ) 
2/a ..•

4 (i ,j )EV iJ iJ iJ 
If 

I a .. 
(i ,j )gV iJ 

the 3;j and bij could be probabilities, and A an 

observed distribution and B a revised distribution 

conforming to marginal constraints. 

Replacing b;j by 3;/ij in (d 1) - (d 4), and making 

reductions it suffices to minimize the functions of xij 

below subject to constraints (1)-(3): 

(f
1

): I a .. x.. tnx .. 
(i ,j )EV iJ iJ iJ 

( f 
2

) : I -a .. wx . . 
(i ,j )EV iJ iJ 

I a .. /x .. 
(i ,j )EV iJ iJ 

2I a.. x..• 
(i ,j )EV iJ iJ 

Criterion (d ) was introduced by Deming and Stephan 4(1940) as weighted least squares. The function (f4) can 
be optimized by solving a system of linear equations 
however, the optimal may occur when some xu are not 
positive. For this reason (f4) will not be cnscussed 
further in this report. Least squares is in an Appendix 
to (Fagan and Greenberg, 1985). Criterion (d 3) has 
been referred to as Minimum Chi-Square because of its 
resemblence to the Chi-Square statistic. It was 
introduced in regard to table adjustment by Smith 
(1947) and is discussed by Causey (1983, 1984). 

The objective function in (dz) and (f2) is a 
likelihood function if internal entries of A are counts 
based on a multinomial distribution whose total is N. 
Under these assumptions, we have the likelihood: 

N' a .. 
L=L(b .. : ai.. )= · JI (b .. ) iJ • 

iJ J JI a .. ( .. ) V iJ 
(i,j)gV iJ i,J € 

Note that tn(L) achieves its maximum at the same 
point as does: 

Criteria (d 1) and (f ) have an interesting history. A1
procedure called raking was introduced by De ming and 
Stephan (1940). 0 ne starts with a table and 
alternately scales rows and columns to achieve 
additivity, and if a table is feasible the algorithm 
converges. The authors claimed this procedure would 
yield a table optimizing (d 4). It was later pointed out 
by Stephan (1942) that raking did not converge to a 
table optimizing least squares. Raking did appear to 
converge for positive tables, however, and workers in 
the area were quite pleased to use it. 

Sinkhorn (1967) showed that raking converges for 
positive tables. Ireland and Kullback (1968) observed 
that when raking converged, it converged to a table 
optimizing (d 1), and their findings was modified by 
!hompson (1981). Darrach and Ratcliff (1972) 
independently showed that for feasible tables raking 
converged to optimize (di), Raking has been the 
object of extensive analysis; see (Oh and Scheuren, 
1978) for an extensive bibliography, and (Bishop, 
Fienberg, Holland, 1975) and (Fienberg, 1970) for 
further discussion. 

Relating raking to information theory, Ireland and 
Kull back (1968) observe that if A is a table of 
probabilities, the table derived by raking B will 
minimize the discrimination information of A with 
respect to B: 

I((biJ.),(ai.J·)) = I b.. tn(b .. /a .. ),
(i ,j)€V 1J 1J 1J 

namely objective function (d 1), see (Kullback, 1959). 
Note further that the discrimination function of B with 
respect to A, 

I((a .. ),(b .. )) I a .. w(a .. /b .. ) , 
1J 1J (i ,j )EV 1J 1J 1J 

is_ obje_c~iv~ function_ (d 2~. In the derivations below we 
will mi mmi ze the obJective function 

f 1 = L a .. x .. (-1+ tnx .. )
(i ,j )EV iJ 1J 1J 

instead of 

I a.. x.. wx .. ,
(i ,j )EV 1J 1J 1J 

since both have the same critical values and the 
form er is easier to work with. 

3. DERIVING THE DUAL FUNCTIONS 

3.1. Introduction. If A is feasible then at least one 
derived table exists, and there exist a unique derived 
table for which each of the functions f ,f and f 
att_ains its minimum subject to (1) - (3). fhe2point ai 
which these functions attain their minimum subject to 
only . (~) and (2)_ has X;j > 0 for all ( i j) EV. Thus, 
condition (3) 1s not required, see (Fagan and 
Greenberg, 1985). In this section, we provide a unified 
method to find the optimal table for each of these 
functions. For f€{f , f?' f }, our goal is to solve

1 3the following primal e_roblem: 
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Minimize: f{20 subject to (1) and (2), 

We first form the Lagrangian: 

R 
L ( x_ , _µ , _A ) = f ( x) + I µ. ( Y. a,· J. x,. J. - r,. ) 

- -i=l 1 je:VR(i) 

C 

:!)lAj(. VI(_)aijxij- cj). 
J- le:CJ 

Minimize L(x,µ,A) as a function of x, µ, and 
A and solve for ~critical x values in terms ofµ 
and~ resulting in the dual function: -

H(];!,~) = Min {L(~•!!•~)} 

x>O 

Note that H( i1,A) is a function ofµ and A which we 
maximize, that7s, we solve the dual proolem. Under 
cond1t1ons satisified by each of the functions f 1' f 2, 
and f 3, the maximum of H(];!,~) equals the minimum of 
the corresponding f{20 constrained by (1) and (2). The 
solution for x in terms of µ and A which 
maximize H(µ,A) yields the value of x that minimizes 
f subject to tlf and (2). The advantage in going from 
the primal problem to the dual is that we replace a 
constrained optimization with a non-constrained 
problem. 

3.2. Deriving the Dual Functions. 

Ra king 

Minimize f (x) = I a .. x .. (-l+tn xiJ.)
1 - (i ,j)e:V lJ lJ 

L1 (~•!!•~) (. ~) vaijxij (-l+wxij) 
l ,J e: 

-
R 
l µ.( I a .. x.. -r.) 

. l l . V (.) lJ 1J 1 ,= Je: R 1 

C 
- I A. ( I a .. x.. -c . ) • 

j=l J ie:VC(j) 1J 1J J 

To minimize L (~•!!•~) we take partial derivatives,
1 

set them equal to zero and solve for X;j in terms 

of µi and Ai and obtain: 

(4) x .. =eµi+Aj for(i,j)e:V.
1J 

Replacing X;j by eµi+Aj in L (~•l!.•~) yields:
1 

R C 
' ' ' ( µ. + A.)Hl ( µ,A ) = l µ. r. + l A.c .- l a .. e 1 J , 

- - i=l 1 1 j=l J J (i,j)e:V lJ 

Maximum Likelihood 

L (x,µ,A)= - I a .. .tnx .. +
2 - - - (i,j)e:V lJ lJ 

R 
I µ. ( I a.. x.. -r.)

i=l l je:VR(i) 1J 1J 1 

C 
+ l A • ( I a . . x. . -c . ) 

j=l J ie:VC(j)lJ lJ J 

(5) for (i,j)e:V 

R C 
H2(µ,A)= I a .. tn(µ.+ A.)- I µ.r.- I A.c. 

- - (i ,j )e:V 1J l J i =l l 1 j=l J J 

Minimum Chi-Square 

Minimize f (x) = I a .. /x ..
3 1J 1J- ( i ,j )e:V 

I a .. /x .. + 
(i ,j )e:V 1J 1J 

R
I µ. ( l a .. x.. -r.) 

i=l l je:VR(i) 1J 1J 1 

C 
+ L A. ( I a.. x.. -c . ) 

j=l J ie:VC(j) lJ lJ J 

(6) 1/(µ.+A.) 112 for (i ,j)e:V
1 J 

- 1/2 R C
H

3
(µ,A)-2 I a .. (µ.+,...) - l µ.r.- I A,c .• 
- - i,j)e:V 1J 1 J i=l 1 1 j=l 1 J 

The Hessian of each of the functions Hl' H2, H3 is 
negative definite (Luenberger, 1973), so each llas 
extreme points which in turn provide the unique 
extreme points of fl' f 2, and f 3 by using (4), (5), and 
(6). 

4. DEVELOPING ITERATIVE PROCEDURES 

4.1. Cyclic Coordinate Descent. Given an function 
F(20 to optimize, one can sometimes employ an 
iterative descent procedure. Descent with respect to 
the coordinate X; means that one minimizes F as a 
function of X; leaving all other coordinates fixed. The 
cyclic coordinate descent algorithm minimizes F 
cyclically with respect to each coordinate variable 
(Luenberger, 1973), We derive iterative procedures 
based on cyclic coordinate descent for raking, 
maximum likelihood, and minimum chi-square. 

4.2. Raking. 

R C 
' ' ' (µ.+A.)H( µ,A ) = l µ-r-+ l A-C-- l a .. e 1 J 

-- i=l 1 1 j=l J J (i,j)e:V lJ 
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Taking partial derivatives we get: 
µ \ k + 1) is the zero of F ( µ. ) = 

clH µ. , A. l l 
aij-:- = ri- e '. Vl (_)ai/ J 

l J e: R l 

i!:!._=c.-eAj I a .. eµi 
clAj J ie:VC(j) lJ 

Setting each equal to zero and solving respectively for 
µi and A j we obtain 

µ.= .e,n(r./ }: a .. eAj)
l l.V(")lJJe: R l 

A. = in ( c . / 2 a i . e µi ) • 
J J ie:Vc(j) J 

Iterative Algorithm for Raking 

1) Initializeµ(O)= A\O}= Oandk=O. 
1 

(k+l) J A\k)
2) µi = rn(ri/. V2(_)ai/ J ). 

J e: R l 

3} Repeat step 2) for i=l,•••,R. 

( k+ ) (k+l)14) L = in(c./ 2 a .. eµi ) 
J J·v(•)lJle: C l 

5) Repeat step 4) for j=l,••• ,c. 

6) Terminate based on some criterion of 
convergence, or increment k and return to step 2). 

This derivation of the raking algorithm was first 
demonstrated by Bigelow and Shapiro (1977), however, 
the authors assumed that all aij were greater than 
zero. 

4.3. Maximum Likelihood. 

R C 
H(µ,A) = 2 a .. in ( µ. + A.)-2 µ. r. - 2 A. c . 

1-- (i,j)e:V 1J Ji=l 11 j=lJJ 

Taking partial derivatives we get 

aH 2 (a .. /(µ.+ A-))-r. 
je:VR(i) lJ l J l 

aH 
- = 2 (a· . / ( µ. + A • ) ) -c . • 
cl A. . V ( . ) l J l J J

J le: C J 

Setting each equal to zero, the objective is to find the 
unique µ. and A. that are zeros of the respective 
functionJ: J 

F ( µ . ) = 2 (a . . / ( µ . + A . ) ) - r . 
1 . V (") lJ l J lJ e: R l 

G(L) 2 (a .. / ( µ. + A . ) ) -c . • 
J . V (") lJ l J Jle: C J 

In contrast to the situation with raking, zeros of 
F(µ.) andG(A-) cannot befoundinclosedform. Let 
us a1ssu me we ean find the zeros for these functions, to 
yield: 

{k)2 a .. / ( µ. + A . )-r. 
e:VR(i) lJ l J l 

A\k+l} isthe zero of G(A-) = 
J J 

, ( k+1)
l a.. / ( µ. + A . )-c . , 

ie:VC(j) lJ l J J 

and hence an algorithm for maximum likelihood similar 
to the one for raking. To find the unique zeros 
ofF{µ.) andG{A.), we use Newton's method. We 
em plo} a singleJiterative step of Newton's method 
within iterative of cyclic coordinate descent, and the 
composite algorithm is below. Due to limitations of 
space, we will not present the details of deriving that 
procedure here, however, they are explicitly worked 
out in (Fagan and Greenberg, 1985). 

Iterative Algorithm for Maximum Likelihood 

l} Initialize µ(O}= A\O)= .5 and k=O. 
l J 

2} µ\k+l}= µ(k}+( 2 (a .. /(µ. (k}+A(k}))-r. )/ 
l l je:VR(i) lJ l J l 

2 a .. /(µ\k)+A\k} )2 • 
. V (.) lJ l JJe: R l 

2') Letb = max {-A\k}}. If µ\k+l}_b<O 
"V(") J l -Je: R l 

set µ\kt (µ\k}+b}/2 and goto 2).
l l 

3) Repeat steps 2) and 2') fori=l, •••,R. 

2 a .. /(µ(k+l}+A\k})2 • 
. V ( .) lJ l Jle: C J 

4') Let a= max {-µ~k+l)}. If A_ (k+l}_a<O 
ie:VC(j) J 

set At)= (At)+a)/2 and goto 4). 

5) Repeat steps 4) and 4') for j=l, ...,C. 

6) Terminate based on some criterion, or increment k 
and return to step 2) 

4.4. Mini mum Chi-Square • 

- 1/2 R C
H(µ,A}-2 2 a .. (µ.H.) - 2 µ.r.- 2 A-C-

- - i ,j) e:V l J l J i =1 l l j =1 J J 

We proceed exactly as in maximum likelihood, and all 
the earlier remarks pertain; in particular, we embed 
Newton's method within cyclic coordinate descent. 
Full details are worked out in (Fagan and Greenberg, 
1985}. 
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Iterative Algorithm for Minimum Chi-Square 

1) Initialize µ\O) = A~O) .5 and k=O. 
1 J 

2') Letb = max {-A~k)}. If µ\k+l)_b<O set 
je:VR(i) J 1 -

µ(k)= {µ\k}+b)/2 and go to 2).
1 1 

3) Repeat steps 2) and 2') fori=l, ...,R. 

4) >.(k+l)=A(k}+2( l a .. (µ\k+l)H(k))l/2_c.)/ 
J J . V (.) 1J 1 J J

J e: C J 

. l . a .. ( _(k+l)H_(k))-3/2 
le:VC(J) 1J µ1 J 

4') Let a= max {-µ\k+l) }. If A(k+l) -a<O 
. V (.) 1 J
1 e: R J 

set AY)= (A?)+a)/2 and go to 4). 

5) Repeat steps 4) and 4') for j=l,•••,C. 

6) Terminate based on some criterion, or increment 
k and return to step 2). 

5. CO NC LU DING REM AR KS 

Let A= {(aij),r,c} bethethefollowingtable: 

0 
1 
0 
3 
4 

1 
4 
0 
6 
7 

2 
5 
0 
7 
8 

3 
6 
1 
8 
9 

4 
7 
2 
9 
10 

4 
5 
2 
5 
5 

3 4 4 5 5 21. 

The maximum likelihood adjusted table is 

40 1 1 1 1 
51 1 1 1 1 
20 0 0 1 1 
51 1 1 1 1 
5 

3 4 4 5 5 

1 1 1 1 1 

21, 

the table obtained through raking is 

. o .624 .949 1.208 1.219 4 
5.594 1.168 1.110 1.130 .998 
2.o .o .o .796 1.204 
51.131 1.112 .987 .956 .814 
5 

3 4 4 5 5 

1.275 1.097 .953 .910 .765 

21, 

and the table using minimum chi-square is 

.o 
1.426 
.o 
.806 
.768 

1.360 
.758 
.o 
.934 
.948 

1.007 
.894 
.o 

1.048 
1.051 

.758 

.915 
1.183 
1.066 
1.078 

.875 
1.007 
.817 

1.146 
1.1!:>5 

4 
5 
2 
5 
5 

3 4 4 5 5 21. 

As can be seen, adjusted tables are quite different, and 
when the need to adjust a table to additivity arises, 
care must be exercised in selecting the most 
appropriate procedure. 

When deciding upon methods, one must ask why the 
table is not additive in the first place. For example, if 
table entries were obtained through a survey, some 
factors can be: 

a) Sampling considerations, 
b} Coverage problems, 
c) Non-response and classification errors, 
d) Errors induced by earlier processing. 

Sources of non-additivity should be investigated, and 
to the extent possible, corrected for before using any 
of the procedures discussed. After survey specific 
adjustments are made based on causes of non
additivity, one uses general adjustment procedures as 
described here. We are not suggesting any one of 
these procedures is superior to the others, and most 
likely, the best procedure for a given application will 
depend on the application itself and model 
assumptions. By having algorithms to adjust tables to 
the maximum likelihood and chi-square criteria, one 
has the option of using the procedure of choice and 
studies can De conducted comparing all three. One 
shoul~ attempt to select an adjustment strategy 
focusing on subject-based information, uses to which 
the adjusted tables will be put, and analytic needs. 

Code has been developed to implement the 
algorithms discussed here in two and three 
dimensions. Raking and maximum likelihood seem to 
take about the same running time and minimum chi
square takes more time than the others. 
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