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Spatially Arrayed Growth Forces and Small Area Population Estimates Methodology
Introduction

The enterprise of making small-area population estimates rests on a foundation composed of both methodology and data.  While the particular data used in an estimates model varies considerably across the spectrum of local and regional planning agencies, state demographic agencies, federal agencies, and private data purveyors, the fundamental methodologies are comparatively rather few in number.  The activities of state and local agencies preparing population and housing estimates has been documented in the Current Population Reports series (U.S. Bureau of the Census, 1990).  The most recent of these reports categorized the methods used as follows: Component, Regression/Ratio, Correlation, Housing Unit, Vital Rates/Censal Ratio, Cohort Component, Composite, Survey, Proration, and Other. Each of the specific methods is well documented, including two books devoted to explicating the procedures (Lee and Goldsmith, 1982; Rives, et al., 1995).  Hence, a fairly broad array of methods exists for preparing estimates.


Upon reviewing this list of methods, the lack of significant methodological innovation in the past 30 to 40 years is quite evident.  Indeed the seminal articles behind most of these methods were published in the 1950s and 1960s – and in come cases earlier:  


Component Methods (U.S. Bureau of the Census, 1947)



Regression/Ratio Correlation Methods (Schmitt and Crosetti, 1954; Schmitt, 1954; Crosetti and Schmitt, 1956)


Housing Unit Methods (Starsinic and Zitter, 1968)


Vital Rates/Censal Ratio Methods (Bogue, 1950)


Cohort Component Methods (see component methods, above)


Composite Methods (Bogue and Duncan, 1959)


Survey Methods (Ericksen, 1973; Rives, 1982)

Proration and other Apportionment Methods (Shryock and Siegel, 1971:761, report that these methods were first used in the early 20th century by the Census Bureau for estimating state populations)


The innovation that has occurred during this long period has tended to be concentrated on the data side of the enterprise and certainly some of these additions have pushed the accuracy of population estimates forward quite considerably.  One example of data innovation is the Census Bureau’s use of matched personal income tax records to better estimate the migration part of their components model that has come to be called the “Administrative Records Method.”. 


It is likely that a major methodological innovation is on the horizon.  Within the next 5 to 10 years, when the Census Bureau’s TIGER File and Master Address File (MAF) permit the reliable geocoding of administrative records at the census block level, the entire estimation enterprise will be turned on its head.  This capability is almost certain to change the world of small-area population estimation.  A potential roadblock, stems from privacy concerns and record linking. Legislation at the federal and state levels could block the wide-spread use of administrative records in population estimation models.


Waiting for this revolution to come should not permit those who work in the estimation enterprise to remain complacent.  Taking this admonition personally, we asked ourselves if there wasn’t something in the technological world that could be applied to population estimates.  We decided to explore the analytical powers of Geographic Information System technologies and spatial analytic methods.  The question we address in this paper is whether it might be possible to stop treating units of estimation analysis (towns, cities, counties, ZIP codes, etc.) as independent entities; rather, use information concerning the population growth behavior of  neighboring units to inform our estimates process.  Hence, the methodological perspective utilized becomes one embedded in the spatial inter-dependence of growth forces rather than assuming spatial independence. 


Population growth is a spatial process in which the growth patterns of small areas both influence and are influenced by neighboring areas.  Spatial interactions or spatial growth forces are, for example, evident in the suburban growth patterns observed at least since the end of World War II.  Over time, growth rates have risen within the boundaries of municipalities and then spilled over into other surrounding suburban municipalities, often along arterial highways,  at increasing distances from urban centers.  However, traditional population estimation and projection methodologies have universally treated small areas as aspatial, independent units of analysis, with their patterns of growth being based solely on their recent demographic history and the contemporaneous “symptomatic indicators” arising within their boundaries.  This research attempts to quantify the spatial growth forces acting upon minor civil divisions, as well as other small areas such as census tracts and block groups, and incorporate these forces into population estimation methods.  Some work in this general area can be found in the regional science literature, yet very little by way of theory can be applied to this research without detailed investigation into the nature, persistence, strength, and direction of these hypothesized growth forces.  As a consequence, we take a highly empirical approach using a long time series of population estimates for minor civil divisions in Wisconsin.  We create a new series of spatially informed population estimates and measure their level of accuracy by comparing them to a set of earlier unadjusted estimates.


Hypothetically, at least four spatial growth or decline forces can be delineated.  Perhaps the strongest of these and the most closely associated with the growth patterns with which we are concerned can be portrayed as a growth push factor in which a more densely populated, more rapidly growing area influences its neighbors by pushing growth outward and thus bringing their growth rates and population densities upward towards its own.  We hypothesize that under certain conditions, a decline pull factor might also operate with a lower population density area experiencing population decline exerting a downward pressure on its neighbors, such as in some central cities and aging suburbs.  Finally, it is possible that both growth and decline pull factors exist.  In the former, a high growth area with lower population density might exert an upward force on its more densely populated but less rapidly growing neighbors.  For example in an exurban area, rapid new housing construction in a previously agricultural area could stimulate in-fill development in an adjacent more populous community. 

Measuring the Force of Growth

In this paper we focus solely on the growth push factor in which more densely populated, more rapidly growing areas influence their neighbors in a growth spillover type scenario, that is the force of growth.  If an area’s growth patterns are influenced by the growth and density patterns of its neighbors then the neighborhood of influence must be delineated.  We define the neighborhood of influence as a 10 mile buffer around the boundary of each minor civil division (See Figure 1) This is superior to a definition based on simple adjacency or a radius around the centroid of the MCD since it accommodates variation in the size of MCDs and irregular boundaries.  The 10 mile distance was chosen arbitrarily and should be tested empirically.


Neither the density, nor the rate of population growth would be expected to be uniform throughout the neighborhood.  Moreover, a strong positive force from one direction would not necessarily be canceled out by an equally strong negative force from another direction.  As such, we measure the force of growth in a directional pattern, using eight sectors based on a “queen’s case” relationship, by dividing the buffer into sectors with the sector lines emanating from the centroid of the MCD (See Figure 2).  In the queen’s case on a chess board each adjacent square connected either by a point (i.e. sharing a common corner) or line (i.e. sharing a common boundary) is included as a neighbor and potentially exerts an independent force on the area of interest.  


  To measure the spatial forces influencing growth, we utilize 1970, 1980 and 1990 decennial census data for Minor Civil Divisions (MCDs) in Wisconsin.  We calculate the force of growth which occurred between each of the successive censuses, 1970 to1980, and 1980 to 1990.  An alternative would be to use population estimates to calculate the force of growth for single year periods, thus allowing the force of growth to change during a decade.  


The force of growth is calculated separately for each of the eight directions comprising the queen’s neighborhood and then summed (See Figure 3).  The population of the sector is calculated for the beginning and end of the period by first determining the area of each neighboring MCD included in the sector.  The population density within each MCD is assumed to be uniform across space.  The population of neighboring sector k for area i at time t is represented as:

ital{p_{ik}^t~=~ SUM from {j=1} TO  {{horz 125} J}~{a_{ijk} OVER{a_j}}~p_j^{t}}

where ital{p_j^{t}} is the population of neighboring MCD j at time t, ital{a_j} is the area of neighboring MCD  j, and  ital{a_j} is the area of neighboring MCD  j included in sector k.


The growth rate, r, occurring between time  t-1 and time t in the area of interest, i, can, in its most simple form be represented as:

ital{r_i^t~=~{{p_i^t~-~p_i^{t-1}}OVER p_i^{t-1}}}

where p is the population.  The population of neighboring sector k for area i is represented as:

ital{r_{ik}~=~ SUM from {j=1} TO  {{horz 125} J}~r_j^t~left[``{(``a_{ijk}~ /~{a_j}``)~p_j^{t}} OVER{ ~ p_ik^{t}}right]}

The force of growth ital{G^{t+1}} during the period from time t to time  t + 1 is represented as:

ital{G^{t+1}~=~ SUM from {k=1} TO  {{horz 125} 8}

~ left[ {2r_ik^t~-~r_i^t``} OVER{|``r_i^t``|}~w_ik^1 right]

~left[ {p_{ik}^{t}~/~a_{ik}}OVER {p_{i}^{t}~/~a_{i}}

~w_ik^2 right]}

Where the first term in brackets is the ratio of the growth rates from time t-1 to t with:

ital{w_ik^1~=~1}  if  ital{{2r_ik^t~-~r_i^t``} OVER{{r_i^t}}~ ≥ ~1} and 0 otherwise,

and the second term in brackets is the ratio of the populations at time t - 1 with:

ital{w_ik^2~=~1}  if  ital{{p_{ik}^{t}~/~a_{ik}}OVER {p_{i}^{t}~/~a_{i}}~> ~1} and 0 otherwise.

In the first term in the summation pertaining to the ratio of growth rates, the growth rate for the sector is multiplied by 2 and the denominator is the absolute value of the growth rate of the MCD in order to account for MCDs with negative growth rates.  MCDs with a growth rate of zero (0) were assigned a rate of 0.001 (i.e. one tenth of one percent) in order to avoid division by zero.  


Therefore, a sector k only exerts a force of growth on an MCD i when both the sectors population density and population growth rate are higher than the MCD’s.  The force of growth exerted by a sector on an MCD is a multiplicative function of the population density and population growth rate ratios.  The overall force of growth is the sum of each of the eight sectors that displayed a positive force of growth.  Areas with forces of growth acting on them should have lower rates of growth (and lower population densities) than their surrounding neighborhood (See Figure 4).  This is illustrated by the towns in the Southwest quadrant of Dane County, Wisconsin (the location of Madison).  These towns experienced growth rates of less than 10 percent during the decade but experienced forces of growth of greater than 50 with three of them experiencing forces of growth greater than 500.  Although the scale of the force of growth is arbitrary, this places these municipalities in the highest range.  Towns in Racine and Kenosha Counties in the southeastern corner of the state with low growth rates, and rapidly growing Oneida and Vilas Counties in the north along the Michigan border exhibited identical patterns of low growth surrounded by high growth with high force of growth scores in the low growth areas.

Applying the Force of Growth to Population Estimates

In order to test the utility of the force of growth for improving population estimates, we use the force of growth to modify two population estimates.   We compare the error in the original estimate to that of the modified estimate.  We define error as the percentage difference between the estimate and the census figure.  The first estimates that we compare are the post-censal estimates prepared by the Wisconsin Department of Administration Demographic Center (DOA).  These estimates are prepared for  January 1st of each year, so we adjust the census figures with which we are comparing them to that same date by subtracting 1/40th of the intercensal change in population.  The DOA prepares a set of post-censal estimates for each census year, ignoring the census counts in their methodology, which provides us with an appropriate comparison of an estimate to the truth of the census.  We calculated the error in each estimate as follows:

ital{ ε _i^t~=~{{E^t~-~C^t}OVER C^t}}

Since DOA’s estimates are very accurate, even at a full decade from the most recent considered census count, with a mean error of -2.7 percent and a standard deviation of 7.7 percent, improving them is a daunting task.  As an alternative, we also prepared a second set of January first population estimates for 1980 and 1990 based on a linear extrapolation of the growth that occurred during the previous decade.  Thus, the 1980 population was a function of the 1970 population and the growth rate between 1960 and 1970.  The estimate based on the extrapolation for 1980 had a mean error of -12.1 percent and a standard deviation of 17.7 percent.  The same method was used for 1990.


We use the force of growth in a regression model to predict the error for each MCD excluding MCDs that were not affected by a force of growth (i.e. Gi = 0).  This exclusion is justified because the force of growth can only be expected to improve the estimates for MCD upon which it has an influence.  In 1980 in Wisconsin, there were 1,011 such MCDs out of a total of 1,876.  The empirical regression equation is as follows:

ital{ ε_i ^t~=~ α ~+~ β _1``(-``G_i``)}

where Gi is the force of growth and α and β are parameters to be estimated. 


The sign of the force of growth is reversed for empirical reasons, since it was negatively correlated with the error in the estimates. The force of growth represents a disequilibrium state in which an MCD is growing at a different rate than its neighbors.  The force of growth should increase an MCD’s growth rate, eventually reducing the state of growth and restoring an equilibrium state.  We hypothesize that in cases with very high forces of growth acting on them, some other factor prevents an increase in the MCD’s growth rate and a return to an equilibrium state.  These confounding factors might include stringent land-use controls, extensive public lands including national forests, or lack of buildable land.  Therefore, among MCDs with a force of growth acting on them, the lower the force of growth the more likely the estimates are to underestimate the population in that MCD.  The Pearson Correlation Coefficient between the force of growth with the sign reversed and the error in the DOA estimates was -0.065 (with significance at the p < 0.05 level) while the coefficient between the force of growth and the error in the extrapolated estimate was -0.519 (with significance at the p < 0.01 level). 


We estimated the regression model of error for each of the two sets of estimates with the following results:  

ital{ ε_i ^{80}(DOA)~=~ -0.033 ~+~-0.00011``(-``G_i``)}

and:

ital{ ε_i ^{80}(Extrapolation)~=~ -0.17 ~+~-0.002``(-``G_i``)}

In the DOA model both the F test and the t test for the coefficient of the force of growth were significant at the  p < 0.05 level.  In the extrapolation model both these tests were significant at the  p < 0.001 level.  We then use these coefficients to calculate a new population estimate as follows:   

ital{  E hat_i ^t ~=~ E_i^t OVER{α ~+~ β _1``(-``G_i``)}  }

We first create an adjusted estimate for 1980, and although this is not a fair comparison since we are using the 1980 census population to calculate the force of growth and are therefore using information not available to the original estimates, it does demonstrate the utility of spatial forces on population estimates (Table 1).  The force of growth estimate reduces the error in the DOA estimates from 2.8 percent to less than 0.001 percent, however it does increase the standard deviation of the error by 0.18 percent to approximately 6.8 percent.  The error for the extrapolation estimate is reduced even more dramatically from 7.2 percent to 0.044 percent with a decrease in the size of the standard error from 13.3 percent to 12.7 percent. 
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Estimate

Mean

Difference

Std. Dev.

Difference

DOA 

-0.02825

0.06616

Adjusted DOA 

-0.00001

0.02824

0.06796

-0.00180

Extrapolation

-0.07207

0.13337

Adjusted Extrapolation

-0.00044

0.07163

0.12727

0.00611


[image: image2.wmf]Table 2:  Descriptive Statistics for Error in Estimates, 1990

Estimate

Mean

Difference

Std. Dev.

Difference

DOA 

0.02777

0.09275

Adjusted DOA 

0.02280

0.00497

0.10202

-0.00927

Extrapolation

0.13356

0.16517

Adjusted Extrapolation

-0.02405

0.10951

0.30963

-0.14446


Next we create a similar adjusted estimate for 1990 using the coefficients from the regression model for 1980 with the force of growth calculated for the 1980 to 1990 period.  The adjusted estimates are limited to MCDs that experienced a positive force of growth during the 1980 to 1990 period.  This constitutes the definitive test of the efficacy of the method in this paper, since no information is utilized which would not have been available during the preparation of the initial estimates.  These 1990 adjusted estimates are based on the effect (i.e. that is the coefficients α and β in the regression model) of the force of growth measured over a decade earlier during the decade between 1970 and 1980.  Given that these forces may change over time, the accuracy of the 1990 estimates would be downwardly biased, suggesting that the estimation of the model should be based on more recent estimates, if possible.  Of course, the improvements in the error of the estimates are more modest in 1990 (Table 2).  The error in the adjusted DOA estimate decreases by approximate one half of one percent from 2.8 percent to 2.3 percent although the standard deviation of the error increases slightly from 9.3 percent to 10.2 percent.  Although the decrease in the average error for the extrapolation estimate is more dramatic, decreasing nearly 11 percent from 13.4 percent to -2.4 percent, the standard deviation nearly doubles from 16.5 percent to 31.0 percent.

Conclusions

This paper represents an initial effort to improve population estimation methodologies by treating geographic areas not as spatially independent but instead examining the influence of neighboring areas.  While the improvements in the error for the true estimation, 1990, are quite modest, they represent a promising result.  We only examine one of the spatial forces which may be operating, ignoring the pull force of growth and any force of decline.  Moreover, there may be important interactions among these various forces.  The growth patterns for an area with both strong upward push and downward push forces acting upon it might be disproportionately affected by those countervailing forces.  This type of area might be located on the very fringe of urban development, forming the boundary between the urbanized area and the more sparsely populated rural communities.   Declining central city areas might also exert disparate effects on surrounding areas with immediately adjacent areas being pulled toward a similar decline while more distant areas absorb the displaced population, increasing their growth.  


Various measures of spatial population forces need to be explored, as well as the scale of operation of those forces.  Our rather arbitrary selection of a ten mile buffer, may either significantly overshoot or more likely undershoot the relevant distance for the force of growth process.  There also exists the possibility that more populace municipalities have a greater and farther reaching influence on their neighbors than smaller municipalities, even with similar population densities and growth rates.  This suggests that the buffer should not be a uniform size but should be stretched in certain directions in proportion to the size of the municipalities within each sector.  While this paper just begins to explore spatial forces in population estimates methodologies, it strongly suggests the potential of the technique and the need for additional research.
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