COTTON PRODUCTION IN ALABAMA.

perhaps no part of the state which ranks higher in the production of cotton than the blue-marl lands of adjacent parts of Russell, Barbour, and Bullock counties, whose prevailing soils are light sandy loams, easily worked, possessing a comparatively high percentage of lime, by which they are rendered extraordinarily thrifty.

ABSTRACT OF THE REPORTS OF JUDGE H. D. CLAYTON, OF CLATTON, AND DR. H. HAWKINS, OF HAWKINSVILLE.

(The region reported upon lies at the headwaters of Cowcille Creek river, and includes both uplands and bottomlands; also, the Cowcille lands are described.)

No local causes influence the growth of cotton in the former region, but in the Cowcille lands the heavy clays are thought to be favorable to the growth. The upland soils are gray to red in color, and mostly sandy and porous. The gray lands are about one-fourth of the area. The gray land is a mixture of long-leaf pine, red, white, and post oaks, and hickory, and that on the red land the same, with the addition of walnut, pen-simmon, grape-vines, chin-chai, buckeye, etc. The red soil is usually much stiffer than the gray, and has a subsoil of sometimes very hard clay and sand, underlaid frequently with a hardpan at a depth of several feet.

These soils are of easy tillage at all times, and produce the usual crops, being, however, best adapted to grain, potatoes, and peas, although cotton forms at least half of the cultivated crops. The most productive height of stalk is about 3 feet. In wet seasons, and on fresh land, the plant sometimes runs to weed, but this may be checked by the free use of commercial fertilizers and by tilling. The seed-cotton produced of the fresh land is given at 1,000 pounds (one-third lint), this average yield of lint being estimated from the observation and experience of thirty years. The staple rates high in the market (cotton grade not given). Cultivating 3 to 4 years without manure will bring down the yield to 600 pounds with a little shorter staple. Cotton-cards are more troublesome than any other, but they must be grown for multiple use, the crop is properly worked. About a fourth of this kind of land lies turned out, chiefly because since the war the negro labors cannot be induced to care for the land and keep the ditches cleared out either on hillside or in the bottom land unless especially hired for the purpose, and this takes too much money from the owner of the land to justify him in so doing. On some farms, where the negroes have become attached to the place, they can be little供电 being induced to keep up the land.

When turned over for 10 or 15 years and grown up in old-old pine lands will produce nearly as well as the fresh lands when reclaimed. A great deal of injury is done both to the hills and the valleys by washings and gullies. When the hillside are turned out and grow up in the pines, the valleys are improved, there being no washings from above.

The soil of the Cowcille lands is a fine sandy loam, alternating with a heavy clay, clayey, sometimes prairie-like loam, both mowed or left in grass. The color is usually gray or yellowish, and the subsoil is also of light color. The common growths are oak, hickory, and long-leaf pine. The three branches of Cowcille Creek flow together before reaching the river. On the north side of each the land is comparatively level, and the principal growth pine; the soil, light-gray, chin-chai, and hog-wallow. On these the cotton is small but very prolific, though most subject to rust after the land has been cultivated for a few years. On the south side of these streams the land is much stronger, with more lime, and produces a large cotton crop; it is also better for corn.

In wet seasons the land is rather difficult to till, but yields fine crops. Cotton occupies four-fifths of the cultivated land, and the height of stalk at which it first produces from 3 to 4 feet. In wet weather the plant isolines to run to wood, but the application of commercial fertilizers will usually check this. The seed-cotton produced of the fresh land is from 1,000 to 1,200 pounds, one-third lint, and the staple rates high in the market. Six years' cultivation will bring down the yield to between 400 and 600 pounds. When properly cultivated, weeds give no trouble. About 10 per cent. of the land lies out, but it does well when reclaimed. The soil washes badly on slopes, and the valleys are injurious. The washings from the uplands. Some slight efforts have been made to check the damage by horizontal ditches, hilly ditches, and gullies, and with great success.

Shipments of the cotton crop are made through the season, usually by railroad, to the eastern markets. From Clayton the rate to Enid is $1 per bale; distance, 30 miles.

THE FLATWOODS BELT.

This comprises a narrow strip running through the counties of Sumter, Marengo, and Wilcox.

SUMTER.

(See "Central prairie region").

MARENGO.

(See "Central prairie region").

WILCOX.

(See "Oak and hickory uplands, with long-leaf pine").

OAK AND HICKORY UPLANDS, WITH LONG-LEAF PINE.

This region comprises wholly or in part the following counties: Sumter, Choctaw, Clarke, Monroe, Wilcox, Butler, Covington, Choccolia, Montgomery, Bullock, Barbour, Pike, Coffee, Dale, and Henry.

SUMTER.

(See "Central prairie region").
AGRICULTURAL DESCRIPTIONS OF THE COUNTIES.

CHOCTAW.

Population: 10,731. — White, 7,830; colored, 2,841.
Area: 930 square miles. — Oak and hickory and long-leaf pine uplands, 830 square miles; lime-hills, 100 square miles.

Tilled land: 77,143 acres. — Area planted in cotton, 24,569 acres; in corn, 25,213 acres; in oats, 3,538 acres; in rice, 82 acres; in sugar-canes, 101 acres; in tobacco, 33 acres; in sweet potatoes, 1,465 acres.

Cotton production: 9,844 bales; average cotton product per acre, 0.29 bale; 414 pounds seed-cotton, or 138 pounds cotton lint.

In Choctaw county the rocky substratum is made by the various beds of the Tertiary formation, and while these under other rocks have been covered with deposits of sand, pebbles, and loam of a later period, yet they are sufficiently near the surface to modify the soils, and in some instances to form them outright. On account of the slight southward dip of the Tertiary beds, we find the lowest and oldest of these in the northern part of the county, while the later beds appear at the surface in successuion as we go southward.

Throughout the county the higher levels of the table-lands have the brown loam to gray sandy soils of the drift deposits before named; but where these have been removed, as upon the slopes and on the borders of the lowlands, then the Tertiary rocks come to light and produce many decided soil varieties. The lowest Tertiary beds occurring in Choctaw county consist of laminated clays, usually of grayish colors, which are interstratified with sandy strata containing great quantities of marine shells, constituting marl beds. These beds occur as far south as the latitude of Butler, and, where they take part in the formation of the soils, give rise to heavy clayey soils on the one hand and to stiff calcareous loams on the other. About Butler may be seen lime-hills of this character. The greater part of these hills consists chiefly of post oak, hickory, and short-leaf pine, with a few oaks of other species. Most of these trees are draped with long mosses. Where the overlying sandy loams are thick the long-leaf pine becomes abundant, and on most of the sandy plateaus it is the prevailing tree.

The next division of the Tertiary, which makes its appearance south of Butler in a belt extending to Bladen Springs, is made up of aluminous sandstones and claystones, which overlie beds of dark-colored clays, interstratified with beds of greenish marl. Where the sandstones are prominent the topography is quite varied, and consists of high, steep hills, with deep, narrow ravines. The soils which depend upon this material are naturally poor, and the timber is mostly of long-leaf pine, black-jack, and high-ground willow oaks; but the calcareous deposits previously mentioned give rise to very good limy soils, where sufficiently large tracts of land have been level enough for cultivation can be found. In all this section between Butler and Bladen Springs the creek bottoms appear to be very productive, and to contain a considerable proportion of lime, as may be inferred from the luxuriance of the vegetation and the prevalence of the lime trees. The uplands between these streams have the usual sandy loam soils, and in some places the sandstones themselves form the soils, which are almost worthless for cultivation.

South of Bladen Springs (the waters of which, like those of Tallahassee Springs, on the other side of the river, come from the Tertiary rocks just described) the country is formed of the strata of the Jackson and Vicksburg groups of the Tertiary, and are either calcareous clays, marine shell deposits, or white limestone. In places, particularly along the incese very steep slopes bordering the streams, the calcareous beds, and especially those of slight coherence, mingle with the materials of the overlying deposits, and produce the peculiar soils of the lime-hills. These vary from a stiff, limy red loam to a black soil very much like some of the soils of the central prairie belt. Unlike these, however, the lime-hill soils appear in this county only in comparatively limited patches, and the region of their occurrence has the prevailing characters of the pine uplands, the calcareous soils forming only a small proportion of the total area.

From Mr. James Harrick, of Janey, I learn that the belt of what is called in this county "shell prairie" is about 6 miles wide, and enters the county in township 11, range 5 west, and passes southeast, leaving the county in township 9, range 3 west. These and the creek bottoms form the very best lands in the county.

All the divides and high lands of the southern part of the county have rather thick beds of drift and loam overlying the Tertiary, and the agricultural features are hence mostly independent of the latter, except along the drainage slopes.

It will be seen from what has been said that the prevailing character of Choctaw county is that of the long-leaf pine uplands with oak and hickory, yet the most productive lands, and those which are of most importance to the cotton planter, are the shell prairie and creek bottoms. In the adjoining counties of Clarke and Wayne, in Mississippi, the shell prairies are of the same nature, though, if anything, rather more widely distributed, and in larger bodies.

The Tombigbee river on one side of the county, and the Mobile and Ohio railroad, in Mississippi, on the other, furnish the only means of transportation for the produce of the county to the distant markets.

CLARKE.

Population: 17,806. — White, 7,719; colored, 10,087.
Area: 1,150 square miles. — Woodland, all. — Lime-hills, 660 square miles; oak and hickory and long-leaf pine uplands, 840 square miles, of which 100 are brown-loam uplands and 240 long-leaf pine uplands; rolling and open pine woods, 260 square miles.

Tilled land: 77,188 acres. — Area planted in cotton, 33,477 acres; in corn, 28,230 acres; in oats, 5,065 acres; in tobacco, 19 acres; in sugar-canes, 250 acres; in rice, 23 acres; in sweet potatoes, 1,265 acres.

Cotton production: 11,097 bales; average cotton product per acre, 0.33 bale; 471 pounds seed-cotton, or 157 pounds cotton lint.

The position of Clarke county, in the angle of the Alabama and the Tombigbee rivers, is favorable to the production of a diversified topography and to the exposure of its rock structure; hence the study of its natural features is of the greatest interest. The Tombigbee receives by far the greater part of its surface drainage, for the
divide between the two rivers runs within 10 miles of the Alabama river the whole length of the county. It thus follows that its principal creeks—Bashi, Tallahatta, Satipka, Jackson's, and Bassett's—flow west or southwest diagonally across the county. The rock strata have a gentle dip southward, and to this relation between the direction of the streams and the dip of the rocks is due one of the striking topographical features of the county, viz.: that escarpments or abrupt hills are found on the southern or southeastern borders of these streams, while to the north and northwest the slopes are very gradual, often almost imperceptible.

The stratification of the strata and the altitude of the main water-sheds, which are, in general, plateau covered with these drifted materials, is about 500 feet above tide. The greater part of the original surface has been irregularly worn away by erosion, and especially in the region of the two rivers, where the two rivers are not more than 6 or 10 miles apart. Both the Tertiary strata and the drift beds underly them have contributed to the formation of the soils of the county, but in very unequal proportions, since the drift occupies the greater part of the surface.

The hills which overlook and form the southern border of the drainage area of Tallahatta creek are caused by hard sandstones and claystones perhaps 200 feet in thickness. These rest upon dark-colored laminated clays and sands, which form their lower parts, and underlie also the whole region north of them to the line of Missouri. The Tertiary strata which form the under strata, the limestones containing a notable amount of greensand, and these strata which form the surface a great improvement in the soil may be noticed. This improvement is most strikingly seen in the lime-hills, a belt of which crosses the county nearly east and west through Choctaw county. The loess is not abundant here, but any detached bodies, except eastward near the Wilcox line, where they become characteristic. The hills are usually very steep, and the soil, in consequence, washes badly, and when left out of cultivation soon becomes disfigured by unsightly gullies. The timber is chiefly beech, but with it are many other trees, such as hickory, white oak, sweet gum, short-leaf pine, spruce pine, etc.,

Southward from the Tallahatta hills (leaving out of account the superficial drift beds) the whole county is formed of beds of white limestone of varying degrees of purity, which are interstratified with thin beds of loose shell marl. These beds are under the exception, do not play any very important part in the formation of the soils. This exception is found in the lowest of the limestone beds, which is impure and clayey, and in places is almost a calcareous clay. Wherever this rock occurs as the surface formation, or where the surface materials are washed by it, it gives rise to a series of peculiar soils which change gradually into prairies. The varieties of soil depending on this rock alone are of two kinds: a loose, black material, and a gray, waxy clay, which becomes black on the addition of vegetable matter. A mixture of this gray clay with the red drift loam produces a stiff yellowish or mahogany soil, difficult of cultivation, but very fertile. These soils and their characteristic vegetation have been somewhat fully described in the general part (page 62).

It would be a mistake to suppose that the prairie or lime soils form the majority of the tillable lands, even where they give character to the country. The great proportion of all the soils derived from the surface loam previously spoken of, and the lime soils are seen usually in small detached bodies, mostly at lower levels, where the superficial beds have been removed by denudation. This limestone is the matrix of the large bones which have been found from time to time in Clarke county. Associated with it are also beds of gypsum, which is found occasionally in the form of large quantities interstratified in clay. This gypsum's interstratified upon the lands of the sections where it abounds. The lime-hills occur from the latitude of Coldwater southward as far as the vicinity of Barlow bend, or over three-fourths of the county. In many places the bare white rock is exposed in great bodies, as about Claiborne, Suggsville, Cedar creek, etc.

The other beds which were just described play an important part in the topography, but are not so generally concerned in the production of a peculiar soil as is the former. It is seen in a great bluff at old Saint Stephens. Portions of it, when freshly quarried, are quite soft, and are easily cut into blocks, which are used in the construction of chimneys. The thin beds of shell marl which are associated with these rocks have a local effect upon the soils. Some of them could be profitably employed on the lands which lie contiguous, but they are not generally rich enough to be shipped to distant points. An exception might be made in the case of the marl bed which occurs at the Clotilde landing, in Monroe county, and which is seen at several points on the Clarke county side. This is a shell marl, which in places contains very little else than shells, and might pay to ship. Some of the more level areas, where the limestone lies beneath the surface, are marked with shallow depressions, or lime-sinks; but this feature is not a common one in Clarke.

Of the surface beds of the drift it does not seem necessary to speak at this place, since they have been fully treated of in the general part of this report. All the table-lands and many other areas in Clarke have the loam soils, many of which are of excellent quality. The pebbles which so commonly underlie the surface soils usually make their appearance along the hillsides, where the table-lands break off toward the water-courses. They may be seen, for instance, about the towns of Jackson and Grove Hill, and in many similar positions.

On the watershed between Bassett's creek and the Alabama river there are places where the gullies have encroached on each side upon the hills until only a narrow ridge now remains of the dividing plateau. From this ridge to the view is obstructed on each side, and embraces the whole width of the drainage areas of the two streams.

With reference to its prevailing timber growth, this county may be divided into several distinct belts. The northern belt is a region of oak uplands, with long- and short-leaf pine. Interplanted with these uplands are the lime-hills, with beech timber and the peculiar growth which generally characterizes bottom lands. South of this come the Tallahatta hills, occupying a belt 10 miles in width, timbered with long-leaf pine and black-jack; thence
southward, to the lower limit of the county, are alternations of oak and hickory uplands and long-leaf pine forests, the latter increasing in extent in the same proportion that the former decrease, till below Grove Hill the country has the characters of the pine uplands and rolling pine lands. Within this region are the lime-hills and shell prairies of the white limestone.

The cotton lands of Clarke county are the second bottoms or hummocks of the two rivers, and are often several miles in width, with sandy loam soils, in many cases strengthened by the washings from the calcareous uplands. The creek lands are not so generally desirable, for on the north side the soils are nearly always too sandy. On the southern side, where by reason of the nearly beds the soils are often of a very superior character, the surface is usually very broken, and it is possible to cultivate only small patches; such, at least, is the case with the principal streams. The small creeks which flow into the Alabama river have generally very little bottom lands, and often steep, rocky banks. The lime-hills, both north and south of the Tallahatchie hills, produce fine crops, especially the loose, black-shell prairie of the interst. The upland soils of the red loam have the same character in this county as elsewhere, and are some of the best and safest of the cotton lands.

Clarke county depends upon the two rivers for shipping its cotton to market, and the most of it goes naturally to Mobile. The freight to that point is from $1.25 to $1.50 per bale.

MONROE.

Population: 17,001—White, 7,780; colored, 9,211.
Area: 1,030 square miles.—Woodland, all. Undulating pine lands, 880 square miles; pine uplands, 250 square miles; brown loam or oak and hickory uplands, 130 square miles; lime-hills, 370 square miles.

Tilled land: 77,317 acres.—Area planted in cotton, 53,605 acres; in corn, 24,135 acres; in oats, 4,097 acres; in rice, 78 acres; in sugar-cane, 329 acres; in tobacco, 11 acres; in sweet potatoes, 290 acres. Cotton production: 16,421 bales; average cotton product per acre, 0.31 bale, 441 pounds seed-cotton, or 147 pounds cotton lint.

In its geological structure Monroe county closely resembles Clarke, which adjoins it on the west. The underlying rocks throughout the county are those of the Tertiary formation, the aluminous and siliceous sandstones of the bulker-stone group occurring in the northern part of the county, while the white limestone underlies all the southern part. But the beds of sand, pebbles, and loam belonging to the stratified drift formation are spread over all these older rocks, and are concerned in the formation of the greater part of the soils.

The sandstones above mentioned form a hilly and much broken country, with poor sandy soils, on the uplands; but as the sandstones are underlaid with a dark-colored laminated clay interstratified with beds of greensand marl the valleys lying at the foot of these hills are often very productive. The whole of this region is characterized by rough, precipitous hills with long-leaf pine growth, alternating with fertile limy valleys. Notwithstanding the broken character of the country, some of the most prosperous farmers are located in this section.

In the central and southern parts of the county the topography is comparatively little influenced by the underlying rocks, and the uplands have the prevailing characters of the pine hills or rolling pine lands, and similarly with the soils, which are for the most part the sandy loams derived from the drift, present no peculiarities. Where, however, these surface materials have been partially removed, as within the drainage areas of Flat and Limestone creeks, the case is different; for the marls or limestone of the Tertiary formation are uncovered and brought in contact with the overlying loams, and thus are produced those fertile soils of the lime-hills and creek bottoms for which these localities are noted. The uplands bordering these creek lands are the usual sandy pine hills, and here the break off toward the creeks the lime-hills occur, which are usually very steep, and have comparatively little level land on top. The soils are of various colors, from gray and reddish to nearly black, usually pretty stiff, and sometimes contain shells. The bottom lands adjacent to the lime-hills are more sandy, but are usually more or less influenced by the lime of the hills, and make the best cotton lands in the county.

Below the latitude of Monroeville the county is a level or gently rolling pine woods, with occasional lime-sinks, which reveal the presence of the limestone beneath, but this rock seldom appears at the surface except along the banks of the streams. In all this region very little cotton is planted except in the lowlands adjacent to the Alabama river.

The cotton lands of Monroe county are the lowlands of Flat and Limestone creeks and the Alabama river. The uplands are generally sandy and not very productive, especially in the southern half of the county. There are some good bodies of table-land and high bottoms, but brown-loam soil and red clay subsoil, but these are similar to the brown-loam soils of the other counties. The marls from Flat creek, where they occur in large enough beds, might be used with advantage on the poorer upland soils, which are within convenient distance.

The agricultural characters of the Flat Creek region are shown in the following abstract.

ABSTRACT OF THE REPORT OF DR. J. M. HARRINGTON, OF NEWTOWN ACADEMY.

The lowlands of the county described are the first and second bottoms of Flat creek, a tributary of the Alabama river; the uplands are the rolling or level table-land bordering upon the same. In the lowlands the cotton is generally later than on the surrounding uplands, on account of the cold nature of the soil in the former.

The soils described are: First, the stiff creek bottoms with adjoining sandy lands; second, the rolling lime-hills and their adjoining bottom lands; and third, the sandy uplands.

In the region under consideration about one-half of the cultivated lands are of the first kind, or creek lands. The prevailing timber is poplar, white oak, ash, beech, and sweet gum. The light soils are fine to coarse sandy, and the heavier, clayey loams sometimes quite stiff. The colors are varied, ranging from whitish to gray, brown, blackish, and black. A change of color to that of the subsoil is usually noticed at a depth of 6 inches. The subsoil is generally yellow or red, though sometimes it is of a bluish pipe-clay color, and when of the nature of a pipe-clay it is sometimes almost impermeable to water. The underlying material is sand, gravel, or lime-silt, according to the locality. In tilling qualities the soil is difficult both in wet and in dry seasons, and is, cold, and generally ill-drained. The crops produced upon it are corn, cotton, sweet potatoes, peas, oats, and rice. The soil is apparently best adapted to cotton, which makes about two-thirds of the cultivated crops. The lime-hills occupy about one-fourth of the described area, and their natural growth is past oak, hickory, and maple. The soil is usually a heavy clay loam of a whitish, gray, buff, brown, or mahogany color, with an average thickness of 20 to 25 inches.
COTTON PRODUCTION IN ALABAMA.

The soil is difficult to color change of 3 or 4 inches. The subsoil is generally heavier, and is underlaid with rock from 1 to 4 feet in depth. The soil is difficult of tillage in all seasons, but is easily worked, and is better suited to corn than to the other crops. Cotton makes only about one-fourth of the crop planted.

The sandy uplands form about one-fourth of the region herein embraced. The natural timber is long-leaf pine and black oak. It is uniformly a fine sandy loam of white, gray, and other light colors, with a thickness of 3 to 4 inches down to the change of rocks. It is uniform in its sandy loam of white, gray, and other colors. The subsoil is usually heavier, and contains sometimes rounded or water-worn pebbles of quartz, and is underlaid with sand or gravel. This soil is easily tilled under all circumstances, and is easily worked, and well-drained. It is best adapted to corn, the cotton forming half of the crops. The height of stalks varies from 2 to 3 feet on the pineland to 5 or 6 ft on the hills and in the bottoms, the only one-fourth of the crops. The height of stalks varies from 2 to 3 feet on the pineland to 5 or 6 ft on the hills and in the bottoms, the most productive height being the medium.

The cotton grown in Alabama is shipped, as fast as picked, by boat to Mobile, the freight per bale being $1.

WILCOX.

Population: 31,828.—White, 6,711; colored, 25,117.

Area: 900 square miles.—Woodlands, all. Oak and hickory uplands, with long-leaf pine, 600 square miles; central prairie region, 300 square miles (of which 200 square miles are of the hills prairie character and 100 of the rotten limestone); flatwoods, 60 square miles.

Tilled land: 101,938 acres.—Area planted in cotton, 77,976 acres; in corn, 46,053 acres; in oats, 7,011 acres; in sugar-cane, 253 acres; in rice, 14 acres; in tobacco, 13 acres; in sweet potatoes, 1,977 acres.

Cotton production: 26,745 bales; average cotton product per acre, 0.35 bale, 486 pounds seed-cotton, or 160 pounds cotton lint.

Wilcox county has for its underlying rocks the strata of the lowest or ligalilc subdivision of the Tertiary formation, except along the northern edge on the eastern side of the river, and the northwestern corner, west of the river, where the Cretaceous rocks are found. Where the calcareous beds mingle with the overlying strata of sand and loam a stiff, sticky soil of considerable fertility is produced, the growth on which is a mixture of short-leaf pines, post oak, etc.

In the direction of Portland, the uplands are covered with the strata of the drift. But, as a descent is made toward Pine Barrens creek the hard limestones and other calcareous Cretaceous rocks are encountered, and heavy, tenacious clays make the soil. Of the quality of this clay one can best judge after passing over them with a vehicle after rains, when the mud in certain stages of drying sticks to the wheels with a tenacity that is wonderful; it is difficult even to cut it off with a knife. A belt of country similar to this is passed between Dayton and Linden, in Marengo county, as there described.

The belt of flatwoods which, in Marengo county, has been mentioned as occurring immediately south of the sandy ridge of Linden, is seen in this county also in a similar position. The underlying rocks of the flatwoods are the laminated clays that lie at the base of the Tertiary formation. These flatwoods, in Wilcox, are known only on the western side of the river, southwest of Prairie Bluff.

In the lower part of the county the other Tertiary beds come to the surface. These consist of gray and dark colored clays and sands, with which is associated a marl bed containing the mineral greensand. As a consequence, whenever these calcareous beds are near enough to affect the soil a very marked improvement is observed. The lime-hills which characterize that part of the country west of the river and above Lower Peach Tree owe their existence to these beds. The surface in this region is very broken, and the lands suffer from washes; the soils are stiff, clayey, calcareous loams of gray, reddish, and darker colors, and the timber is mostly beech, with white oak, honey, hickory, ash, poplar, short-leaf and spruce pine. This lime-hill region is bounded on the south by a line of rocky hills, which are capped with sand and clay stones and timbered with long-leaf pine and blackjack oak; but these hills in most cases lie south of the county line, in Clarke and Monroe. The characters of all these Tertiary strata and of the country formed of them have been described in some detail under Choctaw county, and need not be repeated here.

The river-hummock or second-bottom soils of Wilcox county are probably fairly well represented by an analysis of soil from 3 miles east of Lower Peach Tree (see page 44). The uplands of Wilcox are, therefore, mostly the sandy loams of the stratified drift, and loam, and many of the lowlands, not bottom lands, are rendered highly fertile by the calcareous materials of the Lower Cretaceous and Upper Tertiary formations.

The drainage is altogether by means of numerous tributaries into the Alabama river, and the surface in general is broken, with a good deal of level bottom land in the large bends and in the flatwoods and prairies of the northwest.

A large proportion of the cotton crop of Wilcox county is produced in the numerous bend of the Alabama river. Perhaps the largest of these is Blacka's bend, in the southwestern part of the county, long celebrated for the great quantity of cotton annually produced there. The river has almost everywhere fine first- and second-bottom lands. The lime soils in the northeastern part of the county also bring fine cotton crops.

ABSTRACT OF THE REPORT OF HENRY G. BROWN, OF CAMDEN.

(The region described embraces the first and second bottoms of Tuscaloosa creek, a tributary of the Alabama river, and the bluffs, partly limy, partly sandy uplands of the same drainage area.)

On the lowlands, when the spring season is wet, planting is late, and the cotton does not fully mature before it is seriously damaged by the caterpillar. The uplands, on the other hand, are earlier and more easily worked, but the yield is less than in the bottoms. When and after the caterpillar is late in coming the yield in the bottoms will double that in the uplands. The soils described are: 1, the stiff clayey uplands with red-clay subsoil; 2, the sandy uplands with gravel, lying upon slopes, in patches of 15 to 50 acres; and 3, the sandy uplands with red-clay subsoil.

145
AGRICULTURAL DESCRIPTIONS OF THE COUNTIES.

The bottom lands are about a fourth of the cultivated lands of the vicinity, and have a growth of white oak, hickory, elm, ash, beech, magnolia, sycamore, mulberry, and walnut. The soil varies from a light sandy to a heavy clay or often prairie-like loam, with gray to nearly black color. The average thickness to a change of color is 6 inches, and the subsoil is generally of a heavier nature. The soil will sometimes bake very hard after a rain and in hot sunshine, but by proper cultivation will yield a loose soft material. The subsoil often contains limy pebbles, and is underlaid with a marl or soft limestone at varying depths. In dry seasons the soil is easy of tillage, but in wet seasons it is very sticky. It is early and warm when well-drained, and produces well all the usual crops, being best adapted to cotton, sugar-cane, and rice.

The uplands, or hummocks, form about a third of the area in the region described, and their natural growth is pine, mulberry, blackjack, etc. The soil has the usual characters of the yellow loams, and rests upon beds of sand and gravel, with clay below in many cases. It is easy of tillage under all circumstances, and is early and warm and usually well-drained. The soil is apparently best adapted to oats, peas, potatoes, and corn, only about a fourth of the area being put in cotton.

The third variety of soil is that of the sandy lands, which have a growth of long-leaf pine, and which are the typical pine woods. The soil is so white to gray color, with sandy subsoil, sometimes containing pebbles. Only the poorer classes cultivate this land, which, with proper manuring, may be made to yield a support. It is best suited to sugar-cane, tobacco, rice, etc., and only about a third of the crop is cotton. The height of the cotton-stalk upon these soil varieties varies from 1 to 5 feet, according to quality and to the amount of manure used. Heavy manuring and wet weather sometimes cause the plant to run to weed, when topping and close cultivation are practiced to check the tendency.

The seed-cotton produced on the fresh lands varies from 600 to 1,200 pounds, and about 1,045 pounds are needed to make a 475-pound bale. The staple rates as low middling. Five years' cultivation, without manure, will reduce the yield at least one-half, probably more, but without very materially affecting the quality of the staple. The troublesome weeds are hog- and blood-weed, cocklebur, and purslane. Very little of the best land is abandoned, but probably a third of the poorest qualities are not now under cultivation. They all improve by rotating; but the pine woods are hardly thought to be worth the trouble of reclaiming after having once been turned out. There is a good deal of injury from washes, and very little effort has been made to check it. The valleys are sometimes ruined by the sands washed down upon them.

ABSTRACT OF THE REPORT OF FELIX TAIT, OF CAMDEN.

The lands reported lie along the Alabama river. The lowlands are the first and second bottom of the Alabama river and the cypress swamps, which, when well drained, make the richest farming lands. The uplands are one-fifth level, the rest sandy, and the pine woods have a very light soil. There are, as far as known, no local causes which influence the growth of the cotton-plant. The only soil described is the sandy soil, which constitutes four-fifths of the land. Upon this land the timber consists of the various species of pine and oak, with hickory, ash, elm, poplar, cedar, etc., according to the position and quality of the soil. In its physical properties it embraces many variations, from heavy to light sandy loams. The subsoil on the red lands and prairies is heavier than the soil, but even the gray or yellow pine lands is lighter, and white rounded pebbles of quartz are by no means uncommon throughout. The soil is usually of easy tillage, except where there is much lime or clay present. Corn, cotton, oats, potatoes, and peas are the chief crops, but the soil seems best adapted to corn and cotton.

About a third of the area is in cotton, which grows to a height of 3 to 4 feet, the largest stalks being the most productive. When there is too much rain, or when the land is put in cotton the first year after draining, there is a tendency of the plant to run to weed, which is checked by topping and by cutting off the suckers. From 800 to 1,600 pounds is the average yield of seed-cotton of the fresh land (1,045 pounds to a 475-pound bale). The staple rates as low middling. Long cultivation reduces materially the yield, but does not change much, if at all, the quality of the staple. Hog-weeds and coffee-weeds are the most troublesome to the farmer. About 300 pounds of cotton lint. Some improvements are improved by roasting; others apparently very little, if at all. The soil washes badly, and much injury is often experienced from this cause; but the valleys are not as a general thing much hurt, and only insignificant efforts have been made to stop the washings.

Shipments of cotton are made from September to January, by steamboat, to Selma or Mobile, the rates of freight varying from $1 to $1.50 per bale.

BUTLER.

Population: 19,649.—White, 10,664; colored, 8,985.

Area: 800 square miles.—Woodland, all. Oak and hickory or brown-loam uplands, 330 square miles; pine uplands, 400 square miles; hill-prairie region, 30 square miles; lime-hills, 20 square miles.

Timber land: 57,010 acres.—Area planted in cotton, 35,281 acres; in corn, 95,645 acres; in oats, 7,494 acres; in sugar-cane, 335 acres; in rice, 17 acres; in sweet potatoes, 679 acres.

Cotton production: 11,895 bales; average cotton product per acre, 0.38 bale; 471 pounds seed-cotton, or 157 pounds cotton lint.

The underlying rocks of Butler county, except a narrow strip in the northern part of the county, which is underlaid with the Cretaceous rocks, belong to the Tertiary formation. As is the case in all the southern part of the state, this substratum of the older rocks is covered more or less completely with beds of drift, consisting of sand, occasional pebbles, and, uppermost of all, a red or brown loam, which is concerned in the formation of the furthest part at least of the upland soils. It is only at the lower levels that these underlying rocks are sufficiently near the surface to exercise any influence upon the soils, with the exception of the aluminous sandstones of the brah-stone group, which crop out in some of the highest and most rugged hills in the lower part of the county. These sandstones give rise to very poor sandy soils, on which prevails a growth of long-leaf pine; but underneath the sandstones are gray clays with thin beds of a calcareous nature, often containing the mineral green sand; so that even in this hilly and generally poor country the slopes and creek bottoms are quite productive from the washings from these limy beds.

Below Greenville the county is generally of the pine-hills character, especially the uplands. Around Greenville there is a considerable area of red lands (often containing pebbles and fragments of brown iron ore in quantity), timbered with Spanish and post oaks, hickory, and short-leaf pine, sweet and sour gum, and some chestnut and chincapin. The top soil is a brown loam, passing into the deep-red loam at a few inches depth. In favorable seasons this land will yield, when fresh, 1,000 pounds of seed-cotton or from 25 to 30 bushels of corn at the acre.

147
COTTON PRODUCTION IN ALABAMA.

In the northern part of the county the beds of the Cretaceous formation are encountered, and they give rise to several very characteristic soil varieties. The rocks of this formation in Butler county are hard limestones of a yellowish color, interbedded with softer materials, which are easily removed by the action of the weather. Ledges and cliffs, which crop out along the slopes of numerous steeply rising hills, limestones thus undermined break off in ledges, which are timbered with post oaks, chestnut, and white pine, and are laced with black cottonwood and sugar maple. The soils of these hills are stiff, calcareous clays, which, by intermixture with the overlying loams, produce a number of well-drained, productive land. Within this area are small bodies of water, mostly ponds and swamps, which are surrounded by large groves of hardwood trees. Other lands of a flatwoods character exist, which yield a good crop of pine and other softwoods. These lands are characterized by a thick growth of pine, which covers the surface of the soil, and are situated on the northern and eastern sides of the county. The soils of these lands are stiff, calcareous clays, which, by intermixture with the overlying loams, produce a number of well-drained, productive land. Within this area are small bodies of water, mostly ponds and swamps, which are surrounded by large groves of hardwood trees.

The Mobile and Montgomery railroad traverses this county, and affords a means of transportation to market for the products of the county. The county is usually served by the railroad to the nearest railroad station, and for some parts of the county, it is sent to Troy, in Pike county.

CONCEHUR.

Cotton production: 4,631 bales; average cotton product per acre, 0.28 bales, 390 pounds seed-cotton, or 133 pounds cotton lint.

The rocky substratum of Concehur county is made up of beds of the Tertiary formation, and over all is spread a mantle of irregularly stratified sand, clay, pebbles, and loams, constituting the eastern or stratified drift. The beds of the blue-stone group underlie the northern part of the county, and the white limestones of the Vicksburg age make its appearance in the southern part, whence to the Floridian line it is the country rock. The blue-stone rocks consist of a series of hard and soft limestones, which yield with difficulty to the leveling action of water, and hence within the region of their occurrence high rugged hills are the characteristic features, and in so far as the soils are derived from these rocks they are in general poor. These hilly areas are usually covered with a growth of long-leaf pines, with some oaks. Below the blue-stone is a black, fine-grained clay, interstratified with beds of a greenish marl, and the lands which lie under the hills containing this marl are always of most excellent quality.

South of this rugged country the land is comparatively level to within 3 miles of Evergreen, where a calcareous sandstone, holding beds of fossils, and containing a large percentage of lime, outcrops from the hills. South of this the land is underlaid with the white limestone, which, as a rule, is covered with the sands and other beds of the drift as to be of very little importance in the formation of the soils, except where, by a partial removal of these beds by the rivers, it is brought near enough to the surface to influence the loam soils overlying it. This is the case along the drainage slopes of a belt of land extending from the vicinity of Belleview southeastward toward Brooklyn. These lands lie contiguous to Murder, Beaver, and Bottle creeks, and form an interrupted strip of about 6 miles in width. Throughout this section are knolls of rather hard lime-rock of a yellow color, which make an excellent line when burned, and which are generally quite fossiliferous. The lands below such outcrops of lime-rock are the best in the county, and have a red-loam soil, with a stiff clay subsoil, and a natural growth of sweet gum, white oak, white magnolia, cedar, yellow pine, and spruce pine. In this area are also outcroppings of the soft white limestone which is so universally used as material for building chimneys, since when freshly quarried it can be easily cut with a axe or a saw. Lime-sinks are a characteristic feature not only of this area, but also of all the country underlaid with the limestone. The rocky knolls spoken of are not much in cultivation because of the rock fragments, but the soil is very rich and of a black color, and as the hills break off toward the lowlands there are many tracts of black limy soil. These red and black lime-lands are considered the best farming lands in Concehur. The highlands lying between the patches of lime land are sandy, and of the usual pine-barrens character.

Southward of the lime lands the county is gently undulating pine woods, with lime-sinks, and occasionally lakes or ponds which reveal the existence of the limestone beneath the sands. This rock makes its appearance along the banks of some of the streams. As a general rule, the surface materials which overlie the white limestone are sandy, with very little clay. From the porous nature of these beds the water which falls upon them is rapidly absorbed and drained away by the underground channels with which the limestones are traversed, and thus causes very little erosion. The resulting face of the country is hence nearly level, sloping off gently toward the water-courses. This is the nature of the rolling pine lands of the lower part of Concehur, and, indeed, of the country southward into Florida.

From the above general account, it will be seen that, while Concehur county has a large proportion of sandy loam soils with a growth of long-leaf pine, there are two or three belts across the county in which the calcareous matter of the underlying rocks bring about very desirable modifications of the prevailing soils, especially in the lower-lying areas. Where this marling of the soils has been effected by natural causes its good effects are apparent, used with profit by the farmers on their poorer lands. The choice farming lands of this county, as may be inferred, are the red lime-lands of Murder, Beaver, and Bottle creeks, most of which have long been in cultivation, and before the war were held at high prices—$15 to $20.
AGRICULTURAL DESCRIPTIONS OF THE COUNTIES.

an acre. Since the war many of them appear to have been somewhat neglected, though they are still fine lands. The cultivation of cotton on the other lands in the county needs no special notice. The use of commercial fertilizers is becoming general upon such lands, not only in this but in the other counties of the state.

ABSTRACT OF THE REPORT OF REV. ANDREW JAY, OF JAYYILLA.

(The report refers to the region drained by Murder creek and the Orange river.)

The soil varieties are: 1, the red upland soil lying on Beaver and Murder brooks, but above overflow; 2, the hummock or sandy bottoms reaching from the creeks to the table-lands, sometimes overflowed; and 3, pine lands, sandy, with clay foundation, and hilly.

Of these soils the most important to the farmer are the red uplands, though constituting only one-fourth of the area. These lands are to be found in dotted bodies, intermixed with the pine lands. The usual growth is white oak, beech, ash, hickory, elm, and red oak. Most of the land of this kind has been cleared up. The soil is a light loam of reddish and blackish colors, passing to a change of color, but which mixes so gradually with the subsoil that the exact depth is difficult to determine. The subsoil is of a heavier nature than the soil, is tough, but when exposed to the air it becomes pulverized and mixes readily with the surface soil, to which it seems to impart some fertility. It often contains pebbles, and roots upon rock at varying depths. This soil is easy of tillage, early in the season, and well drained, and yields good crops of cotton, corn, oats, potatoes, and peas. When the land has been used for years it seems to be adapted to corn, oats, and peas, as the cotton roots. As it is, however, cotton makes about half the cultivated crop. Upon freshly cleared land the stalk attains a height of 5 to 7 feet; upon the worn land, 3 to 5 feet.

The sandy bottom lands are not described in detail. The pine hills occupy half or more of the area, and are intermixed with the creek lands, their usual growth being chiefly long-leaf pines, with dogwood and red and black-jack oaks. The soil is a light-colored fine sandy loam, 1 to 2 inches deep to a change of color; the subsoil is heavier, being a clay loam, which is stiffer the deeper it is. The soil is easily tilled at all times, and is rather late and cold, but well drained. Most crops do well upon it, but cotton occupies the greater portion. The height attained depends upon the quality and quantity of the fertilizers used. Where there is too much rain, there is a tendency of the plant to run to weed, which may be checked by topping or by running a furrow close to the roots.

The seed-cotton product of the fresh land is 1,200 pounds for the red land, and from 330 to 400 pounds for the other. The staple is middling to good middling, and 1,450 pounds are needed for a 475-pound bale. The red land, after 5 years' cultivation, will bring 300 to 600 pounds, but after 5 years' cultivation of the pine land it is practically exhausted unless manure is used. With manure the yield may be brought up to a bale a half to a bale. The staples from the pine lands is a little shorter than that from the new, but there seems to be a very little difference in the proportion of seed to lint. Crab-grass is the most troublesome weed, and on the red lands cockleburr, hogweed, and coffee-weed give trouble. About half of the red lands has been cut, but after a length of 20 or 30 years they will produce nearly as well as when new. The slopes are long and gentle, and the injury from washes comparatively slight, the valleys being often rather benefited by the soilings. The pine lands have been more generally kept up than the preceding, and only a small proportion of them has been turned out. The injury from washes is much greater with those than with the other lands. Horizontalizing and hillside ditching have been tried to a small extent, with good results where properly done.

ABSTRACT OF THE REPORT OF F. D. BOWLES, OF EVERGREEN.

The lowlands are the first and second bottoms of Beaver creek, and also the alluvial plains of Murder creek and white-oak flats with water oaks and magnolias. The uplands are the rolling and level lands with gray, limey soil, partly sandy, bordering on the bottom lands of Murder creek and Concho river. The greater part of this section has a red-clay subsoil. Early planting is the rule in the lowlands, it is frequently injured by late frosts, and cold days give the cotton "zero-aline" and otherwise retard its growth. Wind of rain in June, July, and August causes more damage than anything else, except the cotton-worm. On the other hand, the rain will produce the same effect by causing the forms and young fruit to drop off. Early frost is never feared in this locality. The soils described are: 1, gray sandy uplands, with red-clay subsoil very near the surface; 2, level lime prairies, with lime-stocks and shell mounds; 3, thin pine lands, with sandy loam soil.

The gray uplands in the neighborhood of Evergreen constitute perhaps three-fourths of the arable lands. When well worn the soil becomes red-colored, and the growth on such soils is white, Spanish, and water oaks, sweet-bay, magnolia, poplar, and beech. The light colors are fine sandy loams of gray and red colors, the heavy soils, clay loams, of depths of color varying according to the length of time they have been under cultivation. The average thickness of the soil to a change of color is about 10 inches. The subsoil, as a general thing heavier than the soil, is of a deeper color, except in the run limey spots, where the color is yellow, and frequently contains fragments of soft lime-rock, underlaid with the same at a depth of from 3 to 20 feet. About half this land is in cotton, which grows to a height of 5 or 6 feet.

The level lime prairies are found in a belt 6 miles wide extending across the county, principally in township 6. Oaks, walnut, hickory, and birch are the principal trees. The light soils are gray, limey loams; the heavier are clay loams, of gray, brown, and black to black colors. The subsoil is heavier than the surface soil, being a very soft yellow limestone, containing some 2 feet to the hard limestone rock. It contains fragments of the soft lime-rock above mentioned. Tillage is rather difficult, both when wet and when dry; and when ill-drained the soil is late and cold. It seems to be best suited to corn, though cotton is planted upon about half of the uplands, but on very little of the lowlands. The plant grows to a height of from 4 to 7 feet, being most productive at 5 feet.

At least one-half of the county is composed of the sandy pine lands, especially the southern, western, and southeastern portions. Long-leaf pine is the characteristic tree, but with it, in places, are also oaks of several species and some hickory. The soil is fine sandy loam, with clay in places, with whitish, gray, to blackish colors, according to length of time under cultivation. The thickness is 6 to 8 inches to a change of color; subsoil rather heavier, being almost without exception yellow or red clay, containing rounded pebbles of quartz, especially along the branches. The underlying substance is either sand and gravel, or sometimes hard limestone rock at 10 to 20 feet. Tillage is easy at all times, and the soil is early and warm when well drained, which is commonly the case. The land is best suited to sugar-cane and sweet potatoes, and only about one-fourth of the area is put in cotton, which grows from 3 to 4 feet in height, being most productive at 3 feet. On new land, and when shaded or planted too close, the plant sometimes runs to weed, for which topping in July, applications of fertilizers, and giving more room are the usual remedies. From 1,200 to 1,500 pounds of seed-cotton may be obtained from fresh land, and 1,600 pounds are needed for a standard 475-pound bale. The staple rates as middling, 10 years' cultivation, without manure, will raise the yield on these lands at least one-half, and the staple will be slightly inferior, rating as low middling or good ordinary. The cockleburr on limey land, the butter-weed on new land, and the Florida hollow on all, are troublesome to the farmer. From 10 to 25 per cent. of the formerly cultivated lands are turned out (less of the lime-lands than of the others), and when reclaimed these lands will often yield nearly as well as when new. Where the land is hilly the uplands are often ruined by the washing away of the soil, but the valleys are seldom injured, but, on the contrary, often improved, by receiving the washings from the higher lands. Very little systematic effort has ever been made to check this evil, except in the very best of the lands.

The cotton is shipped as fast as baled, by railroads, to Mobile, at the rate of $2 per bale.
COTTON PRODUCTION IN ALABAMA.

COVINGTON.

(See "Long-leaf pine region").

CRENSHAW.

Population: 11,726. — White, 9,118; colored, 2,608.

Area: 660 square miles. —Woodland, all. Long-leaf pine uplands, 433 square miles; oak and hickory or brown-Loan uplands, 125 square miles; hill prairies, containing about 10 square miles of red lands, 60 square miles; red
line-lands, in lower part of county, 30 square miles.

Total land: 67,570 acres. —Area planted in cotton, 33,963 acres; in corn, 28,099 acres; in oats, 5,208 acres; in tobacco, 33 acres; in rice, 25 acres; in sugar-cane, 26 acres; in sweet potatoes, 553 acres.

Cotton production: 8,173 bales; average cotton product per acre, 0.39 bale, 429 pounds seed-cotton, or 143 pounds cotton lint.

Crenshaw county, lying between Butler and Pike, has many points of resemblance to each. It has already
been remarked that as we go east the sands and loams of the post-Tertiary appear to increase in thickness to the
extent often of covering almost entirely the underlying rocks. For this reason the eastern counties depend for
their soils and physical features generally to a very great degree upon these surface beds.

Crenshaw county has for its underlying strata the Lower Tertiary beds, and, in the northern tier of townships,
the uppermost beds of the Cretaceous formation. These Cretaceous rocks consist of alternations of hard crystalline
limestones and softer strata of calcareous clays. As a rule, these beds are covered with the drift deposits, and
exercise little influence upon the soils. A red soil, with small rounded lumps of brown iron ore, occurs in the
northern part of the county, overlying a limestone ridge of the Cretaceous formation. The influence of the
underlying limestone is frequently felt in the soil, giving rise to highly productive calcareous soils, and the
washings of these lands improve very greatly the bottom lands of the streams contiguous to them. In the latitude
of Rutledge a white limestone of considerable purity is to be found in the banks of the streams, and occasionally at
higher levels. This has been burned, and makes an excellent lime for building purposes, and could be profitably
employed on the lands.

The lower half of the county is, in general, pine woods, with areas of very good oak and hickory lands
alternating with the prevailing pine lands. In a few localities in the extreme south of Crenshaw county occurs a
kind of red lime-land, which results from the reaction of the white limestone upon the overlying red loam. These
lands occur usually where the greater part of the overlying beds has been washed away and the limestone is thus
brought near the surface, and lie in the vicinities of Lona and of Bullock, along tributaries of the Patosaliga, Conech,
and Yellaw rivers. They are of comparatively limited extent, and resemble both in quality and origin the lime-
lands of Mariner creek and other localities in Conech county.

A large proportion of the lands of Crenshaw are pine lands, and as a rule are deficient in lime. The occurrence of limestone over a considerable area through the center of the county might be turned to good account in improving these lands. Commercial fertilizers are now generally used throughout the county in the culture of cotton, and where the subsoil is a red clay, as is the case over a large part of the county, these fertilizers do well.

ABSTRACT OF THE REPORT OF GEORGE W. THAGARD, OF RUTLEDGE.

The lowlands described are the first and second bottoms of Patosaliga river, together with cypress swamps and gallberry slough, and the uplands are the rolling and level lands contiguous to the same stream. In general, the uplands are preferred for cotton, for the reason that the lowlands are late, and the cotton, therefore, much more likely to be injured by frost.

The three most important soils described are: First, the high uplands and gray oak and pine lands; second, the dark loam of Patosaliga river bottom above overflow; and third, the sandy bottom lands of the same stream. Of these soils the most widely distributed are the gray sandy uplands, making at least three-fourths of the county. The natural growth is long-leaf pine, oak, hickory, gum, and cypress. In its physical characters the soil presents the usual varieties of texture and color so often described for similar soils. The average thickness is a change of color to that of the subsoil is from 2 to 6 inches. The subsoil is either red clay or yellowish sand, or some intermediate grade between the two, and when undisturbed becomes quite impermeable. It frequently contains rounded white pebbles of quartz, and is underlaid at greater or lesser depths by lime-calk in this vicinity. The soil is usually easily tilled, and is cultivated in cotton, corn, oats, and sweet potatoes, but is best suited to cotton, which makes about one-half of the cultivated crop. The most productive height of stalk is 5 or 4 feet, but the height varies from 2 to 6 feet. A tendency to run to wood is sometimes seen in cotton growing upon fresh land, especially in wet seasons, and the best remedy is a stimulation of the growth by the liberal application of commercial fertilizers.

The average seed-cotton product of the fresh land is 900 pounds (1,400 pounds to a 475-pound bale); single excellent (grade No. 1 given). Five years' cultivation will bring down the yield to 650 pounds, with little or no difference in staple and in proportion of lint. The Florida clover or "poor man's trouble" is the greatest pest in the way of a weed. Perhaps a sixth of the originally cultivated land now lives turned out, but such land, when again taken into cultivation, produces very well if fertilized. In some localities there is much injury from washings, but no serious efforts have been made to check it.

There is no railroad or navigable stream in Crenshaw, and the cotton crop is usually landed in wagons to Troy, Greenville, or Montgomery, at an average cost of $8 per bale.

MONTGOMERY.

(See "Central prairie region").

BULLOCK.

(See "Central prairie region").

BARBOUR.

(See "Central prairie region").
AGRICULTURAL DESCRIPTIONS OF THE COUNTIES.

PIKE.

Area: 740 square miles. - Woodland, all. Oak and hickory uplands, with long-leaved pine, 500 square miles; pine hills, 150 square miles.

Tilled land: 114,880 acres. - Area planted in cotton, 47,107 acres; in corn, 42,207 acres; in oats, 5,424 acres; in wheat, 72 acres; in rye, 23 acres; in sugar-cane, 400 acres; in sweet potatoes, 883 acres.

Cotton production: 18,100 bales; average cotton purchased per acre, 0.32 bale, 496 pounds seed-cotton, or 152 pounds cotton lint.

Sandy ridge, with a substratum of marl and sometimes limestone of the Upper Cretaceous age, passes through the northern townships of Pike county. Further east it is known generally as Chunnemaga ridge, and it is a notable feature of the landscape, as well as characteristic from an agricultural standpoint. Upon the level portions of this ridge the soil is sandy and comparatively poor, but where the drainage has removed these surface beds the calcareous strata are brought to the surface and produce lasting and productive soils. The bottom lands, which receive the washings from these calcareous beds, are of the best character. Southward of this ridge there is a strip of calcareous clayey land, varying in width from 3 to 5 miles, and running east and west through the county. The southern limit of the Cretaceous formation is a few miles north of the Troy, where its strata are exposed in the banks of the Concho river. This limit of the two formations is, however, concealed, except along the banks of streams, by thick beds of sand and loam, which form the soils generally thence southward.

East of Troy, according to Thornton, in the Pecosan settlement, the valleys, which have the luxuriant growth and appearance of swamps, are surrounded on three sides by ridges of snow-white sand, on which grows only a scrubby oak, covered with long moss. In the latitude of Troy, and a few miles below, calcareous beds of the Lower Tertiary formation outcrop in places, producing a stiff liney and clayey soil of considerable fertility, but 7 or 8 miles south of Troy the silicaceous and argillaceous sandstones of the full-stone group come to the surface, and, as usual where these are the case, the soils are poor and the prevailing growth long-leaved pine.

The county below Troy is generally pine woods, with alternations and admixtures of oak and hickory lands. As is so often the case, the pine lands are upon the level dividing plains between the water-courses, while the oaks and other trees occupy more generally the slopes and lower levels. In the vicinity of Brunswick there is a rather stiff clayey soil of much fertility, and this is considered one of the best farming areas of the county.

In Pike county the upland soils are, as a rule, poor in lime; the lowlands in places are better in this respect. A bed of tolerably pure limestone, which outcrops occasionally in the central and western parts of the county, might be profitably used to remedy this deficiency. There are also some beds of a greensand marl within the county limits. The clayey nature of most of the upland subsoils allows commercial fertilizers to be profitably used.

The great cotton mart for this and also for the adjoining counties is Troy, and the crop is hauled to this place from great distances, most of the wagons which carry cotton to the market returning with bags of gunny and other commercial fertilizers.

COFFEE.

Population: 8,119. - White, 6,831; colored, 1,288.

Area: 700 square miles. - Woodland, all. Pine uplands, 540 square miles; rolling or undulating pine lands, 360 square miles.

Tilled land: 42,123 acres. - Area planted in cotton, 16,431 acres; in corn, 18,683 acres; in oats, 2,370 acres; in rye, 21 acres; in wheat, 22 acres; in rice, 21 acres; in sugar-cane, 254 acres; in sweet potatoes, 474 acres.

Cotton production: 4,188 bales; average cotton purchased per acre, 0.26 bale, 414 pounds seed-cotton, or 138 pounds cotton lint.

The northern part of Coffee county, where the Caloosa beds are the underlying rocks, is in general much more broken and hilly than the southern, which is underlain by the Chinsegut or white limestone. Above Elba there is a good deal of what are usually called "red clay hills," alternating with sandy bottoms. The growth upon such land consists of long-leaved pine, with the species of upland oak, sour gum, etc., and the soil is fairly productive. As representing the average composition of this class of upland soils we may take the analysis of an oak upland soil from near Lawrenceville, Henry county (No. 84, page 43).

Below Elba, along the water-sheds at least, the country is nearly level or gently undulating, with here and there a basin-shaped depression (sometimes filled with water, forming a pond or lake, sometimes dry)—evidences of the existence of the limestone below. This rock, however, rarely comes to the surface, except along the water-courses, but is covered with thick beds of the stratified drift materials. These materials upon the higher level areas are prevailingly sandy, while along the drainage slopes the more clayey materials are to be found, and it is only in these latter places that the soil is cultivated. The sandy level areas away from the water-courses are covered with long-leaved pine forests, which are used as pastures for cattle and sheep. Some very good farming tracts are to be met with in the vicinity of the crooks and branches. It is perhaps needless to say that human habitations are rarely met with upon these pine barren plateaus.

Coffee is a fair representative of the lower counties of the state. It is well drained by Pea river, Double Branches creek, and their numerous tributaries.

ABSTRACT OF THE REPORT OF M. G. STÜDENMEYER, OF ELBA.

*The soil varies from fine to coarse sandy or gravelly loam, with a growth of long-leaved pine, intermixed with various species of oak and hickory, and undergrowth. The color varies from light-gray to reddish and other dark colors; thickness, about 4 inches before its color is discerned, it that of the soil. The latter consists generally more or less of yellowish clay, which takes on when exposed, and is often very impervious. It frequently holds white quartz pebbles. It is usually tilled under all circumstances, and is warm and well drained.

The chief crops cultivated are cotton and corn, the former occupying about 50 per cent. of the cultivated area. The stalk attains usually a height of 6 or 7 feet, but is more productive when at least & feet in height. With deep plowing, and in wet seasons, the plant
COTTON PRODUCTION IN ALABAMA.

Sometimes incorrectly run to weed, which tendency may be checked by shallow or surface tillage. The fresh land will produce 600 pounds of seed-cotton to the acre, 1,365 pounds of which go to make a 475-pound bale. The staple rate in the market is now $0.60, and for two or three years it has been as high as $0.65. After five years' cultivation (unnannounced) the yield is 400 pounds, having about the same proportion of lint to seed-cotton, the staple of which usually rages one grade lower. The most troublesome weed (exclusive of grasses) is the Texas clover. About one-half of the land originally cultivated now lies turned out, but some of it is being reclaimed, and for two or three years it produces nearly as well as when fresh. From the nature of the soil there is considerable injury from washings, the valleys being often damaged to the extent of 10 per cent. by the washings from the uplands. As yet no efforts have been made to check the evil.

The cotton is hauled in wagons to Troy, in Pike county, at an average cost of 25.50 per bale, and there sold. The shipping begins usually in October.

DALE.

Population: 12,677. — White, 10,533; colored, 2,144.

Area: 600 square miles.—Woodland, all. Pine uplands, 420 square miles; undulating pine lands, 280 square miles.

Tilled land: 68,413 acres.—Ares planted in cotton, 27,070 acres; in corn, 31,867 acres; in oats, 5,114 acres; in wheat, 50 acres; in rye, 21 acres; in sweet potatoes, 71 acres. Cotton production: 1,325 bales; average cotton product per acre, 0.35 bale, 327 pounds seed-cotton, or 100 pounds cotton lint.

Dale county in its geological structure and its surface features bears a close resemblance to Coffee county, on the west. The strata of the Chilnabor and Vicksburg groups of the Tertiary are the underlying rocks, and these are covered by heavy beds of sands, loam, and pebbles to the extent of covering almost entirely the underlying country rocks. These two groups of the Tertiary formation underlie each about half of the county, the Chilnabor in the north and the Vicksburg in the south. Neither is largely concerned in the formation of arable soils, since they are derived almost exclusively from superficial beds. Upon the topography, however, these lower rocks exert a decided and easily-recognized influence. To appreciate this one has only to consider the difference between the broken and hilly aspect of northern Dale with the level, or at most gently rolling, pine forests of the southern part. For several miles around the county-seat (Ozark) deep beds of sand are a notable feature.

The soils enumerated are red clayey loam, gray bottom soil, and the sandy soils. The most important in an agricultural sense are red loams, which make perhaps a tenth of the cultivated area. This soil, which is so prevalent in the counties further north, is seen in this county only in spots. Its natural growth is oak, hickory, and gum, with short- and long-leaf pines added, in accordance with the variations in the quality of the soil. It is a clayey loam of buff to brown colors of an average thickness of 6 inches before the color changes to that of the subsoil, which is heavier than the surface soil, being a joint clay and white marl, and often contains rounded pebbles of white quartz, and is itself underlaid by a black rock at 15 feet depth. It is considered difficult of tillage, since it gets dry and hard. It is, however, early, and produces well the usual crops, to all of which it seems to be well adapted.

The bottom lands of the Choctawhatchee river are next in importance. Their natural timber is a mixture of oaks, hickory, poplar, gum, etc. The lighter soils are sandy loams; the heavier are clayey loams. The colors are whitish, gray, buff, brown, mahogany, blackish to black, and the average thickness to a change of color is 6 to 3 inches. The subsoil is a joint clay, underlaid with a black rock at 10 feet depth. This soil is early, but rather difficult of tillage, and is considered best suited to the cotton crop. Between these extremes of soil there are all intermediate grades.

About two-thirds of the red or brown-loam lands and a fourth of the Choctawhatchee bottoms are in cotton, which is most productive at a height of 3 feet. Too much rain in July sometimes causes the plant to go to weed, for which no remedy is usually tried. The seed-cotton product per acre (fresh land) is from 460 to 1,000 pounds, and the staple rates as middling or strict middling. Cultivation five or six years without manure will reduce the yield a third or more without making any observable difference either in the quality of the staple or in the proportion of the lint to seed. Crab-grass, hog-weed, and Florida clover are the most troublesome weeds. About one-fourth or one-fifth of these lands once in cultivation now lie turned out, and when taken again into cultivation do not produce very well. The land suffers to some extent from washings, but no well-directed efforts have been made to check the evil.

HENRY.

Population: 18,761. — White, 11,694; colored, 6,767.

Area: 1,000 square miles.—Woodland, all. Oak, hickory, or brown-loam uplands, 100 square miles; pine uplands, 550 square miles; undulating pine lands, 340 square miles; red-lime-lands, 10 square miles.
Agricultural Descriptions of the Counties.

Tilled land: 137,348 square miles.—Area planted in cotton, 54,305 acres; in corn, 48,561 acres; in oats, 7,902 acres; in rye, 283 acres; in wheat, 193 acres; in tobacco, 24 acres; in rice, 26 acres; in sugar-cane, 671 acres; in sweet potatoes, 1,266 acres.

Cotton production: 12,673 bales; average cotton product per acre, 0.23 bales, 327 pounds seed-cotton, or 109 pounds cotton lint.

The upper half of Henry county is underlaid with the strata of the Claiborne group, and the lower by those of the Vicksburg, and a coating of drifted materials of considerable thickness covers these throughout the county. These superficial beds present notable differences in different sections. In the northern part of the county they are characterized by the generally red or orange color of the subsoil, which contains a large proportion of clay, and which lies upon reddish or yellow sands, frequently containing gravel. The soils in this section vary in the proportions of sand and loam in different localities. Upon the water-sheds the sandy soils are, as a rule, predominant, while upon the slopes the more loamy soils prevail. General reasons for this distribution have been mentioned before.

The topography in the upper part of the county is, like the soil, much more varied than in the lower. In the lower half the sandy soils prevail, and comparatively little pine woods constitute the landscape very generally. The drainage is principally into the Chattahoochee river, but a small area in the northwestern part is drained by the Choctawhatchee. The better class of upland yellow-loam soils, which are prevalent in the upper part of the county, are in chemical composition represented by the analysis of the soil from near Lawrenceville, given on page 43.

In the southwestern corner of the county, in the drainage basin of Big creek, there are a few miles of red lands of calcareous nature, similar to the red lands of Jackson county, Florida, and of the adjacent part of Geneva county. This land, which has its counterpart in the lime-lands of Murder creek, in Conecuh county, is produced by the action of the limestone upon the loam soil overlying it. The agricultural peculiarities of the first-mentioned soils are given in the following abstract.

Henry county shows agriculturally no peculiarity. Cotton is cultivated on upland and bottom soils of the usual character afforded by the drift and loam which overlie so great a proportion of the southern part of the state. The river lands here, as elsewhere along the Chattahoochee, have a large proportion of fragments of mica or isinglass mingled with the other ingredients of the soil.

Abstract of the report of A. Mallister, of Shortsville.

The most important soils in the vicinity of Shortsville are the river bottom soils, and of these the "isinglass" soils are considered best, because most certain. The usual bottom growth of history, oak, ash, walnut, sweet gum, bay, etc., is found. Both soil and subsoil are sandy loams of various colors; white and gray most abundant. Tilling qualities easy under all circumstances. The soil is early, warm, and well drained as a rule, and is well suited to the production of cotton, corn, oats, rye, potatoes, sugar-cane, field peas, etc.

The upland soils of the northern part of the county are fine to coarse sandy loams, heavy, clayey loams in places, casting upon a sandy, sometimes gravelly, clay; thickness of the soil to a change of color, variable—12 to 15 inches. They are all easily tilled, and are warm, early, and well drained. These usual crops are all cultivated with success.

The pine lands in the upper part of the county are not characteristic, but in the middle and southern sections pine forms almost the exclusive growth, except along the streams. The surface soil is generally a dark-gray or brown sandy loam, the subsoil a sandy clay, with occasionally pebbles. The soil is early, well drained, easy of tillage, and suited to the usual crops: cotton, corn, sugar-cane, etc.

About half the cultivated land of each of these soil varieties is planted in cotton, which grows to a height of from 3 to 5 feet, being most productive at about 4 feet. Late planting and wet seasons sometimes cause the plant to run to weed, which may be checked by early planting, heavy manuring, deep preparation, and rapid and light cultivation early in the season, these being the most effective remedies.

The seed-cotton product on fresh land varies from 300 to 500 pounds per acre on the pine lands to from 600 to 1,500 pounds on the river lands (1,405 to 1,545 pounds to the standard 475-pound bale). The staple rates from middling to good middling, from fresh land, to low middling from the worm land. By five or ten year's cultivation, without manure, the yield is reduced at least one-third, and perhaps more. The most troublesome weed is crab-grass. The long-weed is very abundant, but is more easily subdued. Only a small proportion of the river lands are turned out (from 5 to 10 per cent. of the other varieties), and they all improve by rest, producing for a few seasons after being reclaimed nearly as well as when fresh. The uplands are injured by washings, and the valleys are sometimes injured 50 per cent. from this cause. Horizontalizing and hillside ditching, when properly done, are efficient remedies.

Shipments of the cotton crop are made by river and by railroad to Columbus and Savannah, Georgia. The freight to Columbus or to Eufaula is 50 cents per bushel; to Savannah, three-fourths of a cent per pound. The shipments are made from and after October 1.

Lower Prairie Region, or Lime-Hills.

In this region are included parts of the following counties: Choctaw, Washington, Clark, Monroe, Conecuh, Covington, Crenshaw, Geneva, and Henry.

Choctaw.

(See "Oak and hickory uplands, with long-leaf pine").

Washington.

(See "Long-leaf pine region").

Clarke.

(See "Oak and hickory uplands, with long-leaf pine").
COTTON PRODUCTION IN ALABAMA.

MONEOE.
(See "Oak and hickory uplands, with long-leaf pine").

CONCEHU.
(See "Oak and hickory uplands, with long-leaf pine").

COVINGTON.
(See "Long-leaf pine region").

CRENSHAW.
(See "Oak and hickory uplands, with long-leaf pine").

GENEVA.
(See "Long-leaf pine region").

HENRY.
(See "Oak and hickory uplands, with long-leaf pine").

LONG-LEAF PINE REGION.

In this region are included parts of the following counties: Washington, Mobile, Clarke, Baldwin, Monroe, Conecuh, Escambia, Covington, Geneva, Coffee, Dale, and Henry.

WASHINGTON.

Population: 6,538.—White, 2,807; colored, 1,731.

Area: 1,050 square miles.—Woodland, all. Undulating pine lands, 800 square miles; lime-hills and shell-prairie lands, 250 square miles; pine hills, 100 square miles.

Tilled land: 6,606 acres.—Area planted in cotton, 3,280 acres; in corn, 4,250 acres; in oats, 464 acres; in rice, 67 acres; in sugar-cane, 80 acres; in sweet potatoes, 448 acres.

Cotton production: 1,258 bales; average cotton product per acre, 0.38 bale, 543 pounds seed-cotton, or 181 pounds cotton lint.

In the northern part of Washington county there is a belt, varying in width from 2 to 10 miles, in which lime-hills and prairies are the characteristic feature. The material upon which these soils depend for their origin is an impure white-gray limestone, having sometimes a greenish cast. This rock resembles to some extent the rotten limestones of the central prairie region, and like it, in disintegrating under the action of the weather, yields a grayish, waxy clay, which, mixed with vegetable matter, acquires a black color, like some of the central prairie soils.

This stiff black soil is difficult to till, but very fertile. Some parts of the rock crumble down into a fine, loose, black material, called shell-prairie soil, in which are small pieces of the crumbling rock, sometimes filled with shells. This is one of the best of the lime-hills soils, rarely failing to bring good crops either of cotton or corn. It is timbered with dogwood, black and white oaks, sweet gum, ash, short-leaf pine, and buckeye.

An intermixture of stiff calcarious clay with the red loam which forms the surface over the greater part of the northern portion of the county gives a stiff, mahogany-colored or yellowish soil, like the post-oak soil of the central region, and, like that, is timbered with post oaks and a few short-leaf pines, with occasionally a sweet gum and a hickory, all draped with the long moss. This soil, like the first named, is rather difficult to cultivate, but is highly productive. The prairie belt is very variable in width, and in places the pine woods extend entirely across it, while, on the other hand, narrow strips of prairie extend for miles out into the pine woods along some of the streams; and everywhere the prairie soils are interpersed with the sandy and loamy soil of the drift, which spreads over all the older rocks of this county and forms the great majority of the soils.

The topography of the lime-hills is quite characteristic. The hills are very steep, and have usually very little level land on top; but near the western border of the county it is not unusual to find as much as 100 acres in a body of tolerably level prairie land. As we go eastward these level tracts diminish in size and frequency, and the prairie belt consists of the genuine lime-hills. While under continuous cultivation the soil of the lime-hills does not wash so badly as might be expected from the steepness of the slopes, but when abandoned the bare rock very soon makes its appearance at the surface on the bald hill-tops.

Another variety of white limestone, geologically below that just described, underlies a very large part of Washington county, probably down to the Mobile county line, but as a rule it does not take any prominent part in the formation of the soils, nor does it materially influence the topography. (c) Most of the territory underlain by it is rolling or undulating pine woods with sandy soils and with subsols of two kinds. The soils with yellow, sandy subsols are very poor, the growth long-leaf pines, black-jack, turkey, and high-ground willow oaks; but where the subsol is a little stiffer and of a reddish color the lands are very fair, and are timbered with Spanish and other upland oaks in addition to the long-leaf pine.

* The historically, as well as geologically, well-known Saint Stephen's bluff is in its upper portion formed of this rock, while the other variety of limestone lies at the base of the bluff.
AGRICULTURAL DESCRIPTIONS OF THE COUNTIES.

Near the state line, southwest of the prairie region, the land is a little more broken, passing westward in Mississippi into pine hills.

North of the lime-hills belt, in the extreme upper part of the county, there are other hilly pine lands, very poor, the surface of which is generally covered with fragments of sandstone and claystone (the latter usually called chalk). These chalk hills are best displayed in the lower part of Choctaw county, as only a very small part of Washington is of this character.

The creek-bottom lands throughout the lime-hills belt are good farming lands, as are also sometimes those of the chalk hills north of the prairies. This in the latter case is caused by the presence of marly beds, which are somewhat sandy loams, and are washed away by the drainage of the surface in the drainage valleys of the streams. In the rolling plains west of the creek-bottom part of the county the bottoms are, as a rule, sandy, though generally productive for a time. The lowlands of the river, chiefly the second bottom, are good farming lands, the soil being a sandy loam, easy to till and productive.

In several localities it is improved by the calcareous washings of the uplands. The lower part of the county, while of little value for farming, affords a splendid pasturage for cattle.

The high yield per acre (0.38 bale) is due to the fact that most of the cotton is produced either upon the highly fertile river lands or the equally rich lime lands in the northern part of the county.

In the pine woods which form so large a proportion of the area of the county the cultivation of cotton is not so profitable as stock-raising, timber-cutting, and the production of turpentine.

ABSTRACT OF THE REPORT OF B. M. CAMPBELL, SAINT STEPHENS, AIDED BY R. A. GLOVER, JOHN STARKE, AND OLIVER PRINCE.

There are three principal varieties of soil: First, upland sandy soil of gray to yellowish colors, covering over two-thirds of the county; second, river bottom, occupying a large portion of the townsships on the eastern border of the county; and third, lime-lands (black prairie, shell prairie), occupying a large part of the northern tier of townships in the county.

The uplands are timbered chiefly with long-leaf pine and black-jack, in which, in spots, the other varieties of oak and dogwood and hickory are added. Its soil is from 3 to 12 inches deep before its color changes to that of the subsoil, which is more clayey, easily permeable by water, but bakes hard when exposed to the sun where not cultivated, and contains, in places, concretions of ferruginous sandstones. This soil is easily tilled under all circumstances, and is always well drained.

The river bottom soil consists of a fine sandy loam on the river front, a heavy clay loam on still lands, and a potty-like loam on back land. The colors are brown, blackish to black, and thickness from 1 to 50 feet, below which sand has sometimes been noticed. White oak, ash, cottonwood, hickory, sweet gum, etc., are the prevailing trees. The land is easily tilled in wet or dry weather.

The lime-lands occupy a large part of the northern tier of townships in the county from the river westward. The natural growth is cedar, ash, hickory, oak, chestnut, etc. The soil is a heavy clay loam and a shallow shell prairie, potty-like in places, of gray, brown, and blackish colors, alternating gray mixed; thickness, about 2 feet to the subsoil, which, where the lime-rock is not near the surface, is a tough yellow clay, turning black where cultivated (not otherwise), very impervious if not disturbed, and containing limbs of the lime-rock. Under hardwoods there is, at depths from 2 to 5 feet, the lime-rock of the upland, turning from gray to brown. Tilling requires ease after being once broken up, especially in dry seasons. The shell land is shallow, and is as also the still land after being plowed in the spring. The soil is early and warm when well drained, which is effected only by ditching.

The soils of Washington county are well suited to cotton, to corn and other grains, and sweet potatoes, the former being cultivated upon two-thirds to three-fourths of the cultivated lands. On the uplands the average height of stalk is 3 feet; on the bottom and lime-lands 6 to 6 feet, and it is more productive the higher the stalk. Wet weather often causes the stalk to run to weed, especially on the shell prairies and lime-lands. Topping in July is the usual remedy, but some farmers think their mode of plowing aids. The average seed-cotton product of fresh land is from 390 to 900 pounds per acre on the uplands, 1,000 to 1,200 pounds on the lime-lands, and 1,300 pounds on the river lands, 1,456 pounds being needed to make a standard 476-pound bale, the staple of which rates from low middling to middling. After ten to twenty years cultivation, without manure, the yield is reduced to one-half on sloping or hilly lands, but not so much on the level bottoms, and about 1,000 pounds are needed to make a bale. There is no material deterioration of the fiber, except that it is thought to be a little shorter from worn land. Information on this point, however, is not definite. The troublesome weeds are crab-grass, Florida clover, morning-glory, and coffee-weeds, and cudsileus, tie-vine, and Indian potato or hog-root on the river lands. From one-third to three-fourths of the soils are cotton lands are turned out (a less proportion of the lime-lands than of the others), and when again taken into cultivation they produce much better than when last tilled, but not quite as well as when fresh. The uplands and the lime-lands are injured by washes, especially the hill-terps, the valleys being usually rather benefitted by the washings. The river lands are injured by water only by overflows. Little effort has been made to check this evil.

The cotton crop is shipped principally, by boat, to Mobile; rate of freight, $1 35 per bale. Shipping begins October 1, and usually lasts until January.

MOBILE.

Population: 45,000. — White, 27,137; colored, 21,046.

Area: 1,200 square miles. — Woodland, all except coast marshes. Rolling pine lands, 820 square miles; pine flats, 470 square miles.

Tilled land: 8,995 acres. — Area planted in cotton, 1 acre only returned; in corn, 1,059 acres; in oats, 30 acres; in rice, 101 acres; in sugar-cane, 151 acres; in sweet potatoes, 775 acres.

Cotton production: One bale returned.

The statistics above given show that Mobile county has a comparatively small area of cultivated land. With respect to its geological structure there is some uncertainty, though it seems probable that the white limestone underlies the greater part of the county, or at least the upper part as far south as Beaver Meadow and Chickasabogue, where lime-sinks show the presence of a limestone below the surface. The surface beds throughout, except in the extreme south, are the stratified drift and loam.

The sandy uplands are gently undulating, though the water-sheds have considerable elevation above the sea. The Oironelle plateau, where crossed by the railroad, is 317 feet and the summit 335 feet above tide. All the drainage is into the Mobile river and bay on one side, and into the Escatawpa river on the other. The prevailing timber growth in the county is the long-leaf pine, which has been extensively cut for timber in all places where accessible to streams deep enough to float out the logs. The open pine woods afford most excellent pastures.
COTTON PRODUCTION IN ALABAMA.

The characters of the principal soil varieties may be seen from the following abstract of the carefully written report of Professor J. P. Stelle, of Citronelle, which refers to the lands in the northern part of the county, the lowlands along the Mobile river and bay, and the uplands on the Citronelle platou.

The river, the bay, and the railroads furnish ample facilities of transportation for the various products of Mobile county. Cotton is not cultivated, except in small patches for home use, and the attention of the farmers is generally turned to the production of early vegetables and southern fruits for the market.

ABSTRACT OF THE REPORT OF PROFESSOR J. P. STELLE, OF CITRONELLE.

The soils are: First, the red sandy loam with clay subsoil, peculiar to all the upland plains; second, the dark loamy soil along the bottoms of Mobile and Tombigbee rivers; and third, the yellowish sandy loam along the western shore of the bay.

The chief soil is the first named, which is the soil of the uplands throughout the county. Its natural timber is predominantly the long-leaf pine, but other trees, especially oaks, are not uncommon. The top soil is the usual sandy loam of whistling gray, buff, orange, and bluish colors; thickness, 12 inches. Subsoil on the uplands is a red tannish clay with a small proportion of sand, and makes good brick. It contains in some places a few white rounded pebbles of quartz. Below the subsoil is sand, capped by a ferruginous sandstone at the depth of 10 to 20 feet. Vegetables for the northern market form the chief product of the soil.

The black bottom lands make one-eighth of the cultivated area in the region described. Its timber consists of oaks, hickory, elm, magnolia, bay, cypress, sweet and sour gums. The top soil is usually a clay loam with a good deal of vegetable matter, of dark to nearly black color, and many inches in thickness. The fiat pine lands make an eighth of the cultivated area in question. Its timber consists mainly of long-leaf pine, with magnolia, bay, cypress, etc. The top soil is a sandy to clayey loam of a yellowish color 10 inches in thickness, with a yellowish clay loam as subsoil. It seems to be best adapted to the production of vegetables and fruits, oranges, etc. These three soils represent nearly the different varieties occurring in the county.

CLARKE.

(See "Oak and hickory uplands, with long-leaf pine").

BALDWIN.

Population: 8,663. — White, 4,680; colored, 3,773.
Area: 1,629 square miles. — Woodland, all except coast marshes; rolling pine lands, 900 square miles; pine flats, 720 square miles. Tilled land: 7,688 acres. — Area planted in cotton, 1,384 acres; in corn, 2,041 acres; in oats, 390 acres; in rice, 121 acres; in sugar-cane, 81 acres; in sweet potatoes, 454 acres. Cotton production: 638 bales; average cotton product per acre, 0.66 bale, 657 pounds seed-cotton, or 219 pounds cotton lint.

In physical and geological features Baldwin county resembles Mobile, which it adjoins on the east. The northern half of the county is more or less undulating, and is covered with a growth chiefly of long-leaf pine; the southern half is more level, and is timbered with the same tree and the Cuban pine. This general statement, however, is to be taken with some allowance, for between Mobile bay and the Perdido river, at Montrose, the water-shed is 200 feet above the bay, and it is the highest land on the coast between the Rio Grande and Navesink (Hart's chart). The waters flow into the Perdido river on the east and into the Alabama and Mobile rivers and Mobile bay on the west. In the western part of the county, above the bay, is a considerable tract of marshy land in the delta of the river.

From the statistics, it will be seen that the county is rather thinly settled, and that a comparatively small proportion of the area is under cultivation. Much of the county is a natural pasture, and large herds of cattle and sheep are sustained, and, where accessible to streams, lumbering is an important industry.

All the cotton, or by far the greater proportion of it, is produced in the northern part of the county, and, as the high yield per acre shows, with the aid of fertilizers. Where cultivated, the cotton is shipped to Mobile by boat or by rail.

MONROE.

(See "Oak and hickory uplands, with long-leaf pine").

CONCEPCIL.

(See "Oak and hickory uplands, with long-leaf pine").

ESCAMBIA.

Area: 1,000 square miles. — Woodland, all. All rolling pine lands. Tilled land: 6,304 acres. — Area planted in cotton, 278 acres; in corn, 3,669 acres; in oats, 860 acres; in sugar-cane, 53 acres; in rice, 405 acres; in sweet potatoes, 494 acres. Cotton production: 94 bales; average cotton product per acre, 0.63 bale, 436 pounds seed-cotton, or 162 pounds cotton lint.

Escambia lies wholly within the long-leaf pine region. Geologically, its structure is simple. The white limestone of Yickesburg age underlies certainly the northern part and probably the whole of the county, though coming to the surface but rarely. Upon this are spread the materials of the stratified drift, which here, as in
AGRICULTURAL DESCRIPTIONS OF THE COUNTIES.

so many other places, form the soils. The Coneah and Escambia rivers, with their tributaries, drain the entire county, except a small portion of the northwest corner, which is drained by Little river, flowing into the Alabama, and another small portion in the southeast, drained by a tributary of Yellow river.

The county is, in general, a level pine woods, gently undulating and unbroken, save by the small valleys of the creeks and branches, and by occasional ponds and lime-sinks. The soil is uniformly a light sandy loam of prevailing light colors, and is comparatively poor. Along the Coneah river especially there are bullds of good bottom or swamp land. The pine woods make here, as elsewhere, a fine natural pasture, and cattle-raising is an important industry. The magnificent pine timber is also a source of profit to many of the inhabitants. The high yield of the few acres planted in cotton shows that this staple is cultivated only in favored spots or with fertilizers.

ABSTRACT OF THE REPORT OF JOHN W. STEPHENSON, OF DOUGLASSVILLE.

The upland soil is very thin, extending widely in vast unbroken tracts, and is not well suited to cotton unless measured. The uplands are quite productive, but are sometimes liable to overflow, and the crop is thus lost. For this reason the uplands are preferred, and with manures they give very fair returns. Since the war comparatively little cotton has been cultivated; it is planted upon most of the varieties of soil.

The most fertile soil is found in blocks of 5 to 10 acres along the Coneah river bottom. The natural growth is species pine, oaks, hickory, chestnut, hick, etc. The soil is of the usual swamp or bottom-land character, with subsoil often containing pebbles, sometimes underlaid with the ferruginous sandstone so common in the stratified drift. In dry seasons this soil is easily tilled, but it is sometimes tilled with difficulty in wet weather. Cora, peas, and sweet potatoes are the most abundant crops, but cotton does well wherever tried. Very little is raised for the market, nor is information as to how concerning the quality of staple, etc. On account of its position, this kind of land seldom suffers from lodging. Ragweed is one of the most troublesome weeds.

COVINGTON.

Population: 5,630. — White, 4,068; colored, 671.
Area: 1,086 square miles. — Woodland, all. Uncultivating or rolling pine lands, 720 square miles; lime-hills, 50 square miles; pine uplands, 266 square miles.
Tilled land: 10,326 acres. — Area planted in cotton, 4,176 acres; in corn, 10,563 acres; in oats, 2,114 acres; in rice, 47 acres; in sugar-cane, 147 acres; in sweet potatoes, 406 acres.
Cotton production: 1,128 bales; average cotton product per acre, 0.23 bale, 300 pounds seed-cotton, or 133 pounds cotton lint.

The rocky substratum of Covington county is made up of the strata of two of the groups of the Tertiary formation, viz., the Jackson and the Vicksburg. The white limestones of the latter group is exposed where the overlying drift materials have been removed by denudation throughout the whole county, except, perhaps, the extreme southern portion. As a rule, this rock is too deeply covered with the drift sand that have little influence upon the soils, except in a few areas of limited extent, where red lime-lands similar to those of the adjoining county of Coneah are found in the upper part of the county. Otherwise, the upland soils are of the usual varieties afforded by the stratified drift. The soils, therefore, are upland sandy loams of varying degrees of fertility, but usually light, forming the good bulk of the lands. These have a growth of long-leaf pine, alternating with the various species of upland oaks. The pines occupy, in general terms, the higher areas, while the pines and hickories are found more frequently along the drainage slopes of the streams; positions determining in great measure probably by the varying proportions of sand in the soils from which these trees derive their sustenance. Upon the higher lands, where the long-continued action of the rains the specifically lighter materials constituting the clay have been carried down from the surface, the sandier portions are left to form the soil. Up the slopes, however, where running water has been active, both the lighter and heavier materials are removed together, and the original loamy character of the drift deposits has been preserved more or less unchanged.

Upon the nearly level gently undulating areas in the lower part of the county vast forests of long-leaf pine prevail, with an undergrowth of grass and leguminous plants, which afford pasturage for great numbers of cattle, sheep, and swine. The forests themselves, where accessible, are heavily drawn upon for timber.

The bottom lands are of the usual character, and are generally fertile. From their liability to overflow, however, they are often less desirable than the uplands, where, with a moderate outlay for fertilizers, good crops of cotton are almost certain to be raised. The chemical nature of the pine upland soils is very well seen in the analysis given on page 55 of a soil from 13 miles east of Andalusia. These soils, like the sandy, rather infertile soils of the Coal Measures and parts of the older formations of the state, while intrinsically poor, are yet rapidly coming into use with fertilizers.

Agriculturally, Covington county is like Coneah, with the exception that the lime-lands here are of very limited extent, and nearly the whole county has the character of the long-leaf pine lands.

The cotton from this county is usually shipped from Troy, Greenville, or Evergreen, to which markets it must be hauled great distances in wagons.

GENEVA.

Area: 550 square miles. — Woodland, all. Uncultivating pine lands, 566 square miles; red lime-lands, 30 square miles.
Tilled land: 17,044 acres. — Area planted in cotton, 4,917 acres; in corn, 9,476 acres; in oats, 1,703 acres; in sugar-cane, 125 acres; in rice, 54 acres; in sweet potatoes, 390 acres.
Cotton production: 1,112 bales; average cotton product per acre, 0.23 bale; 327 pounds seed-cotton, or 109 pounds cotton lint.

Geneva county is underlaid throughout its entire extent with the white Vicksburg limestone, which, as usual, exerts comparatively little influence on the cultivable soils. Exception to this is noticed in the eastern part of
COTTON PRODUCTION IN ALABAMA.

the county, in the drainage area of the Chipola river, where a fine lime-land is well known for its fertile character. This sort of calcareous soil is much more prevalent in the adjoining county in Florida, whose red lime-lands have a wide reputation.

The arable soils are in great measure derived from stratified drift and loam, and exhibit the usual varieties. The proportion of red or yellow loam in the soil and subsoil seems to decrease, in general, as we go south, and the proportion of sand to increase in the same direction. Between Millville and Geneva the various species of oaks are associated with the long-leaf pines, showing a very fair quality of soil. Northwest of Geneva, along the divide between Double Bridges creek and Pea river, pine woods, with scarcely any admixture of other trees, prevail; but occasionally upland willow and small post and black-jack oaks are associated with the pines, constituting a regular pine-barren growth. Coarse tufts of wire grass form the undergrowth almost universally, except in the numerous boggy places, where a rich and peculiar flora is commonly seen.

Until a few years past the cultivation of cotton in this county has received very little attention, the inhabitants being chiefly engaged in the lumber business and in cattle and sheep raising. With the use of guano these plow lands bring very fair crops, often a bale to 2 acres.

With the exception above noted of a small area of lime-lands in the southeastern part of the county, the pine woods form all the uplands of Geneva. The composition of the soil is similar to that of the Covington county soil (analysis given on page 55), which is, however, a better soil than that of the average pine woods.

The white orbital limestone of the Vicksburg age is to be seen in many localities in Geneva where the drainage has removed the overlying sands, as along the banks of the Choctawhatchee river and other large streams. This river is navigable to the town of Geneva, and was formerly one of the principal outlets for the products of the county. Most of the timber still finds its way to market by this stream, though the cotton is sold hauled in wagons to Troy, at a cost of $3 50 per bale.

ABSTRACT OF THE REPORT OF W. N. BRANDON, OF GENEVA.

The lowlands are the dark-gray bottom lands, sand hummocks, and gallberry flats. The uplands vary from light gray to red, according to the proportion of loam which is mixed with the sand, and are preferred, as the cotton can be planted earlier, with consequently less liability to damage from early frosts and worms. The river lands are nearly all subject to overflow, and are not so certain.

The gray upland soils have a yellowish subsoil down to the clay (reached at 18 inches), and the mahogany and red soils have a red subsoil. The timber is long-leaf pine, with post oak, hickory, broad-leaf black-jack, red oak, etc. These soils are early, warm, and well drained, and are well suited to cotton, corn, sugar-cane, rice, potatoes, etc.

About half the cultivated area about Geneva is in cotton, which usually grows to a height of 3 feet. When planted late, and in wet seasons, there is a tendency to go to wheat, which is restrained by planting early, using fertilizers, and by working fast and early. The average yield of seed-cotton on fresh land is from 600 to 700 pounds to the acre, which is brought down to 400 pounds after five years' cultivation without manure. To make a 125-pound bale 1,406 pounds of seed-cotton are needed. The staple rate of middling from the fresh to low middling from the worn land, though there is usually very little difference in the quality. Hog-weeds are (exclusive of grasses) most troublesome to the farmer. One-fourth of the land originally cultivated is turned out, but after a rest of some years, especially if cattle have been kept off, if taken again into cultivation, it produces well. The damage from washings is not very great and no efforts have been made to check it, except in a few instances, where horizontalizing and hillside ditching have been practiced with good results.

The sandy hummocks are found along the Choctawhatchee river, and are considered best for corn, only about a fifth of the lands being in cotton.

COFFEE.

(See "Oak and hickory uplands, with long-leaf pine ".)

DALE.

(See "Oak and hickory uplands, with long-leaf pine ".)

HENRY.

(See "Oak and hickory uplands, with long-leaf pine ".)

ALLUVIAL REGION.

This region includes parts of Washington,* Clarke,* Mobile,* and Baldwin* counties.

WASHINGTON.

(See "Oak and hickory uplands, with long-leaf pine ".)

CLARKE.

(See "Oak and hickory uplands, with long-leaf pine ".)

MOBILE.

(See "Long-leaf pine region ".)

BALDWIN.

(See "Long-leaf pine region ".)
PART III.

CULTURAL AND ECONOMIC DETAILS
OF
COTTON PRODUCTION.
REFERENCE TABLE
OF
REPORTS RECEIVED FROM ALABAMA COUNTIES.

I.—METAMORPHIC REGION.

1. Cleburne.—JAMES R. HOLT, Cullman, March, 1889. Location, township 14, range 11, section 34. Describes first and second-bottom lands of Coosa creek.

2. Cleburne.—JAMES H. BELL and DAVID V. CRIDER, Arboeche, April, 1889. Location, township 15, range 10, section 11. Describe bottom lands on creeks and on the Tallapoosa river.

3. Randolph.—JAMES H. BANNEY, Roanoke, April, 1889. Location, township 24, range 15. Describes first and second-bottoms on Highpine and Cornhose creeks.

6. Tallapoosa.—D. A. R. ROSS, Camp Hill, April, 1889. Location, township 21, range 24, sections 27 and 34. Describes bottom lands on Sandy creek.

11. Coosa.—J. S. BERRY, Rockford. Describes bottomlands and uplands on Ocoecuway, Jacko, and Big and Little Hatchet creeks, all tributaries of the Coosa river.

II.—COOSA VALLEY REGION.

Cherokee.—DR. JOHN LAWRENCE, Cedar Bluff, January, 1889. Describes lowlands on Coosa, Chattooga, and Little rivers, and Terrapin and other creeks, and uplands adjacent.

2. Cullman.—T. W. FRANCIS, Cane Creek, June, 1889. Location, township 15, range 6. Describes lowlands and uplands on Cane creek and Coosa river.

5. Talladega.—H. M. BENT, Talladega.

Shelby.—T. A. HUTSON, Wilsonville. Describes land on several small creeks flowing into the Coosa river.

III.—COAL-MEASURES REGION.

Cullman.—WILLIAM J. DUNN, Cullman, April, 1889. Location, township 19, range 3 west, section 15. Describes bottomlands and uplands on the Warrior river.

Blount.—GEORGE D. SELWORTH, Brooksville, June, 1889. Location, township 10, range 2 east, section 18. Describes bottomlands and uplands on Big Spring and Blah creeks and Warrior river.

Winston.—C. C. BURRIS, Houston, March, 1889. Location, townships 9, 10, 11, 12, ranges 5 to 10 west. Describes bottomlands on Yellow creek and Sipsey river, and uplands on Bushy and Clear creeks and Sipsey river.

100

100
Cultural and Economic Details

IV. Tennessee Valley Region.

1. Madison.—Thomas B. Kelty, Cinterville, May, 1880. Location, townships 1, 2, 3, 4, 5, ranges 1, 2, 3 west. Describes first bottoms on Tennessee river and hilly and montane washlands.

3. Madison.—George D. Norris, New Market, March, 1880. Location, township 1, range 6 east, section 32. Describes lowlands and uplands on Mountain Fork and Flint rivers and alluvial plains on Hester's creek and Flint river.

1. Lawrence.—F. H. Fennel, Mooresville, November, 1881. Location, township 4, range 3 west, sections 5, 6, 7, 8. Describes uplands and lowlands on Finley, Lawrence, and Beaver Dam creeks.

2. Lawrence.—James E. Saunders and F. W. Steers, M. D., Town Creek, April, 1880. Location, township 6, range 3, sections 21, 22. Describes level mulatto lands on Town creek and Tennessee river.

Franklin.—Dr. Daniel N. Satter, Russellville, July, 1880. Describes bottoms and uplands of Cedar creek.

V. Oak and Pine Uplands.

(Including: 1. Oak and hickory uplands, with short-leaf pine. 2. Gravelly hills, with long-leaf pine.)

Marion.—Martin Scmitt, Piketon, June, 1880. Location, township 13, range 13, section 32. Describes bottoms and uplands on Beaver and Battalatchie creeks.

Lamar.—George R. Brown, Cairo, December, 1880. Location, townships 12, 12, ranges 14 and 5. Describes lands on Beaver and Battalatchie creeks.

1. Pickens.—M. P. Cook, Pickensville, March, 1880. Location, townships 20, 21, ranges 15, 16, 17. Describes bottoms and uplands on Coahula creek and Bigbee river.

2. Pickens.—R. P. Henry, Columbus, Mississippi, January, 1880. Location, township 18, range 10. Describes lowlands and uplands on McBeek creek and Tumbigbee river.

2. Tuscaloosa.—James R. Maxwell, Tuscaloosa, July, 1880. Location, township 24, range 6 east, section 3. Describes rolling bottom lands between Big creek and Warrior river and uplands on Little Sandy river.

Biloxi.—J. S. Harnden, Biloxi, March, 1880. Location, township 24, range 10 east.

Avant.—C. M. Howard, Malaybe, August, 1881. Location, township 17, range 13. Describes bottoms and uplands on Beaver and Tute creeks.

VI. Central Prairie Region, Including Flatwoods.

Senter.—Dr. R. D. Webb, Livingston, March 9, 1880. Describes the black prairie, the upland sandy, and the post-oak flatwood soils occurring in the drainage area of Sabine creek, a tributary of the Tombigbee river.

Greene.—Thomas J. Patton, Knoxville, July, 1880. Location, township 25, range 3 east. Describes uplands and lowlands on Sims and Black creeks and the Warrior river.

1. Hale.—Professor Tutwell, Greene Springs, May, 1880. Location, township 29, range 4 east. Describes lands on Five-mile creek and Warrior river.

2. Hale.—Norris L. Harris, Laurens, March, 1880. Location, township 19, range 5 east. Lands near for most part black and chocolate prairie.

Marion.—W. A. Stickney, Fanninville, June, 1880. Location, township 17, range 5 east, sections 9, 17, 26. Describes rolling and flat, loose black prairie uplands, and mullite or post-oak lands on and near Cottonwood and Powell creeks.

Perry.—I. M. Stolleinwirk, Uknown. Location, township 19, range 6, sections 18, 29. Describes first bottoms and rolling and level prairie lands on Dry creek.

Dallas.—J. F. Gallinger, Hixson, February, 1882. Location, township 13, ranges 10, 11, sections 11, 14, etc. Describes uplands between Cedar and Pine Barren creeks.

Montgomery.—Thomas W. Olver, Montgomery, April, 1880. Location, township 16, range 16, sections 8, 18, 17. Describes bottom on Small creek and uplands on Catoma creek.

11 U. S.--VOL. II
LONG-LEAF PINE REGION.

(Including: 1. Oak and hickory uplands, with long-leaf pine. 2. Lime-hills or lower prairie. 3. Open pine woods and lime-sink region.)

1. Washington.--E. M. Campbell, Saint Stephen's, June, 1886. Location, township 3, 4, 5, 6, 7, 8, range 1 east, and ranges 1, 2 west. Describes bottoms and alluvial lands on the Tombigbee river, and rolling and level uplands on Lewis and Sixin Bogue creeks.

11. Mobile.—J. F. Steele, Citronella, June, 1889. Describes lowlands and uplands on Mobile and Tombigbee rivers.

12. Escambia.—John W. Stephenson, Douglasville, April, 1886. Location, townships 1, 2, range 11, 12. Describes lands on Conecuh river.

ANSWERS TO SCHEDULE QUESTIONS.

[The Roman numerals used in the following answers refer to the regions as numbered in the reference table.]

These regions are—

I.—Metamorphic.
II.—Cocoa and outlying valleys.
III.—Coal-fields.
IV.—Tennessee valley.
V.—Oak and pine uplands, including—
 1. Oak and hickory uplands, with short-leaf pine.
 2. Gravely hills, with long-leaf pine.
VI.—Central prairie region, including—
 Flatwoods.
VII.—Long-leaf pine region, including—
 1. Oak and hickory uplands, with long-leaf pine.
 2. Lime-hills or lower prairie.
 3. Open rolling pine woods and lime-sink region.

TILLAGE, IMPROVEMENTS, ETC.

1. Usual depth of tillage (measured on land side of furrow).
 The average depth is 3 to 4 inches.
2. What draft is employed in breaking up?
 Generally one horse or mule.
3. Is subsoiling practised? If so, with what implements, and with what results?
 Practised to some extent, and usually with good results, in regions I, II, III, and IV; rarely, if at all, in the last three regions.
4. Is fall plowing practised? With what results?
 Practised to a limited extent in I, II, III, and IV, and with good effect in certain parts of the Tennessee valley; rarely, if at all, used in VI and VII. Where cotton is the chief crop, all the labor is required in the fall for setting. In VII the character of the soil is generally of such nature that fall plowing would not be remunrative.
5. Is following practised? In the land tilled while lying fallow or only “turned out”? With what results in either case?
 Following is practised but little, if at all, except in small areas in regions II and III. Throughout the state, however, it seems to be very common for land to be “turned out” to rest.
6. Is rotation of crops practised? If so, of how many years’ course, in what order of crops, and with what results?
 Rotation of crops is practiced throughout the state, but not always in a systematic way. Where there is system, the usual order of crops is cotton for one to three or four years, then corn, followed by oats, or wheat, to be followed again by cotton. In regions V, VI, and VII cotton is generally the chief crop, and all the least and freshest land is devoted to its culture. In these regions it is no unusual thing for the same lands to be planted in cotton five, ten, or fifteen years in succession. In some parts of the Tennessee valley it is becoming quite common to grow clover with small grains, so that the order of crops is cotton, corn, oats, or wheat, with clover, followed by one or two years of rest.
COTTON PRODUCTION IN ALABAMA.

7. What fertilizers or other direct means of improving the soil are used by you or in your region? With what results? Is green-manuring practiced? With what results?

In I, II, VI, and VII counties, the superphosphates, and compost, with cottonseed and stable manure, or with lime, vegetable matter, etc., are chief manures, and the results are always good, provided the crops are properly cultivated. In III, IV, and V there is less use of commercial fertilizers, but on the contrary, cottonseed and cottonseed-meal are used over a large part of the state to a very considerable extent. In all cases where fertilizers are properly applied and the crops are thoroughly cultivated, it appears that farmers are fully repaid for the outlay made in their purchase. There is little green manuring; but in some localities cow-pens, weeds, grass, etc., are turned under with advantage. On land where grass cannot be profitably or safely used.

8. How is cotton seed disposed of? If sold, on what terms, or at what price? Where is the nearest cottonseed-oil factory? Is cottonseed-cake used for feed; for manure?

Cotton seed is used throughout the state as a fertilizer, both in the green state and in the form of meal. It is also used in both forms as a feed for cattle; the cake or meal is, however, not yet much used for feeding. An article of commerce is disposed of principally to the oil-mills, of which there are a number in this state. The negroes, as a rule, sell their cotton-seed to the mills, but the more thrifty and intelligent planters find it advantageous to return all surplus seed to the soil. The seed, both in its natural and manufactured forms, is especially valuable for corn and all small-grain crops. But, except in small areas, the cottonseed-cake is not much used either alone or mixed, for crops, probably because of its cost.

PLANTING AND CULTIVATING OF COTTON.

9. What preparation is usually given to cotton land before planting? Do you plant in ridges; how far apart? What is the usual time of planting? What variety of seed is preferred? How much is used per acre?

Throughout the state there is little preparation given to land before planting is for cotton, except the removal of the stalks of the old crop, but in exceptional cases the land is plowed broadcast in the winter or early spring. Cotton is uniformly planted in ridges, which are from 2 to 4 feet apart, according to the strength of the soil. In regions I, II, III, and IV cotton is planted from the 10th of April to the 1st of May; in the other regions the time of planting is on the average from five to fifteen days earlier. There are numerous varieties of seed used. Among others may be mentioned Dixie, Boyd Prellie, Fuller, Zellner, Brown, Green, Petit Gulf, etc. According to some reports the cluster or short-bud varieties are best suited to deep soils, and long-bud varieties do best on light or thin soils. The average amount of seed required per acre is from two to three bushels, more being required for early than for late planting. It appears that in some cases the minimum may be as low as one bushel and the maximum as high as six bushels of seed per acre.

10. What implements do you use in planting? Are "cottonseed-planters" used in your region? What opinion is held of their efficacy or convenience?

As a rule, the bed or ridge is spaced with a narrow row (scooter or bull-tongue), and the seed is sown in the furrow by hand, and covered with a board, block, or harrow. Planters are but little used, and yet their use secures a uniform distribution of seed in the drill, and hence economizes seed, and also makes the after-cultivation more easy.

11. How long usually before seed comes up? At what stage of growth is it thinned out to a stand, and how far apart? Is cotton liable to suffer from "sore-shin"? What after-cultivation is given, and with what implements?

Seed comes up in from five to twenty days, and is usually thinned out to a stand when three or four weeks old, or when the third and fourth leaves appear. The young plant is sometimes retarded in growth by the "sore-shin," which is specially the case in cold and wet weather. The injury seems to be caused in the first instance from carelessness or want of skill in the use of the hoe, by which the back of the plant is either broken or cut. The first after-cultivation consists in most cases, perhaps, in "running" round the cotton with a turning-plow, bar side to the drill, after which the cotton is chopped out and generally brought to a stand with one or two stalks in a hill, at distances varying from 12 to 18 or 20 inches in the drill, according to fertility of soil. After having been brought to a stand, cotton usually has simply surface culture with sweep, harrow, or cultivator.

12. What is the height usually attained by cotton before blooming? When are the first blooms seen? When do the bolls first open? When do you begin your first picking?

The height attained before blooming is from 1 to 3 feet, according to the character and preparation of the soil. The first blooms appear when the cotton is 5 or 6 weeks old, and hence from June 10 to July 4, the former date being generally true for V, VI, and VII regions and the latter for the remainder of the state. The interval from the bloom to the opening of the boll is from 40 to 50 days, the shorter interval being required later in the season. Hence, cotton begins to open from the last of July to the middle of August, and picking usually begins two or three weeks afterward.

13. How many pickings are generally made, and when? Do you usually pick all your cotton? At what date does picking usually close? At what time do you expect the first "black frost"? Do you pen your seed-cotton in the field, or gin as the picking progresses?

As a rule there are three pickings, by which all the crop is gathered. Picking generally closes by the last of November; but when the yield is heavy, or labor insufficient or inefficient, the picking may not be finished till Christmas. Black frost is said to occur from October 10 to the last of November, according to the nature of the locality and the character of the season. In some cases seed-cotton is penned in the field, which is generally quite hazardous. The usual practice is to have cotton ginned, if possible, as the picking progresses.

GINGING, RAILING, AND SHIPPING.

14. What gin do you use? How many saws? What motive power—horse-power or steam-engine? If the latter, which mechanical power arrangement do you prefer?

There are many answers to this question. Some of the many gins mentioned are Pratt, Gallant's, Winship's, Orr's, Brown's, Carter's, Avery's, Lumis', Eagle, and Magnolia. In a few cases steam is the motive power, and in still more rare cases water is the agent. The only thing in the way of a general use of steam is the cost of engine and fixtures. Its use is of course advantageous in many respects.

The great majority of the gins in use have from 40 to 60 saws.
15. How much clean lint is made in a day’s run? How much seed-cotton, on an average, is required for a 475-pound bale of lint?

In a day’s run from 1,000 to 8,000 pounds of clear lint can be made. The amount depends upon the number of saws in the gin, and the highest results are, however, to be gotten only with steam or water. The average amount of seed-cotton required for a 475-pound bale is about 1,456 pounds.

16. What press do you use for baling, and what press is generally used in your region? What is its capacity? Do you use rope or iron ties for baling? If the latter, what fastening do you prefer? What kind of bagging is used in your region?

It appears that in large portions of regions IV and VII the wooden press still holds the place of honor; but in the other regions iron presses of various patents are very generally in use. They seem to be specially in vogue in region VI, where Gobling’s, Allihn’s, Wightman’s, Stockman’s, and others are the popular type. The number of bales pressed per day varies from 15 to 30 or 35, according to the character of the press and the number of men employed. Iron ties are universally used, with various fastenings, such as Buckle, Loop, Arrow, American, Kennedy, the corrugated tie, etc. Jute and Kentucky or Missouri hemp and India bagging are used.

17. What weight do you aim to give your bales? Have transportation companies imposed any conditions in this respect? At what time do you chiefly ship, and to what station or city and port? What is the usual rate of freight to such port per bale?

It is almost an invariable rule in Alabama to aim to make the bale weigh 500 pounds. Steamboats have imposed no limitation to the weight of a bale, but railroads usually charge by weight. Shipping begins as soon as cotton is ripe, say, the middle of October, and continues throughout the fall and winter. The port to which cotton is shipped is determined by the locality. There are good cotton markets at Mobile, Montgomery, Selma, Memphis, Tennessee, Rome, Georgia, and at various small towns within the state; and it is generally made advantageous to the farmer to sell near home. The rate of freight is determined in all cases by distance and means of transportation.

DISEASES, INSECT ENemies, Etc.

18. By what accidents of weather, diseases, or insect pests is your cotton crop most liable to be injured? At what dates do these several pests usually make their appearance? To what cause is the trouble attributed by the farmers? What efforts have been made to obviate it? With what success?

Cotton is injured by insects, mildew, blight, zaribetes, and rust. Pest is cared on light sandy soils by excessive rains; on stronger lands it is caused by the continuous planting of cotton for many years. Shedding is produced mainly by continued and excessive rains. A hot season causes the loss of all the bulks that should have ripened during that period. In regions I, II, III, and IV the catapillars generally makes its appearance so late, if at all, that its ravages are rather disadvantageous to the cotton, by stripping off the dense foliage, and thus stifling the prompt opening of all matured bulbs; but in the other portions of the state the catapillars makes its appearance in midseason, usually in August—enough to be very harmful to the crop. Lice, sea-bugs, and snail-elephant generally appear (if at all) when the cotton is young, provided the weather is wet and cool. The blight is not often very damaging, but may generally be found in the fields from the appearance of the first “squares” or “forms” till the end of September. Pest can be prevented by rotation or fertilizing. Shedding can be obviated to some extent by shallow plowing. In some localities, especially in some parts of regions V, VI, and VII, Par's green has been used to destroy the catapillars, but, as it appears, with very little success in most cases.

19. Is rust or blight prevalent chieflv on heavy or ill-drained soils? Do they prevail chiefly in wet or dry, cool or hot seasons? On which soil described by you are they most common?

Rust sometimes appears on heavy, ill-drained soils, but is often seen on sandy lands, whether uplands or bottoms, on gray lands, on light-yellow clay lands, and in some places, as in Madison and Jackson counties, it is found often on fresh, loose lime-lands.

LABOR AND SYSTEM OF FARMING.

20. What is the average size of farms or plantations in your region? Is the prevalent practice “mixed farming” or “planting”? Are supplies raised at home or imported; and if the latter, where from? Is there the tendency toward the raising of home supplies increasing or decreasing?

In regions I, II, and III and V the farms are usually small, containing not more than 200 acres, but in some cases much larger. In the other regions farms vary in size from 40 or 50 to 1,000 or even 2,000 acres. In the regions of small farms supplies are largely raised at home, and there is reported increase of production. In the regions of large farms, on the other hand, there is in some localities increased production, but cotton is still largely imported. In the middle and southern portions of the state there is little or no wheat produced, and hensh flour is almost universally imported into these sections.

21. Who are your laborers chiefly? How are their wages paid?

The laborers are negroes and native whites, the former largely predominating in the regions of large farms, the latter on small farms for most part. In the latter case the laborer is generally the owner of the farm. Wages are paid in many ways, and at various rates, from 40 to 75 cents per day and from $8 to $14 per month, he being paid at the end of the month.

22. Are cotton farms worked on shares? On what terms? Are any supplies furnished by the owners? Does your system give satisfaction? How does it affect the staple? Does it injure the land?

The large cotton farms or plantations are almost altogether worked on the share system, the smaller farms being usually worked by the owners with such hired help as may be needed on occasion. It is the almost universal practice on the large farms for the landlord to furnish everything but the laborers' board and receive one-half of all the crops; but when only the land is furnished by the owner, he receives usually one-fourth of the cotton and one-third of the corn produced by the laborer. It is almost invariably reported that this system of cotton culture damages the quality of the cotton and deteriorates the land.
23. Which system (wages or share) is the better for the laborer? Why? What is the condition of the laborers? What proportion of negro laborers owns land or the house in which they live?

There is a very decided difference of opinion as to which is the better system (wages or share). With the exception of regions IV, V, and VI, opinions are about equally divided; in these, however, there is almost entire concurrence in the opinion that wages are the best. The reasons assigned in favor of wages are, that the laborer is sure of reward and a comfortable living, and the employer is enabled to control labor, and is justified in making larger expenditures in fertilizers, etc., to increase the yield. It is urged in favor of the share system that the laborer is encouraged to make effort, and that if he is industrious and energetic he will be rewarded with larger returns for his labor. On the whole, the condition of the laborers is good—better, perhaps, than that of the same class of persons in any other quarter of the globe. Very few negroes own homes or lands in the large farming regions. Very few negroes own homes or lands in the large farming regions.

24. What is the market value of land described in your region? What rent is paid for such land? How many acres or 400-pound bales per hand is your customary estimate?

Cotton lands, in the greater part of the state, are estimated in value at $3 to $10 and $23, while in a few localities, such as Perry, Marengo, etc., in region VI, and the best lands in the Tennessee Valley region are estimated at $5, $20, $30, and in some few cases even higher. Rent varies partly in proportion to the estimated value of the land, and hence the price of rent is from $1 and loss to $3, $5, and sometimes $4 per acre. Rent is also paid in produce at the rate of one-fourth of the cotton and one-third of the corn grown on the land. According to quality of land, the estimate of product per hand will vary from 2 to 6 bales, but the average for good land is 3 to 4 bales per hand. In some cases the estimate is made at 6 to 10 bales per mile, i.e., one mile and two hands.

25. To what extent does the system of credits or advances upon the growing crop prevail in your region? At what stage of its production is the cotton crop usually covered by insurance? Is such practice general?

In region I credits to the value of one-half the laborer’s crop are often made by land-owner; in region II credits are given largely in a few localities, but not as much as formerly; in region III credits have only recently been asked and granted; in regions IV, V, VI, and VII credits are almost universal, and regularly consume the entire crop of the laborer. As a rule, the crop is not insured till shipped or placed in the warehouses for shipment. In a few cases cotton is insured when baled, and in some parts of Bullock county gins houses and cotton are insured as soon as picking begins. Cotton is always insured when shipped, unless forbidden by the owner.

26. What are the merchants’ commissions and charges for storing, handling, shipping, etc., to which your crop is subject? What is the total amount of these charges against the farmer per pound, or 400-pound bale? What is your estimate of the cost of production in your region, exclusive of such charges, and with fair soil and management?

When the producer pays all the expenses of shipping, handling, storing, and commissions for selling, his expenses or loss is from $4 to $6 per bale, but when he sells to a home merchant he often pays only for the weighing; the buyer incurs the additional expense. It is quite general over large areas of this state for the farmer to sell his cotton at the nearest town, store, or depot. The report of cost of production is almost invariably 8 cents per pound. A few seem to think that cotton can be produced at a cost of 5 or 6 cents, while a very few estimate the cost of production at 10 to 12½ cents per pound.
INDEX TO COTTON PRODUCTION IN ALABAMA.

A.

Abstracts of the reports of correspondents	78-145
Axial sands and conglomerates, soils of	19
Accidents of weather affecting cotton	156
Average and production of leading crops (table)	64, 65
Acres cultivated, estimated number of, per hand	156
*Addresses and names of correspondents	156-159
Advances to laborers on growing cotton crops	156
After-cultivation of cotton	154
Agricultural descriptions of the counties of the state	75-145
subdivisions of the southern region, enumeration of the	36
or regions, enumeration of	13, 14
Alabama River alluvial lands, character and analyses of	49, 41, 44
drainage system of	9, 10
Alluvial lands, trees and plants characteristic of	97
Alluvium of Mobile River delta, character of	56
Analyses and descriptions of soils and subsoils	31-69, 71-74
of Alabama and Warrior River lands	49, 41
barrens soils	31, 32
black prairie soils	47
brown-loam uplands soils	43, 54
flatwoods soils and subsoils	39, 51, 52
gisitic soils	16
gravelly bottom and river-hills soils	31
gravelly hills soils	39, 40
greenwood marl	46-49
hickory soils	49, 51
magnesium-limestone soils of the Coosa Valley region	92
marl	60-69, 71-74
metamorphic soils	15, 17
sandy soils of Chunnemunga ridge	49, 50
soils and subsoils (table)	71-74
underlying beds of Tuscaloosa	37
Tennessee Valley lands	33, 34
Analysis of Cowalando land	51
gray loam soil	37
greenish	68, 67
limehills soil	42
limestone	53, 74
Little mountain soil	34
mineral soil	16, 17
pond-land soil	55
post oak soil	39, 40
red land soil of the Coosa Valley region	35
red mountain soil of the Coosa Valley region	23, 24
sand mountain soil	37, 38
sandy brown-loam soil	39
second-bottom soil of Alabama river	44
swamp muck	65, 70

B.

Aphids (lice) on cotton-plant	155
Abilene River Valley, land and gold-bearing rocks of	78
Area and extent of the state	9
of the alluvial region of Mobile river	60
barrens lands of the Tennessee Valley region	30
black prairie soil	48
blue-marl lands	50
brown-loam uplands	41
Calhoun coal-field	35
central prairie region	35
Coosa coal-field	35
Cross river valley	17
counties	3, 4
gravelly hills with long-leaf pine	38
hill pine hills and Chunnemunga ridges	48
hill pines	69
hickory and rolling open pine woods	56
Little mountains	34
long-leaf pine region	54
metamorphic region	14
middle division	14
northern division of the state	35
oak and pine uplands region	37
short-leaf pine uplands	36
pine flats	56
ponderosa pine uplands region	45
post-oak flatwoods region	51
southern division	34
Tennessee Valley region and its subdivisions	33
Warrior basin and coal-field	16
Areas of the greatest cotton production	61
Autauga county, analyses of soils and subsoils of	36, 40
swamp muck	60, 70
swamps in counties (table)	116, 117
Average per acre of cotton in regions (table)	60

B.

Bagging used in baling cotton	158
Bald prairie hills, character of	58
Baldwin county, statistics and description of	146
hale, amount of seed-cotton required to make a (see abstracts	78-148
in county descriptions)	78-148
Bales, estimated number of, per hand	158
in regions (table)	60
per acre in counties, product of (table)	3, 4
square mile in counties (table)	3, 4
regions (table)	60
usual weight of	155
Baling cotton, details of	154, 155
Banner counties, having highest total cotton production and	60
rank of, in other regards (table)	60
INDEX TO COTTON PRODUCTION IN ALABAMA.

Barbour county, analyses of soil and mast of.......................... 131, 132
Barren lands, area, extent, character, and analyses of... 29, 50, 51
Beebe, W. E., abstract of the report of.............................. 19
Beeswax hothouses and flatwoods................................. 50
Bell, James H., abstract of the report of......................... 79
Bell of intense cotton production.. 94
Beutler, J. B., abstract of the report of......................... 84, 85
Bibb county, analysis of soil of.. 22
Bickley, T. B., abstract of the report of......................... 106
Black land, analysis of... 83

...prairie belt, area, extent, character, and analyses of soils................ 46-49
Blight, occurrence of, and how obviated............................ 105
Blooms appear on cotton-plant, when......................... 104
Blooms, county, statistics and description of.................. 106
Blount's Springs valley, area of.. 17
Blue-marl lands, area, character and analyses of...... 50, 51
Bolling of cotton-plants favored and the plant restrained from running to weed by... 118, 120
application of fertilizers.. 81, 82, 83, 84, 112, 120, 125, 126, 129, 132, 134, 136, 141, 143, 145, 148
breaking the land very shallow... 132
deep preparation of the land.. 143
depth tillage .. 56
early planting... 130, 131, 146
giving more space between the plants......................... 129, 130
not plowing too near the plants.. 106
plowing every second or third row with corn 119
plowing close to the plant... 121, 123, 137, 139
rapid and light cultivation.. 143, 148
shallow culture... 81, 82, 86, 88, 91, 103, 112, 121, 130, 146
thinning out too soon.. 108

under-drainage... 118, 126
Bolling retarded by throwing soil too high over the plant...... 126
Bols first open on cotton-plant, when......................... 154
Bollworm, appearance of.. 156
Bowman, P. M., abstract of the report of..................... 129
Brandenburg, W. H., abstract of the report of.............. 148
Brown, George R., abstract of the report of.................. 111
Brown, Henry C., abstract of the report of.................. 120, 130
Brown-loam uplands, area, character and analyses of...... 27, 41, 45, 54
Brown's valley, area, geological character, and soils of... 17, 19, 50, 56
Burton, A. G., abstract of the report of......................... 99
Burt, H. M., abstract of the report of......................... 91
Butler county, statistics and description of................... 137, 139
Byler ridge, extent of... 109, 111

Cahaba coal-field, area and description of.......................... 20
Calcasieu marsh, character and analyses of.................. 87-89
Calhoun county, analyses of soil of................................. 28
Calhoun county, statistics and description of................. 87-90
Calhoun, J. F., abstract of the report of.................... 126
Callaway, J. A., abstract of the report of.................... 127, 129
Campbell, H. E., abstract of the report of.................... 146
Caneybake region, general description of...................... 46-48
Canarabinius formation.. 17
capillary, appearance of.. 83, 120, 156
Color grades of Cocoa valley...................................... 26, 28
Central cotton belt, cotton product per acre in, and its relation to population......... 69, 83

Central prairie region, area, extent, subdivisions, and general character of 36, 45-51
cotton product per acre in, and its relation to population........... 63
county descriptions of.................. 118-132
trees and plants characteristic of................................. 56
Chambers county, statistics and description of.............. 79, 80
Chattahoochee river, drainage area of, how characterized... 9, 15
greensand marl bed in the bluff of................................. 66
Chassy formation... 17, 18, 93
Cherokee county, analysis of soil of................................. 85
statistics and description of.. 85, 86
Cherry ridge lands... 91, 92, 93-99
Chilton county, statistics and description of.............. 115, 116
Chocowinna formation, character and description of........ 46, 48-50, 129
Clallam county (Tertiary)... 36, 60, 149, 143
Clarke county, analysis of soil of................................. 54, 69
statistics and description of.. 183-186
Clay county, soils of southeastern soil of... 14
statistics and description of.. 89, 96
Clarkton, Judge H. C., abstract of the report of............ 122
Clarion county, analysis of mast of................................. 69
statistics and description of.. 77, 78
Climate of the state.. 10-12
Clinton formation... 17, 18, 22
Close of the cotton-picking season...................................... 104
region, agricultural features of.................................... 23-29
cotton product per acre and its relation to population in........ 63
county descriptions of.. 93-99
Coast region, diseases character and salting marshes of... 56
Coastal plains, area, geological character and soils of... 17, 19, 50, 56
 Coffeen county, analysis of soils of................................. 31-34
statistics and description of.. 107, 108
Collins, John L., abstract of the report of..................... 130
Comparison between the race in relation to cotton production........ 62-64
Condition of laborers... 154
Conditions imposed by transportation companies as to weight of bales........ 155
Conway county, analyses of soil of... 54
statistics and description of.. 136, 139
river, drainage system of.. 10
Cook, M. F., abstract of the report of......................... 112
Coss coal-field, area and description of... 4
Cotton acreage per square mile, in counties (table)......... 3, 4
Cotton acres and production of (table)... 5, 6
Correspondents, names and addresses of.................... 150-152
Covington, analyses made by... 73-75
Cotton acreage per square mile, in counties (table)......... 3, 4
bales, average of, per square mile, in counties (table)........ 3, 4
blooms first appear, when.. 154
bolls first open, when.. 164
charges and cost of sale of.. 166
crop covered by insurance.. 50
Cowan county, area, geological and agricultural features of... 18
use of commercial fertilizers... 155
diseases, insect enemies, etc.. 155
<table>
<thead>
<tr>
<th>Cotton from frost-bitten bolls is light and infirm</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>lint, amount of, made in a day's run</td>
<td>156</td>
</tr>
<tr>
<td>tons of, in state and regions (table)</td>
<td>50</td>
</tr>
<tr>
<td>picking begins, when</td>
<td>103</td>
</tr>
<tr>
<td>plant, height of, attained before blooming restrained from going to seed. (See Bolling)</td>
<td>154</td>
</tr>
<tr>
<td>tendency of, to run to weed (see abstracts in county descriptions)</td>
<td>78-148</td>
</tr>
<tr>
<td>usual height of (see abstracts in county descriptions)</td>
<td>78-148</td>
</tr>
<tr>
<td>planting and cultivation</td>
<td>154</td>
</tr>
<tr>
<td>use of fertilizers in</td>
<td>64.50</td>
</tr>
<tr>
<td>production according to regions</td>
<td>50</td>
</tr>
<tr>
<td>acres and bales in each county (table)</td>
<td>3-6</td>
</tr>
<tr>
<td>number of counties in (table)</td>
<td>50</td>
</tr>
<tr>
<td>comparison of, in regions, (table)</td>
<td>60</td>
</tr>
<tr>
<td>cost of, per pound</td>
<td>150</td>
</tr>
<tr>
<td>cultural and economic details of</td>
<td></td>
</tr>
<tr>
<td>distributions, of, among counties and regions, general remarks on</td>
<td></td>
</tr>
<tr>
<td>greatest areas of</td>
<td></td>
</tr>
<tr>
<td>itemized cost of</td>
<td></td>
</tr>
<tr>
<td>uncrossed or central belt of</td>
<td></td>
</tr>
<tr>
<td>percentage of the state's total, in regions (table)</td>
<td></td>
</tr>
<tr>
<td>rank of the state in</td>
<td></td>
</tr>
<tr>
<td>relation of population to</td>
<td></td>
</tr>
<tr>
<td>the race to</td>
<td></td>
</tr>
<tr>
<td>remarks on</td>
<td></td>
</tr>
<tr>
<td>per acre according to regions</td>
<td></td>
</tr>
<tr>
<td>and its relation to population</td>
<td></td>
</tr>
<tr>
<td>county ranking highest in</td>
<td></td>
</tr>
<tr>
<td>in counties, (table)</td>
<td></td>
</tr>
<tr>
<td>regions, (table)</td>
<td></td>
</tr>
<tr>
<td>of any soil, and from fresh and old land. (See under soils)</td>
<td></td>
</tr>
<tr>
<td>black prairie soils</td>
<td></td>
</tr>
<tr>
<td>the flatwoods region</td>
<td></td>
</tr>
<tr>
<td>gravelly pine hills</td>
<td></td>
</tr>
<tr>
<td>lands of Tennessee river</td>
<td></td>
</tr>
<tr>
<td>soils of the Coal Measures</td>
<td></td>
</tr>
<tr>
<td>Warrior River brumback lands</td>
<td></td>
</tr>
<tr>
<td>shipments (see county descriptions)</td>
<td></td>
</tr>
<tr>
<td>simple affected by share system</td>
<td></td>
</tr>
<tr>
<td>rating of (see abstracts in county descriptions)</td>
<td></td>
</tr>
<tr>
<td>Cottonseed-cakes as feed or manure</td>
<td></td>
</tr>
<tr>
<td>how disposed of</td>
<td></td>
</tr>
<tr>
<td>wool, use of, as a fertilizer</td>
<td></td>
</tr>
<tr>
<td>platers, use of</td>
<td></td>
</tr>
<tr>
<td>value of, as a fertilizer</td>
<td></td>
</tr>
<tr>
<td>variety and amount of, used per acre</td>
<td></td>
</tr>
<tr>
<td>Counties, agricultural descriptions of</td>
<td></td>
</tr>
<tr>
<td>having highest cotton product per acre (table)</td>
<td></td>
</tr>
<tr>
<td>Covington county, analysis of soil of</td>
<td></td>
</tr>
<tr>
<td>statistics and description of</td>
<td></td>
</tr>
<tr>
<td>Cowper's lands, character and analysis of</td>
<td></td>
</tr>
<tr>
<td>Credit system on growing crops</td>
<td></td>
</tr>
<tr>
<td>Crenshaw county, statistics and description of</td>
<td></td>
</tr>
<tr>
<td>Cretaceous formation</td>
<td></td>
</tr>
<tr>
<td>marly, character and analyses of</td>
<td></td>
</tr>
<tr>
<td>plain, trees and plants, characteristics of</td>
<td></td>
</tr>
<tr>
<td>Crier, David V., abstract of report of</td>
<td></td>
</tr>
<tr>
<td>Crops, acreage and production of leading (table)</td>
<td></td>
</tr>
<tr>
<td>rotation of</td>
<td></td>
</tr>
<tr>
<td>Cullman county, statistics and description of</td>
<td></td>
</tr>
<tr>
<td>Cultivation of cotton, details of</td>
<td></td>
</tr>
<tr>
<td>Cultural and economic details of cotton production</td>
<td></td>
</tr>
<tr>
<td>Culver, J. P., abstract of the report of</td>
<td></td>
</tr>
</tbody>
</table>

D.

Dale county, statistics and description of		147
Dallas county, statistics and description of		184-185
Decomposition of metamorphic rocks, depth of		15
Do Kalb county, analysis of soil of		97
statistics and description of		97, 94
Depth of tillage		103
Details, cultural and economic, of cotton production		149-156
Devonian formation		17, 29
Diseases, insect enemies, etc., of cotton		155
Divisions of the state		10-14
Dolomite the bases of good farming lands		15, 19
Drainage systems of the state		5, 10
Drift material, occurrence and soils of		36, 40, 45-49
Dry Valley region, character and soils of		85, 92
Dunn, William J., abstract of the report of		91
Durrett, J. B., analyses of soils by		71-73

E.

Economic and cultural details of cotton production		149-156
Efforts made to obviate diseases		154
Elevations in the Tennessee Valley regions		88
Stewar county, statistics and description of		117
Enumeration, tabulated results of		1-6
Erosion of Cretaceous prairies		23
Grift material		42
Saint Louis limestone		29
Tennessee valley		28
the cause of surface features		13
Stewar county, statistics and description of		140-147
the cost of cotton production		156
Excess of cotton lands diseased		82

F.

Fall plowing, and fallowing, results of		153
Farming and labor, system of		158, 156
Forms, size of		156
Fastening used in baling cotton, kinds of		155
Fayette county, statistics and description of		111
Feed, cottonseed-cakes used as		154
Fertilizers, commercial use of, comparatively unknown in the cotton-producing region		65
general remarks on and analyses of		64-70
naturally occurring in Alabama		65-70
use of, in cotton planting		64, 65
Fertilizing and green-manning		154
Flatwoods, lands of		118, 120, 128, 134
of the Coon Valley region, extent, timber growth		134
soils, and analyses of		99
region, area and soils of		36, 61, 62, 63, 68, 69
trees and plants characteristic of		56
Flesh, appearance of		156
Francis, T. W., abstract of the report of		67, 69
Franklin county, analysis of soil of		32
statistics and description of		106, 109
Freight, rates of shipment of (see abstracts in county descriptions)		78-143
Frost, occurrence of, and influence of topography upon		11
time as which the first, appear		154

G.

Garrett, W. M., abstract of the report of		120, 127
Geneva county, statistics and description of		147, 148
169		
INDEX TO COTTON PRODUCTION IN ALABAMA. 161

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
</tr>
<tr>
<td>916</td>
</tr>
<tr>
<td>160</td>
</tr>
<tr>
<td>164</td>
</tr>
<tr>
<td>85</td>
</tr>
<tr>
<td>33</td>
</tr>
<tr>
<td>163</td>
</tr>
<tr>
<td>128</td>
</tr>
<tr>
<td>123</td>
</tr>
<tr>
<td>120</td>
</tr>
<tr>
<td>46</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>91</td>
</tr>
<tr>
<td>108</td>
</tr>
<tr>
<td>175</td>
</tr>
</tbody>
</table>
INDEX TO COTTON PRODUCTION IN ALABAMA.

Red land soil of Dry valley, analysis of 35, 39
mountain soil, analysis of 23, 34
ree ridge, occurrence of 10, 23, 26, 50, 55, 57
Reference table of reports received 123-125
Region, areas of each, in counties (see county descriptions) 75-146
Regime, agricultural, enumeration of 61, 64
Distribution of whites and negroes in 12
of the middle division:
 Coosa valley and its outliers 17-45
 metamorphic 14-17
 northern division 23, 26
 Coal Measures 25-36
 Tennessee valley 29-34
 southern division:
 alluvial 38
 central prairie
 hills .. 31
 long-leaf pine
 oaks and pine uplands 37-46
 post-oak bottomland 51-56
Regions of this state, enumeration of 21, 24
Remarks on cotton production in the state 68-69
Rent paid for land 106
Report, plan of rocks and soils of 41
 sources of information for 11, 11
 Reports received from counties, reference tables of 11, 11
 Ripley group (Cretaceous) 30, 46, 127, 131
 River systems at the State 9, 30
 Rocks, decay and disintegration of
 of the metamorphic region, variety and disintegration of
 Rolling plains, toes and plants characterized of 57, 59
 Ross, D. A. G., abstract of the report of 83
 Rotation of croppers 103
 Rot of soils, occurrence of, and how obliterated 108
 Rotten limestone, composition and occurrence of 60, 118-122
 nature of, and soils derived from 44, 47
 Runk's and Jones' valley, character and soils of 97
 area and geomorphologic structure of 17, 18
 Russell county, statistics and description of 130, 131
 Russellville, description of lands of 108
 Rust or blight, occurrence of, on heavy or ill-drained soils, 9
 in what seasons, and how obliterated 155
Safford, Professor J. M., quoted 35
 Salt Creek county, statistics of soils of 30, 32, 34
 statistics and description of 59, 60
 Saint Louis limestone, character of 28
 soils derived from 29, 32
 Sand mountain, analysis of soil of 37, 38
 . rocks and soils of 20, 103
 Sandy brown-leaf soil, analysis of 83, 90, 102
 Saunders, James E., abstract of the report of 107
 Second-bottom soil, analysis of 44
Section across Coosa Valley region 13
the state, showing topographical and geological features 13
the valley of the Tennessee
Sediment, amount of, required for a 475-pound bale of lint 150
 peen, or how protected
 product per acre of (see county descriptions) 79-148
 required for a bale of lint (see above) 79-148
Serlier, Dr. Daniel N., abstract of the report of 109
Share system, cotton farms worked on, and effect of, on the soil 150
reasons in favor of
shading, occurrence of, and how obliterated 150
Shelby county, statistics and description of 91, 92
Shelton, George D., abstract of the report of 96
Shipping, charges for
 ginning, and hauling cotton, details of 114, 155

Smith, S. P., indebtedness to, for information 112
Snow, precipitation of
Soils affected by the share system 105
 analyses and descriptions of (tables) 16-66, 71-74
 analyzed by 87, 71-74
 derived from Clinton rocks, character and analyses of 23, 24
 loam-like conditions 46, 47
 Saint Louis limestone 153
 sub-Carboniferous formation, character and analyses of 94, 95
 Tensaw rocks 28, 23
 devoted to cotton (see county descriptions) 75-148
 general classes of
 of the black prairie belt, character and analyses of 47, 49
 Coal Measures, character and analysis of 27, 29
 Coosa and outlying valleys, origin, character, and analyses of 19-25
 gravely pine hills, character and analyses of 24-41
 lignitic or lower prairie region, general character and analyses of 42-64
 Little mountains, character and analyses of 33, 34
 long-leaf pine region 24-41
 magnesium limestone, character and analyses of 91-123
 metamorphic region, origin, character and analyses of 15, 27
 oaks, hickory, and long-leaf pine uplands, character and analyses of 41-65
 post-oak flatwoods region, character and analyses of 91-123
 Soil formation, character and timber growth of 19
 Tennessee Valley region, character and analyses of 30-34
Soils, tillage qualities, character, and productivity of:
 Alabama River land
 barren land 157
 black pine swamp land 87
 black prairie land 87
 brown-loan upland
 Eustis land 132
 oaks, hickory, and long-leaf pine uplands, character and analyses of 41-65
 post-oak flatwoods region, character and analyses of 91-123
 gray sandy and gravelly land 93-96
 hummocks 129, 131
 lime-hills or prairie
 mountain land 86, 84-89
 oak uplands 109
 post-oak flatwoods
 prairies 109
 red clay or loam
 ridge land 91
 river bottom land 140, 143, 145-149
 sandy loam 78, 87, 105
 state or post-oak land 89
 swamps .. 110
 Tennessee Valley land 110
 Walnut prairie 131
 Sore-shin on cotton-plants
 Southern division, area, outlines, geographical and topographical features, and subdivisions of the 34-65
 of the state, general character and regions of 13, 14
INDEX TO COTTON PRODUCTION IN ALABAMA. 163

The use in baling cotton .. 165
Tillage, improvements, etc., details of 163, 164
Tilling qualities of land. (See under Soils.) 165
Tilled lands, acres of (table) 3, 4
average of, per square mile (table) 3, 4
percentage of area of (table) 3, 4
Timber growth. (See the different regional descriptions.) 165
Time of first black frost .. 154
thinning out cotton-plants 154
when bolls first open ... 154
cotton-picking begins and closes 154
the first cotton-blossoms appear 154
Tobacco, acreage and production of (table) 5, 6
Tomatilgo, drainage system of 93
Tombigbee River, drainage system of 93
Tornadoes, occurrence of 13
Transect, letters of ... vii, viii
Transportation companies, conditions improvement 155
Trees and plants characteristic of each region of the state. . . . 55-59
Trenton formation .. 17, 18, 20, 22, 23, 100
Trough of the central prairie region 34, 46
flatwoods region ... 36
Tromley, Professor, (quotations) 130
Tuscaloosa, analyses of soils and underlying beds of 37
county, analyses of soils and subsurface of 37, 40
statistics and description of 113, 114
Tutwiler, Professor, Henry, abstract of the report of 131
W.

Upland pine-woods soil, analysis of 55
Upper Silurian formation .. 17, 19

Walls of the Cosa region .. 17
state ... 19
Value of land .. 131
Variety of cottonseed preferred 154
Wicksburg group (Tertiary) .. 34, 35, 55, 56, 130, 136, 140, 143, 146-148

Wages paid to laborers .. 156
system, reasons in favor of 156
Walker county, statistics and description of 97, 98
Warrior basin, extent and character of 26, 27
coal-field, area and topographical and agricultural features of 26-28
River bottom land, character of 119
drainage system of .. 93, 10
lands, analyses of ... 45, 41
Washing of soils, and how prevented (see county descrip-
tions) .. 75-145
Washington county, analysis of 253
statistics and description of 144, 145
Wastelands of the region, plants and grasses of 57
Wells, Dr. R. D., abstract of the report of 119
Weeds, tenaciousness of, on any soil. (See Soils, character and

tilling qualities of.) .. 57
Wheat, acreage and production of (table) 5, 6
Wilson county, analyses of soils of 67, 64
analysis of greensand of .. 67
statistics and description of .. 135-137
Williams, Dr. G. G., abstract of the report of 67, 68
Wills' valley, area and geological structure of 17-19
Winds prevailing in the state ... 19
Winston county, statistics and description of 94, 96
Wood's Bluff, facts from ... 68

The spaces between ridges in cotton-planting 165

Shively, W. M., abstract of .. 165

Stark, John, abstract of report of 165

Steele, Prof. J. P., abstract of report of 165

Stephenson, John W., abstract of report of 165

Stinchcomb, Rev. W. A., abstract of report of 165

Stinson, M. L., abstract of report of 165

Stillman, H. A., abstract of report of 165

Steindamier, M. G., abstract of report of 165

Stratafied Drift formation .. 165

Sub-carboniferous formation .. 165

Subscription and implements used in 155

Subsidiaries, character of (see abstracts in county descriptions) 165

Summary of measures to schedule questions 165

Survey, county, analyses of soils and subsurface of 165

Surface contour of the state .. 165

Swamp muck, analysis of ... 165

Sweet potatoes, acreage and production of (table) 165

Sykes, Dr. F. W., abstract of report of 165

T.

"Table-land of the Warrior coal-field."
land and mountains, general description of 165

of the oak, hickory, and long-leaf pine region 165

Table of analyses, soils and subsurface 165

showing composition of greensands, greensand marls, shell marls, and limonite. 165

county ranking highest in total production and product per acre .. 165

hums and available inorganic matter 165

Tables showing acreage and production of leading crops, area, population, tillled land, and cotton production in the counties .. 165

Tabled results of the enumeration 165

Taft, Felix, abstract of report of 165

Tallahosta hills of Clarke county 165

Tallahassee county, analysis of soil of 165

Tallapoosa county, statistics and description of 165

Tennessee river, drainage system of 165

Tennessee river, Valley region, area, geological, and general features of .. 165

cotton production in ... 165

product per acre and its relation to population of 165

county descriptions of ... 165

Terraces of the Alabama river .. 165

Tenesse river .. 165

table-lands of southern Alabama 165

Tennessee river ... 165

Tennessee river, Valley region 165

on the borders of the Tennessee Valley region 165

Tertiary formation .. 165

Tertiary marls, character and analyses of 165

Thompson's, George S., abstract of report of 165

Thuring water-cotton-plants ... 165

Thornton, L. B., abstract of report of 165

Thunderstorms, occurrence of 165

173