
09/08/93
14. Basic Features of the TRANSFORM Step

14.1 Introduction

This introduction to the TRANSFORM step was primarily written in 1993. It is included here
to provide partial guidance while the syntax for the step is being improved. The references in the
text were originally to an earlier version of the documentation. There has been an attempt
to revise these but some may not be correct.

Chapter 2 illustrated the TRANSFORM step through simple examples, using DIVIDE to produce
a ratio and RPRINT or REPPRINT to print the values for the full sample and each replicate.

The TRANSFORM step begins with:

TRANSFORM [IN= fname1] OUT = fname2

If the input file is not specified, the previously created or referenced VPLX file will be used. As
with other VPLX steps that employ input and output files simultaneously, these files must be
different, that is, have different names and not be equated to each other.

Summary of this chapter:

• Section 14.2 presents an example, showing how ratio estimation may be implemented in
the TRANSFORM step.

• Section 14.3 discusses CLASS and REMOVE BLOCK, which are auxiliary statements
used during the TRANSFORM step.

• Section 14.4 describes how variables are passed to subroutines, which are the primary
work unit of the TRANSFORM step.

• Section 14.5 describes ADD, SUBTRACT, MULTIPLY, and DIVIDE.

• Section 14.6 and 14.7 provide a brief outline of these incomplete sections, listing other
subroutines.

8.2 An Example of the TRANSFORM Step for Ratio Estimation

14.2

This section will show the computation of variance for a post-stratified estimator. For example,
suppose that there are independent estimates, perhaps based on the previous census, for the
numbers of owners and renters in an area. If the sampling frame provided information on tenure
for all units in the population, then this information might be incorporated into the stratification
of the initial sample. If the information is not or cannot be used for stratification, however, it is
still possible to use the estimated totals by forming poststrata. The next example illustrates ratio
estimation applied to produce a poststratified estimate based on tenure.

comment EXAM18

comment This example begins from EXAM11 but employs an extended
 second TRANSFORM step to poststratify the data by renters and
 owner/others, as if there were separately available control
 totals, such as from a recent census.

create in = exampl11.dat out = exampl11.vpl

input rooms persons cluster tenure

 4 variables are specified

format (4f2.0)

comment The input data set contains
 5 7 1 2
 6 8 2 2
 5 2 3 1
 4 1 4 2
 8 4 5 1
 8 2 6 1

class tenure (2/1,3) 'Renter' 'Owner/other'

labels rooms 'Number of rooms' persons 'Persons'
 tenure 'Tenure'

cat rooms into rooms_c (1-5/6-high) '5 or fewer' '6 or more'

cat persons into persons_c (1-2/3-4/5-high) '1-2' '3-4' '5 or more'

cross rooms_c by persons_c into rooms_cross

labels rooms_c 'Rooms' persons_c 'Persons'
 rooms_cross 'Rooms by size of household'

 (Simple) jackknife replication assumed

 Size of block 1 = 28

 Total size of tally matrix = 28

 Unnamed scratch file opened on unit 13

 Unnamed scratch file opened on unit 14

14.3

 End of primary input file after obs # 6

transform in = exampl11.vpl out=exam11a.vpl

divide

old rooms persons / class tenure (0-2) #1

derived proom / class tenure (0-2)

 (assigned to block 2)

labels proom 'Rooms per person'

display

option ndecimal=2

list n(1) rooms persons total (rooms persons) proom
 rooms_c persons_c rooms_cross
 / class total /
 n(1) rooms persons total (rooms persons) proom / class tenure

cov n (1) / class tenure

cov total (rooms) / class tenure

 Estimate Standard error

Sample N (wtd) for block 1 6.00 .00 #2

Number of rooms : MEAN 6.00 .68

Persons : MEAN 4.00 1.18

Number of rooms : TOTAL 36.00 4.10

Persons : TOTAL 24.00 7.10

Rooms per person : VALUE 1.50 .52

Rooms : PERCENTS
 5 or fewer 50.00 22.36
 6 or more 50.00 22.36

Persons : PERCENTS
 1-2 50.00 22.36
 3-4 16.67 16.67
 5 or more 33.33 21.08

Crossed values of Rooms : PERCENTS
 Persons : 1-2
 5 or fewer 66.67 37.27
 6 or more 33.33 37.27
 Persons : 3-4
 5 or fewer .00 .00*
 6 or more 100.00 .00*

14.4

 Persons : 5 or more
 5 or fewer 50.00 64.55
 6 or more 50.00 64.55

 Tenure : Renter

 Estimate Standard error

Sample N (wtd) for block 1 3.00 1.34 #3

Number of rooms : MEAN 5.00 .65

Persons : MEAN 5.33 2.44

Number of rooms : TOTAL 15.00 6.88

Persons : TOTAL 16.00 9.25

Rooms per person : VALUE .94 .30

 Tenure : Owner/other

 Estimate Standard error

Sample N (wtd) for block 1 3.00 1.34 #4

Number of rooms : MEAN 7.00 1.12

Persons : MEAN 2.67 .75

Number of rooms : TOTAL 21.00 9.77

Persons : TOTAL 8.00 4.00

Rooms per person : VALUE 2.63 .71

 Covariances of the Sample Estimates

 Estimate 1 2

 Tenure : Renter

 1: Sample N for block 1 3.0000 .18000000D+01

 Tenure : Owner/other

 2: Sample N for block 1 3.0000 -.18000000D+01 .18000000D+01 #5

14.5

 Covariances of the Sample Estimates

 Estimate 1 2

 Tenure : Renter

 Number of rooms : TOTAL
 1 15.0000 .47400000D+02

 Tenure : Owner/other

 Number of rooms : TOTAL
 2 21.0000 -.63000000D+02 .95400000D+02 #6

transform out = exam11b.vpl

comment first use the reciprocal subroutine, with constants, as
 if the universe count for renters and owners/others were 3
 each

reciprocal #7

old n(1) / class tenure

constants 2 * 3

derived ratio_factor / class tenure

 (assigned to block 3)

comment now use multiply to do a mass change on the variables, except
 for proom

multiply #8

modify n(1) rooms persons rooms_c persons_c rooms_cross
 / class tenure

old ratio_factor / class tenure

comment recompute proom, writing over the previous values

divide

old rooms persons / class tenure (0-2)

modify proom / class tenure (0-2)

display

option ndecimal=2

list n(1) rooms persons total (rooms persons) proom
 rooms_c persons_c rooms_cross
 / class total /
 n(1) rooms persons total (rooms persons) proom / class tenure

14.6

cov n (1) / class tenure

cov total (rooms) / class tenure

 Estimate Standard error

Sample N (wtd) for block 1 6.00 .00

Number of rooms : MEAN 6.00 .65

Persons : MEAN 4.00 1.28

Number of rooms : TOTAL 36.00 3.87

Persons : TOTAL 24.00 7.66

Rooms per person : VALUE 1.50 .38

Rooms : PERCENTS
 5 or fewer 50.00 26.35
 6 or more 50.00 26.35

Persons : PERCENTS
 1-2 50.00 26.35
 3-4 16.67 18.63
 5 or more 33.33 18.63

Crossed values of Rooms : PERCENTS
 Persons : 1-2
 5 or fewer 66.67 42.45
 6 or more 33.33 42.45
 Persons : 3-4
 5 or fewer .00 .00*
 6 or more 100.00 .00*
 Persons : 5 or more
 5 or fewer 50.00 64.55
 6 or more 50.00 64.55

 Tenure : Renter
 Estimate Standard error

Sample N (wtd) for block 1 3.00 .00 #9

Number of rooms : MEAN 5.00 .65

Persons : MEAN 5.33 2.44

Number of rooms : TOTAL 15.00 1.94

Persons : TOTAL 16.00 7.33

Rooms per person : VALUE .94 .30

 Tenure : Owner/other
 Estimate Standard error

Sample N (wtd) for block 1 3.00 .00 #10

Number of rooms : MEAN 7.00 1.12

14.7

Persons : MEAN 2.67 .75

Number of rooms : TOTAL 21.00 3.35

Persons : TOTAL 8.00 2.24

Rooms per person : VALUE 2.63 .71

 Covariances of the Sample Estimates

 Estimate 1 2

 Tenure : Renter

 1: Sample N for block 1 3.0000 .00000000D+00

 Tenure : Owner/other

 2: Sample N for block 1 3.0000 .00000000D+00 .00000000D+00

 Covariances of the Sample Estimates

 Estimate 1 2

 Tenure : Renter

 Number of rooms : TOTAL
 1 15.0000 .37500000D+01

 Tenure : Owner/other

 Number of rooms : TOTAL
 2 21.0000 .48317730D-29 .11250000D+02 #11

Exhibit 14.1 Ratio estimation to fixed totals by tenure

The first transform step computes proom as before. Similar to its function in the DISPLAY step,
the /CLASS specification at #1 requests that the values of rooms and persons for the total and
then for each level of tenure are to be operated on by DIVIDE. The next statement specifies
that 3 separate results be stored in a new variable, proom . Furthermore, the statement declares
this variable to be of the type derived, a type that the CREATE step does not produce.

Because each of the 6 replicates for the simple jackknife omits a single observation, the estimated
variance of N(1) for the total number of cases is zero, at #2. (Two of the standard error estimates

14.8

following #2 are marked by asterisks; this indicates that the value was undefined for one or more
of the replicate samples.) The jackknife replicate samples vary the observed number of cases for
the 2 poststrata, renters and owners, however, so that both have the same estimated (non-zero)
standard error at #3 and #4. (The fact that the 2 estimates are equal is not coincidental, since this
will be true whenever the sum of 2 random variables is a constant.) Note #5 calls attention to the
covariance matrix for N(1) classified by tenure, especially to the negative covariance between the
2 estimates, equal to -1 times the variance of each. A second covariance matrix, for estimated
number of rooms by tenure, follows, with again a substantial negative covariance at #6 between
the 2 estimates. Intuitively, this negative covariance occurs because each sampled renter, which
adds to the total rooms for renters, does not contribute to the total for owners, and similarly each
sampled owner does not contribute to the total for renters, so that, in effect, the 2 estimated totals
are in competition.

The second TRANSFORM step implements the ratio estimation. A new subroutine,
RECIPROCAL, beginning at #7, computes the ratio factor to be used and illustrates several points
about the TRANSFORM step. A CONSTANTS statement provides constants, in this case the
fixed totals for the 2 poststrata, to the subroutine. In general, several, but not all, of the
subroutines of the TRANSFORM step include the provision for constants as arguments. (The
COPY subroutine in the TRANSFORM step also allows constants to be copied into a VPLX
variable, similar to the function of the CONSTANTS statement in the CREATE step, described
in Section 3.4.) A second feature of this subroutine is that N(1) appears here as an argument in
the TRANSFORM step, using the same syntax as the DISPLAY step. In other words, the
weighted N is available for calculation and even modification in the TRANSFORM step. In
addition, unlike the previous TRANSFORM step, in which a marginal total for proom was
desired, only 2 values of the ratio factor, for each of the poststrata, are computed here, without
a marginal total.

The MULTIPLY subroutine at #8 applies the ratio factor to several variables at once. This
subroutine also serves the purpose of illustrating a number of additional features of the
TRANSFORM step. This is the first illustration that several of the available subroutines in the
TRANSFORM step, including MULTIPLY, can operate on an arbitrary number of variables.
Secondly, MODIFY appears instead of OLD, indicating that the series of existing variables may
be modified by the subroutine. Furthermore, ratio_factor is now classified as an OLD
variable, even though it was just created by the previous subroutine. In other words, OLD may
be used to reference any existing variable, including those just created by previous subroutines.
The list of MODIFY variables includes both 1) real variables that of the same size as
ratio_factor, as well as 2) categorical and crossed categorical variables that each represent
matrices of a larger size, suggesting that MULTIPLY has rules for operating on matrices of
different sizes in an orderly manner.

14.9

A final step computes proom as before. Because this variable is itself a ratio instead of an
estimated total, it would have been inappropriate to attempt to adjust it through the previous
MULTIPLY subroutine, since the effect of ratio estimation on both the numerator and
denominator must be reflected. Instead, a new value is computed from the adjusted values of the
numerator and denominator, and the new value replaces the old one. This subroutine illustrates
another general principle about TRANSFORM - that subroutines in some circumstances may
simply replace the contents of an existing MODIFY variable rather than use the current
information in some way, as was done to the MODIFY variables in the preceding MULTIPLY
statement.

The DISPLAY provides the same statistics as before, but now after the effect of ratio estimation.
Since the control totals by tenure agreed exactly with the estimated totals before ratio estimation,
none of the estimates change; in practice, such agreement would rarely occur and most estimates
would be different. Most standard errors have changed, however, reflecting the effect of the ratio
estimation on the replicate totals. To begin, the estimated standard errors at #9 and #10 for the
estimated population totals by tenure are now 0, showing that each replicate sample has been
weighted to the control totals. A comparison of results before ratio estimation shows that, within
renters or owners, the estimated standard errors for totals have been greatly reduced, whereas the
estimated standard errors for the means and for the ratio, proom , have remained the same. The
latter agreement reflects that the effect of the ratio factor cancels in the divisions involved in each
case (since the means involve division by the estimated sample n). Ratio estimation generally
changes the estimated standard errors of estimated characteristics of the overall population,
however, including the means and proom .

The covariance matrices that follow again show the effects of ratio estimation. All elements of
the covariance matrix for the estimated n's are now 0, and the covariance between the estimated
totals for rooms by tenure is shown to be a number that is effectively 0. (The specific value here
is a result of roundoff error on the PC on which it was run. The exact value could vary from one
type of computer to another but in each case should be a similarly small number that is effectively
0.)

The remaining parts of this chapter explain virtually each aspect of the preceding example. For
simplicity, however, the scope of the chapter is limited to the rules for the introduction of new
DERIVED and REAL variables, and the modification of DERIVED, REAL and estimated N's
for blocks during the TRANSFORM step. Aside from the effects of class variables, each of these
variables occupies a single cell, and the rules for their treatment in the TRANSFORM step are
consequently simpler. Rules for the remaining variable types are deferred to later chapters, since
these rules become more complex as they consider both the effect of class variables and the
number of cells of the variable. In practice, however, this chapter provides an adequate
accounting of all features of the TRANSFORM step presumed by the next chapter.

14.10

14.3 Auxiliary Statements

14.3.1 CLASS in the TRANSFORM Step

All class variables included on the incoming VPLX file may be referenced during the
TRANSFORM step. In addition, however, new class variables may be introduced. New class
variables can only apply to other newly created variables, since there is no provision in the
TRANSFORM step to alter the manner in which existing variables are cross-classified without
creating new variables.

Chapter 5 described the CLASS statement for the CREATE step. The syntax during the
TRANSFORM step is:

CLASS vlist (nlevel) ['label1' ['label2'[...]]]

The variable or variables in vlist, which must not appear on the incoming VPLX file or have
been referenced previously in the TRANSFORM step, become newly defined class variables,
each with nlevel levels. Labels are recommended, since the labels will be blank otherwise.

As an example, suppose income is a real variable that has been cross-classified by sex and age
in six age groups, 18-24, 25-34, 35-44, 45-54, 55-64, and 65+, then

class broad_age (3) '18-34' '35-54' '55+'
copy
old income / class sex * age (1+2, 3+4, 5+6)
real income_br / class sex * broad_age

would establish a three-level age grouping and then create a new variable cross-classified by sex
and the broad age groups.

14.3.2 REMOVE BLOCK

The function of the REMOVE BLOCK statement is to control the contents of the output VPLX
file. It has no effect on the availability of variables for calculation during the TRANSFORM
step; in general, all variables from the input file may be used for calculation, regardless of
whether they will be written to the output file. Specifically, the statement is used to identify a
block on the input file to be omitted from the output file, including the estimated N for the block,
if present. The form of the statement is:

REMOVE BLOCK nblock

14.11

where nblock is a number of a block on the input file. The statement identifies a single block,
but more than one such statement may be included in the TRANSFORM step. It is possible, for
example, to use this statement to write only newly created variables to the output file, if desired.

The primary purpose of this statement is to save computer storage. It also may be useful if an
application reaches the limit on the number of allowed blocks or some other VPLX resource.

14.3.3 Auxiliary Statements Similar to Their Use in the CREATE Step

A single KEEP or DROP statement (Section 3.14) may be included in the TRANSFORM step
to define which variables to include on the output file. Unlike the CREATE step (Chapter 3),
KEEP in the TRANSFORM step is not used to achieve assignment of variables to blocks. The
estimated N of each block is automatically retained on the outgoing file, unless dropped by a
REMOVE BLOCK command; consequently, it is neither necessary nor allowed to reference the
N of a block on a KEEP list. Similarly, N of a block may not be included on a DROP list; the
only way to drop the N of a block is to remove the entire block through REMOVE BLOCK.

RENAME follows the same rules as in the CREATE step, that is, it takes effect immediately, and
subsequent statements must reference the new name. LABEL (Section 3.15) and LEVEL as in
the CREATE step, may be applied both to new and incoming variables. For example, one may
use the TRANSFORM step to correct labels from the CREATE step without rerunning the
CREATE step.

14.4 Specifying Values to Subroutines

14.4.1 Introduction

The following types of information may be passed to subroutines in the TRANSFORM step:

1) OLD variables, which are existing variables. Their values are not changed by the
subroutine.

2) MODIFY variables, also existing variables, which may be modified or overwritten by
the subroutine, updating the information.

3) New variables, which are declared by type. This chapter discusses the declarations
REAL and DERIVED.

14.12

4) CONSTANTS, which are constant values. Some subroutines, including ADD,
SUBTRACT, MULTIPLY, DIVIDE, and RECIPROCAL, do not alter the values of the
constants, while others do.

5) INTEGER CONSTANTS, which are used by some subroutines not discussed in this
chapter.

6) STRING and LONGSTRING, which may provide character strings to subroutines.
These declarations are again outside the scope of this chapter.

7) OPTIONS for some built-in subroutines, beginning with Version 93.03. Options will
not be available to user-supplied routines.

14.4.1.1 Order of Specification A separate list is made for each of type of argument and each
list is passed, in the order of reference, to the subroutine. Consequently, the following 2
statements usually have different effects, unless the specific operation is cummutative in these
two variables:

old a b

old b a

On the other hand, VPLX does not maintain the order of arguments across lists. For example, the
2 pairs of statements:

old a b
real c d

and

real c d
old a b

have identical consequences for all subroutines, since VPLX does not retain the information about
whether the old or new variables were listed first. Consequently, either order is acceptable and
in general VPLX imposes no restriction on which type of list precedes another. Furthermore,
statements building up different lists may be interspersed:

old a
real c
old b

14.13

real d

again with identical consequences as the preceding two examples.

Here and elsewhere, however, some users may prefer a programming style that imposes
restrictions not exacted by VPLX. For example, it may be helpful for clarity to place all OLD
statements first, followed by MODIFY, and then, finally, the declarations for new variables.

14.4.2 Introducing New Variables: REAL and DERIVED

14.4.2.1 REAL. One or more new real variables may be created by a subroutine through the
declaration:

REAL vlist

or

REAL vlist / CLASS clist

where vlist contains variable names not appearing either on the input file or in previous
specifications in the step. In the first case, each real variable occupies a single cell in a block
without class variables. In the second case, clist should either contain a single class variable
or a series of class variables shown as a product separated by "*", as in the DISPLAY step. In
the second case, each new real variable will be placed in a block with the specified class
variables, creating a new block if necessary.

14.4.2.2 DERIVED One or more new derived variables may be created through the declaration:

DERIVED vlist

or

DERIVED vlist / CLASS clist

where vlist contains variable names not appearing either on the input file or in previous
specifications in the step. In the first case, the derived variable occupies a single cell in a block
without class variables. In the second case, clist should either contain a single class variable
or a series of class variables shown as a product separated by "*", as in the DISPLAY step. In
the second case, each new derived variable will be placed in a block with the specified class
variables, creating a new block if necessary. In addition, in each class variable may be stated in
a form that implies a margin, e.g., (0-n), (0,1,2,3) (where 3 is the upper limit of the class), etc.

14.14

Placement into blocks will be according to an appropriate match on whether each class variable
has a specified margin.

Examples of the use of the DERIVED specification appear in Exhibit 14.1 at #1 and at #7.

14.4.2.3 Summable vs. Non-Summable Variables VPLX variables may be distinguished
according to their treatment for margins of class variables. Summable variables, including
REAL, REAL with missing, CAT, CROSSED REAL, CROSSED CAT, and N of a block, are
stored only as inner cells of the cross-classification of their corresponding class variables. On the
basis of the inner cells of the matrix, VPLX constructs requested margins for summable variables
in DISPLAY and for summable variables declared as OLD in the TRANSFORM step (Section
14.4.3).

DERIVED is an example of a non-summable type. The TRANSFORM step can create this
variable, although the CREATE step does not. Margins are optional, but, if they are desired, they
must be constructed at the same time as the variable is created. Margins of non-summable
variables occupy separate cells on a VPLX file.

The example in Exhibit 14.1 illustrates both aspects. At #1, the summable variables rooms and
persons are matched with a class statement for tenure (0-2), which requests the
construction of a marginal total. The resulting non-summable DERIVED variable, proom, is
stored with a marginal total occupying a separate cell. At #7, however, no separate margin is
created for ratio_factor, which becomes defined only for the 2 separate levels of tenure.

14.4.3 Using Values of Existing Variables: OLD

The purpose of the OLD declaration is to identify one or more existing variables whose values
are to be used in the calculation. When declared as OLD, the current contents of the variables
will not be permanently modified by the subroutine, in contrast to MODIFY. This rule applies
not only to any built-in subroutines in VPLX, but also to any user-supplied subroutines, such as
USER1, USER2, etc.

For example, OLD is the required declaration for the subroutine REPPRINT, since the subroutine
merely prints the values without altering them.

The statements take the form:

OLD vlist

or

14.15

OLD vlist / CLASS clist

In two respects, the syntax of the OLD specification is similar to specifications for LIST or other
parts of the DISPLAY step:

1) Generally, the rules governing clist are as described in Section 7.3 in the DISPLAY
step, that is, one may take advantage of combining classes or other forms of collapsing,
features not allowed for new or MODIFY variables. Only one rectangular matrix may be
specified for each variable, however, in contrast to the DISPLAY step, where an arbitrary
list of classes may be specified.

2) Functions such as MEAN, PERCENT1, etc., may be used, as described in Section 4.4.

There are some important differences between OLD and LIST as well:

1) At most one clist may appear in each statement, unlike the DISPLAY step which
permitted alternation of variable lists and CLASS statements. If more that one list is
wanted, then multiple OLD statements are required.

2) If no function is specified for a variable, then the default is to pass the specific matrix
to the subroutine without altering it. In particular, if means are desired, then MEAN()
must be included in the specification.

In Exhibit 14.1, OLD appeared at #1 for two variables used to compute proom , since these
variables were not themselves altered by the calculation. In the second TRANSFORM step, it
again appeared at #7, used with N(1), and at #8, where it was used with ratio_factor.

14.4.3.1 Examples of OLD If occupation is a categorical variable that has been
cross-classified by sex and age in six age groups, then,

old occupation
old occupation / class sex
old occupation / class sex (0-2)
old occupation / class age (3-6) * sex
old occupation / class age (4) * sex (1)

specify, respectively,

the marginal distribution of occupation
the marginal distribution of occupation by sex, presenting the subroutine with the totals for

14.16

 occupation for sex(1), followed by the data for sex(2)
the marginal distribution of occupation for the whole table followed by the cross-
 classification by sex
a matrix extracted from the full cross-classification, giving occupation for age(3)*sex(1),
 age(4)*sex(1), age(5)*sex(1), age(6)*sex(1), age(3)*sex(2),..., age(6)*sex(2)
occupation for age(4)*sex(1) only.

Note that the order of specification of the class variables is important. For example, age(3-6)*sex
varies age first, while sex*age(3-6) would produce the order sex(1)*age(3), sex(2)*age(3), etc.
In general, matrices will be arrayed by varying the first class variable first, the second class
variable second, etc., in "FORTRAN" order.

Typically, specifications that select a single level of a class can appear anywhere:

old occupation / class age(3-6) * sex (1)
old occupation / class sex(1) * age(3-6)

produce the same matrix. Generally, the two specifications would yield the same result, although
some subroutines may accept only one of these. Most of the built-in subroutines, such as
MULTIPLY, ADD, REPPRINT, etc., accept either. In a few instances, however, the order of
dimensions of the matrix may be important. For example, MMULTIPLY would view the two
specifications differently - the first specifies a 4 by 1 matrix whereas the second specifies 1 by
4. User-supplied routines may also impose restrictions on the statement of dimensions. For
example, a specific routine may, because of /class specifications for other variables, check that
the final dimension is 4, making only the second version acceptable.

If occupation is a summable variable, then several forms of collapsing are available,

old occupation
old occupation / class sex (1, 2, 0) * age (1+2)
old occupation / class age (1, 2, 1+2, 3, 4, 3+4, 5, 6, 5+6)
old occupation / class age (1, 2, 1+2, 3, 4, 3+4, 5, 6, 5+6)
 * sex (1)

are all valid expressions, giving occupation crossed by, respectively,

the total
sex at levels 1 and 2 followed by total, for ages 1 and 2, summed
age 1, age 2, ages 1 and 2 summed, age 3, age 4, etc.
age 1, age 2, ages 1 and 2 summed, age 3, etc., for sex 1 only.

14.17

If earnings were cross-classified by race , sex , and age , and the current or previous
TRANSFORM step created earn_ratio ,

divide
old mean(earnings) / class age (0-6) * sex * race (1)
old mean(earnings) / class age (0-6) * sex * race (2)
derived earn_ratio / class age (0-6) * sex

then any of the following may be used subsequently,

old earn_ratio / class age (0-6) * sex
old earn_ratio / class sex
old earn_ratio / class age (1,2) * sex (1)
old earn_ratio / class age (1, 1, 2) * sex

but these may not

old earn_ratio
old earn_ratio / class age * sex (1,2,0)
old earn_ratio / class age(1,2)

since each of the latter examples requires a margin summed across sex. If, instead,
earn_ratio , was created through

divide
old mean(earnings) / class age (0-6) * sex (0-2) * race (1)
old mean(earnings) / class age (0-6) * sex (0-2) * race (2)
derived earn_ratio / class age (0-6) * sex (0-2)

then the margin summed across sex would be available, and any of the previous references to
earn_ratio would be correct.

Note also that the + operator in the class specification is not allowed for derived variables.

14.4.4 Modifying Values of Existing Variables: MODIFY

Unlike the treatment of OLD variables, VPLX allows subroutines to alter the values of MODIFY
variables. As noted in Section 14.2, the previous values may be used in the calculation or they
may be ignored and simply overwritten, depending upon the subroutine.

There are more restrictions on CLASS specifications for MODIFY variables than OLD,
essentially because VPLX has to be able to store the results in an unambiguous manner. No

14.18

marginal totals of summable variables may be specified; instead, the specification must refer to
an individual cell, a rectangular submatrix of the inner cells, or the entire inner matrix.

Margins may be referenced for non-summable variables, but only if the margins had been
previously created.

Exhibit 14.1 includes two instances of MODIFY, following #8. In the first, MULTIPLY is used
to apply the ratio adjustment to a series of variables, modifying their contents. As noted in the
comment, the next subroutine, DIVIDE, simply writes over the values of proom. Rules
concerning these two uses of MODIFY follow in the discussion of individual subroutines,
beginning in Section 14.5.

14.4.4.1 Examples of MODIFY Using the variables previously defined in Section 14.4.3.1, the
following are acceptable forms for a summable variable:

modify occupation / class sex * age
modify occupation / class age * sex
modify occupation / class sex (2, 1) * age (1)
modify occupation / class age (1, 2, 3) * sex
modify occupation / class age (1, 2, 5, 6) * sex (1)

The following are unacceptable, since each involves summation over classes

modify occupation
modify occupation / class age
modify occupation / class sex (1, 2, 0) * age (1+2)
modify occupation / class age (1, 2, 1+2, 3, 4, 3+4, 5, 6,
 5+6)

Note that each of these would be acceptable as OLD specifications.

For non-summable variables, margins may be modified only if they were previously created. To
continue the example for non-summable variables from Section 14.4.3.1, the following are
acceptable:

modify earn_ratio / class age (0-6) * sex
modify earn_ratio / class sex
modify earn_ratio / class age (1,2) * sex (1)

If earn_ratio , was created in the first of the two ways, which did not establish margins added
across sex, the following are not acceptable uses of MODIFY:

14.19

modify earn_ratio
modify earn_ratio / class age * sex (1,2,0)
modify earn_ratio / class age(1,2)
modify earn_ratio / class age (1, 1, 2) * sex

since each of the first 3 requires a marginal total across sex that was not initially created, and the
last redundantly specifies cells, which is allowed with OLD but not with MODIFY. If
earn_ratio is instead created in the second of the two ways, then each of the first 3 would be
acceptable, but not the last.

14.4.5 Specifying Constants to Subroutines: CONSTANTS

Exhibit 14.1 included a use of a CONSTANTS statement, similar in syntax to the version in the
CREATE step (section 3.4), but without an associated assignment to one or more variables. In
its simplest application, the function of this statement is to provide a series of constants to a
subroutine. The constants occupy separate storage, reserved for the specific subroutine.

Some subroutines, including ADD, MULTIPLY, SUBTRACT, and DIVIDE, preserve the values
of the constants as initially stated. Some subroutines take advantage of the fact that the storage
for the constants is reserved for the given subroutine, and modify the initial values. For example,
the subroutine SAVEFULL uses the space reserved for the constants to store the values of a group
of variables for the full sample.

Only one CONSTANTS statement is allowed for each subroutine, although the number of
specified constants is arbitrary, subject only to the availability of computer storage. As with the
comments on order in Section 14.4.1.1, the placement of the CONSTANTS statement before or
after other OLD, MODIFY, or new variable declarations has no effect on the outcome.

8.5 ADD, MULTIPLY, SUBTRACT, DIVIDE

The subroutines that perform basic arithmetic operations are generally called on the most in
VPLX applications. Several forms are available, accommodating the optional use of constants
and choices between modifying variables or creating new ones.

The section is divided into 2 primary subsections. Section 8.5.1 describes the operation of the
subroutines when one or more constants are specified. Each application with constants has an
exact counterpart without constants, which will be covered by Section 8.5.2.

14.20

8.5.1 ADD, MULTIPLY, SUBTRACT, DIVIDE with CONSTANTS

8.5.1.1 Basic Operations with Single Values ADD operates on a single real variable a with a
constant b producing a new variable c:

ADD
OLD a
CONSTANT b
REAL c

by adding a to b and placing the result in c. The other subroutines are similar:

MULTIPLY
OLD a
CONSTANT b
REAL c

multiplies a and b and places the result in c;

SUBTRACT
OLD a
CONSTANT b
REAL c

subtracts b from a, (i.e. a - b), and places the result in c;

DIVIDE
OLD a
CONSTANT b
REAL c

divides a by b, (i.e. a / b), and places the result in c.

As noted in Section 8.4.5, the placement of the CONSTANT statement relative to either the OLD
or REAL statements has no effect on the outcome. For example,

DIVIDE
CONSTANT b
OLD a
REAL c

also divides a by b, (i.e. a / b), and places the result in c.

14.21

8.5.1.2 Rules for Matrices, with a List of Constants of Matching Length ADD operates on
a real variable a cross-classified by one or more classes in clist1 (which uses the * notation
for product in the case of more than one class) with the same number of constants blist
producing a real variable c cross-classified by clist2 , which must have the same number of
implied elements:

ADD
OLD a / CLASS clist1
CONSTANTS blist
REAL c / CLASS clist2

by adding a to the corresponding element in blist, element by element, and placing the result
in c. The order of elements in a is determined by applying FORTRAN order to the specification
in clist1, i.e., varying the first class the most quickly, the next class the next most quickly, etc.
Similarly, the elements of c are also varied in FORTRAN order.

As an example, suppose num_jobs is a real variable cross-classified by the class variables sex
and age in three broad age groups. If the totals in num_jobs are 1, 2, 3, 4, 5, and 6 for the (1,1),
(2,1), (1,2), (2,2), (1,3), and (2,3) sex by age cells, respectively, then,

add
old num_jobs / class sex * broad_age
constants 0,1,2, 3*0
real num_jobs_mod / class sex * broad_age

creates a new variable num_jobs_mod with totals 1, 3, 5, 4, 5, and 6 for the (1,1), (2,1), (1,2),
(2,2), (1,3), and (2,3) sex by age cells. If, instead,

add
old num_jobs / class broad_age * sex
constants 0,1,2, 3*0
real num_jobs_mod / class broad_age * sex

then, num_jobs_mod will contain totals 1, 2, 4, 4, 7, and 6 for the (1,1), (2,1), (1,2), (2,2), (1,3),
and (2,3) sex by age cells.

As in Section 8.5.1.1, the constants are always the second operator. For example,

DIVIDE
OLD a / CLASS clist1
CONSTANTS blist
REAL c / CLASS clist2

14.22

divides each of the elements of a by the corresponding element in blist. Again, changing the
placement of the CONSTANT statement

DIVIDE
CONSTANT blist
OLD a / CLASS clist1
REAL c / CLASS clist2

does not change the outcome.

8.5.1.3 Rules for Matrices and a Single Constant If a single constant is given, then that
constant is used repeatedly as the second operator with each cell of the matrix, in turn. For
example

DIVIDE
OLD a / CLASS clist1
CONSTANT b
REAL c / CLASS clist2

divides each cell of a by b and places the result in the corresponding cell of c. The number of
elements of a and c must agree.

8.5.1.4 Rules for Matrices with a List of Constants of Different Length The length of blist
may be less than the number of elements of a if it is an integer multiple, m. In that case, the first
m elements of a are operated on by the first element of blist, etc. The sizes for a and c must
still agree.

As an example, consider num_jobs from Section 8.5.1.2. Then,

subtract
old num_jobs / class sex * broad_age
constants 0,1,2
real num_jobs_mod / class sex * broad_age

creates a new variable num_jobs_mod with totals 1, 2, 2, 3, 3, and 4 for the (1,1), (2,1), (1,2),
(2,2), (1,3), and (2,3) sex by age cells. If, instead,

subtract
old num_jobs / class broad_age * sex
constants 0,1,2
real num_jobs_mod / class broad_age * sex

14.23

then, num_jobs_mod will contain totals 1, 1, 3, 2, 4, and 4 for the (1,1), (2,1), (1,2), (2,2), (1,3),
and (2,3) sex by age cells. If,

subtract
old num_jobs / class broad_age * sex
constants 0,2
real num_jobs_mod / class broad_age * sex

then, num_jobs_mod will contain totals 1, 0, 3, 2, 5, and 4 for the (1,1), (2,1), (1,2), (2,2), (1,3),
and (2,3) sex by age cells.

Note that these rules imply the special case in 8.5.1.3: when the CONSTANT list contains a
single value, that value is used as the second operator for each cell of the matrix.

8.5.1.5 Joint Use of OLD and MODIFY with CONSTANTS

In the previous examples, the operations are on an OLD variable and constants to produce an
newly defined variable. OLD and MODIFY may appear together instead, provided that no new
variables are simultaneously introduced. The MODIFY variables are entirely overwritten without
regard to their previous contents. In the simplest example

ADD
OLD a
CONSTANT b
MODIFY c

by adding a to b and placing the result in c without regard to the previous contents of c.

All the extensions to cross-classifications apply similarly. For example,

add
old num_jobs / class sex * broad_age
constants 0,1,2
modify num_jobs_mod / class sex * broad_age

revises a previously existing num_jobs_mod to contain totals 1, 2, 4, 5, 7, and 8 for the (1,1),
(2,1), (1,2), (2,2), (1,3), and (2,3) sex by age cells. The calculation uses the values of num_jobs
without changing them, and overwrites without taking note of the previous contents of
num_jobs_mod .

14.24

8.5.1.6 Use of MODIFY Alone with CONSTANTS

If no OLD or new variables appear, the results will operate on the information in the MODIFY
variable.

ADD
MODIFY a
CONSTANT b

by adding a to b and placing the result back into a. Again, previous rules for matrices and lists
of constants of different lengths apply. For example,

add
modify num_jobs / class sex * broad_age
constants 0,1,2

revises num_jobs to contain totals 1, 2, 4, 5, 7, and 8 for the (1,1), (2,1), (1,2), (2,2), (1,3), and
(2,3) sex by age cells.

8.5.1.7 Lists of Variables

The previous rules apply to lists of variables, such as

DIVIDE
OLD alist / CLASS clist1
CONSTANTS blist
REAL clist / CLASS clist2

where alist and clist are lists with equal numbers of variables. The rules are applied for each
alist/clist pair of variables, reusing the constants in blist for each pair separately. The
above summary shows a single OLD statement and a single statement defining new variables, but
multiple statements may be used for either or both, as long as the combined number of old
variables matches the combined number of new variables. For example, for

SUBTRACT
OLD alist1 / CLASS clist1
OLD alist2 / CLASS clist2
OLD alist3 / CLASS clist3
CONSTANTS blist
REAL clist1 / CLASS clist4
REAL clist2 / CLASS clist5

14.25

the combined number of variables in alist1, alist2, and alist3 must match the combined number
of variables in clist1 and clist2.

Again, previous rules for matrices apply. The rules are similarly extended to joint use of OLD
and MODIFY or MODIFY alone.

As before, MODIFY, and new variable declarations cannot appear together. The allowed
combinations with CONSTANTS are OLD and new, OLD and MODIFY, or MODIFY alone.

As an example,

add
old num_jobs / class sex * broad_age
old num_jobs / class broad_age
constants 0,1,2
real num_jobs_mod / class sex * broad_age
real num_jobs_age / class broad_age

creates num_jobs_mod to contain totals 1, 2, 4, 5, 7, and 8 for the (1,1), (2,1), (1,2), (2,2), (1,3),
and (2,3) sex by age cells and num_jobs_age to contain 3, 8, and 13 for the three levels of age.

8.5.2 ADD, MULTIPLY, SUBTRACT, DIVIDE without CONSTANTS

Without CONSTANTS, at least one OLD variable must be declared. The last OLD variable is
used in the same manner as the data would have been used after CONSTANTS. In all other
respects, the same rules apply. Consequently:

If new variables are created, then there must be one fewer new variable than OLD
variables.

If variables are modified, then there must either be:

a single OLD variable (in which case the information in the MODIFY variables
is used in the calculation), or

one more OLD variable than new one (in which case the information in the
MODIFY variables is overwritten).

Again, MODIFY cannot appear with the creation of new variables.

14.26

In principle, all the remaining rules of this Section 8.5.2 derive from these rules. Nonetheless,
the balance of the section will work through the application of these rules to clarify them and to
increase the utility of this documentation for reference.

8.5.2.1 Basic Operations with Single Values ADD operates on 2 real variables a and b
producing a new variable c:

ADD
OLD a, b
REAL c

by adding a to b and placing the result in c. The other subroutines are similar:

MULTIPLY
OLD a, b
REAL c

multiplies a and b and places the result in c;

SUBTRACT
OLD a, b
REAL c

subtracts b from a, (i.e., a - b), and places the result in c;

DIVIDE
OLD a, b
REAL c

divides a by b, (i.e., a / b), and places the result in c.

8.5.2.2 Rules for Matrices of Matching Length ADD operates on a real variable a cross-
classified by one or more classes in clist1 (which uses the * notation for product in the case
of more than one class) with the same number of elements of b producing a real variable c cross-
classified by clist2 , which must have the same number of implied elements:

ADD
OLD a, b / CLASS clist1
REAL c / CLASS clist2

by adding a to the corresponding element in b, element by element, and placing the result in c.
The order of elements in a and b is determined by applying FORTRAN order to the specification

14.27

in clist1, i.e., varying the first class the most quickly, the next class the next most quickly, etc.
Similarly, the elements of c are also varied in FORTRAN order.

These rules also include the case that a and b are given different /class specifications but still have
the same number of specified elements:

ADD
OLD a / CLASS clist1
OLD b / CLASS clist2
REAL c / CLASS clist3

As an example, suppose num_jobs and jobs_suppl are real variables cross-classified by the
class variables sex and broad_age in three broad age groups. If the totals in num_jobs are
1, 2, 3, 4, 5, and 6 for the (1,1), (2,1), (1,2), (2,2), (1,3), and (2,3) sex by age cells, respectively,
and the totals in jobs_suppl are 0, 1, 2, 0, 0, and 0 for the same cells, then

add
old num_jobs jobs_suppl / class sex * broad_age
real num_jobs_mod / class sex * broad_age

creates a new variable num_jobs_mod with totals 1, 3, 5, 4, 5, and 6 for the (1,1), (2,1), (1,2),
(2,2), (1,3), and (2,3) sex by age cells. If, instead,

add
old num_jobs / class broad_age * sex
old jobs_suppl / class sex * broad_age
real num_jobs_mod / class broad_age * sex

then, num_jobs_mod will contain totals 1, 2, 4, 4, 7, and 6 for the (1,1), (2,1), (1,2), (2,2), (1,3),
and (2,3) sex by age cells. Note that the TRANSFORM step tolerates the reversal in the order
of class variables here, as long as the lengths of the resulting matrices are the same. This feature
affords both programming flexibility and the opportunity to carry out inappropriate calculations!

In Exhibit 8.1, the DIVIDE subroutine at #1 employed element by element division to define
proom , thus applying the rules of this subsection.

8.5.2.3 Rules for Matrices with Lists of Different Lengths The length of b may be less than
the number of elements of a if it is an integer multiple, m. In that case, the first m elements of a
are operated on by the first element of b, etc. The sizes for a and c must still agree.

14.28

As an example, consider num_jobs from Section 8.5.1.2 or 8.5.2.2. Consider jobs_suppl2
to contain 0, 1, and 2 for the 3 levels of age. Then,

add
old num_jobs / class sex * broad_age
old jobs_suppl2 / class broad_age
real num_jobs_mod / class sex * broad_age

creates a new variable num_jobs_mod with totals 1, 2, 4, 5, 7, and 8 for the (1,1), (2,1), (1,2),
(2,2), (1,3), and (2,3) sex by age cells. Note that in this first example, the sums involve consistent
age groups, for example, the value for the first age group in jobs_suppl2 are added to
matching age cells in num_jobs , etc. If, instead,

add
old num_jobs / class broad_age * sex
old jobs_suppl2 / class broad_age
real num_jobs_mod / class broad_age * sex

then, num_jobs_mod will contain totals 1, 3, 3, 6, 6, and 8 for the (1,1), (2,1), (1,2), (2,2), (1,3),
and (2,3) sex by age cells. In this case, the summation incorporates mismatches across age groups
in forming the sums. If,

add
old num_jobs / class broad_age * sex
old jobs_suppl / class broad_age(1,3)
real num_jobs_mod / class broad_age * sex

then, num_jobs_mod will contain totals 1, 4, 3, 6, 5, and 8 for the (1,1), (2,1), (1,2), (2,2), (1,3),
and (2,3) sex by age cells.

As a general remark, when combining matrices of different sizes, it is usually the case that one
expects the class variables at the end of each class list to agree in order to produce sensible
results, although exceptions to this remark can occur.

These rules imply the special case that when the last OLD variable contains a single value, that
value is used as an operator for each operation.

8.5.2.4 Joint Use of OLD and MODIFY Without CONSTANTS

In the previous examples, the operations are on OLD variables to produce an newly defined
variable. OLD and MODIFY may appear together instead, provided that no new variables are
simultaneously introduced. If the number of OLD variables is one more than the number of

14.29

MODIFY variables, the MODIFY variables are entirely overwritten without regard to their
previous contents. In the simplest example

DIVIDE
OLD a, b
MODIFY c

by dividing a by b and placing the result in c without regard to the previous contents of c.

All the extensions to cross-classifications apply similarly. For example,

add
old num_jobs / class sex * broad_age
old jobs_suppl2 / class broad_age
modify num_jobs_mod / class sex * broad_age

revises a previously existing num_jobs_mod to contain totals 1, 2, 4, 5, 7, and 8 for the (1,1),
(2,1), (1,2), (2,2), (1,3), and (2,3) sex by age cells. The calculation uses the values of num_jobs
and jobs_suppl2 without changing them, and overwrites without taking note of the previous
contents of num_jobs_mod .

8.5.2.5 Use of MODIFY Alone Without CONSTANTS

If a single OLD variable appears, the results will operate on the information in the MODIFY
variable.

ADD
MODIFY a
OLD b

by adding a to b and placing the result back into a.

The OLD variable is always the second operator, regardless of the order in which the OLD and
MODIFY statements appear. Thus, both

DIVIDE
MODIFY a
OLD b

and

DIVIDE

14.30

OLD b
MODIFY a

divide a by b.

Again, previous rules for matrices and lists of constants of different lengths apply. For example,

add
modify num_jobs / class sex * broad_age
old jobs_suppl2 / class broad_age

revises num_jobs to contain totals 1, 2, 4, 5, 7, and 8 for the (1,1), (2,1), (1,2), (2,2), (1,3), and
(2,3) sex by age cells.

8.5.2.6 Lists of Variables

The previous rules apply to lists of variables, such as

ADD
OLD alist / CLASS clist1
REAL clist / CLASS clist2

where alist contains one more variable than clist. Except for the last variable in alist,
the rules are applied for each alist/clist pair of variables, reusing the last variable in alist
for each pair separately. The above summary shows a single OLD statement and a single
statement defining new variables, but multiple statements may be used for either or both, as long
as the combined number of old variables exceeds by 1 the combined number of new variables.
For example,

DIVIDE
OLD a, b
OLD c
REAL e, f

divides a by c and places the result into e, and it divides b by c and places the result into f. As
a programming practice, some users may prefer to set off the last OLD variable in a separate OLD
statement of its own in order to call attention to its special role in the calculation.

Again, previous rules for matrices apply. The rules are similarly extended to joint use of OLD
and MODIFY or MODIFY alone.

14.31

As before, MODIFY, and new variable declarations cannot appear together. The allowed
combinations without CONSTANTS are OLD and new, or OLD and MODIFY.

As an example,

add
old num_jobs / class sex * broad_age
old num_jobs jobs_suppl2 / class broad_age
real num_jobs_mod / class sex * broad_age
real num_jobs_age / class broad_age

creates num_jobs_mod to contain totals 1, 2, 4, 5, 7, and 8 for the (1,1), (2,1), (1,2), (2,2), (1,3),
and (2,3) sex by age cells and num_jobs_age to contain 3, 8, and 13 for the three levels of age.

8.5.3 A Comparison of ADD, SUBTRACT, MULTIPLY, and DIVIDE in the CREATE and
TRANSFORM Steps

Because of their ability to work with matrices, ADD, SUBTRACT, MULTIPLY, and DIVIDE
have far more complex roles in the TRANSFORM step than the CREATE step. Nonetheless, the
following comparison helps to illustrate the roles of OLD, MODIFY, and new variables in the
TRANSFORM step:

CREATE Step TRANSFORM Step

1. constant 2 into b divide
divide a by b into c old a

constant 2
modify c

divide
old a
constant 2
derived c

2. constant 2 into b divide
divide a by b modify a

constant 2

3. divide a by b into c divide
old a b
modify c

14.32

divide
old a b
derived c

4. divide a by b divide
modify a
old b

Exhibit 8.2 A comparison of DIVIDE in the CREATE and TRANSFORM steps

The forms 1 and 3 in the CREATE step each have two counterparts in the TRANSFORM step,
depending on whether the target variable has been previously defined.

8.5.4 Treatment of Missing Values in ADD, SUBTRACT, MULTIPLY, and DIVIDE

As noted previously in Section 4.7, the value -98765.432109 is a missing value indicator on
VPLX files. This value is similarly used during the TRANSFORM step. Generally, if either
operator in an addition, subtraction, multiplication or division is missing, then the result becomes
missing - the single exception to this rule is that the product of a missing value and 0 is defined
to be 0 for MULTIPLY.

If the divisor in DIVIDE is 0, the outcome is missing.

8.5.5 An Example

The following example incorporates some of the available features of the arithmetic subroutines:

comment EXAM19

comment This example also begins from EXAM11 but uses both tenure
 and persons_cl as class variables to illustrate features of
 ADD, SUBTRACT, MULTIPLY, and DIVIDE in the TRANSFORM step.

create in = exampl11.dat out = exampl11.vpl

input rooms persons cluster tenure

 4 variables are specified

format (4f2.0)

comment The input data set contains
 5 7 1 2

14.33

 6 8 2 2
 5 2 3 1
 4 1 4 2
 8 4 5 1
 8 2 6 1

class tenure (2/1,3) 'Renter' 'Owner/other'

labels rooms 'Number of rooms' persons 'Persons'
 tenure 'Tenure'

class persons into persons_cl (1-2/3-4/5-high) '1-2' '3-4' '5 or more'

 (Simple) jackknife replication assumed

 Size of block 1 = 18

 Total size of tally matrix = 18

 Unnamed scratch file opened on unit 13

 Unnamed scratch file opened on unit 14

 End of primary input file after obs # 6

transform in = exampl11.vpl out=exam11a.vpl

comment Make renter/owner comparisons for rooms expressed both
 as differences of means and as ratios of means

subtract #1

old mean (rooms) / class tenure (1) * persons_cl (0-n)

old mean (rooms) / class tenure (2) * persons_cl (0-n)

derived mean_diff_r / class persons_cl (0-n)

 (assigned to block 2)

divide

old mean (rooms) / class tenure (1) * persons_cl (0-n)

old mean (rooms) / class tenure (2) * persons_cl (0-n)

derived ratio_df_r / class persons_cl (0-n)

 (assigned to block 2)

comment Cell by cell, multiply total rooms for owners by .5 and those
 by renters by 2

multiply #2

old rooms / class persons_cl * tenure

constants 2 .5

14.34

real rooms_adj / class persons_cl * tenure

 (assigned to block 3)

comment Add 10 to the total for tenure (2) * persons_cl (2) only

copy #3

old rooms / class persons_cl * tenure

real rooms_mod / class persons_cl * tenure

 (assigned to block 3)

**** BEGINNING OF SUBROUTINE 5

add

modify rooms_mod / class tenure (2) * persons_cl (2)

constant 10

display

option ndecimal=2

 Unnamed scratch file opened on unit 13

list n(1) total (rooms rooms_adj rooms_mod)
 / class persons_cl (1-3,0) * tenure /
 total (rooms rooms_adj rooms_mod mean_diff_r ratio_df_r)
 / class persons_cl (1-3,0)

 persons_cl : 1-2
 Tenure : Renter

 Estimate Standard error

Sample N (wtd) for block 1 1.00 1.00

Number of rooms : TOTAL 4.00 4.00

rooms_adj : TOTAL 8.00 8.00

rooms_mod : TOTAL 4.00 4.00

 persons_cl : 3-4
 Tenure : Renter

 Estimate Standard error

Sample N (wtd) for block 1 .00 .00

Number of rooms : TOTAL .00 .00

14.35

rooms_adj : TOTAL .00 .00

rooms_mod : TOTAL .00 .00

 persons_cl : 5 or more
 Tenure : Renter

 Estimate Standard error

Sample N (wtd) for block 1 2.00 1.26

Number of rooms : TOTAL 11.00 7.00

rooms_adj : TOTAL 22.00 14.00

rooms_mod : TOTAL 11.00 7.00

 persons_cl : TOTAL
 Tenure : Renter

 Estimate Standard error

Sample N (wtd) for block 1 3.00 1.34

Number of rooms : TOTAL 15.00 6.88

rooms_adj : TOTAL 30.00 13.77

rooms_mod : TOTAL 15.00 6.88

 persons_cl : 1-2
 Tenure : Owner/other

 Estimate Standard error

Sample N (wtd) for block 1 2.00 1.26

Number of rooms : TOTAL 13.00 8.54

rooms_adj : TOTAL 6.50 4.27

rooms_mod : TOTAL 13.00 8.54

 persons_cl : 3-4
 Tenure : Owner/other

 Estimate Standard error

Sample N (wtd) for block 1 1.00 1.00

Number of rooms : TOTAL 8.00 8.00

rooms_adj : TOTAL 4.00 4.00

rooms_mod : TOTAL 18.00 8.00

14.36

 persons_cl : 5 or more
 Tenure : Owner/other

 Estimate Standard error

Sample N (wtd) for block 1 .00 .00

Number of rooms : TOTAL .00 .00

rooms_adj : TOTAL .00 .00

rooms_mod : TOTAL .00 .00

 persons_cl : TOTAL
 Tenure : Owner/other

 Estimate Standard error

Sample N (wtd) for block 1 3.00 1.34

Number of rooms : TOTAL 21.00 9.77

rooms_adj : TOTAL 10.50 4.88

rooms_mod : TOTAL 31.00 9.77

 persons_cl : 1-2 #4

 Estimate Standard error

Number of rooms : TOTAL 17.00 8.26

rooms_adj : TOTAL 14.50 7.84

rooms_mod : TOTAL 17.00 8.26

mean_diff_r : VALUE -2.50 1.94*

ratio_df_r : VALUE .62 .20*

 persons_cl : 3-4

 Estimate Standard error

Number of rooms : TOTAL 8.00 8.00

rooms_adj : TOTAL 4.00 4.00

rooms_mod : TOTAL 18.00 8.00

mean_diff_r : VALUE (M) - #5

ratio_df_r : VALUE (M) -

 persons_cl : 5 or more

14.37

 Estimate Standard error

Number of rooms : TOTAL 11.00 7.00

rooms_adj : TOTAL 22.00 14.00

rooms_mod : TOTAL 11.00 7.00

mean_diff_r : VALUE (M) -

ratio_df_r : VALUE (M) -

 persons_cl : TOTAL

 Estimate Standard error

Number of rooms : TOTAL 36.00 4.10

rooms_adj : TOTAL 40.50 9.35

rooms_mod : TOTAL 46.00 4.10

mean_diff_r : VALUE -2.00 1.29

ratio_df_r : VALUE .71 .14

Exhibit 8.3 Illustration of Arithmetic Subroutines in the TRANSFORM Step

8.6.1 RECIPROCAL

Works either with:

OLD and new variables, in which case the results are stored into the new variables.

OLD and MODIFY variables, in which case the calculations are done on the OLD
variables and overwrite the MODIFY variables.

MODIFY variables only, in which case the calculations use the contents of the MODIFY
variables.

Without constants, the calculation produces element by element reciprocals. With CONSTANTS,
the constants are used in the numerator of the calculation and the variable in the denominator,
consequently opposite of DIVIDE.

14.38

8.6 Additional Arithmetic Subroutines

paired add, paired subtract, paired multiply, paired divide

Does not use constants; instead of using the last OLD variable as the second operator, it
changes both operators, in pairs

power to raise the first operator to the power given by the second, may use constants

rmultiply highly specialized, differs from multiply by multiplying both the total and count of
cases of real with missing and crossed real variables by the second operator (MULTIPLY only
multiplies the total)

log reciprocal modifyrepf

8.7 Other Frequently Used Subroutines

collapse

copy reformat

glue

saveful

rprint, repprint

repread
repwrite
binaryread
binarywrite

NOTES
