
01/29/98

1. Introduction

1.1 Purpose of VPLX

VPLX is a Fortran program for the estimation of variances from complex sample surveys through
replication methods. In general, replication methods obtain an estimate of sampling variance by
carrying out the estimation for the full sample on a series of subsamples of the data, and the program
is specifically designed for this purpose.

Most Census Bureau and other government sample surveys, as well as many other national surveys,
employ complex sample designs. One consequence is the typical use of weighted data in estimation.
Many widely available statistical systems, such as SAS, SPSS, and others, are able to use the survey
weights provided on public use files to reproduce the official estimates. Typically, however, the
variance estimates provided by these systems do not consider the effect of the complex design on the
reliability of the estimates. In some situations, variance estimates based on an assumption of simple
random sampling may be roughly corrected by rules of thumb. For many purposes, including the
Census Bureau's own research, more accurate variance estimates are required. VPLX and some other
systems, such as SUDAAN and WesVarPC, now provide a means to do so for a variety of designs
and estimation problems.

A VPLX application is organized into a series of steps. Parallels between VPLX and the SAS system
are possible here. For example, a SAS user may assemble a SAS data set from raw input data with
the DATA step and then run one or more of the available SAS procedures. Typically, the SAS data
set contains data at the level of the individual observation. SAS steps may be run independently of
each other because the information about variables is communicated between steps as metadata
included with the SAS data sets. Similarly, VPLX steps are almost completely independent and
communicate with each other through the contents of VPLX files.

The CREATE step prepares a VPLX file from a file of individual observations. Unlike a SAS data
set, however, the VPLX file contains estimated totals for the full sample and for the replicate samples
corresponding to the replication method, rather than data for individual observations. Virtually any
VPLX application incorporates one or more CREATE steps or uses a VPLX file that depended
directly or indirectly upon a previous CREATE step. Thus, the CREATE step is a fundamental
component of the system. This and the following three chapters describe basic features of CREATE.

Once produced by the CREATE step, the VPLX file may be input directly into the DISPLAY step,
which can display estimates, standard errors, covariances, correlations, and t-tests based on the

I.1.2

VPLX file. A number of examples in this and the next chapters include accompanying DISPLAY
steps. The TRANSFORM step can read a VPLX file, derive new variables that are functions of
sample totals and include them on a new VPLX file, which in turn can be input to DISPLAY.

A VPLX file has a complex structure to organize the data required for variance estimation through
replication. The VPLX file holds both data and metadata, characteristics of the data such as choice
of replication method, variable names, labels, and other attributes. The design of the VPLX file has
undergone far fewer changes than the program, although the addition of new features may force a
redesign of the VPLX file within the next few years (1). An attempt will be made to maintain upward
compatibility in implementing this revision. As of October 1997, the current file design is 92.03, used
since 1992, but the program still accepts its predecessor, 90.04, as input to most steps.

In addition to VPLX files, VPLX applications often require reading from and writing to several
different files. Two files are particularly important: the character input file containing the VPLX
language commands prepared by the user, which will generally be called the command file; and an
output print file, to which VPLX generally echoes commands and reports results. In practice, of
course, users may usually prefer to inspect the print file in an editor rather than actually printing it.

1.2 The Standard Order for the CREATE Step

The CREATE step may be understood as composed of five key components.

CREATE in = ... out = ;

Input section - read data from the in = file and
 possibly others

Replication specification section - provide commands to
 define the replication method

Recode section - revise existing variables or create new
 ones with arithmetic and logical statements.

Categorization section - define categorical and class
 variables

Output section - specify how output variables are to be
 cross-classified and for what universes.

Exhibit 1.1 The five sections of a VPLX CREATE step in the standard order.

I.1.3

When these components are organized according to exhibit 1.1, the CREATE step is in the standard
order. The CREATE step does not require the standard order, but this organization carries a number
of advantages. It divides the step into a number of separate tasks, and it is easier to understand
specific VPLX statements in the context of these tasks. Secondly, the consequences of VPLX
statements are much clearer when the CREATE step is in the standard order. When a VPLX
CREATE step departs from the standard order and produces unexpected results, reorganizing the
code into standard order may clarify the problem. The documentation will focus almost exclusively
on the use and interpretation of CREATE statements in the standard order.

Exhibit 1.2 provides a simple example of a command file with the CREATE step in the standard
order.

! i1-1.crd

scratch1 temp1.tmp; ! Optional naming of scratch files.
scratch2 temp2.tmp;
scratch3 temp3.tmp;
scratch4 temp4.tmp;
scratch5 temp5.tmp;

/* This first example illustrates a simple VPLX run.
 Except for these general comments, other comments
 appear to the right, following an exclamation mark.

 The input data are the six records of i1-1.dat:
 5 7 1 1 1
 6 8 1 2 1
 5 2 1 3 2
 4 1 1 4 2
 8 4 1 5 3
 8 2 1 6 3
*/

create in = i1-1.dat out = vplx1.vpl ; ! Beginning of CREATE step

 input rooms persons weight cluster ! input statement to read
 stratum /format (5F2.0) ; ! data ("input section")

 replication method simple jackknife; ! ("replication specification
 replicate number cluster; ! section")

 room_ratio = rooms/persons; ! ("recode section")
 if persons > rooms then; ! Note: overcrowded will be
 overcrowded = 1; ! 0 or 1.
 end if;
 print rooms persons room_ratio
 overcrowded / option nprint = 3;

 class overcrowded (1/0) 'Overcrowded' ! Definition of a class
 'Not overcrowded'; ! variable
 ! ("categorization section")

 block rooms persons ! Definition of a block
 room_ratio / class overcrowded; ! ("output section")

I.1.4

display ! Beginning of DISPLAY step

list N(1) rooms persons room_ratio ! specification of
 total (rooms persons room_ratio) ! display
 / class total overcrowded (1)

Exhibit 1.2 An example command file. Several lines of comments appear between “/*” and “*/”; other
comments appear to the right following an exclamation mark, “!.” The example illustrates the
standard order. A brief DISPLAY step follows, which uses the output VPLX file from the CREATE step
to produce its results.

The command file was submittted to VPLX on a PC under Windows 95 with the following command
in a DOS window:

vplx < i1-1.crd > i1-1.lis

and the resulting print file, i1-1.lis, was

 VPLX - Version 1997.12
! i1-1.crd

scratch1 temp1.tmp; ! Optional naming of scratch files.

scratch2 temp2.tmp;

scratch3 temp3.tmp;

scratch4 temp4.tmp;

scratch5 temp5.tmp;

/* This first example illustrates a simple VPLX run.
 Except for these general comments, other comments
 appear to the right, following an exclamation mark.

 The input data are the six records of i1-1.dat:
 5 7 1 1 1
 6 8 1 2 1
 5 2 1 3 2
 4 1 1 4 2
 8 4 1 5 3
 8 2 1 6 3
*/

create in = i1-1.dat out = vplx1.vpl ; ! Beginning of CREATE step

 input rooms persons weight cluster ! input statement to read
 stratum /format (5F2.0) ; ! data ("input section")

 replication method simple jackknife; ! ("replication specification

I.1.5

 replicate number cluster; ! section")

 room_ratio = rooms/persons; ! ("recode section")
 if persons > rooms then; ! Note: overcrowded will be
 overcrowded = 1; ! 0 or 1.
 end if;
 print rooms persons room_ratio
 overcrowded / option nprint = 3;

 class overcrowded (1/0) 'Overcrowded' ! Definition of a class
 'Not overcrowded'; ! variable
 ! ("categorization section")

 block rooms persons ! Definition of a block
 room_ratio / class overcrowded; ! ("output section")

 Size of block 1 = 8

 Total size of tally matrix = 8

**** End of CREATE specification/beginning of execution
PRINT request 1
 rooms 5.0000 persons 7.0000
 room_ratio .7143 overcrowded 1.0000
PRINT request 1
 rooms 6.0000 persons 8.0000
 room_ratio .7500 overcrowded 1.0000
PRINT request 1
 rooms 5.0000 persons 2.0000
 room_ratio 2.5000 overcrowded .0000

 End of primary input file after obs # 6

display ! Beginning of DISPLAY step

list N(1) rooms persons room_ratio ! specification of
 total (rooms persons room_ratio) ! display
 / class total overcrowded (1)

 Estimate Standard error

Sample N (wtd) for block 1 6.0000 .0000

rooms : MEAN 6.0000 .6831

persons : MEAN 4.0000 1.1832

room_ratio : MEAN 2.3274 .6006

rooms : TOTAL 36.0000 4.0988

persons : TOTAL 24.0000 7.0993

room_ratio : TOTAL 13.9643 3.6037

I.1.6

 overcrowded : Overcrowded

 Estimate Standard error

Sample N (wtd) for block 1 2.0000 1.2649

rooms : MEAN 5.5000 .6455

persons : MEAN 7.5000 .6455

room_ratio : MEAN .7321 .0231

rooms : TOTAL 11.0000 7.0000

persons : TOTAL 15.0000 9.5184

room_ratio : TOTAL 1.4643 .9265

Use of double precision matrix: 70 out of 1000000
Stop - Program terminated.

Exhibit 1.3 An example print file, i1-1.lis. The print file echoes all the statements from the command
file, i1-1.crd. After listing the CREATE step specification, the print file provides a summary of the size
of the problem and results from the PRINT statement, shown in italics here. VPLX then echoes the
DISPLAY step specification and provides the results.

Exhibits 1.2 and 1.3 illustrate how the print file echoes the command file. Subsequent examples will
show only the print file.

More substantively, the example illustrates each of the sections of the standard order:

C Input section - a single INPUT statement specifies the input variables and the associated
format. These data are read from the input data file, i1-1.dat.

C Replication method specification section - two statements specify the replication method and
that the variable CLUSTER is to be used in defining the replicates.

C Recode section - statements define two new variables and specify printing of some cases to
the print file.

C Classification section - the specification for OVERCROWDED as a class variable allows it
to cross-classify other variables.

C Output section - a BLOCK statement specifies the variables to be included in the VPLX file
and how they are cross-classified.

I.1.7

On occasion, statements may be omitted for one or more sections except the first, as the following
example illustrates.

! i1-2.crd

! i1-2.crd is a minimalist version of i1-1.crd
! Using the same input data, it relies on defaults as
! much as possible.

scratch1 temp1.tmp; ! Optional naming of scratch files.

scratch2 temp2.tmp;

scratch3 temp3.tmp;

scratch4 temp4.tmp;

scratch5 temp5.tmp;

create in = i1-1.dat out = vplx1.vpl ; ! Beginning of CREATE step

 input rooms persons weight cluster ! input statement to read
 stratum /format (5F2.0) ; ! data ("input section")

! Without a replication specification section, the appearance of
! cluster and stratum among the input variables will result in the
! default selection of the stratified jackknife.

! Without a recode section, the only variables will be those
! read in.

! Without categorization and output sections, a single block
! will be created with rooms and persons.

 Stratified jackknife replication assumed

 Size of block 1 = 3

 Total size of tally matrix = 3

**** End of CREATE specification/beginning of execution

 End of primary input file after obs # 6

 3 strata observed on incoming file

display ! Beginning of DISPLAY step

list N(1) rooms persons ! Display specification
 total (rooms persons) ! is necessarily limited
 ! to available variables

I.1.8

 Estimate Standard error

Sample N (wtd) for block 1 6.0000 .0000

rooms : MEAN 6.0000 .2357

persons : MEAN 4.0000 .4082

rooms : TOTAL 36.0000 1.4142

persons : TOTAL 24.0000 2.4495

Exhibit 1.4 Example print file, i1-2.lis, illustrating the effect of defaults when no statements are given
for all but the input section of the standard order. In this example, default selections exist for all of
the remaining sections. For the sake of brevity, the first line, last two lines, and some blank lines of
the print file have been omitted. The italicized report from the CREATE step and the output from the
DISPLAY step are not part of the command file, i1-2.crd.

Thus, the task of documentation includes indicating the consequences when one or more of the
standard sections is missing.

This documentation is organized according to the sections of the standard order, although in a
different sequence.

C Chapter 2 describes the most frequently used statements of the recode section, including
arithmetic and logical statements. The syntax of these statements is similar and in places
identical to the syntax of SAS or Fortran. Although this chapter focuses on the middle rather
than the beginning of the CREATE step, it is helpful to do so, since the statements of the
recode section are the most similar to other languages. Furthermore, recode statements must
sometimes be included in the input section, for example, to read conditionally from a second
input file, or in the replication method specification section, when specification of the
replication method requires that some input variables be redefined.

C Chapter 3 describes the statements of the classification and output sections. These sections
are generally related to each other and determine how data is selected and cross-classified for
use by DISPLAY or other VPLX steps.

C Chapter 4 describes how the input section can specify the reading of data, both from the
primary input file and through secondary linked files. In a given application, a useful
programming strategy is to read in all of the variables that might be useful with a fixed set of
commands, and then to modify the recode, classification, and output sections to conduct
multiple analyses of the data.

I.1.9

C In a sense, the statements of the replication method specification section constitute the key
topic of Volume II. Although this section requires at most a few statements, the selection of
an appropriate replication method requires some degree of statistical training. Volume II is
designed to provide first an overview and then a more detailed description of the available
replication options and considerations in choosing among them. Statements illustrating
common selections will appear throughout Volume I.

On the other hand, once a replication method has been selected and appropriate statements
provided in the command file, then this choice often may remain fixed for all analyses of the
survey data. For example, if replicate weights are included with a public use data set from
the Census Bureau, then a simple prescription for the replication specification section may be
given to handle all VPLX applications for this file. Thus, in many cases the roles of analyst
and statistician may be separated, with the key statistical input into the analysis reflected in
the replication method specification section.

1.3 General Features of the New VPLX Syntax

The following observations about the new syntax in the CREATE step of the previous examples are
true generally. Some do not apply to the old syntax, which is illustrated in the DISPLAY steps.

C Statements are delineated by ending semicolons. Statements may extend over multiple lines.

C Blank lines may be included to increase the readability of the code. Indentation of code may
be used freely. It may be helpful to indent continuation lines of a statement or conditional
statements following “if,” for example.

C Comments following “!” may be added without changing the interpretation of the statement
to the left. In particular, “!” does not have the effect of an ending semicolon. Extended
comments may appear between “/*” and “*/”.

C CREATE and other steps begin with an initial statement starting in position 1. Other
statements in the step are indented, that is, they must not use position 1. (Metastatements,
to be introduced later, also begin in position 1.)

C Except for character strings and file names under UNIX, VPLX statements are generally case
insensitive. For example, the documentation often makes reference to a “CREATE
statement” even though the corresponding example may include “create,” because case makes
no difference in the interpretation.

I.1.10

C The length of records on the command file must not exceed 80 characters. VPLX will check
that this limit has not been exceeded by scanning for any additional non-blank characters in
positions 81-100, to detect most accidental transgressions of this rule.

1.4 The CREATE Statement

A statement with CREATE starting in position 1 signals the beginning of a CREATE step. The
statement must also specify two files. One file is an existing character input file containing numeric
data and the other is the output VPLX file. The program will terminate in error if the input file does
not exist, but the output file may be either a new or existing file. If the output file exists, it will be
overwritten.

As is the case generally with file specifications for VPLX steps, the output file must be different from
the input file.

The syntax is:

CREATE IN = fname1 OUT = fname2 ;

The length of each file name is limited to 80 characters. The form of fname1 and fname2 depends
on the host system. In many environments, either specification may be the full name or shortened
name (depending on default directories, etc.) of the file.

Section xx details the specification of files for VPLX, including system-dependent features. A few
examples are given here, however, as a guide.

In WIN 95/NT environment, the CREATE statement might take the form:

create in = c:\survey\datafile.dat
 out = c:\survey\datafile.vpl ;

or, if c:\survey is the current directory, simply

create in = datafile.dat out = datafile.vpl;

As long as full names are specified, however, it is not necessary for the two files to be in the same
directory or DOS drive. For example, the input file may reside on a CD-ROM drive, e:,while the
output file must be directed to a drive for which the user has write access, such as a standard hard
disk, c:. The .vpl extension on the file name is recommended as a way of identifying VPLX files,
but this convention is optional.

I.1.11

Naming of files under UNIX is similar, although not identical, to DOS. (For example, UNIX employs
“/” instead of “\” in naming subdirectories.)

create in = /data5/datafile.dat
 out = /tmp/datafile.vpl;

UNIX distinguishes between lower and upper case in naming files, so that file names must be spelled
in the correct case, unlike the PC environment. In most other respects, however, VPLX is case-
insensitive.

In a VAX VMS environment,

create in = user$:[user_name.survey]datafile.dat
 out = temp$:[user_name]datafile.vpl ;

illustrates the naming of files. If the VMS file name includes a “;” to denote version, then the file
name must be included in single quotes to prevent the interpretation of the semicolon as the end of
the CREATE statement.

create in = 'user$:[user_name.survey]datafile.dat;3'
 out = temp$:[user_name]datafile.vpl ;

Default directories or shortened names may be used.

1.5 Recommended File Extensions.

Note that in DOS, UNIX, and VMS, among other systems, the last part of a file name is often called
the extension and used to distinguish types of files. VPLX does not enforce any particular system
of file extensions. On the other hand, the author finds that consistent use of a convention is quite
helpful. The author's own preferences are:

.DAT for a character (e.g., ASCII) data set.

.VPL for VPLX files output from VPLX.

.CRD for command files (2).

.VSK for files containing VPLX code (similar to .CRD) with unresolved substitutions
requiring the SET feature of VPLX (3). These files are analogous to macros in some
other languages. In a production system, a .CRD file may contain SET statements to
define the substitution strings for the particular run, and then reference one or more
.VSK files through INCLUDE.

I.1.12

.LIS for output print files, “listings,” from VPLX. These files could be sent to a printer,
although the author typically reads them with an editor and commits few to paper.

1.6 Variable Names.

VPLX variable names must begin with a letter, and contain a combination of 1-12 letters,
underscores, “_”, and digits. A few variable names are not allowed: AS, BLOCK, BY, CLASS,
FOR, IF, INTO, KEY, MEAN, MEANS, MINUS, N, OPTION, OPTIONS, PERCENT,
PERCENTS, PERCENT1, PERCENT2, PLUS, PROPORTION, PROPORTIONS,
PROPORTION1, TOTAL, TOTALS, and TOTAL1, since these are elements of the syntax (4).
Longer names, such as MEAN_INCOME, that imbed any of these terms are acceptable. (Except for
the allowed length of 12 instead of 8, these rules follow those for SAS variable names.) Note that
the minus sign (“-”) and other special symbols are not allowed as part of a variable name.

VPLX treats upper and lower case spellings as equivalent; for example, MEAN_INCOME,
mean_income, and even Mean_income all refer to the same variable.

Some variable names, such as WEIGHT, CLUSTER, STRATUM, can and should be used with
reserved meanings assigned by VPLX. For example, WEIGHT identifies a variable normally to be
used as a weight for the observations. Nonetheless, in some cases statements in VPLX allow these
reserved meanings to be overridden.

Variable names REPW, REPW0, REPW1, REPW2, ..., or REPF, REPF0, REPF1, REPF2, ..., have
an entirely reserved meaning, and can only be used to represent replicate weights or factors,
respectively. Volume II explains these further.

Some other variable names have reserved meanings in specific contexts. For example, when a
HADAMARD statement appears in a CREATE or REWEIGHT step, variable names ROW1, ROW2,
... and COEF1, COEF2, ... etc., refer to variables to be used to create either replicate factors or
weights. Outside this context, however, the names ROW1, ..., COEF1, etc., do not have a reserved
use.

1.7 A More Extensive Example.

Most examples in this documentation employ very small data sets. Although small examples are easy
to follow and can often be replicated by hand, they may not successfully convey the flavor of larger
VPLX applications. For this purpose, an extract from the 1987 Full Panel Microdata Research File
from the Survey of Income and Program Participation (SIPP) (5) is also provided. The extract
contains only a few of the variables on the CD-ROM but all of the cases.

I.1.13

An example from the extract is included here to illustrate how the standard order applies to a more
complex application. The reader may find the example partially but not entirely self-explanatory.
Subsequent chapters will return to points illustrated by this example and other applications based on
the same extract.

! i1-3.crd

 ... scratch files set up

create in = sipp87x.dat
 out = sipp1.vpl ;

 input rot su_id pp_entry pp_num pp_intvw1 - pp_intvw4
 pp_mis1 - pp_mis15 pnlwgt fnlwgt87 hsc strat
 sex race ethnicity rrp1 - rrp15
 age1 - age15 ms1 - ms15 higrade1 - higrade4
 grd_cmpl1 - grd_cmpl4 in_af1 - in_af4 tenure1 - tenure15
 pp_inc1 - pp_inc4 pp_earn1 - pp_earn4 ff_inc1 - ff_inc4
 ff_povd1 - ff_povd4 esr1 - esr15 / options nprint =1 /

 format (f1.0,f9.0, ! rot 1 su_id 2-10
 f2.0,f3.0, ! pp_entry 11-12 pp_num 13-15
 4f1.0, ! pp_intvw1-4 16-19
 15f1.0, ! pp_mis1-15 20-34
 2f12.7, ! pnlwgt 35-46 fnlwgt87 47-58
 f1.0,f2.0, ! hsc 59 strat 60-61
 2f1.0,f2.0, ! sex 62 race 63 ethnicity 64-65
 15f1.0,15f2.0, ! rrp1-15 66-80 age1-15 81-110
 15f1.0,4f2.0, ! ms1-15 111-125 higrade1-4 126-133
 4f1.0,4f1.0, ! grd_cmpl1-4 134-137 in_af1-4 138-141
 15f1.0,4f8.0, ! tenure1-15 142-156 pp_inc1-4 157-188
 4f7.0,4f8.0, ! pp_earn1-4 189-216 ff_inc1-4 217-248
 4f5.0,15f1.0) ; ! ff_povd1-4 249-268 esr1-15 269-283

 if hsc == 1 then; ! Specification for modified half
 coef1 = -.5 ; ! sample. 72 pseudo strata are
 else; ! identified on the file. Each
 coef1 = .5 ; ! pseudo stratum is divided into
 end if; ! half samples with hsc= 1 or 2.
 hadamard 72;
 coefficients 72 * .055555555556 ;
 row1 = strat;
 weight pnlwgt;

 /* The 4 rotation groups of SIPP are interviewed in different
 months. Rotation group 2 was first interviewed in Feb 1987
 to cover Oct 86 - Jan 87. Rotations 3, 4, and 1 were interviewed
 in Mar, Apr, and May, respectively. The following code
 creates monthly variables covering the 1987 calendar year. */

 if rot == 2 then;
 {c_pp_mis1 - c_pp_mis12} = {pp_mis4 - pp_mis15};
 {c_rrp1 - c_rrp12} = {rrp4 - rrp15};
 {c_age1 - c_age12} = {age4 - age15};
 {c_ms1 - c_ms12} = {ms4 - ms15};
 {c_tenure1 - c_tenure12} = {tenure4 - tenure15};
 {c_esr1 - c_esr12} = {esr4 - esr15};

I.1.14

 else if rot == 3 then;
 {c_pp_mis1 - c_pp_mis12} = {pp_mis3 - pp_mis14};
 {c_rrp1 - c_rrp12} = {rrp3 - rrp14};
 {c_age1 - c_age12} = {age3 - age14};
 {c_ms1 - c_ms12} = {ms3 - ms14};
 {c_tenure1 - c_tenure12} = {tenure3 - tenure14};
 {c_esr1 - c_esr12} = {esr3 - esr14};

 else if rot == 4 then;
 {c_pp_mis1 - c_pp_mis12} = {pp_mis2 - pp_mis13};
 {c_rrp1 - c_rrp12} = {rrp2 - rrp13};
 {c_age1 - c_age12} = {age2 - age13};
 {c_ms1 - c_ms12} = {ms2 - ms13};
 {c_tenure1 - c_tenure12} = {tenure2 - tenure13};
 {c_esr1 - c_esr12} = {esr2 - esr13};

 else;
 {c_pp_mis1 - c_pp_mis12} = {pp_mis1 - pp_mis12};
 {c_rrp1 - c_rrp12} = {rrp1 - rrp12};
 {c_age1 - c_age12} = {age1 - age12};
 {c_ms1 - c_ms12} = {ms1 - ms12};
 {c_tenure1 - c_tenure12} = {tenure1 - tenure12};
 {c_esr1 - c_esr12} = {esr1 - esr12};
 end if;

 /* The following code adjusts highest grade to completed
 grade. Highest grade is measured at each interview
 rather than each month. */

 if pp_intvw1 .in. {1,2} .and. age1 >= 15 then;
 if grd_cmpl1 == 1 then; ! completed grade
 hicmpgrd1 = higrade1 ;
 else if grd_cmpl1 == 2 then; ! grade not complete
 if higrade1 == 0 .or. higrade1 == 21 .or. ! do not adjust
 higrade1 == 25 then; ! 21 (some college)
 hicmpgrd1 = higrade1; ! 25 (some grad sch)
 else;
 hicmpgrd1 = higrade1 - 1; ! adjust other grades
 end if;
 end if;
 end if;
 if pp_intvw2 .in. {1,2} .and. age5 >= 15 then;
 if grd_cmpl2 == 1 then;
 hicmpgrd2 = higrade2 ;
 else if grd_cmpl2 == 2 then;
 if higrade2 == 0 .or. higrade2 == 21 .or.
 higrade2 == 25 then;
 hicmpgrd2 = higrade2;
 else;
 hicmpgrd2 = higrade2 - 1;
 end if;
 end if;
 end if;

 ... Similar recodes for hicmpgrd3 and hicmpgrd4

 class sex (1/2) 'Male' 'Female';
 class race (1/2/3/4) 'White' 'Black' 'Amer. Indians'

I.1.15

 'Asian and Pacific Islanders';
 class ethnicity (14-20/res) 'Hispanic origin' 'Non-Hispanic';
 class c_tenure1 - c_tenure12 (2/res) 'Renter' 'Owner or other';
 cat c_esr1 - c_esr12 (1/2/3/4/5/6/7/8) 'Worked all weeks'
 'Job,miss 1+ wk,no layoff'
 'Job, some time on layoff'
 'Part job, no layoff/look'
 'Part job, w layoff/look'
 'No job, all look/layoff'
 'No jb, some look/layoff'
 'No job, no look/layoff';
 label c_esr1 'Jan. 1987 Labor Force Status'
 c_esr2 'Feb. 1987 Labor Force Status'
 c_esr3 'Mar. 1987 Labor Force Status'
 c_esr4 'Apr. 1987 Labor Force Status'
 c_esr5 'May 1987 Labor Force Status'
 c_esr6 'Jun. 1987 Labor Force Status'
 c_esr7 'Jul. 1987 Labor Force Status'
 c_esr8 'Aug. 1987 Labor Force Status'
 c_esr9 'Sep. 1987 Labor Force Status'
 c_esr10 'Oct. 1987 Labor Force Status'
 c_esr11 'Nov. 1987 Labor Force Status'
 c_esr12 'Dec. 1987 Labor Force Status';
 cat hicmpgrd1 - hicmpgrd4 (0-11/12/21-23/24/25-26)
 'Less than HS' 'HS graduate' 'Some college'
 'College grad' 'Some post-grad';
 label hicmpgrd1 'Completed ed., intvw 1'
 hicmpgrd2 'Completed ed., intvw 2'
 hicmpgrd3 'Completed ed., intvw 3'
 hicmpgrd4 'Completed ed., intvw 4' ;

 block hicmpgrd1 / select if pp_intvw1 .in. {1}
 / select if age1 .in. {15- high};
 block hicmpgrd2 / select if pp_intvw2 .in. {1}
 / select if age5 .in. {15- high};
 block hicmpgrd3 / select if pp_intvw3 .in. {1}
 / select if age9 .in. {15- high};
 block hicmpgrd4 / select if pp_intvw4 .in. {1}
 / select if age13 .in. {15- high};
 block c_esr1 / class sex * race * ethnicity
 / select if c_pp_mis1 .in. {1}
 / select if c_age1 .in. {15-high};
 block c_esr2 / class sex * race * ethnicity
 / select if c_pp_mis2 .in. {1}
 / select if c_age2 .in. {15-high};

 ... Similar block statements for months 3-12

 Generalized replication assumed

 Size of block 1 = 6

 Size of block 2 = 6

 Size of block 3 = 6

 Size of block 4 = 6

 Size of block 5 = 144

I.1.16

 ... Similar results for blocks 6-15

 Total size of tally matrix = 1752

**** End of CREATE specification/beginning of execution

Observation 1 from unit 12
 rot 4.0000 su_id 1074034.0000
 pp_entry 11.0000 pp_num 101.0000
 pp_intvw1 1.0000 pp_intvw2 1.0000
 pp_intvw3 1.0000 pp_intvw4 1.0000
 pp_mis1 1.0000 pp_mis2 1.0000
 pp_mis3 1.0000 pp_mis4 1.0000
 pp_mis5 1.0000 pp_mis6 1.0000
 pp_mis7 1.0000 pp_mis8 1.0000
 pp_mis9 1.0000 pp_mis10 1.0000
 pp_mis11 1.0000 pp_mis12 1.0000
 pp_mis13 1.0000 pp_mis14 1.0000
 pp_mis15 1.0000 pnlwgt 7.7677
 fnlwgt87 7.2960 hsc 2.0000
 strat 40.0000 sex 2.0000
 race 1.0000 ethnicity 4.0000
 rrp1 2.0000 rrp2 2.0000
 rrp3 2.0000 rrp4 2.0000
 rrp5 2.0000 rrp6 2.0000
 rrp7 2.0000 rrp8 2.0000
 rrp9 2.0000 rrp10 2.0000
 rrp11 2.0000 rrp12 2.0000
 rrp13 2.0000 rrp14 2.0000
 rrp15 2.0000 age1 48.0000
 age2 48.0000 age3 48.0000
 age4 49.0000 age5 49.0000
 age6 49.0000 age7 49.0000
 age8 49.0000 age9 49.0000
 age10 49.0000 age11 49.0000
 age12 49.0000 age13 49.0000
 age14 49.0000 age15 49.0000
 ms1 4.0000 ms2 4.0000
 ms3 4.0000 ms4 4.0000
 ms5 4.0000 ms6 4.0000
 ms7 4.0000 ms8 4.0000
 ms9 4.0000 ms10 4.0000
 ms11 4.0000 ms12 4.0000
 ms13 4.0000 ms14 4.0000
 ms15 4.0000 higrade1 12.0000
 higrade2 12.0000 higrade3 12.0000
 higrade4 12.0000 grd_cmpl1 1.0000
 grd_cmpl2 1.0000 grd_cmpl3 1.0000
 grd_cmpl4 1.0000 in_af1 .0000
 in_af2 .0000 in_af3 .0000
 in_af4 .0000 tenure1 2.0000
 tenure2 2.0000 tenure3 2.0000
 tenure4 2.0000 tenure5 2.0000
 tenure6 2.0000 tenure7 2.0000
 tenure8 2.0000 tenure9 2.0000
 tenure10 2.0000 tenure11 2.0000
 tenure12 2.0000 tenure13 2.0000
 tenure14 2.0000 tenure15 2.0000
 pp_inc1 1542.0000 pp_inc2 1926.0000

I.1.17

 pp_inc3 1542.0000 pp_inc4 1543.0000
 pp_earn1 1536.0000 pp_earn2 1920.0000
 pp_earn3 1536.0000 pp_earn4 1536.0000
 ff_inc1 1542.0000 ff_inc2 1926.0000
 ff_inc3 1542.0000 ff_inc4 1543.0000
 ff_povd1 5748.0000 ff_povd2 5784.0000
 ff_povd3 5808.0000 ff_povd4 5832.0000
 esr1 1.0000 esr2 1.0000
 esr3 1.0000 esr4 1.0000
 esr5 1.0000 esr6 1.0000
 esr7 1.0000 esr8 1.0000
 esr9 1.0000 esr10 1.0000
 esr11 1.0000 esr12 1.0000
 esr13 1.0000 esr14 1.0000
 esr15 1.0000
(Printing discontinued on unit 12)

 End of primary input file after obs # 26441

display

list c_esr1 - c_esr12 / class total /
 c_esr1 / class sex race(2) ethnicity (1)

list hicmpgrd1 - hicmpgrd4

 Estimate Standard error

Jan. 1987 Labor Force St: PERCENTS
 Worked all weeks 57.7070 .4861
 Job,miss 1+ wk,no layoff 1.5299 .0992
 Job, some time on layoff .3364 .0510
 Part job, no layoff/look .6520 .0526
 Part job, w layoff/look .6700 .0754
 No job, all look/layoff 3.6330 .1612
 No jb, some look/layoff .6528 .0682
 No job, no look/layoff 34.8188 .4665

Feb. 1987 Labor Force St: PERCENTS
 Worked all weeks 58.4732 .4936
 Job,miss 1+ wk,no layoff 1.0650 .0888
 Job, some time on layoff .2486 .0414
 Part job, no layoff/look .5029 .0531
 Part job, w layoff/look .6693 .0718
 No job, all look/layoff 3.6213 .1376
 No jb, some look/layoff .5448 .0668
 No job, no look/layoff 34.8748 .4751

... Similar displays for March - December

I.1.18

 sex : Male
 Estimate Standard error
Jan. 1987 Labor Force St: PERCENTS
 Worked all weeks 66.5366 .6005
 Job,miss 1+ wk,no layoff 1.7254 .1529
 Job, some time on layoff .4904 .0847
 Part job, no layoff/look .4917 .0707
 Part job, w layoff/look .7242 .1131
 No job, all look/layoff 4.5256 .2390
 No jb, some look/layoff .6726 .1118
 No job, no look/layoff 24.8335 .5542

 sex : Female
 Estimate Standard error
Jan. 1987 Labor Force St: PERCENTS
 Worked all weeks 49.6324 .5676
 Job,miss 1+ wk,no layoff 1.3512 .1223
 Job, some time on layoff .1956 .0480
 Part job, no layoff/look .7986 .0886
 Part job, w layoff/look .6204 .0869
 No job, all look/layoff 2.8168 .1979
 No jb, some look/layoff .6347 .0902
 No job, no look/layoff 43.9503 .5829

 race : Black
 Estimate Standard error
Jan. 1987 Labor Force St: PERCENTS
 Worked all weeks 50.1697 1.5068
 Job,miss 1+ wk,no layoff .9930 .3056
 Job, some time on layoff .5106 .2154
 Part job, no layoff/look .4521 .1878
 Part job, w layoff/look 1.2504 .3467
 No job, all look/layoff 7.3006 .8611
 No jb, some look/layoff 1.7594 .3341
 No job, no look/layoff 37.5642 1.4057

 ethnicity : Hispanic origin
 Estimate Standard error
Jan. 1987 Labor Force St: PERCENTS
 Worked all weeks 56.7422 1.8899
 Job,miss 1+ wk,no layoff 1.3044 .3620
 Job, some time on layoff .3239 .1707
 Part job, no layoff/look .8227 .2668
 Part job, w layoff/look .8150 .2858
 No job, all look/layoff 4.9681 .8588
 No jb, some look/layoff .7583 .2957
 No job, no look/layoff 34.2654 1.7395

 Estimate Standard error
Completed ed., intvw 1 : PERCENTS
 Less than HS 25.8180 .5240
 HS graduate 34.0098 .4617
 Some college 22.2100 .3438
 College grad 9.1430 .2843
 Some post-grad 8.8193 .2695

I.1.19

1. The next revision of the VPLX metadata may be based on XML (Extensible Markup Language) so that
VPLX may readily communicate this information to other systems. At this date, XML is a proposed
standard of the World Wide Web Consortium.

Completed ed., intvw 2 : PERCENTS
 Less than HS 25.1351 .5695
 HS graduate 33.4993 .4755
 Some college 23.2307 .3632
 College grad 9.2134 .3068
 Some post-grad 8.9214 .2628

Completed ed., intvw 3 : PERCENTS
 Less than HS 24.4345 .5754
 HS graduate 33.5663 .4791
 Some college 23.6196 .3904
 College grad 9.1476 .2832
 Some post-grad 9.2320 .2636

Completed ed., intvw 4 : PERCENTS
 Less than HS 24.1432 .5842
 HS graduate 33.3471 .5145
 Some college 23.6670 .3856
 College grad 9.2989 .2893
 Some post-grad 9.5438 .2817

Exhibit 1.5 Example print file, i1-3.lis, from the 1987 SIPP panel file. Some blank lines and repetitive
sections (noted in italics) have been omitted. The input section reads all of the variables from an
extract file. The application uses variables from the public use file to create modified half-sample
replicates. An extensive recode section defines a series of variables for the 1987 calendar year and
defines a new variable for completed education. The classification and output sections define relevant
universes and cross-classifiers for the completed education and labor force variables. The DISPLAY
selectively illustrates only some of the potential results that could be calculated from the VPLX file.

The 1987 panel of the SIPP is a longitudinal sample based seven interviews conducted 4 months
apart. The file contains both monthly data, such as labor force status, and variables measured at each
interview, such as educational attainment. Each of 4 rotation groups had a different starting month.
Only 15 of the months and 4 interviews are included for the selected variables. The example
illustrates how the labor force data may be sorted out into longitudinal data for the calendar year
1987.

Full versions of i1-3.crd and i1-3.lis are available in the example files. Example i1-4.lis shows the
modifications in the input section to obtain the same results directly from the CD-ROM file instead
of the extract file.

NOTES

I.1.20

2. .CRD is an abbreviation of CARD. In the early 1970's, input to programs was often through 80-column
computer punch cards. Rubber bands, receptacles for cards, etc., were standard equipment of the era.
The author finds the abbreviation a useful mnemonic, but the user is free to choose another convention.

3. VSK may be remembered as a VPLX skeleton. The skeleton shows the outlines of the procedure but
requires external set statements to flesh out the details.

4. In most cases, VPLX will notice attempts to use these reserved names and display an error message.

5. Survey of Income and Program Participation (SIPP) 1987 Full Panel Microdata Research File on CD-
ROM, prepared by the Data User Services Division, Bureau of the Census, Washington, DC, 1993.

